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Abstract: The global quasi-linearization (GQL) is used as a method to study and to reduce the
complexity of mathematical models of mechanisms of chemical kinetics. Similar to standard method-
ologies, such as the quasi-steady-state assumption (QSSA), the GQL method defines the fast and slow
invariant subspaces and uses slow manifolds to gain a reduced representation. It does not require
empirical inputs and is based on the eigenvalue and eigenvector decomposition of a linear map
approximating the nonlinear vector field of the original system. In the present work, the GQL-based
slow/fast decomposition is applied for different combustion systems. The results are compared with
the standard QSSA approach. For this, an implicit implementation strategy described by differential
algebraic equations (DAEs) systems is suggested and used, which allows for treating both approaches
within the same computational framework. Hydrogen–air (with 9 species) and ethanol–air (with
57 species) combustion systems are considered representative examples to illustrate and verify the
GQL. The results show that 4D GQL for hydrogen–air and 14D GQL ethanol–air slow manifolds
outperform the standard QSSA approach based on a DAE-based reduced computation model.

Keywords: ignition problem; chemical kinetics; model reduction; reduced chemistry; GQL;
hydrogen; ethanol

1. Introduction

The mathematical model for a combustion system typically consists of a system of
ordinary differential equations (ODEs) that govern the chemical evolution of the system.
Since the elementary reactions involved are based on the law of mass action and the reaction
constants based on the Arrhenius equation, the system itself tends to be complex and have
a high degree of nonlinearity and stiffness [1–3]. This characteristic of detailed chemical
mechanisms leads to the presence of multiple time scales of reactions involved in the
chemical kinetics.

When a large number of such reactions between lots of species are considered, the
computational costs required to integrate numerically such systems can be quite high [4,5].
In such circumstances, reduction methods offer a methodology to formulate simpler models
that reduce both the dimension and the stiffness of such systems without too much loss of
accuracy and performance.

Although the existence of multiple time scales complicates numerical treatment enor-
mously, it possesses the existence of low-dimensional manifolds of relatively slow and fast
motion [6–10]. These low-dimensional manifolds allow us to construct reduced models
that approximate the behavior of the detailed model using fewer dimensions. Moreover,
keeping the processes with only the relevant time scales may reduce stiffness as well. For
example, the QSSA (quasi-steady-state assumption) [11] and PEA (partial equilibrium
assumption) represent the standard well-known approaches that make use of the above
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property to simplify the system. In the case of the QSSA, one assumes that some species
are already in steady states, while the PEA applies the assumption that some reactions
equilibrate; e.g., the rates of forward and backward reactions balance [1,5].

Formal usage of such assumptions offers a possibility to construct such low-dimensional
manifolds that approximate the system behavior using a system of equations that has fewer
dimensions than the original model.

Now, once the assumptions above are valid, one might already have a good candidate
for a low-dimensional manifold and can use the constraints given by assumptions to
describe a manifold. However, in many practical situations, the choice of either species
or reactions is not generic and trivial. Hence, this a priori choice and postulating the
assumptions requires much experience and demanding knowledge about the system. In
contrast, the global quasi-linearization approach makes use of the time scale hierarchy [7]
inherent in the system. Following fruitful ideas of the intrinsic low-dimensional manifold
(ILDM) concept [6], the GQL approach looks for steady states for combinations of variables
that are most suitable to describe characteristic time scales obtained by, e.g., local Jacobian
analysis. Therefore, the determination of the fast (relaxing/equilibrating and remaining
equilibrated throughout the entire coarse of chemical reaction) and slow combinations of
species (represented by subspaces) will be identified simultaneously with the assumption
validation (about fast/slow decomposition) and determination of a reduced dimension
(for which the assumption needed is actually valid) [7]. In this way, shortcomings of the
standard approaches, i.e., identification of the QSS species [5], which are typically valid for
a certain stage of the progress of reaction [12], can be overcome.

