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O4 neutrino follow-up with IceCube

1. Introduction

In the past ten years, the detections of astrophysical neutrinos by IceCube and gravitational
wave sources with the LIGO and Virgo interferometers have opened a new window to the Universe.
Unlike photons, these messengers are not stopped by dense environments or by dust, hence providing
complementary information on source mechanisms and underlying processes.

In the years since the first detection of a binary black hole merger [1], many more GW detections
have followed, including neutron star - black hole and binary neutron star mergers. The ongoing
fourth observing run (O4) has started with a horizon of 130 − 150 Mpc for binary neutron star
mergers, though it still aims to reach 160 − 190 Mpc with improvements in the detector hardware
as the run proceeds [2].

For every GW alert from LIGO and Virgo, the astroparticle community has carried out follow-
up observations [3]. An excess of neutrinos has not yet been observed, but such non-observations
provide constraints on the multi-messenger picture of these merger events and on the involved
processes, such as the acceleration mechanism of hadronic particles and the composition of the
merged objects.

The prime example of multi-messenger astronomy is the detection of a gamma-ray burst
(GRB) from the binary neutron star merger GW170817 [4, 5]. With the discovery of this GW+GRB
coincidence and as neutrinos have long been expected from GRBs, there has been an increased
interest in neutrino production in merger events. While these neutrinos are typically expected
to have energies in the TeV–PeV range [6] or in the 10 − 100 GeV range [7], GeV neutrinos can
also be produced by proton-proton or proton-neutron interactions in the denser medium of the
burst [7]. Therefore, observation of such neutrinos would not only highlight the presence of hadron
acceleration but also give a deeper look into the merger events.

The time of neutrino emission from merger events is not tightly constrained. Neutrinos can
originate from the GRB following the merger, and in this case there is an uncertainty in the time of
emission. Both the timing of the GRB after the merger event and when the neutrino is emitted from
the GRB is unknown. There is even the possibility of neutrinos being emitted during a precursor,
where the neutrino emission can happen before the GRB. Therefore, searches often consider a
conservative time window of ±500 s around the merger time [8].

The IceCube Neutrino Observatory, a Cherenkov detector located at the South Pole, can be
used to search for these neutrinos. It consists of an array of more than 5000 PMTs distributed
along vertical strings instrumenting a cubic kilometer of ice. Neutrino interactions are identified
when their secondary charged particles induce Cherenkov light in the ice. The detector geometry
is optimized for detecting TeV–PeV neutrinos. The detection of lower-energy events is realized by
using the DeepCore sub-array located at the center of IceCube. This sub-array consists of more
densely placed PMTs that are more sensitive than the standard IceCube PMTs. With DeepCore, it
is possible to search for astrophysical neutrinos between 0.5 − 5 GeV with a specialized selection
procedure called ELOWEN [9].

The ELOWEN selection can reduce the initial rate of triggered events from the kHz level [10]
down to 0.02 Hz, as detailed in [11]. Before the ELOWEN selection, the data is dominated
by atmospheric muons and "noise events", including uncorrelated thermal noise, uncorrelated
radioactive noise, and correlated scintillation noise [12, 13]. Using several different filtering
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steps, ELOWEN can reduce these noise sources dramatically while ensuring about 40% selection
efficiency for GeV neutrinos [9, 11]. This final sample is still dominated by noise events with a
subdominant contribution from atmospheric neutrinos, which are estimated from simulations to
occur at the mHz level.

Despite the large background and lack of direction reconstruction, searching for neutrinos from
transient events with ELOWEN is still possible by identifying an excess in the number of events
in a short period around the transient detection. The number of neutrino events can be compared
to the expected background to extract the observation significance and eventually put constraints
on the flux. With this method, analyses using ELOWEN have been targeting neutrinos from solar
flares [11], as well as from GRB 221009A, the brightest GRB ever observed [14, 15].

