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1. Astrophysical Neutrinos and IceCube

Neutrinos are regarded as excellent astrophysical messenger particles as their propagation is not
disturbed by magnetic fields inducing deflections or attenuated from interactions with the baryonic
matter due to their neutral electric charge and weak interactions. The observed astrophysical
neutrinos can reveal the locations where they were produced in the Universe. This allows the
high-energy astrophysical neutrinos to be used further to probe the interior of dense and extreme
environments of the Universe, which are believed to produce the high-energy neutrinos, such as
flaring blazars, galaxies with active galactic nuclei, etc.

The IceCube Neutrino Telescope [1] is the world’s largest neutrino detector located at the
geographic South Pole. The telescope utilises one cubic-kilometre volume of the ultra-pure Antarc-
tic ice at depths between 1450 m and 2450 m as detector medium. This giga-ton scale in-ice
detector is equipped with 5,160 Digital Optical Modules (DOMs), and each DOM instruments
a single downward-facing 10-inch photomultiplier tube (PMT) within a pressure-resistant glass
sphere. These PMTs can observe the Cherenkov radiation emitted by relativistic charged particles
created by neutrino interactions in the detector medium.

Since the first result for the observation of extraterrestrial neutrinos in 2013 [2], the observatory
has identified multiple high-energy astrophysical neutrino sources as of now: the known gamma-ray
blazar, TXS 0506+056 in 2018 [3, 4], the nearby active galaxy, NGC 1068 in 2022 [5], and the
Galactic Plane of the Milky Way galaxy in 2023 [6]. Following the observation of high-energy
astrophysical neutrinos, IceCube keeps accumulating larger and larger astrophysical neutrino data
and source locations, which allows explorations for new physical phenomena including the effects
of neutrino propagation from interactions occurring on their journeys through the cosmos.

2. Neutrino Rare Interactions

The properties of neutrinos are less well understood than those of other fundamental particles
in the Standard Model (SM) of particle physics. Nevertheless, it also means neutrinos can be
used as a probe for physics Beyond the Standard Model (BSM) by connecting the known and
unknown sectors. In particular, there could be new interactions of neutrinos that are introduced
by BSM models motivated to resolve the issues and tensions in astrophysical observations and
Cosmology [7–9]. Given the cosmological baseline from sources producing the high-energy
astrophysical neutrinos, the BSM interactions can result in significant effects as they are integrated
for the travelling of astrophysical neutrinos. To draw conclusions for these rare neutrino interactions
with the IceCube high-energy astrophysical neutrino data, there are diverse approaches proposed
considering the models such as the neutrino self-interactions with cosmic neutrino backgrounds
(𝐶𝜈𝐵) [10], or the long-range flavoured interactions with cosmological electron repositories [11].

From the models where the new interaction cross-section scales with neutrino energy, the
interactions in the present Universe can dissipate the high-energy astrophysical neutrinos in propa-
gation and lead to the suppression of astrophysical neutrino flux at Earth that could be observed by
neutrino telescopes such as IceCube. In this proceeding, the interactions between neutrino and Dark
Matter (DM) introducing the distortion of high-energy astrophysical neutrino spectra at Earth are
considered as benchmark test cases. The details of 𝜈-DM interactions are discussed in Section 2.1.
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2.1 Interaction between Neutrino and Dark Matter

The existence and the nature of DM is one of the most pressing unsolved problems in physics
today. The conventional indirect experimental efforts to search for signals from DM largely focus
on the products of DM annihilation or DM decay. However, the existence of the DM annihilation
process producing SM particles as its final products implies the existence of the elastic scattering
process between DM and SM particles. Moreover, the scattering of DM and neutrinos, assuming
light DM mass which can produce a large number density of DM particles all over the universe,
increases the opportunities of finding the interaction.