In this paper, we illustrate the GQL approach with the well-known Davis and Skodje
model [9] and employ the method for hydrogen–air and ethanol–air ignition problems.
For an additional validation of the GQL, it will also be compared with and implemented
in combination with the so-called directed relation graph (DRG) approach [13] aiming at
generating the skeletal mechanism by neglecting and removing “unimportant” species.
In other words, the DRG-based skeletal mechanism will be generated first, and the GQL
method will be used for further subsequent dimension reduction.

In order to demonstrate the advantages of the GQL approach, the following questions
will be addressed:

• What is the accuracy of the GQL reduced model compared with the standard QSSA
reduced model?

• If the GQL reduced model was generated for one specific combustion configuration
(e.g., isochoric homogeneous system), can this also be used for other combustion
configurations (e.g., isobaric homogeneous system)?

• How accurate is the GQL reduced model compared with the DRG method?
• How efficient is a subsequent implementation of the DRG combined with the GQL

reduced modeling?

All the results from this work are produced by using the in-house GQL_RedChem,
which can be found in GitHub [14].

2. Mathematical Models, Combustion Systems, and GQL
2.1. Combustion Systems/Configuration

The detailed description for the global quasi-linearization (GQL) can be found, e.g., in [7].
Therefore, we only briefly outline some important aspects from the theory of GQL for com-
pleteness and readability. A homogeneous reacting system (without convection and diffusion
processes) is considered, and the GQL is implemented to reduce a system of ordinary
differential equations (ODEs) representing a source term governing chemical reactions
only. Hence, the corresponding mathematical model can be represented by the following
system [1]:
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d~ψ
dt

= ~F
(
~ψ
)
,

~ψ |t=0 = ~ψ0

(1)

where ~ψ is the vector of the thermokinetic states, and the term ~F stands for the source term.
Depending on the considered homogeneous system, a different choice of thermokinetic
states can be chosen [1,2]:

• Isochoric, closed, adiabatic, homogeneous reacting system
The isochoric reacting system with fixed mass is considered. This reactor is described
by a closed spatially homogeneous adiabatic system with constant volume conditions
and is isolated with no mass and energy transfer with the surroundings. In this case,
Equation (1) can be written as

d
dt

 u
V
wi

 =

 0
0

Mi ·ω̇i
ρ

, (2)

where u is the specific internal energy, V the system volume, ρ the density of mixture
gas, wi the mass fraction of i−th species, Mi the molar mass, and ω̇i the molar rate for
the formation of a chemical species due to the chemical reaction.

• Isobaric, closed, adiabatic homogeneous reacting system
In this case, the pressure is kept constant, and the reactor is again described by a
spatially homogeneous adiabatic system with no mass and energy transfer with the
surroundings. Equation (1) can be written as

d
dt

 h
p

wi

 =

 0
0

Mi ·ω̇i
ρ

, (3)

where h is the specific enthalpy, and p the system pressure.

Remark that there can be other possible representations for the description of the
species composition of the mixture, such as specific mole numbers φ = wi/Mi or volumetric
mole numbers ci = ni/V (ni is the mole number). The same is true for thermodynamic
parameters; any two independent quantities (i.e., density, temperature or entropy, pressure)
may be used. Note that if the system is not adiabatic, the enthalpy may also change in time
(dh/dt 6= 0.)

2.2. Time Scale Decomposition, GQL

Typically, the presence of different time scales in a combustion system is an indicator
that decomposition into fast and slow subsystems is possible. A reduction methodology
like the QSSA requires accurate identification of the QSS species to define the fast relax-
ation of the system and accurate representation of the slow manifold. The identification
and subsequent validation of the assumed QSS species can require additional pre- and
postprocessing and numerical simulations. The GQL method, however, uses the inherent
time scale hierarchy of a combustion system to generically obtain a decomposition. Similar
to the ILDM [6], the main idea used is the time scale separation observed by applying
eigenvalue decomposition to the Jacobian of the source term. Such a decomposition also
reflects the dynamical properties of the system while providing an accurate approximation
of the slow manifold. Hence, the GQL method relies on two important assumptions [7]:

