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Abstract: A certain Grothendieck topology assigned to a metric space gives rise to a sheaf cohomology
theory which sees the coarse structure of the space. Already constant coefficients produce interesting
cohomology groups. In degree 0, they see the number of ends of the space. In this paper, a resolution
of the constant sheaf via cochains is developed. It serves to be a valuable tool for computing
cohomology. In addition, coarse homotopy invariance of coarse cohomology with constant coefficients
is established. This property can be used to compute cohomology of Riemannian manifolds. The
Higson corona of a proper metric space is shown to reflect sheaves and sheaf cohomology. Thus,
we can use topological tools on compact Hausdorff spaces in our computations. In particular, if the
asymptotic dimension of a proper metric space is finite, then higher cohomology groups vanish.
We compute a few examples. As it turns out, finite abelian groups are best suited as coefficients on
finitely generated groups.

Keywords: coarse geometry; sheaf cohomology; Grothendieck site; Higson corona; Roe coarse
cohomology

MSC: 51F30; 55N30

1. Introduction

The sheaf-theoretic approach to coarse metric spaces has been applied in many dif-
ferent contexts [1-3]. Sheaf-theoretic methods play an important role in our paper. We
also present three other computational tools. Cochain complexes assigned to a filtration of
Vietoris—Rips complexes have not just been used in the coarse setting [4]. Many well-known
coarse (co-)homology theories are coarse homotopy invariant [5-7]. The cohomology of
the Higson corona is of course as a composition of functors a coarse invariant which has
been studied before [8]. Even in combination with other computational methods [9], coarse
invariants are hard to compute for the spaces one is most interested in, which include
Riemannian manifolds and finitely generated groups.

Coarse sheaf cohomology has been designed by the author in her thesis. Aside from an
agenda to present new computational methods which may be suitable for a large number
of spaces, there are two immediate results:

Theorem 1. If M is a non-positively curved closed Riemannian n-manifold and A a finite abelian
group, then
cht(M' A) = quing(snil; A)

the left side denotes coarse sheaf cohomology with values in the constant sheaf A and the right side
denotes singular cohomology with values in the group A.

This result can be immediately applied to define a coarse version of mapping degree
associated to a coarse map between manifolds.
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Theorem 2. If T is a simplicial tree with infinitely many ends and A is a finite abelian group, then

HEnA g=0
0 otherwise.

H(T; A) = { (1)

There are many interesting cohomology theories on coarse metric spaces. The most
prominent examples are Roe’s coarse cohomology [10-12] and controlled operator K-
theory [13-16]. If two metric spaces X, Y have the same coarse type, then specifying a
coarse equivalence X — Y is a proof. If on the other hand X, Y do not have the same coarse
type, then a coarse invariant which does not have the same values on X and Y gives a proof.
In general, a well-designed cohomology theory delivers a rich source of invariants which
are easy to compute. To this date, cohomology of finitely generated free abelian groups
has been calculated for Roe’s coarse cohomology and also controlled operator K-theory.
There is still a gap in knowledge about cohomology of other finitely generated groups.
Riemannian manifolds on the other hand do not show interesting cohomology groups since
every Riemannian n-manifold with nonpositive sectional curvature is coarsely homotopic
to R" and most coarse cohomology theories are coarse homotopy invariant [10].

Our coarse cohomology theory F',(; -) is a sheaf cohomology theory on a Grothendieck
topology X, assigned to a metric space X [17]. If A is an abelian group, then for the con-
stant sheaf A on X we obtain in dimension 0 a copy of A for every end of X or an infinite
direct sum of copies of A if X does not have finitely many ends [17].

In this paper, we design a cochain complex (CY)/(X; A)), assigned to a metric space
X and abelian group A. The functor U C X — CYZ (U, A) forms a flabby sheaf on X,;.
The sequence of sheaves

0— Ax = CY{(-,A) = CY} (-, A) = CYZ(-, A) — - -
is exact. Thus, cohomology of
0— CY)(X,A) = CYH(X,A) = CYZ(X,A) — - -
computes coarse sheaf cohomology of X with values in Ay.

Theorem 3. If X is a metric space, then there is a flabby resolution CYZ (-; A) of the constant
sheaf Ax on X.. We can compute sheaf cohomology with values in the constant sheaf using
cochain complexes:

HL(X; Ax) = HY] (X, A).

For g > 1, there is a comparison map HYZ(X;A) — HX7+1(X; A) with Roe coarse
cohomology. This map is neither injective nor surjective though. The main difference is that
our cochains are defined as maps that need to be “blocky” while coarse cochains do not
have this restriction. Thus, general statements on cohomology are easier to prove for Roe
coarse cohomology, while we hope that combinatorical computations are easier realized
using blocky cochains.

There are several notions of homotopy on the coarse category which are all equivalent
in some way. The homotopy theory we are going to employ uses the asymptotic product as
coarse substitute for a product and the first quadrant in R? equipped with the Manhattan
metric as a coarse substitute for an interval [18]. In effect, this homotopy theory and the
other coarse homotopy theories are only of use if one wants to compute cohomology of R”"
and maybe Riemannian manifolds. Nonetheless, we prove that coarse sheaf cohomology is
a coarse homotopy invariant using the resolution via cochains.

Theorem 4. If two coarse maps a, B : X — Y between metric spaces are coarsely homotopic, then
they induce the same map
of, B* HL(Y; A) — HE(X; A)
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in cohomology with values in a constant sheaf A.

A coarsemap o : X — Y between metric spaces induces a cochain map a* : C YZ’ (Y;A) —
CYZ(X;A) which in turn induces a homomorphism a* : HYZ(Y;A) — HYZ(X;A). Con-
versely, the inverse image functor maps the constant sheaf Ay on Y;; to the constant sheaf
Ax on X. Thus, there is an induced homomorphism «* in cohomology. One may wonder
if both homomorphisms a*, a* coincide, and indeed they do.

To a proper metric space X we can assign a compact Hausdorff topological space
v(X), the Higson corona of X. This version of boundary reflects sheaf cohomology in the
following way: There is a functor - which maps a sheaf F on X to a sheaf ¥ on v(X).
Conversely, the functor * maps a sheaf G on v(X) to a sheaf G on X, Together, they provide
an equivalence of categories between “reflective” sheaves on X and sheaves on v(X).
In particular, the constant sheaf Ax on X is reflective and mapped to the constant sheaf
Ay(x) on v(X). We can compute cohomology with constant coefficients either way:

Theorem 5. If X is a proper metric space and A an abelian group, then
HE,(X; Ax) = H(v(X); Ay(x))

the qth cohomology of X with values in the constant sheaf A on X is isomorphic to the qth sheaf
cohomology of the Higson corona v(X) of X with values in the constant sheaf A, ().

Moreover, if asdim(X) < n then H,(X, Ax) = 0 for g > n.

This paper provides enough computational methods to compute metric cohomology
of finitely generated groups. Vanishing of H}(Z, A) = 0 for finite A can be computed
directly using cochains. Then, our result on the Higson corona implies that Z is acyclic
for finite coefficients. The same method can be employed to show that trees are acyclic
for finite coefficients. Thus, we computed metric cohomology of the free group F, with
n < oo generators. Computing cohomology of the free abelian groups Z" with n < cois
more challenging. A coarse homotopy equivalence Z" ! x Zsq — Zsq provides a Leray
cover of Z" which has the same combinatorical information as the nerve of a Leray cover
of the topological space S"~!. Thus, cohomology with finite coefficients can be derived.

Theorem 6. If A is a finite abelian group, then

HY(Z%A) = A n#1,9g=0vqg=n—1
0 otherwise.

There is a more general notion of coarse space which includes the class of coarse metric
spaces. Most of our concepts work in more generality. We restrict our attention to metric
spaces only since a wider audience (than coarse geometers) is interested in this class of
coarse spaces only. The coarse sheaf cohomology theory is defined on coarse spaces with
connected coarse structure. The resolution via cochains also works for this class of spaces.
The homotopy theory is only defined for metric spaces and the results on the Higson corona
work for proper metric spaces and coarse structures generated by a compactification of a
paracompact, locally compact Hausdorff space.