To search for the interaction of neutrinos and DM, complementary experimental approaches
are proposed to use the large-statistic dataset observed by neutrino telescopes. One of the ap-
proaches utilised the diffuse astrophysical neutrino flux, which appears consistent with an isotropic
distribution at the highest energies, by considering the cosmological DM and DM halo of the Milky
Way galaxy that leads to larger flux attenuation at or nearby the Galactic Centre [12]. The study
used the public data from IceCube High Energy Starting Event (HESE) selection [13] to test several
interaction models, and the same method was applied in a full IceCube analysis [14]. There is
another approach proposed in [15] to use neutrinos from distant neutrino point sources, which
showed competitive bounds can be obtained by using the public event and its source information
from IC170922A [3] with consideration of the flux attenuation from the cosmological DM and DM
halo of the Milky Way galaxy for travelling of neutrinos to the Earth. This analysis is motivated by
the study whereby the neutrino flux from a distant point source is expected to undergo interactions
with DM in propagation over cosmological distance, which leads to flux suppression at the Earth.

The previous studies solely considered the cosmological DM and the Milky Way DM halo, but
this analysis includes Dark Matter in the vicinity of an astrophysical neutrino source as well. The
detailed description of DM contributions considered in this analysis can be found in Section 3.1.
Furthermore, this analysis is designed to use the full IceCube data described in Section 3.4 to study
the spectra distortion from interactions with the statistical analysis method delineated in Section 3.5.

3. Analysis with a benchmark model

A statistical analysis method is used to perform the hypothesis test to compare the Null hypoth-
esis and the BSM alternative. The Null hypothesis expects that there exists a point source, resulting
in 𝑛𝑠 signal events in the IceCube’s observed data, whose neutrino spectrum is consistent with
standard astrophysical neutrino source expectations, such as single power-law, broken power-law,
spectral cut-off, etc [16]. However, the BSM alternative expects BSM effects to be superimposed
on the standard astrophysical spectrum defined in the Null hypothesis. Therefore, both hypotheses
agree to assume the excess of neutrino signal events over the background events at the location of a
source in the sky, but they expect different shapes of the neutrino spectrum observed by IceCube.

As given in Section 2, this analysis considers the 𝜈-DM interaction as the BSM hypothesis.
Letting the other spectral shapes considered as part of systematic effects, the Null hypothesis
employs a single power-law function to describe the neutrino flux with the energy of neutrinos 𝐸𝜈 ,
the spectral index 𝛾, and the flux normalisation at 100 GeV of neutrino energy Φ0:

Φ = Φ0

(
𝐸𝜈

100 GeV

)−𝛾
. (1)
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3.1 Dark Matter contributions to the interaction

The evolution of neutrino flux Φ from a source due to the interactions between neutrino and
Dark Matter can be described by the Boltzmann equation with the total cross-section 𝜎𝜈𝜒 and the
differential cross-section 𝑑𝜎𝜈𝜒

𝑑𝐸𝜈
which are the functions of neutrino energy 𝐸𝜈:

𝑑Φ

𝑑𝜏
= −𝜎𝜈𝜒 (𝐸𝜈)Φ +

∫ ∞

𝐸𝜈

𝑑𝐸 ′
𝜈

𝑑𝜎𝜈𝜒

𝑑𝐸𝜈

(𝐸 ′
𝜈 → 𝐸𝜈)Φ, (2)

where 𝜏 is the DM column density that describes the amount of DM particles along the line of
sight (𝑙.𝑜.𝑠) to a source. In detail, the first term on the right-hand side of Equation 2 gives the
general attenuation of the initial flux, and the second term describes the re-distribution of neutrino
energies after the scattering. DM column density, 𝜏, is derived from 𝜏 = Σ𝐷𝑀/𝑚𝐷𝑀 which is
the ratio between the mass of DM particle, 𝑚𝐷𝑀 , and the accumulated DM mass along l.o.s.,
Σ𝐷𝑀 =

∫
𝑙.𝑜.𝑠.