• There exists a decomposition of fast and slow processes of the system.
• The decomposition of fast and slow processes is valid everywhere inside a combustion-

related domain.
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Based on these two assumptions, the following procedure allows us to find a global
linear approximation of the vector field defined by the right-hand side of (1) that results in
the dynamical decomposition. If matrix TGQL is a valid linear approximation of right-hand
side of (1) as follows:

~F(~ψ) ≈ TGQL · ~ψ, (4)

we say that TGQL has a simple geometrical interpretation, and it is a simple linear mapping
that transforms state vectors ~ψ to vectors ~F(~ψ). Note, however, that the source term ~F(~ψ) is
strongly nonlinear, and the linearization procedure used in Equation (4) is a strong approxi-
mation; this global linear transformation matrix TGQL aims at finding out the fast and slow
invariant subspaces by using the algorithm similar to the ILDM method [6]. Namely, the
eigenvalue/-vector decomposition allows us to obtain two groups of eigenvalues consisting
of different time scales:

TGQL = ZΛZ−1 =
(
Zs Z f

)
·
(

Λs 0
0 Λ f

)
·
(

Z̃s
Z̃ f

)
(5)

Here, the subscript c stands for conserved, s for slow, and f for fast. Z represents the
slow (Zs) and fast (Z f ) invariant subspaces. Λ = diag(Λs, Λ f ) contains the eigenvalues
with their absolute real parts ordered from the smallest to the largest and provides the
information of the time scales for the corresponding conserved, slow, and fast processes.
If one has ms slow and m f fast time scales (ms + m f = n), then Zs has the dimension of
n×ms and Z f of n×m f .

2.3. Generation of the GQL Linearization Matrix

In our previous papers, different algorithms including global analysis [7], local analy-
sis [12], and the combination of both [15] have been proposed and validated for different
reaction systems. The interested readers are referred to the references mentioned. However,
there are several points needed to be addressed here:

• The selection of sample points to generate TGQL is a stochastic process, and we will
obtain bunches of possible TGQL candidates. We select the one that has the best
performance for our application range.

• TGQL can be obtained by only considering a certain condition (a certain initial tempera-
ture, pressure, and mixture composition). The corresponding fast and slow subspaces
can be only valid for this certain condition, if the dimension of slow invariant man-
ifold is low. With the increase in the slow invariant manifold dimension, the valid
application range can be extended.

• A valid TGQL candidate is defined in the way that some certain target quantities
predicted by the GQL are within user-defined tolerance errors (say, e.g., 5%). The
target quantities must be selected as combustion-related important quantities, such as
the ignition delay time (IDT), the NOtextx emission at the IDT, or the maximum of
some minor species such as OH and H radicals during the time integration.

Note that the quality of the GQL reduced chemistry is largely affected by the predefini-
tion of the application range and the target quantities. The GQL reduced chemistry can fail
to give accurate prediction if it is used outside the application range or some other target
quantities are examined. In this case, the GQL reduced chemistry must be generated again
so that it is suitable for the new application range or other target quantities.

2.4. Generic Implementation Scheme

According to the standard QSSA, the original variables are used to decompose
the system into fast and slow subsystems, and all states of the system are confined to
the manifold

M0,s
QSSA = {~ψ : ~F f ast(~ψ) = 0} (6)
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defined by the fact that fast variables are at QSS. Hence, the original ODE system then
becomes a differential algebraic equation (DAE) system that can be formulated as

∂~ψslow

∂t
= ~Fslow(~ψ)

0 = ~F f ast(~ψ)

(7)

where ~ψslow and ~ψ f ast are those variables that correspond to QSS and describe fast relaxation
of the system solution trajectory and the remaining variables denoted as “slow” ones, which
might include the conserved quantities.

