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IceCube realtime neutrino alert using multiplet signal

1. Introduction

Since the first discovery of the high energy astrophysical neutrinos by the IceCube observatory
in 2013 [1, 2], more detailed properties of the astrophysical neutrino fluxes have been clarified such
as spectral index [3] and flavor ratio [4]. In 2017, an association of the realtime neutrino alert
(IceCube-170922A), with the high-energy gamma-ray flare by Fermi-LAT was reported [5], and
suggested the blazar TXS 0506+056 was likely an source of high energy neutrinos. However, it
is known that the blazars cannot explain all the diffuse fluxes observed by the IceCube [6]. It is
still unclear which astrophysical objects fill our universe with high energy neutrinos. Month-order
transients, such as TDEs [7] are of particular interest as a possible association between an IceCube
alert and TDE flare has been identified [8].

To identify the sources of high energy neutrinos, multi-messenger observation is a powerful
strategy. In particular, a follow-up observation by optical telescopes can be a smoking gun to
get a hint of the origin of neutrinos. The absence of the electromagnetic interaction of neutrinos
allows them to propagate from the distant universe, but this feature makes the optical follow-up
difficult. The rate density of supernovae is approximately 10−4 Mpc−3 · yr−1, and the number of
the supernovae within redshift 𝑧 < 1 results in ∼ 1 day−1deg−2. Since the angular resolution of
neutrino events is ∼ 1◦, a follow-up identification of optical counterpart using a long time window
of more than a day becomes challenging due to contamination of irrelevant transients.

To successfully identify the neutrino source by multi-messenger observation, a multiplet signal
is searched, where two or more neutrino events are observed in the same direction within a limited
time window. By imposing the detection of multiple neutrinos, the distance to the neutrino source
is biased to typically less than 𝑧 < 0.1 [9]. The presented study aims to develop a new neutrino
alert channel utilizing a month-time scale multplet signal.

Figure 1 shows the expected number of multiplets in a year as a function of neutrino source
model parameters when the timing window is 30 days [9]. Left is in neutrino source energy,
𝐸𝜈 , and rate density, 𝜌𝜈 plane, while the vertical axis of the right panel is given as luminosity
density, 𝐸𝜈𝜌𝜈 . The number already includes the efficiency of a neutrino event selection described
in section 2.2. The colored bands correspond to the energy fluence of the diffuse neutrino flux of
𝐸2𝜙𝜈𝜇 ∈ (10−9, 10−7) GeV · s−1 · cm−2 · sr−1. Given the measured value of 𝐸2𝜙𝜈𝜇 = 1.44 × 10−8

at 100 TeV [3], the bands are ±1 decade from the best fit. To calculate the number of multiplets, a
neutrino flux from a given 𝐸𝜈 is bolometrically defined assuming isotopic luminosity distribution.
The flavor ratio at the earth is set to be 𝜈𝑒 : 𝜈𝜇 : 𝜈𝜏 = 1 : 1 : 1. For every source, a probability to be
observed as a multiplet is given by 𝑝 = 1− 𝑒−𝜇 − 𝜇𝑒−𝜇, where 𝜇 is an expected number of neutrino
events in 30 days. This 𝑝 is convoluted when we integrate sources over distance. Here, the neutrino
source evolution is assumed to be a star formation rate: ∝ (1 + 𝑧)3.4 for 𝑧 < 1 and a constant for
𝑧 ≥ 1. The range of the integration over distance is from (4𝜋/3 · 𝜌𝜈𝑇30 day)−1/3 (the distance that a
single source is expected on average within this range) to a distance corresponding to 𝑧 = 4. Further
details are described in Ref. [9]. As can be seen in the figures, the expected number of the multiplet
signal is small < 1 in most of the phase space, thus the algorithm to send a multiplet alert should
be sensitive to such small number of detected events.

2



P
o
S
(
I
C
R
C
2
0
2
3
)
1
4
6
7
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Figure 1: Left: contours of the expected number of the detected multiplets in a year as a function of neutrino
source model parameters. The colored band corresponds to a consistent region of the diffuse neutrino flux of
𝐸2𝜙𝜈𝜇 ∈ (10−9, 10−7) GeV · s−1 · cm−2 · sr−1: right in 𝐸𝜈-𝜌𝜈 plane, and left in 𝐸𝜈-𝐸𝜈𝜌𝜈 plane. Assumptions
to calculate these values are explained in the main text as well as in Ref. [9].