This article is organized in 10 sections. Some can be read independently but there are
also a few dependencies as depicted in the following diagram.
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The final section uses every aspect so far discussed. Sheaf-theoretic methods, the reso-
lution via cochains, coarse homotopy and the Higson corona are employed in the computa-
tion of metric cohomology of Z".

2. Coarse Cohomology by Roe and the Higson Corona

This chapter introduces terminology and concepts which are well known to
coarse geometers.
If X is a metric space, then a subset E C X x X is called an entourage if

sup d(x,y) < o
(xy)€E

The set of entourages forms the coarse structure of X. If R > 0, then the set
Ar :={(x,y) € X x X|d(x,y) < R}

is an entourage. If E C X x X, B C X are two subsets, then
EBl:={xeX|(x,y) € E,y € B}

A subset B C X is called bounded if there exists xg € X and R > 0 such that Ag[xo] D B.

A map « : X — Y between metric spaces is called coarsely uniform if for every R > 0
there exists S > 0 such that d(x,y) < R in X implies d(a(x),a(y)) < Sin Y. The map «
is called coarsely proper if for every bounded set B C Y the set a~'(B) is bounded in X.
The map « is called coarse if a is both coarsely uniform and coarsely proper. Two maps
a, B : X — Y between metric spaces are called close if the set & x B(Ap) is an entourage in Y.
The coarse category consists of metric spaces as objects and coarse maps modulo close as
morphisms. Isomorphisms in this category are called coarse equivalences.

This paper presents a resolution of the constant sheaf which consists of cochains which
closely resemble coarse cochains of Roe’s coarse cohomology. For this purpose, we give a
quick introduction to coarse cohomology by Roe which was invented by Roe in [10,11].

If X is a metric space, then the set of g-simplices of the R-Vietoris—Rips complex of X is
defined as

AL = {(x0,..., %) | d(x;, xj) < RVi, j}.

A subset B C X% is called bounded if the projection to every factor is bounded. Then, a
subset C C X911 is called cocontrolled if for every R > 0 theset CN A;’{ is bounded.
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Definition 1. If X is a metric space and A an abelian group, then the coarse cochains CX7(X; A)
is the set of functions XT+1 — A with cocontrolled support. It is a group by pointwise addition.
The coboundary map 9, : CX(X; A) — CXTT(X; A) is defined by

g+1 ‘
(9g9)(x0, .-, xg41) = Y (=1)'p(x0, ..., iy ., Xg41)-
i=0
This makes (CX7(X; A),94) a cochain complex. Its homology is called coarse cohomology by
Roe and denoted by HX*(X; A).

If « : X — Y is a coarse map, then it induces a cochain map

a7 : CXI(Y, A) — CXI(X, A)
¢ — @oax@tl)

Two coarse maps which are close induce the same map in cohomology. If A = R and
X = R", then
HXY(R",R) = {R =
0 otherwise.

A section in this paper transfers sheaves on a proper metric space to sheaves on its
Higson corona. For this purpose, we give a definition of the Higson corona which is
equivalent to the usual one [19].

Let X be a metric space. Two subsets A, B C X are called close (or not coarsely disjoint) if
there exists an unbounded sequence (a;,b;); C A x B and some R > 0 such that d(a;, b;) <
R for every i. We write A A B in this case.

A metric space is called locally finite if every bounded set is finite. Every proper metric
space is coarsely equivalent to a locally finite metric space.

Definition 2. Let X be a proper metric space and S C X a locally finite subset where the inclusion is
coarsely surjective. Denote by S the set of nonprincipal ultrafilters on S. If A C S is a subset, define

d(A):={FeS:AecF}

Then, define a relation A on subsets of S: 11 A 715 if for every A,B C S the relations 11 C
cl(A), mp C cl(B) imply A A B.
The relation A on subsets of S determines a Kuratowski closure operator

R={FeS:{F}Am}

Now, define a relation A on $: FAG if A € F,B € G implies A A B.
Now, the Higson corona v(X) of X is defined v(X) = S/ A as the quotient by .

If A C X is a subset of a metric space, then cl(A) = A Nv(X) where the closure is taken
in the Higson compactification. We call (cl(A)¢) scx the basic open sets and (cl(A)) acx
the basic closed sets. There are two observations: If A, B C X are two subsets, then

e c(A)Ncl(B) =@ifand only if A AB are not close
e cl(A)Ucl(B) =cl(AUB).

3. Coarse Sheaf Cohomology, a Survey

This chapter gives a survey on coarse sheaf cohomology or coarse cohomology with
twisted coefficients as we call it [17]. There are several facts on sheaf cohomology on
topological spaces which hold in more generality for sheaf cohomology defined on a
Grothendieck topology. Since the literature does not provide every aspect, we are going to
prove these facts by hand.
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Let U C X be a subset of a metric space. A finite family of subsets U;,..., U, € U
forms a coarse cover of U if for every entourage E C U x U the set

E[ti]n--- NE[]
is bounded. This is equivalent to saying that the set

Uuxu)n(Ju; x u)*

1

is a cocontrolled subset of X?.

To a metric space X we associate a Grothendieck topology X, in the following way.
The underlying category Cat(X,) is the poset of subsets of X. Subsets (U;); form a covering
of U C X if they coarsely cover U.

A contravariant functor F on subsets of X is a sheaf on X, if for every coarse cover
Ui, ..., U, C U of asubset of X the following diagram is an equalizer

FU) = [[Fu) =][Funuy).
i ij

If F is a sheaf on X, then the right derived functor of the global sections functor is called
coarse sheaf cohomology, written H,(X; F).
If
0>F—=G—->H—=0

is a short exact sequence of sheaves on X then there is a long exact sequence in cohomology
0 — HY(X,F) — H%(X,G) — H%(X,H)
— HY(X, F) — ---
- = HY (X, F) = HY(X, G) — HY (X, H)
S HN X F) o
If A is an abelian group, the sheafification of the constant presheaf A on X is called
the constant sheaf Ax on X. In this paper, we are interested in the computation of H, (X; Ax)
in higher dimension. The zeroth cohomology group is related to the number of ends e(X)
of the metric space X:
A e(X) <

HY(X; Ax) = Ax(X) =
ct( X) X( ) {@NA E(X):OO.
A sheaf F on X is called acyclic if H,(X, F) = 0 for g > 0. A sequence of sheaves

SN AL (N ST N RPN

is exact if im ¢; = ker ;1. Here, im ¢ is the sheafification of the image presheaf U +—
im(g(U)).

Lemma 1. If
O—=F—=>Fo—>F1— -

is an acyclic resolution of sheaves on X then

HY,(X, F) = H1(0 — Fo(X) = F(X) = --+),
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cohomology of F can be computed by taking homology of the cocomplex
0= Fo(X) = Fi(X) = -

Proof. Suppose
0 F LRSS r S r s

is an exact sequence with F; acyclic for every i.
Foreveryi=1,2,... define ¢; = kerd;. The exact sequence

0—=F—=Fp—¢e —0
gives rise to a long exact sequence

0= Hg (X, F) = HY(X, Fo) — HY(X, 1)
— HY(X, F) =0 e
0— I:IZt(X,el)
- H(X,F) =0
Thus, I:Ifjl(X, F) = H1(X,e) for g > 1 and

Hy (X, F) = e1(X)/ im(do(X))
= (kerdq)(X)/ im(do(X))
= H'(0 = Fo(X) = Fi(X) = --+)

The inclusion ¢; — F; and the corestriction of d; to im d; = ¢; 1 combine to an exact sequence
0—¢e—F =€ —0.
This sequence gives rise to a long exact sequence

0— Hgt(ngi) - H?t(X/]:i) - H?t(X/ Tir1)
- Hl(Xe) =
0— H?t(X/£i+1)

“q+1
— HI7 (X&) =0
which reads I:IZtH(X,ei) = H,(X,e;11) for g > 1. If g > 2, then we obtain inductively

HY(X, F) = Hy ' (Xe1) = = Hy(X,e4-1)
= H'(0 = Fyo1(X) = Fp(X) = -++) = HI(0 = Fo(X) = Fi(X) = --).