In the case of the GQL, the decomposition given by Equation (5) is used, similar to the
ILDM method [6], where the slow manifold is the manifold where the reaction rates in the
direction of the fast invariant subspaces vanish:

M0,s
GQL = {~ψ : Z̃ f · ~F(~ψ) = 0} (8)

The original ODE system can be transformed into the following system of DAEs,
where the GQL slow manifold Equation (8) is implicitly used similar to Equation (7).

Qs ·
d~ψ
dt

= ~F(~ψ), where: Qs =
(
Zs Z f

)
·
(

Z̃s
0

)
. (9)

In this respect, in the case of the QSSA, the so-called mass matrix Qs comprises only a
diagonal matrix with zero and one on a diagonal corresponding to indices of the fast and
the slow variables. It opens possibility to compare the performances of different manifolds
within the same numerical framework by using systems of DAEs’ Equation (9) and robust
implicit integration packages.

From the generic implementation of the GQL discussed in this section, we can observe
the major advantage of the GQL over the ILDM; namely, the invariant subspace is only
computed for one time and is kept constant. Therefore, using the GQL reduced chemistry,
the governing equation can be easily written in a DAE system, in which the mass matrix
Qs is a constant matrix. This leads to the fact that no tabulation strategy is required for the
GQL reduced chemistry, and a high-dimensional GQL reduced chemistry can also be easily
used for the numerical simulation.

3. Results and Discussion: Benchmark: Davis–Skodje Model

In order to demonstrate how the GQL performs, the simple Davis–Skodje model
proposed in [9] is presented here. This model has major advantages; namely, (i) It has the
exact analytical solution. (ii) It is represented such that the QSSA is valid in the original
coordinates, and (iii) it has an exact slow invariant manifold, which can be used to compare
with slow manifolds obtained by using different methodologies. The corresponding ODE
system describing the homogeneous reactor for the state vector ~ψ = (ψ1, ψ2)

T is

d
dt

(
ψ1
ψ2

)
=

(
F1(~ψ)
F2(~ψ)

)
=

(
−ψ1

−γψ2 +
(γ−1)ψ1+γψ2

1
(1+ψ1)2

)
, (10)

where γ� 1 natural large parameter of the system, it describes the time scales difference
and leads to the stiffness of the ODE such that the system possesses the fast and slow
dynamics, and the larger the γ, the larger the time scale difference is.

The system shown above starts from the point (ψ1
0, ψ0) and moves towards equilib-

rium at (0, 0). The exact solution is given by

ψ1(t) = ψ1
0e−t

ψ2(t) =
(

ψ2
0 − ψ1

0

1 + ψ1
0

)
e−γt +

ψ1
0e−t

1 + ψ1
0e−t

(11)
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3.1. Comparison between Different Standard Methodologies for the Generation of Slow Manifolds

As discussed in [9], the following exact invariant and/or approximated slow manifolds
using different approaches can be determined:

• The exact slow invariant manifold (SIM):

MSIM = {~ψ : ψ2 =
ψ1

1 + ψ1
}, (12)

• The slow manifold according to the quasi-steady state (QSS) [11], in which the variable
ψ2 is assumed to be in QSS:

MQSS = {~ψ : ψ2 =
ψ1

1 + ψ1
− ψ1

γ(1 + ψ1)2 }, (13)

• The intrinsic low-dimensional manifold (ILDM) [6], in which the chemical time scale
separation is defined by a ration of eigenvalues of the Jacobian under the condition
that γ� 1:

MILDM = {~ψ :
ψ1

1 + ψ1
+

2ψ2
1

γ(γ− 1)(1 + ψ1)3 }. (14)