𝜌𝜒 (𝑟)𝑑𝑟 . Here, DM mass density at a position 𝑟 is given as 𝜌𝜒 (𝑟).
Considering Dark Matter distributions along l.o.s to a source, the contributions to the DM

column density can be separated into three components. One is the distribution of DM within our
Milky Way galaxy that is described by the DM mass density profile 𝜌𝑔𝑎𝑙𝑎𝑐𝑡𝑖𝑐 (x). Another one is
DM in the intergalactic free space with the density 𝜌𝑐𝑜𝑠𝑚𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 (𝑧) that can be calculated from the
cosmological constants and the distance between the Earth and a source. And the last one is the
DM in the vicinity of a source producing high-energy astrophysical neutrinos, which is profiled as
𝜌𝑠𝑜𝑢𝑟𝑐𝑒 (r). The total DM mass along l.o.s is the sum of three integrated densities described as

Σ𝐷𝑀 =

∫
𝑙.𝑜.𝑠.

𝜌𝑔𝑎𝑙𝑎𝑐𝑡𝑖𝑐 (x)𝑑𝑙 +
∫
𝑙.𝑜.𝑠.

𝜌𝑐𝑜𝑠𝑚𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 (𝑧)𝑑𝑙 +
∫
𝑙.𝑜.𝑠.

𝜌𝑠𝑜𝑢𝑟𝑐𝑒 (𝑟)𝑑𝑙. (3)

In this analysis, the standard Navarro-Frank-White (NFW) profile [17] is chosen to describe the con-
tribution from the galactic DM halo [18], and the cosmological constants from Planck 2018 data [19]
are used to calculate the cosmological DM contribution from the redshift of each source [20]. Also,
the DM spike density profile with the standard NFW profile is adopted to estimate the DM distri-
bution surrounding a source galaxy with a supermassive black hole (SMBH) as its core [21].

3.2 Benchmark Model as signals

To develop an analysis framework, two benchmark spectra are prepared as shown in Figure 1;
the blue line shows the Null hypothesis spectrum whereas the orange line displays the spectrum of
the BSM alternative where the outstanding ’dip’ feature exists around 100 TeV.

For the BSM hypothesis, a model of the interaction between the scalar DM particles and
neutrinos mediated via new vector particles (𝑍 ′) is assumed. The model was introduced in [22]
and an example diffuse spectrum from the model was presented in [23]. This analysis converts
the example spectrum to the BSM benchmark case in Figure 1 by restricting the solid angle to
a point-like source in the sky. According to the presentation [23], the 𝜈-DM interaction whose
cross-section scales with neutrino energy but approximately flattens at the highest energies creates
the ’dip’ signature from the evolution of flux. The initial spectral index of the flux and the flux
normalisation at 100 GeV are given as 𝛾 = 2.3 and Φ0 = 9× 10−12 GeV1cm−2s−1 respectively. The
mass of the Dark Matter particle, the mass of the mediator particle, and the interaction coupling are
set to be 𝑚𝜒 = 0.3 eV, 𝑚𝑍 ′ = 10 MeV, 𝑔 = 5.8 × 10−3 respectively.
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Figure 1: Benchmark neutrino spectra from a point source at Earth Benchmark spectra with and
without the 𝜈-DM interactions are shown. The blue line is a single power-law spectrum with 𝛾 = 2.3 and
Φ0 = 9× 10−12 GeV1cm−2s−1 that corresponds to the Null hypothesis. The orange line is basically the same
single power-law spectrum but has the ’dip’ shape around 100 TeV as an interaction signature the interaction
with assumptions of 𝑚𝜒 = 0.3 eV, 𝑚𝑍 ′ = 10 MeV, 𝑔 = 5.8 × 10−3 that corresponds to the BSM hypothesis.

The Null hypothesis flux shares 𝛾 and Φ0 with the BSM flux, but it is just extrapolated to higher
energies with the single power-law in Equation 1. As expected, there is no interaction signature
over all energies.

3.3 Backgrounds

Backgrounds for this analysis consist of atmospheric neutrinos and diffuse astrophysical neu-
trinos. Even though both conventional atmospheric neutrinos and prompt atmospheric neutrinos
contribute to backgrounds, the total atmospheric neutrino flux is considered uniform in right as-
cension. Besides the astrophysical neutrino flux from a source, the flux of diffuse astrophysical
neutrinos originating from the other region of the Universe away from the source location is ex-
pected to be isotropic and thus uniform in right ascension. Under these expectations, the right
ascension of observed data is replaced with random numbers between 0◦ and 360◦ to estimate the
background event distribution, called the event scrambling method. Contribution from atmospheric
muons is considered negligible as the analysis focuses on the Northern sky (see Section 3.4).