O
Lemma 2. If X is a metric space, every injective sheaf on X is flabby.

Proof. Let 7 be an injective sheaf on X and let V C U be an inclusion of subsets. We
define a presheaf Z; x on X by

7Z WC
W — - U
0 otherwise
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Denote by Zﬁ x the sheafification. In a similar way, we define Zy x and Z*{, x- Then,
Z‘f, x < Zf[ x is a subsheaf in a canonical way. Thus, we have an exact sequence

0= Zhx — L x
Since 7 is an injective object the sequence
Homgy(Z{; x, I) — Homgy(ZY x,I) — 0

is exact. Now

Homgy,(Z{; x,T) = Hompgy(Zu,x,I) = Z(U)
and

Homgy,(ZY x,T) = Hompsy(Zy,x, ) = Z(V)

which proves the claim. [J
Lemma 3. If X is a metric space, then flabby sheaves on X are acyclic.

Proof. We mimic the proof of ([20], Proposition 2.5).
If F is a flabby sheaf, then it can be embedded in an injective sheaf Z. The quotient of
this inclusion is denoted G. Then, we have an exact sequence

O=-F—=IT—-G—=0 (2)

with F flabby, Z flabby by Lemma 2 and § is flabby by a standard argument. General
theory on flabby sheaves also implies that the sequence

00— F(X)—>I(X) - G(X)—0 3

is exact. Then, the long exact sequence in cohomology to the short exact sequence (2),
the exactness of (3) and HY,(X, ) = 0 for g > 1 implies H,(X, F) = 0 and

HL(X, F) = B N(X,9) 4)

for g > 2. Since G satisfies the requirements for this Lemma, we obtain the result for g > 2
using inductively G and the isomorphism (4). [

4. Standard Resolution

This chapter proves Theorem 3.
Let A be an abelian group. If A; U --- U A, = U is a disjoint union of a subset U C X
of a metric space, then

C?ﬁl,...,An(u/A) ={p: U - A| §0|Aiox"'XAi,, constant Vip,...,i; € {1,...,q}}

Then, we define
Cl(U,A) = lim Czq«l,...,An(U'A)
AjU--UA,=U
where the indexing category consists of pairwise disjoint subsets Ay,..., A; C U with
A1U---UA, = U. Thereis an arrow A; Ll--- U A, — CyU---UCif (C;); is a refinement
of (A;);. Thengp € C} , (U, A)isequivalenttoy € Cp 5 (U, A)if

§0|Ai0ﬁB]-0 ><~~~><A,'qﬂB]‘q = ¢|Ai0m3j0 X"'XAiqﬁB]‘q

for every iy, ...i; € {1,...,n},jo,...,jg € {1,...,m}. We equip C7(U; A) with a group
operation by pointwise addition. The elements of C7(U; A) are called blocky functions with
blocks Ay, ..., Ay. They can be compared with the group of all functions U7+! — A.
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A differential on C7(U, A) is defined by

d,: C1(U, A) — CTH(U, A)
q+1 4
¢ — ((x0,-- -, %g11) = Y (=1 p(x0, -, &if ., Xg41).
i=0
Now, C XZ (U, A) defines the subcomplex of functions in C7(U, A) with cocontrolled
support. Then, we define CY;’(U,A) = Cq(U,A)/CXZ(U,A).

Definition 3. If X is a metric space, A an abelian group and q > 0 then coarse cohomology
HY] (X, A) is defined to be the qth homology of the coarse cochain complex (CY}(X, A),dg)q>0.

Subsets Uj, ..., U, of asubset U C X of a metric space form a coarse disjoint union of U
if they coarsely cover U and every two elements are disjoint.

Lemma 4. If U C X is a subset of a metric space and A an abelian group, then
HY{ (U, A) = kerdy = A(U)

Proof. We compute HY{ (U, A). Let ¢ € kerdy be a cocycle. Then, x ~ y if dyg(x,y) =0
defines an equivalence relation on X with equivalence classes (¢! (k))xca. The ¢! (k)
form a coarse disjoint union since do¢ has cocontrolled support. We can assume all ¢~ (k)
are not bounded otherwise we subtract a cochain with bounded (cocontrolled) support.
Thus, ¢ is an element of A(U).

If we are given a coarse disjoint union Uy, ..., U, of U and (a;)y, € A(U) then we can
assume the U; are disjoint and not bounded. Then,

p:U— A
x—a;, x €l

defines a cocycle in CY)(U, A). O

If & : X — Y is a coarse map between metric spaces and ¢ € C9(Y, A) a cochain, then
2*(@) := @ o a7+ defines a cochain in C7(X, A), specifically Czh ..4,(Y,A) is mapped

0 Cliian,at(an
well-defined cochain map a* : CYZ (Y,A) — CYZ (X, A).

In particular, an inclusion U C V of subsets induces a restriction map i* : CYZ (V,A) —
CYZ(U, A). Thus, CYZ(-, A) forms a presheaf on X.

X, A). If ¢ has cocontrolled support, so does a*¢. Thus, there is a

Lemma 5. If X is a metric space, the presheaf CY; (-, A) is sheaf on Xc.

Proof. Let U, ..., U, be a coarse cover of a subset U C X. We show the identity axiom.
Let ¢ € CYZ (U, A) be a section with @[y, = 0 for every i. By Lemma 6, the set V =

UT U u Ul is cocontrolled. Then

¢=¢luy +-+olu, +olv

as a finite sum of functions with cocontrolled support has cocontrolled support.
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We show the gluing axiom. Suppose ¢; € CY; (U;, A) are functions with pilu; = @jly;
for every i, j. Define a function
Ut — A
1
¢1(x0,...,x5) (x0,...,%) € lllq+
1 1
¢2(x0,...,%5) (x0,...,%) € U2q+ \Ul'H
(X0, ,Xg) = {

+1 +1 +1
¢n(x0, ..., Xq) (xo,...,xq)euz ﬂ(Ulq U~~~UUZ_1)C
0 otherwise.

If ;i € Cay,. ot Uiy A) then @ € Cay 4y, g \Uy e, Ay \(UyUeUy 1), (U U0ty e (U A)-
As can easily be seen, the cochain ¢ restricts to ¢; for everyi. O

Lemma 6. IfR > 0and Uy, ..., U, are a coarse cover of a subset U C X of a metric space then
+1 +1
ulmueuum ) N AL
is bounded.

Proof. If f : {1,...,n} — {0,...,q} is a function, then denote

Ap:= () Uix---x (] U.
ief~1(0) ief~q)
Here, the empty intersection denotes U. Then,
it o uulth Uttt = {(xo,. .. xg) €U Vi {1, 0} 3 € {0, q}x; & U}

= U As.

Fi{Lon}—{0,..q}

Now, the projection to the ith factor of Af N A‘]{ is

(ArnAal)iC{xel:d(x, (| U)<R...dx () U)<R}

ief~1(0) icf~1(q)
=AMl () Uiln---nagl () Ul
ief~1(0) ief~1(q)
n
C (N Ar(Uf]
i=1

bounded. Since (U] Hu..u UZH)C N U9t is a finite union of the A £ this proves
the claim. O

Lemma 7. The sheaf CY (-, A) on X is flabby.

Proof. If U C V is an inclusion of subsets and ¢ € C7(U, A) then there is a disjoint union
AjU---UA, =Uwith g € Cq,,a,(U,A). Define
¢:VITl 5 A
di TX;
(xol---,xq)H{O 0 b U

¢(xo,...,x4) otherwise.

Then, ¢ € Cp,, A, uc(V,A) restricts to pon U. [

.....
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Lemma 8. The homology of C1(X, A) is concentrated in degree zero.

A qg=0

. .1fg = 0then
0 otherwise

Proof. We compute H1(C*(X,A)) = {

kerdp ={¢: X — A:dyp =0}
={¢p: X = A:p(x1) — ¢(x0) = 0Vx1,x9 € X}
= {¢: X — A constant}
=A

If g > 1 and ¢ € kerd, then define the cochain

§:X1— Z

(xo,...,xq,l) — qo(O,xO,...,xq,l).