Under the assumption γ� 1, the solutions given by the ILDM and QSS algorithms
are good approximations of the SIM. The slow manifold representations from the different
methods are nearly identical as γ −→ ∞. This would imply that the manifolds computed
using the ILDM and QSS methods have an additional term that accounts for the influence
of the time scale separation, or γ. With a larger time scale separation, i.e., γ � 1, the
second term in both QSS and ILDM manifolds becomes progressively smaller, indicating
the increased suitability/usability of these manifolds under such conditions. Figures 1–3
show the time development of ψ2 (left) and the state space (right) by using the QSSA and
ILDM method, compared with the exact slow invariant manifold (SIM) and the detailed
solution. We notice that, as we already explained earlier, the slow manifold by small γ (here
γ = 2.0 in Figure 1) shows inaccurate approximation by using the QSSA and less accurate
approximation by using the ILDM. However, as γ increases to a large value (here γ = 10.0
in Figure 3), all manifolds almost overlap with each other, and even the QSSA gives a
very good result. This indicates that, as discussed, for a large time scale separation, most
reduction methods work very well, while for a small time scale separation, the conventional
methods, such as QSSA here, fail to predict the slow manifold accurately.
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Figure 1. Time evolution (left) and phase plane (right) for γ = 2.0.
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Figure 2. Time evolution (left) and phase plane (right) for γ = 5.0.
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Figure 3. Time evolution (left) and phase plane (right) for γ = 10.0.

Another interesting point must be emphasized here. Since the initial conditions are
usually not located on the slow manifold, the errors of using a slow manifold at the initial
time could be large. Dynamically speaking, the initial conditions will be relaxed onto
the slow manifold, and then move along the tangential subspace of the slow manifold.
For a large time scale separation (e.g., Figure 3 with γ = 10.0), the time scale for fast
relaxation is very fast compared with the time scale for a slow process; therefore, the whole
process is dominantly controlled by a slow process, and the time development of ψ2 can
be predicted solely by the slow process (slow manifold) sufficiently. However, for a small
time scale separation (e.g., Figure 1 with γ = 2.0), the time scales for fast relaxation and
a slow process are in the same order of magnitude. Thus, both fast and slow processes
are important for the description of ψ2, and the dynamic of ψ2 described solely by a slow
process (slow manifold) is not sufficient. Generally, there are two approaches to deal with
the initial conditions:

• The dimension of the slow manifold can be increased so that the initial conditions
are closer to the slow manifold. Consequently, the errors at the initial stage will be
reduced. However, for the proposed Davis–Skodje model, the increase in dimension
of a slow manifold is not possible.

• The fast process can also be identified by the GQL approach. According to the GQL
concept, during the fast process, the initial conditions relax onto the manifold in the
direction where the value of slow variables does not change. Mathematically, one can
formulate the algebraic equation at the initial stage as Z̃s~ψ = Z̃s~ψ0, where ψ0 is the
initial condition. However, the identification of the fast process by other methods,
such as the QSSA and ILDM, is not considered in their corresponding work.
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3.2. Application of the GQL

Now, the procedure proposed in [12] is implemented, and the GQL is computed.
The latter is based on the local Jacobian, which can be used to approximate the global
linearization matrix TGQL due to the mean value theorem. The local Jacobian of the source
term ~F can be determined analytically:

J =
(

J11 J12
J21 J22

)
=

(
−1 0

γ−1+(γ+1)ψ1
(1+ψ1)3 −γ

)
, (15)

leading to the left eigenvectors:(
Z̃s
Z̃ f

)
=

(
1 0

− γ−1+(γ+1)ψ1
(γ−1)(1+ψ1)3 1

)
. (16)

If the fast invariant subspace is given as Z̃ f = (Z f 1, Z f 2)
T, then the GQL slow manifold is

MGQL = {~ψ : Z̃ f · ~F(~ψ) = Z f 1 · F1(~ψ) + Z f 2 · F2(~ψ) = 0}. (17)

Following the GQL algorithm, the basis for the GQL decomposition can be computed
at representative states. Two different GQLs are selected for further consideration and
discussion. Both TGQL are given as

TGQL-1 =

(
−1.0 0.0

4.1172 −5.8

)
, TGQL-2 =

(
−1.0 0.0

1.3252 −3.82

)
. (18)