2. Analysis method

In these proceedings, ELOWEN is used to search for neutrinos originating from GW sources.
A time window of 1000 s centered on the GW time is employed as prescribed in [8] for such studies.
A special treatment is made for mergers that are reported with > 50% probability to involve at
least one neutron star, as they are more likely to be associated with a GRB. Based on the first
detected binary neutron star (BNS) merger, GW170817, and its associated GRB detected 1.7 s later
by Fermi-GBM and Swift [4], we define [𝑡GW, 𝑡GW + 3 s] as an alternative time window for the
search of a prompt signal, where 𝑡GW is the merger time.

Several checks are performed to ensure neutrino data quality during the gravitational wave
event. In addition to the automated data quality checks performed in IceCube [10] and prior to
the unblinding of the data, an 8 h time window directly before the chosen time window is analyzed
to estimate the ELOWEN background rate and ensure it is compatible with the expected 20 mHz
(typically falling within the 17 − 23 mHz range given the statistical uncertainty on the estimation).
After unblinding, the possibility of localized noise events in a single PMT or string (due to uncaught
detector anomalies) is excluded by checking the spatial distribution of the neutrino candidate events
within IceCube during the 1000 s time window.

If all checks are passed, the observed number of events in the search time window 𝑁on is
compared to the background estimated from the 8 h. The Li & Ma approach [16] is used to quantify
the significance of the observation (in units of 𝜎) and the related 90% sensitivity is obtained by
computing which signal strength is needed to achieve a significance corresponding to a ∼ 1.64𝜎
excess. In the absence of any significant excess (> 3𝜎), a Bayesian method is employed to compute
the individual 90% upper limits on the number of signal events and the corresponding all-flavor
time-integrated flux [17]. The following likelihood is defined:

L(𝑁on, 𝑁off |𝑁sig, 𝑁bkg, 𝛼) = Poisson(𝑁on; 𝑁sig + 𝑁bkg) × Poisson(𝑁off; 𝑁bkg/𝛼), (1)

where 𝑁on (𝑁off) is the observed number of events in the search (8 h) time window, 𝛼 is the ratio
between the livetimes in the search and 8 h time windows, and 𝑁sig (𝑁bkg) is the estimated number
of signal (background) events in the search time window. A Jeffreys uninformative prior [18] is
then used to get the corresponding posterior distribution. The latter is then marginalized over 𝑁bkg
to finally compute the 90% upper limit 𝑁90%

sig .
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The conversion to a flux limit uses the summed effective area for all neutrino flavors 𝐴eff (𝐸)
ranging from 0.5 to 100 GeV, as shown in Figure 1. Only power-law spectra are considered:

d𝑁
d𝐸

= 𝜙

(
𝐸

GeV

)−𝛾
, (2)

where 𝜙 is the flux normalization in GeV−1 cm−2 and 𝛾 = 2.0, 2.5, 3.0. Limits are then reported in
terms of 𝜙:

𝜙90% =
6 × 𝑁90%

sig∫ 100 GeV
0.5 GeV 𝐴eff (𝐸) × (𝐸/GeV)−𝛾d𝐸

, (3)

where the factor 6 is used to convert from single-flavor to all-flavor flux. If ones replaces the units
with GeV cm−2, it is the same as the limit on 𝐸2d𝑁/d𝐸 at 1 GeV.

Figure 1: All-flavor effective area for the ELOWEN selection from 0.5 to 100 GeV.

3. First results

The follow-up analysis has been performed for nine GW significant alerts during the engineering
run ER15 and the beginning of O4, including two neutron star - black hole (NSBH) mergers while
the rest are most likely binary black hole mergers, as reported in the alert GCN notices.

The results in terms of the number of events are summarized in Figure 2. Given the average
expected background rate of ∼ 20 mHz, the 90% flux sensitivity of the search computed with the
Li & Ma method is 𝜙 < 1.1 × 103 GeV−1 cm−2 for an 𝐸−2 spectrum and the 1000 s time window.
No event has a significance higher than 3𝜎 and individual upper limits are then computed using
the Bayesian method described in the previous section. They are reported in Table 1 for the 1000 s
time window and in Table 2 for the 3 s time window for the two NSBH candidates.
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Figure 2: Distribution of the observed number of events in the 1000 s time window for the O4 GW alerts
(orange histogram) compared with the background expectation (blue filled histogram) as estimated from the
equivalent of one month of data taken during periods when no transient sources (GWs, GRBs, high-energy
neutrinos, solar flares) were reported on GCN or ATel.