Here, 0 € X is a fixed point. If g € C} , (X, A) then ¢ € C} ", (X, A). Then

I
™=

i
o

dq_lgb(xo,...,xq) (—1)ig0(0,x0,...,fi,...,xq)

BN
+
—_

(_1)i+l¢(01 X0, - - -r-‘fifll' . ~/xq) + dﬂqo(or X0, - - -/xq)

Il
-

¢(x0,--.,%q)
Thus, higher homology of C7(X, Z) vanishes. [

We note an exact sequence of cochain complexes:

XN U A) —— CXT(U; A) — XN U A) —— -

l | l

= CTY U A) ——=C1(U; A) ———=CITH (U A) —— - -

| | |

YN (U A) —— Y (U; A) —— oY (U A) —— -

Lemma 9. If g > 1 and for every subset U C X and ¢ € ker ng 1 there exists a coarse cover Uj;
of Uand ¢; € CXZ(Ui;A) with dg(;) = |y, then CY; (-; A) is exact at q.

Proof. Let ¢ € ker dYé’ - CY,;7 (U; A) be an element. Then, ¢ := d;¢ has cocontrolled
support; thus, it is an element of CXZJrl (U; A). Since dg 19 = dg1dq¢ = 0 the element
 is even a cocycle in C XZ+1 (X; A). Then, there exists a coarse cover (U;); and elements
P; € CXZ(LIi;A) with dg(¢;) = (dg¢)|u,- Then, @[y, — ¢; is a cocycle in C7(U;; A) for every
i. Thus, there exists ¢; € CI7!(Uj;; A) with d;_19; = @|uy, — ¢i. Thus, ¢|y, represents
a coboundary. 0O

Lemma 10. If g > 1 and (Lllqul Uu---u UZ+1)" is cocontrolled in U+ then Uy, ..., U, is a
coarse cover of U.

Proof. Let R > 0 be a number. If (x,y) € (U; U?)° N Ag then (x,y,...,v) € (U, U?H)C N
A%. Since this set is bounded, (x, y) must be contained in a bounded set too. [J



Mathematics 2023, 11, 3121

12 of 40

Lemma11. If ¢ € CXZ(U, A) is a cocycle, then there exists a coarse cover Uy, . .., Uy, of U with
Ylu, =0 foreveryi=1,...,n.

Proof. Suppose ¢ € Cy,, . 4,(U,A) and fix a; € A; for every i. Then A; is bounded if
Y(a;,...,a;) #0. We add i to a list C. Likewise, A; X Aj is cocontrolled if there exists a map
f:A{0,... q} = {i,j} with (agy, ..., a5,)) # 0. We add the set {i, j} to the list C. We
proceed likewise with A; x - -+ X A; of up to g + 1 factors. We then define

U={A U---UA; |SECYSC {ir,... in}}

We show U is the desired coarse cover.
If V€ U thenitis of the form V = A; U---UA;,. Let f : {0,...,9} = {i1,...,im}

be a function. Since {f(0),...,f(q)} € {i1,...,im} we have {f(0),...,f(q)} & C. Thus
W(agq), .- agq)) = 0. Since f was arbitrary this implies [, = 0.

If (aiy, ..., ai,) € (Uvey VAat1)e then Ay U -+ U A;, ¢ U. Thus there exists a subset
S C {io, ..., ig} with S € C. Which implies that A;; x - -+ X A; is cocontrolled. This way

we showed that (Uy ¢y VI71)€ is cocontrolled in U971, By Lemma 10 we can conclude that
U is a coarse cover. [

Theorem 7. If X is a metric space and A an abelian group then the CYZ (X, A) are a flabby
resolution of the constant sheaf A on X.¢. We can compute

H1(X,A) = HY](X, A).
for every q > 0.

Proof. We prove that
0—A—CY)X,A) = CYHX,A) — -

is a flabby resolution of A. By Lemma 5, the CYZ (X, A) are sheaves. They are flabby by
Lemma 7. By Lemma 4, the sequence is exact at 0. If we combine Lemmas 9 and 11, then
we see that itis exact forg > 1. O

5. Functoriality, Graded Ring Structure and Mayer—Vietoris
This chapter presents a few immediate applications of Theorem 3.

Lemma 12. If two coarse maps a, B : X — Y are close then they induce the same map in cohomology.

Proof. The chain homotopy for coarse cohomology presented in ([11], Proposition 5.12)
can be costumized for our setting. Define a map h : CYZ (Y,A) — CYZ - (X,A) by

g-1 )
(ho)(x0,- -, xg1) = Y (=D)'g(a(x0), ..., a(x;), B(xi), -, B(x4-1))-
i=0
q q—1
Ifp € CAL__.’A"(Y,A) then hp € C (AN (A)
support of ¢ implies cocontrolled support of h¢. Thus, h is well-defined.
The combinatorical calculation presented in the proof of ([11], Proposition 5.12)
shows that

(X, A). Since a, B are close, cocontrolled

dg—1(he) +h(dgp) = B ¢ — o’ ¢.

Thus a*, B* are cochain homotopic. [

Throughout this section, X denotes a metric space and R a commutative ring.
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We define a map on cochains

CY!(X,R) x CY](X,R) — CY}""(X,R)
(P, 9) = oV

with
(pV)(x0,.--, Xprq) = P(x0,- .., Xp)P(xp, ..., Xpiq)-

Lemma 13. This product \ is well-defined.

Proof. We show ¢ V ¢ has cocontrolled support if one of ¢, ¢ does.

Suppose ¢ has cocontrolled support. Then, supp ¢ N Ak is bounded for every R > 0.
This implies the Oth factor B := (supp ¢ N AR)o is bounded. If p < i < p + g, then the
ith factor

(supp(¢ V) N AR C {x € X :d(x,B) < R}

is bounded. This proves the claim. [
The formula
dp+q(4’ V) = dpp VP + (=1)Pp Vv dqp

is easy to check. From that, we deduce that the V-product of two cocycles is a cocycle
and the product of a cocycle with a coboundary is a coboundary. Thus, V gives rise to a
cup-product U on HY; (X, R). Associativity and the distributive law can be checked on
cochain level. This makes (HY; (X; R), +,U) a graded ring.

Theorem 8. (Mayer—Vietoris) If Uy, Uy is a coarse cover of a metric space X, then there is a long
exact sequence in cohomology
0 — HY(X; A) = HY(Uy; A) ® HY (Up; A) — HY(Uy N Up; A)
— HY(X;A) — -
— HL(X; A) — H,(Uy; A) & H,(Uy; A) — HY(Uy NUp; A)
- HPN (X A) = -

Proof. We examine a sequence of cocomplexes

0— CY/(X;A) = CY)(Uy; A) & CY](Uy; A) L CY] (U NUy; A) — 0.

Here, a is defined by ¢ — (9|, ¢|u,) and B by (@1, ¢2) — ¢2|u, — ¢1|u,- This sequence
is exact at CYZ(X,‘A) and CYg(Ul;A) ® CYg(Uz;A) since CYZ(~;A) is a sheaf on X and
Uj, Uy are a coarse cover of X. It is exact at CYg (U; NUy) since CY;’(- ; A) is a flabby sheaf.

The result is obtained by taking the long exact sequence in cohomology of the exact
sequence of cochain complexes. [J

We denote by HX](X; A) the gth homology group of the cochain complex CX] (X; A)
given a metric space X and an abelian group A.

Proposition 1. Let X be a metric space and A an abelian group. Then,

(X)

A e =0
HX?(X,A):{O «(X) > 0
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HX} (X, A) = { A1 0 <e(X) < oo
OnA  e(X) =00

and
HXTT (X, A) = HY](X, A)

forevery q > 1.

Proof. Suppose g = 0. An element of ker dj is a constant function. If X is bounded, every
constant function represents an element of HXS(X, A) = A. If X is not bounded, then
every constant function with bounded (cocontrolled) support must be zero.

If g > 0, we use the short exact sequence of cochain complexes

0 — CX](X,A) = C1(X,A) = CY](X,A) — 0.