For the generation of the GQL reduced chemistry, the target quantity is selected as
the ψ2 value at t = 2. Both GQL candidates are so selected that GQL-1 has a larger user-
defined error (5%) and GQL-2 a smaller user-defined error (2%). Note that, here, this
selection of target quantity is arbitrary, and other target quantities of interest can be chosen.
Additionally, the user-defined errors here are also arbitrarily selected, and the main purpose
is only to show how the quality of the GQL matrix is affected by the user-defined error.
Figures 4 and 5 show again the time evolution and phase plane for γ = 2.0 and γ = 5.0,
together with the above-mentioned two GQL candidates. We observe clearly that both
GQL reduced chemistries are valid candidates, and for γ = 5.0, both GQL candidates
give good results. GQL-2 (with smaller user-defined error) is almost identical to the SIM
and ILDM results. GQL-1 (with larger user-defined error) gives also an accurate result
near the equilibrium point. For both GQL candidates, they are much accurate than the
QSSA trajectory.
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Figure 4. Time evolution (left) and phase plane (right) for γ = 2.0 together with 2 GQL candidates.
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3.3. Some Conclusions and Comments

In this section, the simple Davis–Skodje model has been demonstrated to discuss
different reduction methods, namely, SIM, QSSA, ILDM, and GQL. The variation effect
of time scale separation, namely, the parameter γ, has been investigated. It was shown
that the larger the time scale separation is, the better the performance of the reduction
methods is. For a small time scale separation, where the QSSA fails to give an accurate
slow manifold, the GQL can still give good prediction and has a similar accuracy as the
ILDM method. Additionally, these conclusions are also valid for the more complicated
system proposed in the following two sections.

4. Results and Discussion: Hydrogen–Air Homogeneous Reaction System

In this section, the hydrogen–oxygen isochoric homogeneous reacting system is con-
sidered a simple but representative example. This system has a total of 11 dimension,
including 2 thermodynamic parameters and 9 reactive species. It has been intensively
investigated in our previous works [12,16], showing the advantage of the GQL over the
QSSA for leading order approximation. There, and also in other previous works, one looks
for an optimal GQL reduced model. In this part, the GQL reduced chemistry used in [16] is
applied to test a wider range of applications and different combustion system configura-
tions. The target quantity to define the error of the GQL reduced model is based on the
comparison of ignition delay time, an important quantity describing the reactivity of the
combustion system.

4.1. Isobaric Homogeneous Reacting System

In this part, results are demonstrated by using an optimized 4D GQL reduced model.
The 4D GQL reduced model is optimized such that the relative errors of the reduced
solutions for the user-defined range of interest (initial temperature 800 K ≤ T0 ≤ 2000 K,
pressure p0 = 1 bar, fuel/air equivalent ratio Φ = 1.0) are below 2%. This 4D GQL reduced
model has been validated in our previous work [16] for an isobaric homogeneous reacting
system. Now, it is shown that it also works for a much wider range of system parameters.

In Figure 6, therefore, several representative predictions of ignition delay times (IDTs)
are shown by using a detailed chemistry (symbols) and GQL reduced model (solid lines)
and the corresponding relative errors of the reduced solutions as well. It is shown that
even if the GQL reduced chemistry is optimized for a system with p0 = 1 bar and a
stoichiometric mixture only, it also works for higher pressures and other fuel/air equivalent
ratios. However, the same isobaric homogeneous reacting system is considered. Remark
that the relative errors grow, reaching a maximum of around 8% at high initial temperatures.
However, it should be emphasized that such relative errors can be further reduced, if one
considers these ranges in the optimization of GQL reduced chemistry.
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Figure 6. 4D GQL for the prediction of ignition delay times vs. the initial temperature T0 at different
initial pressures p0 and different fuel/air equivalent ratios Φ for isobaric condition.

