KIT | KIT-Bibliothek | Impressum | Datenschutz

Neural networks for cosmic ray simulations

Sampathkumar, Pranav; Pierog, Tanguy ORCID iD icon 1; Alves Jr., Antonio Augusto
1 Institut für Astroteilchenphysik (IAP), Karlsruher Institut für Technologie (KIT)

Abstract:

A neural network based model in order to learn the solution to the 1D cascade equation governing the evolution of Extensive Air
Showers (EAS) is presented. The neural network is then used to generate the spectra of secondary particles at every height slice. The ability of the network to learn the function to generate the next iteration in shower development is showcased. Pitfalls in using the network in generating the entire shower is discussed. A sequential network model, which can iteratively generate the entire shower from an initial table is presented. We show that the network learns to generate a single step with approximately 5% error and how the network is accurate in the later parts of the shower and error prone in the early parts of the shower.


Verlagsausgabe §
DOI: 10.5445/IR/1000163449
Veröffentlicht am 30.10.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Astroteilchenphysik (IAP)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2023
Sprache Englisch
Identifikator KITopen-ID: 1000163449
HGF-Programm 51.13.04 (POF IV, LK 01) Kosmische Strahlung Technologien
Erschienen in Proceedings of 38th International Cosmic Ray Conference — PoS(ICRC2023), Nagoya, 26th July - 3rd August, 2023
Veranstaltung 38th International Cosmic Ray Conference (ICRC 2023), Nagoya, Japan, 26.07.2023 – 03.08.2023
Verlag Scuola Internazionale Superiore di Studi Avanzati (SISSA)
Seiten Art.-Nr. 515
Serie Proceedings of Science ; 444
Vorab online veröffentlicht am 17.08.2023
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page