This splits since every element of C YZ (X, A) is represented by a blocky map ¢ : X7+ — A.
Now we produce the long exact sequence in cohomology. The first few terms are

0 — HX)(X,A) — H(X,A) — HY)(X, A) — HX (X, A) — 0.
If X is bounded then, this reads
05A% A% 0 HXY(X,A) > 0.

Thus, HX})(X,A) = 0. If X is not bounded, then the first few terms of the long exact
sequence in cohomology read

00— A— AX) = HXE(X,A) =0

Then
A= e(X) < oo
OnA  e(X) =0
In the middle term, we mod out the constant functions.
For g > 1, the long exact in cohomology reads

HXy(X,A) =Cp(X,A)/ A= {

0 — HY](X,Z) — HXI'(X,Z) = 0.
Thus we proved the claimed results. []

6. Computations

Theorem 3 can also be applied to compute cohomology groups in a combinatori-
cal manner.

Lemma 14. If A is a finite abelian group, then HY,(Z>o, A) = 0.

Proof. If ¢ € ker dY{’ then d; ¢ has cocontrolled support. This means for every n € N the
set supp(d; @) N Al is bounded. This amounts to saying that the function

Pnix—=@x,x+n)—ex,x+1)—---—¢@(x+n—1x+n)
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has finite support x4, ..., xr, € Z>¢. Then define

¢5ZZEﬁ — A
x—1

X — i (i, i+1).
i=0

This function is blocky since ¢ assumes only finitely many values. Here, we use that A is
finite. Moreover, we have

x+n—1 x—1
do@(x,x +n) = p(i,i+1) =Y ¢@,i+1)
i=0 i=0
x+n—1

= Z p(i,i+1)

p(x,x+n) —@u(x) x=x1,...,%,
o(x,x+n) otherwise.

This shows that ¢ — do has cocontrolled support. Thus ¢ is a coboundary in CY}! (Z>g, A). O
Theorem 9. If T is a tree and A is a finite abelian group then
HY(T; A) = 0.
Proof. Designate an element ty € T as the root of the tree and define
S={teT|d(t,t) € Ng}.

Let ¢ € CY}(S, A) be a cocycle. Then for every s € S, there is a unique 1-path ay =
to,...,ay = sjoining tg to s. Define

g:5S—+ A
n—1
s ) ¢(ai,ais1)

=0
Letn > 0 be a number. If s,t € S and d(s,t) = n then there exist paths ay, ..., a, o, ..., Cm
joining to to t and ag, ..., a, by, ..., b; joining ty to s withn = m+1+2o0rn = m+ 1 de-
pending on whether ¢y, ¢py—1, ..., co, ax, bo, b1, ..., by ot ¢y, Cy—1, ..., co, bo, . .., by is a 1-path
joining f to s. Then

m—1 -1
dog(s,t) — @(s,t) = @(ar,co) + Y, ¢(circiv1) — @(ag,bo) — Y @(bi, biv1) — @(s,t)
i=0 i=0

isawould-be cocyclein A} o thus, ithas bounded support. Thus, we showed ¢ is a coboundary.

Since the inclusion S C T is coarsely surjective, we can conclude H}(T,A) =
HL(S,A)=0. O

We will compute the following example later in more detail. This version of the proof
is more combinatorical though.

Lemma 15. If Z is the free abelian group on two generators, then HY,(Z?,7./3Z) # 0; indeed, the
first cohomology group contains a copy of Z/3Z.
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Proof. We divide Z? into 4 quadrants: Ag = Z>g X Z>, A1 = Z>o X Licpg, Ay = Zicy X
Zeg, A3 = Z<o X Z>p. Fix points 0 € Ayp,...,3 € A3. We define a cocycle ¢ €
CY}(2?,2/3Z) by

(001 2 3
0/0 1 21
=12 01 2.
212 20 1
3]2 220

Among other equations, we obtain d1¢(0,2,0) =2—-0+2=1and d1¢(1,3,1) =2—-0+
2 = 1. Thus, Ag x Ay X Ap and Ay x Az X Aj lie in the support of dy¢. Since Ag X Ap
and Aj X Az are cocontrolled, this is okay. Checking the other finitely many equations,
we obtain that d1¢ does indeed have cocontrolled support. Thus, ¢ is indeed a cocycle.
We show that ¢ is not a coboundary. Suppose for contradiction that ¢ = doip + ¢ with
¢ € CY(2?,Z/3Z) and ¢ € CX}(Z* Z/2Z). First we show ¢ € Cp,  a,(Z? Z/37).
Suppose for contradiction Ag = Agy LI Agz and | 4, = k while | 4, does not take the value
k. Then, Ag; x Agp C suppdoyp = supp(¢ — ¢). Since ¢|4,x 4, = 0 this implies Ag; x Agy
is contained in the support of ¢ and therefore is cocontrolled. Since Ay is one-ended, this
is a contradiction. Now, we construct . Suppose §(0) = k € Z/3Z. Since Ay x A; is not
cocontrolled, we obtain (1) = (1) — ¢(0) + ¢ (0) = ¢(0,1) + ¢(0) = 2 + k and similarly
P(3) =2+ k. Since A X Aj is not cocontrolled, we obtain ¢(2) = (2) — (1) + ¢(1) =
¢(1,2) + (1) =1+ k. Then

(001 2 3
00 1 21
dop= 12 0 1 0
2|1 2 0 2
3|2 010

If we compare the tables, we see that dyy — ¢ does not have cocontrolled support. Thus, ¢
is a proper cocycle. [

7. Infinite Coefficients

The computations in Section 6 only work for finite coefficients. This chapter shows
that the coefficient Z does not produce interesting cohomology groups.

If X is a proper metric space and A a metric space denoted by C; (X, A) the abelian
group of Higson functions ¢ : X — A modulo functions with bounded support. Namely,
a bounded function ¢ : X — A is called Higson if for every entourage E C X x X and
every ¢ > 0 there exists a compact subset K C X such that (x,y) € E\ (K x K) implies

d(e(x), 9(y)) <e

Lemma 16. If X is a proper R-discrete for some R > 0 metric space and A a metric space then
U~ Cy(U,A) for U C X with the obvious restriction maps is a sheaf on Xct.

Proof. Let Uy, ..., U, be a coarse cover of a subspace U C X.
We prove the base identity axiom. Let ¢ € C;,(U, A) be an element. If @[y, - .., ¢|u,
have bounded support By, ..., B, then ¢ has support contained in the set

BiU---UB,U (U3 U---UUy)°

which is a finite union of bounded sets and therefore itself bounded. Thus, ¢ has
bounded support.
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Now, we prove the gluing axiom. Suppose there are functions ¢q € C,(Uy, A),..., ¢u €
Cn(Uy,, A) with gol-|u]. = ¢j|u; forevery i,j € {1,...,n}. Then, define a function

p:U— A

p1(x) x€ Uy
pa(x) xelh\ U
X < :

pn(x) xel,NnUsN---NUS_,4
0 xeusn. - NUS

which restricts to ¢; on each U;. Here, 0 € A is any choice of point. Now ¢ is continuous
since U is R-discrete. The image of ¢

img =im¢; U---Uim ¢, U {0}
is bounded. Now, we check the Higson property. If E C U? is an entourage, then
E= E|U%U-"UE|U%UE|BZ

where B C U is bounded. Let ¢ > 0 be a number. Then for each i, there exists a bounded
subset K; C U; with |@;(x) — ¢;(y)| < e for each (x,y) € E|;2 \ K*. Now define K =
KiU--- UK, UB. Then |¢(x) — ¢(y)| < € for each (x,y) € E\ K?. Thus, ¢ satisfies the
Higson property. O

Denote by Cf(X, A) the abelian group of Freudenthal functions ¢ : X — A modulo
functions with bounded support. Namely, a bounded function ¢ : X — A is called
Freudenthal if for every entourage E C X x X, there exists a compact subset K C X such

that (x,y) € E \ (K x K) implies ¢(x) = ¢(y).

Lemma 17. If X is a proper metric space and A is a countable abelian group, then the constant
sheaf A on Xt is isomorphic to Cy,(+, A) which is isomorphic to Cs (-, A).