3.4 Data Sample

Since all of the IceCube-identified astrophysical neutrino point sources are located in the
Northern sky, and the analysis requires a good angular resolution to point back the direction of each
neutrino event, the analysis considers the through-going track-like events from the Northern sky
that mostly are induced by upward-going 𝜈𝜇 and 𝜈̄𝜇 with respect to the detector. The data sample
used in this analysis is a set of those neutrino events, selected by the well-established event selection
also used in previous IceCube analyses [5, 16], from ∼ 10.4 years of observed data. The event
selection achieves the median angular resolution to be 0.4◦ at 100 TeV [5], which is preferred in the
point source searches that are expected to produce high-energy astrophysical neutrinos. The sample
contains events recorded in declinations ranging from −5◦ to 90◦ and in energies above 100 GeV.
Due to the absorption in the Earth or in the ice overburden, the atmospheric muon background is
sufficiently suppressed which increases the purity of the data sample.
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3.5 Statistical Methodology

The previous IceCube point source searches [24, 25] utilised the unbinned likelihood method
[26] to search for the astrophysical neutrino by maximising the signal-over-background likelihood
estimation. This analysis employs a similar approach but with some modifications in the unbinned
likelihood function L to include the interaction parameters as expressed in Equation 4:

L(𝑛𝑠) =
𝑁∏
𝑖=1

(𝑛𝑠
𝑁
S𝑖 (𝛼𝑖 , 𝛿𝑖 , 𝐸𝑖 |𝛾,Φ0, 𝑚𝜒, 𝑚𝜙, 𝑔) +

(
1 − 𝑛𝑠

𝑁

)
B𝑖 (𝛼𝑖 , 𝛿𝑖 , 𝐸𝑖 |𝛾,Φ0)

)
, (4)

where S and B are the probability density functions (PDFs) for signal and background described as

S𝑖 = 𝑆(𝛼𝑖 , sin 𝛿𝑖)︸        ︷︷        ︸
spatial PDF

𝑆(𝐸𝑖 , sin 𝛿𝑖)︸         ︷︷         ︸
energy PDF

, B𝑖 = 𝐵(sin 𝛿𝑖)︸    ︷︷    ︸
spatial PDF

𝐵(𝐸𝑖 , sin 𝛿𝑖)︸         ︷︷         ︸
energy PDF

. (5)

The PDFs are used to construct L for evaluating total 𝑁 observed events with observables; the
reconstructed right ascension 𝛼, the reconstructed declination 𝛿, and the reconstructed neutrino
energy 𝐸 for 𝑖-th event. Each S and B of 𝑖-th event are approximated as the product of a spatial PDF
and an energy PDF [26]. Each local hypothesis test gets its own S from dependencies on 𝑚𝜒, 𝑚𝜙,
and 𝑔. B is obtained by data scrambling as described in Section 3.4. Each hypothesis has its own
likelihood function; L𝐵𝑆𝑀 for the BSM hypothesis, L𝑁𝑢𝑙𝑙 for the Null hypothesis, and L𝐵𝐺 for the
Background-only hypothesis. The test statistic for this analysis (TS) is defined as the difference of
the log-likelihoods for BSM hypothesis and Null hypothesis, which becomes Δ𝑇𝑆, described as

TS = −2 · 𝑠𝑖𝑔𝑛(𝑛𝑠) · log
[
L𝑁𝑢𝑙𝑙

L𝐵𝑆𝑀

]
(6)

= −2 · 𝑠𝑖𝑔𝑛(𝑛𝑠) ·
(
log

[
L𝐵𝐺

L𝐵𝑆𝑀

]
− log

[
L𝐵𝐺

L𝑁𝑢𝑙𝑙

] )
= 𝑇𝑆𝐵𝑆𝑀 − 𝑇𝑆𝑁𝑢𝑙𝑙 ≡ Δ𝑇𝑆. (7)

The definition of the test statistic (𝑇𝑆) with the Background-only hypothesis in Equation 7 is
technically identical to the𝑇𝑆 definition used in the previous IceCube point source analyses [24, 25].