Upper limits on 𝜙 [GeV−1 cm−2]
⟨𝑁bkg⟩ 𝑁on 𝑁90%

sig 𝛾 = 2 𝛾 = 2.5 𝛾 = 3

S230518h [GCN] 18.81 24 12.7 1.7 × 103 5.5 × 103 1.4 × 104

S230520ae [GCN] 19.06 22 10.6 1.4 × 103 4.6 × 103 1.2 × 104

S230522a [GCN] 19.36 19 8.1 1.1 × 103 3.5 × 103 8.8 × 103

S230522n [GCN] 19.82 17 6.7 8.9 × 102 2.9 × 103 7.3 × 103

S230529ay [GCN] 20.34 19 7.6 1.0 × 103 3.3 × 103 8.3 × 103

S230601bf [GCN] 17.67 28 17.9 2.4 × 103 7.7 × 103 2.0 × 104

S230605o [GCN] 19.74 22 10.2 1.4 × 103 4.4 × 103 1.1 × 104

S230606d [GCN] 19.06 17 7.0 9.3 × 102 3.0 × 103 7.6 × 103

S230609u [GCN] 19.29 22 10.5 1.4 × 103 4.5 × 103 1.2 × 104

Table 1: Summary of follow-up results for the first O4 GW alerts. The first column indicates the alert name
and the link to the corresponding GCN notices. The second and third columns report the numbers of events
in the 1000 s time window expected from background ⟨𝑁bkg⟩ = 𝛼𝑁off and observed 𝑁on. The fourth column
contains the 90% upper limit on the number of signal events, and the last three columns are the corresponding
90% upper limits on the all-flavor flux normalization 𝜙 for different spectral indices.
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Upper limits on 𝜙 [GeV−1 cm−2]
⟨𝑁bkg⟩ 𝑁on 𝑁90%

sig 𝛾 = 2 𝛾 = 2.5 𝛾 = 3

S230518h [GCN] 0.04 0 1.5 2.0 × 102 6.5 × 102 1.7 × 103

S230529ay [GCN] 0.04 0 1.5 2.1 × 102 6.6 × 102 1.7 × 103

Table 2: Summary of follow-up results for the first O4 GW alerts with > 50% probability of involving a
neutron star. The first column indicates the alert name and the link to the corresponding GCN notices. The
second and third columns report the numbers of events in the 3 s time window expected from background
⟨𝑁bkg⟩ = 𝛼𝑁off and observed 𝑁on. The fourth column contains the 90% upper limit on the number of signal
events, and the last three columns are the corresponding 90% upper limits on the all-flavor flux normalization
𝜙 for different spectral indices.

4. Summary and Perspectives

With the start of O4, we have started presenting our observations of its merger candidates and
their upper limits on the neutrino flux at GeV energies using the ELOWEN selection at the IceCube
Neutrino Telescope. Because no significant excess was found, neither in a 1000 s nor in a 3 s time
window, we have set upper limits on the neutrino emission at GeV scale from these GW sources,
complementing higher-energy neutrino searches [19]. For an 𝐸−2 spectrum, the limits are 3 − 4
orders of magnitude higher than the ones at higher energies. However, the ELOWEN search can
probe softer spectra (𝐸−2.5, 𝐸−3) for which more GeV-scale neutrinos are expected.

Moreover, we are currently working to improve the sensitivity of the ELOWEN selection [9].
The planned IceCube Upgrade will add seven strings to the center of the detector [20]. Due to the
dense PMT spacing, this will also improve the sensitivity in the GeV region.

The observations will continue for the many GW events expected during O4 and future runs.
Combined with the improvements on the selection and detector sides, this may allow us to carry out
detailed source population studies. For instance, we may constrain the typical neutrino emission
from sub-populations of similar objects (e.g. Binary Black Hole mergers with relatively large
spins), and therefore better understand the immediate environment around such sources.
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