Proof. For each U C X we show that the inclusion C¢(U, A) — C,(U, A) is bijective. Let
@ € Cy(U, A) be an element. We show that ¢ is Freudenthal. Let E C U? be an entourage
and choose ¢ = 1/2. Then, there exists a bounded set K, C U with d(¢(x), ¢(y)) < 1/2 for
each (x,y) € E\ K2 Since A is 1-discrete, this implies ¢(x) = ¢(y) for each (x,y) € E\ K2
Thus ¢ is Freudenthal.

Now, we show the constant sheaf A is isomorphic to Cs(, A). We define a homo-
morphism ® : A(U) — C¢(U,A). If a € A(U) then it can be written a = a; © - - D ay
corresponding to a coarse disjoint union Uj LI - - - U Uj,. Then, we define

@;: u— A
X — a;
The ¢; are Higson and glue to a Higson function ®(a) : U — A. If b € A(U) is another ele-
ment represented by by & - - - ® by, corresponding to V1 Ul - - - L'V}, then a + b is represented
by @;;(a; + b;) corresponding to (U; N V;);;. Without loss of generality, the U, are pairwise
disjoint and cover U and likewise, the V; are pairwise disjoint and cover U. Then,
a, x€ U bp xe W am+b xelhn'
(@) + @) (x) =1 e =9 : =®(a+b)
a, x €Uy by, xe€eVy an+by, xel,NVy
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Thus, ® is a homomorphism. We show that ® is well defined. Suppose ¢ € A(U) is
represented by 0 on B¢ where B is finite. Then ®(c) has bounded support. Thus, ® is
well defined.

Now, we construct the inverse ¥ : Cf(U, A) — A(U). If ¢ € Cf(U, A) is Freuden-
thal, then in particular its image im¢ = {ay,...,a,} is finite. Since ¢ is Higson, the
¢ Y(ar),..., ¢ (ay) are a pairwise coarsely disjoint union of U. Then, define ¥(¢) to
be the element represented by a; @ - - - @ ay, corresponding to ¢~ !(a1),...,¢ 1 (a,). Itis
mapped by ® to ¢. Thus, @ is surjective. Now, we show @ is injective: If ¢ has bounded
support B then ¥(¢) is represented by 0 on ¢~ 1(B¢). O

Proposition 2. If X is a proper metric space, the following sequence of sheaves on Xy is exact:
0— Cp(,Z) = Cu(R) = Cp(+,S") = 0

Proof. Let U C X be a subset.

The map C¢(U,Z) — Cy(U, R) is induced by the inclusion Z — R. This map is well
defined since every Freudenthal function is Higson. It is injective. Thus exactness at Cs(+, Z)
is guaranteed.

The map C, (U, R) — C,(U, S!) is induced by the quotient map R — R/Z. A Higson
function is in the kernel of this map exactly when its image is contained in Z. Thus,
exactness at Cy (-, R) is ensured.

Now we show exactness at Cy,(+,S!). Let ¢ € C;,(+,S') be a function. Its image R/Z is
covered by V; := [0.25,1] + Z, V, := [0.75,1.5] + Z. Since

VENV§ = (0,025 +Z)N ([05,0.75] + Z) = @

we obtain that ¢~ 1(V¥) A@~1(V§) are coarsely disjoint. Thus, Uy = ¢ }(V}),U; =
¢~ 1(V3) are a coarse cover of U. Now we describe a lift ¢; : U; — R of ¢[y,: If x € Uy then
¢1(x) is defined to be the representative of ¢(x) in the interval [0.25, 1]. Alift ¢, : Uy — R of
@|u1, is obtained by defining ¢, (x) to be the representative of ¢(x) in the interval [0.75,1.5].
Thus, the right morphism in the diagram is surjective. []

Lemma 18. If X is a proper metric space, the sheaf Cj, (-, R) is flabby.

Proof. Let A C X be a subset. Since A C hX is a subset, the closure of A in hX is a
compactification A generated by C;,(X)|4 = {¢|a : ¢ € C;(X)}. Now, A is equivalent (as
a compactification) to hA and thus also generated by C;,(A). Since both C;,(X)|4 and C;,(A)
separate points from closed sets, they are both contained in Cj,, the algebra of bounded
functions on A which extend to hA ([21], Proposition 2). The ([21], Proposition 2) also states
that C;, C C*(A) is the smallest unital, closed C*-algebra with this property. Since both
Cp(X)|a and Cj,(A) are unital, closed the equality

Cr(X)|a = Cy = Cu(A)

holds.

We provide another proof using the Tietze extension theorem. If an element in Cj, (U, R)
is represented by ¢ € Cj,(U) then it extends to ¢ on hU. By the Tietze extension theorem,
we can extend ¢ to a bounded function ¢ on hX. Then, §|x represents an element in
Cn(X,R) that restricts to ¢. 0O

Example 1. We show Cy (-, R) is flabby on the specific example Z constructing a concrete global
lift of a Higson function ¢ : U — R on a subspace of Z. If z € U°€ then there are z_,z € U with
z_ the largest number in U with z_ < z and z, the smallest number in U with z < z. Define

(z) = 2z 2D Fo(z4)(z=2-)

(P Z4 —Z-



Mathematics 2023, 11, 3121 19 of 40

This function ¢ is Higson: If e > 0 then there exists an N € N with |¢(y) — ¢(y')| < € for every
vy € Uwith |y —y'| <2|¢|/eandy,y’ > N.Ifz,z' € U with |z — 2’| =1 then

|¢p(z) — q-)(zl)| _ P(z—)(z+ —ZZ—E —l—Z’_(ZJF)(Z—Zf) B p(z-)(z4 _z/j tz)_(z+)(z/ —z)
|9 ~2) + )z~ 2)
Zy —Z-
g =ot)
Zy —Z—

< 2\2§L§|0/‘€ zy —z- > 2|g|/e

C— zy —z_ < 2|g|/e
<e

provided z,z' > N.

Remark 1. By the long exact sequence in cohomology, we obtain

Cn(X,SY)

H(X; A) = CH(X,R)

If X = 7Z we can define

This function satisfies the Higson condition but is not bounded. Post-composition with the projection
R — S! gives a Higson function ¢ : Z — S' which does not have a lift. Compare this result
with [8].

Remark 2. It would be great if we could find an algorithm that computes coarse cohomology with
constant coefficients of a finitely presented group. This does not work even in degree 0. If we could
decide whether HY(G; A) vanishes, then we can decide whether G is finite. This is in general
not decidable.

8. The Inverse Image Functor

In this section, we fix a coarse map a : X — Y between metric spaces.

If G is a sheaf on Y then the inverse image (or pullback sheaf) a*G is the sheafification
of the presheaf on X which assigns U C X with G(a(U)).

Conversely, if F is a sheaf on X,; then the direct image «. F is the sheaf on Y,; which
assigns F(a~1(V))toV C Y.

Lemma 19. The functor a* is left adjoint to a.. The functor . is left exact and the functor a* is
exact. The functor a, maps injectives to injectives.

Proof. The functor

a1t Cat(Ye) — Cat(Xe)
Vi a (V)
is a morphism of Grothendieck topologies and therefore gives rise to functors (« 1), (a~1) p

between categories of presheaves ([22], Chapter 1,2.3). The functor («~!)” maps a presheaf
F on Xt to the presheaf V — F(a~1(V)) on Y. (a™1), is defined in ([22], Theorem 1,2.3.1).



Mathematics 2023, 11, 3121

20 of 40

If G is a presheaf on Y, and U C X we define («~1),G(U): Consider all V € Cat(Y,) with
U C a~ (V). They form a category Z;;. Then,

(™ H)pg(U) = lim G(V) = G(a(U))

op
Ve,

since a(U) is the initial object in Zy;.