L for both Null and BSM hypotheses are maximised by fitting for the expected number of
signal neutrino events, 𝑛𝑠, with the information of 𝑁 events. L𝐵𝐺 only takes 𝑛𝑠 = 0 to give no signal
event, and L𝑁𝑢𝑙𝑙 only takes 𝑔𝜈𝜒 = 0 to have no interaction signature in the spectrum at the Earth.
𝑇𝑆 is allowed to be both positive and negative values by accepting the sign of 𝑛𝑠, which account for
under- and over-fluctuation of background events at the source location in the sky respectively.

4. Analysis Status

From a set of pseudo-experiments (trials) with given 𝑛𝑠, a set of log-likelihood values is
obtained. Following the definition of TS in Equation 7, the distributions of test statistics from
the likelihood ratio between the Background-only hypothesis and the Null hypothesis or the BSM
hypothesis can be derived, and Δ𝑇𝑆 distribution can be secured as a consequence. 𝑇𝑆 distributions
and Δ𝑇𝑆 distribution (coloured histograms) from the benchmark spectra in Figure 1 are shown
in Figure 2 with three different 𝑛𝑠. The number of trials to derive each distribution was 105. As
shown in the plots, each distribution is distinguishable from the other distribution even visually. The
preliminary sensitivity to the benchmark models will come from the hypothesis test between the Null
hypothesis and the BSM hypothesis comparing the Null (blue) and the Δ𝑇𝑆 (green) distributions.
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Figure 2: Distributions of test statistics with the given numbers of the expected signal neutrinos
Test Statistic distributions from the likelihood ratio between the Background-only hypothesis and the Null
hypothesis or the BSM hypothesis, in the blue and the orange histograms respectively, and Δ𝑇𝑆 distribution
in the green histogram. Each plot is derived by 105 pseudo-experiments for each hypothesis with respect to
the given numbers of expected signal neutrinos: 𝑛𝑠 = 10 (left), 𝑛𝑠 = 25 (middle), and 𝑛𝑠 = 40 (right).

5. Summary and Outlook

This is the first search for neutrino signals having undergone rare BSM interactions with the
whole IceCube astrophysical neutrino data and the sources of astrophysical neutrinos identified by
IceCube. Considering a benchmark model for 𝜈-DM interaction, the analysis shows a prospect
to test the BSM hypothesis that assumes the attenuation of astrophysical neutrino flux to the Null
hypothesis with no attenuation by presenting the distinguishable test statistics distributions between
both hypotheses. From the comparison of TS distributions, the sensitivity of this analysis to the
benchmark BSM model can be achieved.

For the status, just one benchmark model is discussed in this proceeding which leads to a single
local sensitivity. To have the global sensitivity over various models of 𝜈-DM interactions, BSM
spectra need to be generated from diverse combinations of DM properties and interaction mediators
and be added into the analysis framework for further evaluation. Furthermore, the analysis will
implement systematic uncertainties including the astrophysical flux model introduced to characterise
9.5 years of the astrophysical 𝜈𝜇 data observed by IceCube [16] for the Null hypothesis. The
sensitivities among the different Null hypothesis assumptions will be evaluated from the tests of
those models. Moreover, the framework can be applied to search for other rare interaction channels
such as neutrino self-interaction considering the interaction of astrophysical neutrinos with 𝐶𝜈𝐵.

As the analysis utilises neutrino spectra in broad energies and precise event reconstructions,
future neutrino detectors would provide improved sensitivities to the interactions. The IceCube-
Gen2 [27] is a proposed high-energy extension of the IceCube detector instrumenting an eight times
larger effective volume than IceCube. The enlarged volume would increase the number of observed
events even at much higher energies as well as enhance the angular resolution for track-like events.
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