4.2. Isochoric Homogeneous Reacting System

The GQL reduced model is now tested for the homogeneous reacting system under an
isochoric condition. Such test can further support the observation made that the GQL is
invariant with respect to the change of system parameters. This extends the observation
made that the GQL is invariant with respect to the mechanism as it was demonstrated
in [16].

Figure 7 shows the predicted IDTs over initial temperatures based on detailed chem-
istry (symbols) and 4D-GQL reduced chemistry (solid lines), and the corresponding relative
errors of the reduced results. Furthermore, the reduced model is also applied for four other
mechanisms, and the maximal deviation between different detailed mechanisms is also
shown in Figure 7 (right) for references. It should be mentioned here that the maximum
deviation at some ranges is well beyond 20%, which is therefore not shown in the figure. In
order to show the performance of the GQL reduced model, in Figure 8, the prediction of
IDTs based on the QSSA for O and OH as QSS species was implemented, which has been
also validated in [12]. Several major observations can be drawn, namely,

• The 4D QSSA reduced model, which considers O and OH as QSS species, provides
similar accuracy for different mechanisms. Such QSSA is reasonable for low tem-
peratures, but gives high errors (around 15%) at high temperatures (similar order of
magnitude as maximal deviation between different mechanisms).

• The GQL reduced model, which is optimized for an isobaric system, works also for an
isochoric system. The relative errors of the reduced results are much smaller than the
deviation between different mechanisms for the whole temperature range.

• Consistent with our earlier observation in [16] in which the isobaric system is consid-
ered, the GQL reduced model, which is optimized for one mechanism, is also valid
for other mechanisms. We see that the errors are well below 5% in Figure 7. This
shows the intrinsic property of the chemical reactions that the invariant subspace is
not dependent on the mechanism.

Figure 9 gives more results by applying the same 4D GQL reduced model for different
mechanisms under different pressures and fuel/air equivalent ratios for an isochoric system,
which additionally confirm the observations mentioned above.
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Figure 7. 4D GQL for the prediction of ignition delay times vs. initial temperature T0 at p0 = 1 bar
and Φ = 4.0 for isochoric condition using the Warnatz mechanism, GRI3.0 mechanism, ELTE-2014
mechanism, O’Conaire mechanism, and Keromnes mechanism.
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Figure 8. 4D QSSA for the prediction of ignition delay times vs. initial temperature T0 at p0 = 1 bar
and Φ = 4.0 for isochoric condition using the Warnatz mechanism, GRI3.0 mechanism, ELTE-2014
mechanism, O’Conaire mechanism, and Keromnes mechanism.
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Figure 9. 4D GQL for the prediction of the ignition delay times for an isochoric system using different
mechanisms. Symbols: detailed chemistry; solid lines: 4D GQL reduced chemistry. Colors are the
same as in Figure 7.

5. Results and Discussion: Ethanol–Air Homogeneous Reaction System

The hydrogen–air combustion system discussed in the last section provides some use-
ful aspects for the performance of the GQL method. In this part, an ethanol–air combustion
system is considered, which is considered low-carbon biofuel for the reduction of global CO2
emission [17–19]. The corresponding full chemical mechanism consists of 57 species [20]. The
reduction for such relative large mechanism can be achieved in different ways, e.g.,

• The most general way is to directly use the QSSA or GQL to reduce the original
full mechanism.

• Another possible way is to first generate the skeletal mechanism using, e.g., DRG-
based methodologies [13,21,22] to reduce the number of species, and then use the
QSSA to further reduce the dimension. The combination DRG-QSSA has been suc-
cessfully applied in, e.g., [23].

In this section, the second way is explored; namely, the original full mechanism is first
reduced to a skeletal mechanism with a smaller number of species using the DRG, and then
the GQL is performed for this skeletal mechanism for further dimension reduction.

The DRG has been applied for the ethanol chemical mechanism, and the corresponding
skeletal mechanism with 37 species (DRG-37D) is obtained in [24]. The skeletal mechanism
has been tested for an autoignition process in terms of ignition delay times, premixed flat
flames in terms of laminar burning velocity, and non-pre-mixed counterflow diffusion flames
in terms of flame structure.