Then ([22], Chapter 1,3.6) discusses functors (¢ ~1)* and («~!); between categories of
sheaves. We obtain the direct image functor a, = (a~!)* and the inverse image functor
a* = (a~1)s. Then ([22], Proposition 1,3.6.2) implies that a* is left adjoint to a., the functor
uy is left exact and if a* is actually exact then the functor a, maps injectives to injectives.
It remains to show that a* is exact. By ([22], Proposition 1,3.6.7) the functor a* is exact
if a1 preserves finite fibre products and final objects. Indeed, the inverse image of an
intersection is an intersection of inverse images and the inverse image of the whole space is
the whole space. O

There are of course non-metrizable coarse spaces. Usually, we are only interested in
metric spaces except in the following case. Note that coarse cohomology with twisted
coefficients has been defined on all coarse spaces.

Proposition 3. If we equip N with the topological coarse structure associated to the one-point
compactification NT of N, we obtain a coarse space called *. This space * is not metrizable but a
final object for metric spaces. The constant sheaf on * is flabby.

Proof. A set C C N7 is closed if it is finite or contains +. Thus, a subset E C N x N is an
entourage if for every subset E’ C E the projection of E’ to the first factor is finite exactly
when the projection of E’ to the second factor is finite.

Let X be a metric space and xy € X a basepoint. We define a map

p:X — %
x — |d(x,x0)].

We show that this map is coarsely uniform: If R > 0 and F C p*?(AR) a subset such that the
projection to the first factor is finite then choose arbitrary (x,y) € Ar with (p(x),p(y)) € F.
Since the first factor of F is finite, there is some S > 0 with |d(x,xp)| < S. Then,

[d(y, x0)] < d(y,x) +d(x,x0) +1
<R+S5+2.

Thus, the projection of F to the second factor is finite. This implies that p is coarsely uniform.
If B C *is bounded, then there exists some S > 0 such that b € B implies b < S — 1. Then,
p~1(B) is contained in a ball of diameter S around xy. Thus, p is coarsely proper. This
way, we showed that p is a coarse map. Suppose ¢ : X — * is another coarse map. Let
H' C (p x ¢)(Ao) be a subset such that the projection of H’ to the first factor is finite. We
have that H' is of the form

H' = {(p(x), ¢(x)) | x € A}

for some subset A C X. Then, the projection of H' to the first factor is p(A). Since p is
coarsely proper, the set A C p~! o0 p(A) is bounded. This implies that ¢(A) is bounded
which is the projection of H' to the second factor. Since we only used that p, ¢ are coarse
maps, we can use the same argument with the factors reversed. Thus, we showed that
(p x @)(Ap) is an entourage in *. This implies that p, ¢ are close; they represent the same
coarse map. This way we showed that * is a final object for metric spaces.

If A,B C x are infinite subspaces, then there exists a bijection ¢ : A — B. The set
E:={(a,¢(a)) | a € A} isanentourage and (A x B) N E = E is not bounded. Thus, A x B
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is not cocontrolled. We conclude that a coarse cover of a subset U C * contains an element
which is cofinite in U. Let A be an abelian group. Then,

AL (U) = A U infinite
* 10 U finite

This shows that A, is flabby. [
Lemma 20. If A is an abelian group, then Ax = a*Ay. The unit of a*, a, at Ay is given by
Hay (V) : Ay(V) = Ax(a"'(V))
(¢p:V—=A)— (poa:a (V) = A).

Proof. If Z is a metric space and pz : Z — * the unique coarse map we prove Az = p, A,.
This proves the claim since

a*Ay = a* o pyAi = (py o) Ay = pxAs = Ax.
The sheaf p% A, is the sheafification of the following presheaf

A U not bounded

U~ A(o(U)) =
= A:(p(W)) {0 U bounded

Now, this is just the constant sheaf on Z.
Now, we compute the unit of the adjunction a*,a,. We denote by a~! the presheaf
inverse image functor. Then, the unit of the adjunction !, a, at Ay is given by

May (V) Ay (V) = asa” T Ay (V) = Ay(aoa™ (V)

P = @laon1(w)

The unit of the adjunction sheafification # and inclusion ¢ of presheaves in sheaves at a =1 Ay
is given by
Moy, (U) 107 TAy (U) = Ay(a(U)) — a* Ay (U) = Ax(U)
(p:a(U) = A) =~ (poa:U— A)
This makes sense since ¢ assigns a value ay, to V; C a(U) where (V;); is a coarse disjoint
union of a(U). Since & is a coarse map, the a~!(V;) form a coarse disjoint union of U.

Then, (ay,),-1 (v;) represents ¢ on U which in cocycle notation is ¢ o a |u. Now, we compose

the units:
1 a(n® .y, )
Ma a—1lA
Ay =5 aa T Ay —— 5 Ay

and obtain the desired result. 0O
Theorem 10. The map induced by the inverse image functor

ot HL(Y, Ay) — H (X, Ax)
coincides with the canonical map

ot HY] (Y, A) — HY] (X, A).

Proof. We apply ([23], Scolium I1.5.2). We checked that the proof of this result also works
for sheaves on a Grothendieck topology. We choose f = «, G = Ay and T7 = CY9(-, A)
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a resolution on Y. Then, a*G = Ax has a resolution CYY(:, A) on X. The morphism of
complexes is given by

Y1 CY](V,A) = CY] (a7} (V), A)
(¢ : VIl 5 A) ((poocx(“l) (e U)T = A)

which makes the diagram

commute. [J

9. Sheaves on the Higson Corona
This chapter proves Theorem 5.

Lemma 21. Let X be a metric space. If Uy, ..., Uy is a coarse cover of X then there exists a coarse
cover V1,...,Vy of X with V; XU for everyi=1,...,n.

Proof. By ([24], Lemma 15) there exists a cover Wy, - - - , W, of X as a set such that W; XU
for every i. For every i there exists an in-between set C; with W; XCf and C; XUS. Then for
every i, the sets A} = Wy, Ai2 := C; are a coarse cover. Taking the intersection over those
coarse covers provides a coarse cover

B:={A'N---NAy ¢, =1,2}.
Now, let B:= AJ' N--- N A}/ € Bbe an element. If there is some i with ¢; = 2 then
B C C; AUS

and in the other case ¢; = 1 for every i. Thus,

c
B:MﬂmﬂM:<Um>:®
i

Now, we join appropriate elements of 5 and obtain the desired coarse cover:

= U A0 A
(e1,--8n)€{1,2},6;=2

O

Given a sheaf F on X, we define a sheaf F¥ on v(X): If both A AU, B XUF° then
AUB LU°. Thus, (A) g is a directed poset by inclusion. Now we define a sheaf F on
basic open subsets of v(X). If U C X is a subset, then

FY(cl(UC)) := Lim F(A).
AUE

If V C U is an inclusion of subspaces then A AV® implies A AU°. Thus, there is a
well-defined restriction map F(cl(U°)¢) — F"(cl(V¢)) which maps (¢ ) e to (@a) ayve.
This makes F a presheaf.

Proposition 4. If X is a proper metric space and F a sheaf on Xt then FV is a sheaf on v(X).



Mathematics 2023, 11, 3121

23 of 40

Proof. Let cl(U°)¢ = {J; cl(Uf) be a cover of a basic open set by basic open sets.
Let A C X be a subset with A XU°. Then,

mﬂd (Us) =c(A)Ne(U) =0

Thus, (cl(Uf)¢);, cl(A)¢ is an open cover of v(X). Since v(X) is compact, there exists a finite
subcover cl(Uf)“U - - - Ucl(Uy)¢ Ucl(A)°. By ([25], Lemma 32) the subsets Uy, ..., Uy, A°
are a coarse cover of X. By Lemma 21 there exists a finite coarse cover Vi, ..., V;, B of X
such that V; XU for every i and B XA. Then V4, ..., V, are a coarse cover of A.

We show the base identity axiom: Let ¢, 9 € F"(cl(U°)) be elements with ¢| ) =

$lei(ue)e for every i. Since ¢y, = iy, for every i the identity axiom on coarse covers implies
1

Pa="Ya.