2. Multiplet Selection in the IceCube

2.1 IceCube observatory

The IceCube observatory at the South Pole is a cubic-kilometer detector for astrophysical
neutrinos. Cherenkov emissions from the charged particles generated by the interaction of high
energy neutrinos are observed by 5160 digital optical modules (DOMs). The DOMs include 10"
photomultiplier tubes in a high pressure-resistant vessel, and were deployed between 1450 m to
2450 m below the surface of ice by 86 strings. Detected photon signals are sent to a surface IceCube
laboratory, and recorded when the trigger condition is satisfied. The patterns of detected photons
by neutrino events are classified as either tracks or cascades. A track event is initiated by a charged
current interaction of 𝜈𝜇, and the photon distributes along the line of the outgoing muon showing
a good angular resolution of ∼ 1◦ deg. A cascade event shows more isotropic hit distribution, and
the angular resolution is ∼ 10◦ deg.

2.2 Neutrino Event Selection
Major backgrounds to the astrophysical neutrinos are from atmospheric neutrinos for decli-

nation angle 𝛿 > −5◦ while the other is from atmospheric muons for 𝛿 < −5◦. Detected signals
are first cleaned by rejecting isolated hits both in space and time, and then a track reconstruction
is performed. Starting from a simplest geometrical line fit as a seed, several iterative fits are per-
formed, and finally a sophisticated method SplineMPE fit determines the most probable direction of
the neutrino event [10, 11]. Kinetic variables such as a geometrical center of gravity, total detected
number of photons, likelihood of the reconstruction, etc, are used as inputs of the boosted decision
tree to purify the astrophysical neutrino events (the event set is called GFU sample because of
original purpose of a gamma-ray follow-up) [12]. This study uses only track type event from the
northern direction 𝛿 > −5◦ because the effective area to the neutrino signal is higher than that of
southern sky. The total event rate of this selection is 3.3 mHz. The used dataset was collected since
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the completion of the IceCube in 2011 until the end of 2022, corresponding 11.4 years of total live
time after excluding period of data acquisition failures.

2.3 Clustering of Multiplets

The conventional time-dependent all-sky realtime alert (hereafter referred to as all-sky) uses
the nested likelihood [13] to search for a population of neutrino events in time and position:

L𝑁 (𝑛𝑠, 𝛾) =
𝑁∏
𝑖=1

[
𝑛𝑠

𝑁
Lsig(𝛾) +

𝑁 − 𝑛𝑠

𝑁
Lbg

]
, (1)

where Lsig and Lbg are signal and background likelihoods, 𝑁 is a total number of neutrinos used to
compute the likelihood, 𝑛𝑠 is a number of signal source, and 𝛾 is a spectral index of the energy of
neutrino signals (𝑑𝑁/𝑑𝐸 ∝ 𝐸−𝛾). The signal and background likelihoods are defined as a product
of a spatial and an energy probability density functions. For a given maximum timing window𝑇max,
a test statistics (TS) is constructed as a likelihood ratio against the null hypothesis:

Λall-sky = 2 log ©«
max
𝑛𝑠 ,𝛾

L𝑁 (𝑛𝑠, 𝛾)

L𝑁 (𝑛𝑠 = 0) · Δ𝑇

𝑇max

ª®¬ , (2)

where “max” means the nested likelihood is optimized with respect to 𝑛𝑠 and 𝛾. Moreover, within
𝑇max, a variable timing window Δ𝑇 and a direction ®𝑛𝜈 are fit in time and position space, and the
combination having the largestΛall−sky is selected. The factorΔ𝑇/𝑇max compensates for the increase
in background for larger windows by penalizing a short Δ𝑇 .