The GQL method is compared now with the standard QSSA method, as it was compared
for hydrogen–air system above. The QSSA reduced results are also presented. From [25], the
CSP approach confirms 10 QSS species: C2H3, CH2OH, CH3CHOH, CH, C2H, C2H5, HCO,
CH3O, CH3CH2O, CH3CO. This results in a 23-dimensional DRG-QSSA reduced model,
which is denoted as DRG-QSSA-23D in the following.

Furthermore, following the procedure in [12], a 14-dimensional GQL reduced chemistry
has been obtained from the skeletal mechanism, and this is referred to as DRG-GQL-14D. This
GQL reduced model has been so selected that tests for the whole studied temperature under
p = 1 bar and a stoichiometric mixture condition show all the relative errors of the predicted
ignition delay time τign under 5% (note that other GQL reduced models can be obtained once
other test conditions and relative errors are selected).

Figures 10–12 show a comparison of the IDTs using 57-dimensional (57D) full chemistry
and different reduced models. The relative errors are also presented to provide a direct
comparison. Note here that the relative errors for DRG-37D are determined by referring to
a full mechanism, and the relative errors for DRG-QSSA-23D and DRG-GQL-14D referring
to a DRG-37D skeletal mechanism. Notice that the DRG-37D skeletal mechanism causes
large errors, while the further reduction based on QSSA and GQL methods causes only
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additional 8% relative errors in these examples, much smaller than the errors induced by the
DRG method implementation. It should be especially mentioned here that DRG-QSSA-23D
has lower relative errors compared with DRG-GQL-14D, only because DRG-QSSA-23D has
higher dimension. If the 23-dimensional (23D) GQL reduced chemistry is generated, the
corresponding relative errors decrease dramatically. However, at some conditions, such as
here for p0 = 20 bar and Φ = 4.0, DRG-GQL-14D can also result in smaller relative errors
compared with a DRG-QSSA-23D reduced model.
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Figure 10. Prediction of ignition delay times vs. initial temperature T0 at p0 = 1 bar and Φ = 1.0 for
an isobaric homogeneous system.
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Figure 11. Prediction of ignition delay times vs. initial temperature T0 at p0 = 1 bar and Φ = 0.5 for
an isobaric homogeneous system.
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Figure 12. Prediction of ignition delay times vs. initial temperature T0 at p0 = 20 bar and Φ = 4.0 for
an isobaric homogeneous system.
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6. Conclusions

In this study, the global quasi-linearization (GQL) approach has been presented with
a simple Davis–Skodje model and two practical/realistic homogeneous reaction systems:
hydrogen–air and ethanol–air systems. The benchmark model has been used to illustrate
the accuracy and the performance of the suggested approach to treat the systems when
the assumption about an existing decommission is not asymptotically valid. It has been
demonstrated how the GQL can be used to obtain the decomposition and the approximation
for the slow invariant manifold automatically.

The ignition problem has been considered to treat practical combustion systems. The
ignition delay times have been considered the representative quantities to quantify the
performance of the GQL reduced models and compute relative errors for comparison. The
GQL reduced model has been compared with the standard QSSA. For all three different
(in terms of complexity and dimension) systems, the GQL better approximates a slow
manifold and shows either higher accuracy than the QSSA or lower dimension than the
QSSA, but with similar accuracy. Additionally, it was demonstrated how the DRG method,
a representative method to generate the skeletal mechanism, can be applied in combination
with the GQL. It has been shown that the DRG skeletal mechanism can lead to large relative
errors. Though the GQL approach brings small additional errors, it considerably reduces
the dimension. The suggested combination for the ethanol–air system in the autoignition
problem reduces the full mechanism with 57 species to 37 species with the DRG, which is
further reduced to 14 dimensions with the GQL.
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