Rather than using all the events in a variable timing window Δ𝑇 , the newly proposed algorithm
calculates a TS for every combination of two or three events. First, an incoming event is used as a
seed, and multiplet candidate events are selected within 3◦ of its vicinity in the record back to 30
days (𝑇max = 30 days). Then if the number of candidates satisfies 𝑁 ≥ 2 and 𝑁 ≥ 3, we calculate
doublet and triplet TSs, respectively, as:

Λdoublet = 2 log ©«
L (1)

sig (𝛾 = 2.3)

L (1)
bg

·
L (2)

sig (𝛾 = 2.3)

L (2)
bg

ª®¬ (3)

Λtriplet = 2 log ©«
L (1)

sig (𝛾 = 2.3)

L (1)
bg

·
L (2)

sig (𝛾 = 2.3)

L (2)
bg

·
L (3)

sig (𝛾 = 2.3)

L (3)
bg

ª®¬ , (4)

where the upper numbers of the likelihoods represent indices of events. Similarly to the all-sky,
the most probable direction of neutrino source is determined by maximizing each TS whereas the
spectral index is not floated because 𝑁 = 2, 3 is too small to determine 𝛾. This 𝛾 = 2.3 was chosen
because of the best fit of the measured spectral index of the diffuse flux [3]. Finally, the combination
which has the largest TS is chosen.

3. Performance of the Multiplet Selection

To evaluate the distribution of the background of the TS, we generated a pseudo dataset by
scrambling the time of each neutrino event so that the statistics of the dataset were increased to
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Figure 2: Distribution of test statistics: left Λdoublet and right Λtriplet. The black and colored histograms are
distributions of background and signal, respectively. The number of detected signals are exactly two and
three for doublet and triplet cases, respectively. The colors represents different spectral indices: red 2.0, blue
2.3, and green 2.7, respectively. The background histogram is scaled to be equivalent to one year while the
scales of signal histograms are arbitrary. The smallest bin includes underflow. The vertical dashed lines
represent the threshold of TS at FAR = 1 yr−1.

more than an 8000-year equivalent value. The distribution of the astrophysical neutrino signal
was evaluated by mixing simulated signal events on top of the pseudo dataset. Assuming the
signal timing distribution is uniform, we mixed the signal events uniformly in 𝑇max(= 30 days),
and selected the maximum TS in 𝑇max. The direction of the signal source is uniformly distributed.
Figure 2 shows the distribution of Λdoublet and Λtriplet for both background and signal events.

A false alarm rate (FAR) at a given threshold of a TS is evaluated as an upper cumulative sum of
the background histogram. If 𝑁 ≥ 3, we in general have bothΛdoublet andΛtriplet, so we unite them as
TS-score by selecting more significant pair as TS-score = max

{
−FAR(Λdoublet),−FAR(Λtriplet)

}
,

where the negative sign converts the TS-score such that larger value shows higher significance.
The performances of the algorithms are compared based on the efficiency of signals under a

given value of the FAR. Here, we define one trial as an operation to add simulated 𝑁det signal events
on the pseudo experimental data within 𝑇max. Here, the inserted events already pass the described
event selection in section 2.2, hence 𝑁det is a number of detected signal events. After calculating
the TS for all the events in 𝑇max, if the maximum TS exceeds the threshold of the TS, the signal is
to be successfully detected. The signal efficiency is defined as a fraction of such successful trials
out of the total number of trials simulated. As a benchmark, we set a threshold at FAR = 1 yr−1.
Figure 3 shows the signal efficiency as a function of 𝑁det when the spectral index is 𝛾 = 2.3. The
signal source direction is uniformly sampled. The red and blue curves are signal efficiencies when
we use only Λdoublet and Λtriplet, while the green is the case when we use the TS score. In spite
of the multiplet selection, a nonzero efficiency at 𝑁det = 1 is observed, but this occurs due to a
combination of a background and a signal events. If we compare the performance to the all-sky, the
new proposed method shows significantly higher efficiency when 𝑁det is small whereas it is smaller
for large 𝑁det. This trend is natural because the all-sky TS uses all events inside Δ𝑇 while the newly
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Figure 3: Efficiency to detect multiplets as a function of the detected number for the all sky (black), doublet
(red), triplet (blue), and TS-score (green) when the spectral index is -2.3. The threshold of the false alarm
rate is 1.0 per year in each algorithm.
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Figure 4: Angular resolution of the multiplets which have TS values higher than the threshold at 𝐹𝐴𝑅 = 1 yr
as a function of the detected number of signal event for the all-sky (black) and this algorithm (red). The solid
and dashed lines represent 50% and 90% containment radius, respectively.

proposed TSs selectively cherry-pick significant combinations out of many events.
When operated as an alert, a pointing accuracy of the neutrino source direction is important

for follow-up observation. Figure 4 shows the angular resolution as a function of 𝑁det for multiplets
which pass the threshold of TS at FAR = 1 yr−1. The solid and dashed lines represent 50% and 90%
containment regions, respectively. Thanks to multiple events, the angular resolution of multiplets
are much better than typical uncertainty of singlet events (∼ 1◦). Moreover, compared to the all-sky
method, the proposed algorithm shows a stable angular resolution for small 𝑁det. For 𝑁det ≥ 2, our
method exhibits a 90% containment angular resolution of 0.3◦. Even if we relax the threshold of the
TS up to FAR = 10 yr−1 (the energies of passing events become smaller and the angular resolution
becomes poorer), the degradation is only 20%.

4. Sensitivity

The new algorithm will be used not only to issue an alert, but also to search for multiplets
in 11 years archival data of IceCube. A commonly used quantity to demonstrate the sensitivity
is “𝑛-𝜎 discovery potential”, which is defined as a signal strength such that with 50% of chance,
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a signal trial exceeds 𝑛-𝜎 of a background TS distribution. The left of Fig. 5 shows 3𝜎 and 5𝜎
discovery potentials of a time integrated energy fluence for the all-sky and our proposed algorithms
as a function of declination angle for 𝛾=2.0. Our algorithm shows higher sensitivity particularly for
looser condition of 3𝜎. This is even better when we relax the requirement on the signal efficiency
from the conventional 50% to 5% as shown in right panel. Because our method is more optimized
for a small number of detection, it is more sensitive to a limited subset of significant events.

To constrain the allowable neutrino source model parameters, we use the maximum TS values
of doublet and triplet in 11 years Λmax = max

{
Λdoublet,Λtriplet

}
, where the maximum is selected

among 11 years dataset. The distribution of Λmax is first evaluated by the pseudo experiments, and
then the p-value is defined as an upper cumulative sum of the observed Λmax. Since we have not
yet unblinded the real experimental data, we assume our universe is characterized by the neutrino
source model parameters 𝐸𝜈 , 𝜌𝜈 (and 𝛾), and then we emulate the maximum TS with existence
neutrino source Λmax

w/sig. By averaging p-values for many Λmax
w/sig, we get an averaged confidence

interval of neutrino source model parameters consistent with background-only hypothesis. Figure 6
shows contours of the neutrino source model parameters at 90% confidence level when the spectral
indices are 1.5 (red), 2.0 (orange), 2.3 (green), 2.5 (blue), and 2.7 (cyan): left in 𝐸𝜈-𝜌𝜈 plane, and
right in 𝐸𝜈-𝐸𝜈𝜌𝜈 plane. The archival 11 years dataset will be sensitive to neutrino source model
parameters above the contours.
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Figure 5: Discovery potential as a function of the declination angle for the all-sky (black), and this algorithm
(red) when 𝛾 is 2.0. Solid, and dashed lines represent 5𝜎 and 3𝜎, discovery potential, respectively. Left
figure is a conventional definition where the signal efficiency is 50%, while right is at 5%.

5. Conclusion

A multi-messenger observation by optical telescopes can be a smoking gun to identify the origin
of high energy astrophysical neutrinos. However, a large uncertainty of the neutrino reconstruction
degrades the significance of observation due to many irrelevant transients in distant universe. It
becomes further difficult to perform a search for long time scale transients. A multiplet signal
automatically gives bias on the neutrino sources 𝑧 < 0.1 and makes easy to identify optical
counterparts. Moreover, multiplet provides much better angular uncertainty than singlets. The
expected number of multiplet signals are small, < 1 yr−1, so the algorithm to issue an alert needs
to be sensitive to such small number of detected events. In comparison with the conventional all-
sky clustering method, the newly proposed algorithm calculates doublet and triplet TSs for every
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Figure 6: Contours of excluded region of neutrino source model parameters at 90% confidence level
when the spectral indices are 1.5 (red), 2.0 (orange), 2.3 (green), 2.5 (blue), and 2.7 (cyan): left in 𝐸𝜈-
𝜌𝜈 plane, right in 𝐸𝜈-𝐸𝜈𝜌𝜈 plane. The center bands correspond to the diffuse neutrino flux of 𝐸2𝜙𝜈𝜇 ∈
(10−9, 10−7) GeV · s−1 · cm−2 · sr−1.

combination of two and three events, and provides much higher efficiency for signal events under
a given threshold of the TS. This algorithm will be used to search for multiplets in the 11 years
archival data as well.
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