Now we show the base gluablity axiom. Let ¢; € F"(cl(Uf)¢) be a section for every i
such that (Pi|c|((uimuj)c)c = (Pj|c|((uir~|uj)c)c for every i, j. Then the (¢;)y, glue to a section ¢4
on A by the gluablity axiom on coarse covers. []

If « : F — F is a morphism of sheaves on X, then we define for every basic
open cl(U°):
&’ (cl(U)) : FY(cl(U)C) — FY(cl(U°)°)
(@a) e = (2(A)(9a)) mu

This definition makes sense since B C A implies that («(A)(¢4))|s = «(B)(¢alp)- Thus,
(a(A)(@a)) mare is an element in lim A F'(A). By gluing along basic open covers, we
obtain for every open m C v(X) a map a'(7) : F'(wr) — F'Y(7r). We show that a¥
FY — F"is a morphism of sheaves: If V C U is an inclusion of subsets and (@) gic €
FY(cl(U°)¢) an element, then

¥ (cl(VE)%) o “|aqvey ((9a) mue) = Dév(d(VC V(@a)apye)
AWe)

= -lai(veye (( (A)(fPA))ch))
= “laveye 0 a¥(l(U)) ((@a) -

Moreover, id} = idps and (a0 ) = a¥ o B¥. Thus, we have proved that -V is a functor.
Namely, if Sheaf (X,;) denotes the category of sheaves on X+ and Sheaf (v(X)) denotes the
category of sheaves on v(X), then

V. Sheaf(X.t) — Sheaf(v(X))
is a functor between categories of sheaves.

Lemma 22. Let X be a proper metric space. If U5, ..., U5, A C X are subsets with cl(U{) N ---N
c(U5) Ncl(A) = O then there exists a subset U C X with

cd((U NU))U---Ud((U, nU)) = cl(U)°
an open cover and U KA.

Proof. Since v(X) is compact there only exists one proximity relation on v(X) which
induces the topology on v(X). Thus, the relation d defined by 71167, if 777 N 7T, # @ and
the relation induced by A on the quotient coincide. Since both 7 := cl(Uf) N --- N cl(UF)
and cl(A) are closed sets, we obtain

7Nc(A)=nmNc(A) = Q.
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Thus, © Xcl(A). Then, there exist U, B C X with 7 C cl(U°),cl(A) C cl(B) and U° B.
This in particular implies that U° X A. Then,

(U NU)°) U- - Uel((Uy nU)°) = | el(Ug U U

1

- ((\(d(Lg)LJcKLPﬁ>>

1

= [Jel(uy) nel(u)©

= 7° N dl(U)°
= (U,

O

Given a subset A C X of a proper metric the relations U LA and V¢ LA imply
U U Ve KA. Thus, (U)yeya is a directed poset. If G is a sheaf on v(X) we define

G(A) = lim G(cl(U)")
Ayue
If A C B then U® KB implies U¢ XA. Thus, we can define a well-defined restriction map

G(B) — G(A) which maps [gyc] to [¢yc]. This makes G a presheaf on X.
A sheaf F on X is called reflective if for every subset A C X the canonical map

lim F(U) — F(A)
AE

is an isomorphism.

Proposition 5. Let X be a proper metric space. If G is a sheaf on v(X), then G is a reflective sheaf
on Xt

Proof. Let Aq,..., A, be a coarse cover of A C X.
We prove the identity axiom. Let s € G(A) be a section with s| 4, = 0 for every i. Then
there exists Uj XA; with sye = tye in G(cl(Uf)°). Since cl(A;) Ncl(Uf) = @ we obtain

cdUi)n---Nel(Uy) Nel(A) Cc(A)N---Nel(A) Nel()A
= (cl(A])U---Ucl(Ap))Necl( A
= Q.

By Lemma 22 there is some U C X with cl((U; NU)¢)°U---Ucl((U, NU)°)¢ = cl(U°)° an
open cover and U¢ KA. Thus, the identity axiom for open covers implies sy« = 0. This
provess = 0in G(A).

Now, we prove the gluablity axiom. Lets; € G(A;) be a section for every i with
si|A]. = sj| 4, for every i, j. Suppose s; are represented by (s;)ye € G(cl(Uf)°) with Uf KA;.
As in the first part of this proof, there is some subset U° C X with

(U MUY U~ Ul ((Uy NU)E)E = el (UE)

and U° AA. By the gluablity axiom on open covers the (Sl‘)uic glue to a section syc €
G(cl(U°)¢) which represents a section s € G(A).
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Now, we show that G is reflective. For every A, U C X with A JUF° there exists T C X
with A AT and T XU°. Thus,

lim G(T) = lim lim G(cl(U°)) — Lim G(cl(UF)°)
AWT® AYTE DU A
is an isomorphism. [

If B: G — G’ is a morphism of sheaves on v(X) and A C X a subset then

A

B(A): G(A) = G'(4)
[pue] = [B(cl(U)%) (pue)]

is well defined since V¢ C U° implies
Blel(UO)) (@velaue)s) = (BIAV))) (@ve))leiue)e-
We show (B(A)) acx defines a morphism of sheaves on X.¢. If B C A then

B(B) o -[glpucla = [B(cl(U"))(pue)]B
= [0 B(A)[puc]a-

Moreover, idg = idsand wof = & o B. Thus, we showed that * is a functor between
categories of sheaves:
*: Sheaf(v(X)) — Sheaf(X).

In fact, its image is contained in the full subcategory of reflective sheaves.

Theorem 11. If X is a proper metric space, the category of reflective sheaves Sheaf(Xct) on X is
equivalent to the category of sheaves Sheaf(v(X)) on v(X) via -¥,*

Proof. Let G be a sheaf on v(X). Then, for every U C X there is a morphism
76 (cl(U)) : G(A(U)) — (G)"(cl(U)°)
s = ([s]u) e

which naturally defines a morphism of sheaves 1. We show this map is bijective. Suppose
s € G(cl(U°)) is mapped by ¢ (cl(U)¢) to 0. Then for every A XU there exists U§ XA
with s[7, = 0. Then,

() cl(Uy) Ne(U) € () c(A)Nel(U)©

A A
( Udm)

= (v(X))*
= .

Thus, (cl(U)¢) aye is an open cover of cl(U¢)¢. The global axiom on open covers of v(X)
shows that s = 0 on cl(U¢)°. Suppose ([ta]u, ) e is an element in (G)Y(cl(U¢)). Then,
as before, (cl(U%)¢) aye is an open cover of cl(U€)€. Then (ta) aze € [Tapre G(cl(US)€) is
an element with

16(cl(Un)) (ta) = ([taluy) anars,
= Jaqe) ([talu, ) anue
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Thus, 7 is surjective. It is easy to see that 7 : G — 5 defines a natural transformation.
This way, we showed that 77 is a natural isomorphism between idgpeaz(,(x)) and ¥ ©
Now, let F be a sheaf on X;. Then, for every A C X, there is a map

er(A) : (FV)(A) = F(A)
[(SA/)AMF]U = SA-.

This map is well defined since [(s /) ayarc] = 0 implies there is some U XA such that
for every A’ AU the section s, = 0 vanishes. This in particular implies that s, = 0.
Now, we show er(A) is injective. If [(sar) ayas]u maps to 0 by er(A) then the support
supp((sar) anare) is closed in v(X). Thus there exists an open cl(V¢) 2 cl(A) on which
(sa7) anwe vanishes. Thus (sar) agse represents the 0 element. Now we show €r(A) is
surjective if F is reflective. If s4 € F(A), then there exists some A XU° and s € F(U) such
thats|4 = s4. Then, [(s|a/) ayuc]u maps by ep(A) tosg. O

Theorem 12. If F is a reflective sheaf on Xt then H.(X,F) = H1(v(X), F"). The right side
denotes sheaf cohomology on v(X).

Proof. We first show if G is a flabby sheaf on v(X) then G is a flabby sheaf on X,;. For every
U C X, the restriction G(v(X)) — G(cl(U°)°) is surjective. If [sy]y € @AWC G(cl(U%)*)
then there exists some sx € G(v(X)) = G(X) with sx| = sy.

Now we show * is an exact functor. Let

G5 G B G,

be an exact sequence of sheaves on v(X). If [sy] € ker B(A) then there exists A V¢ with
B(cl(VE) (su)lei(veye: = 0. Since ker p C ima there is a cover Ucl(Uf)¢ = cl(V°)° and
su; € Gi(cl(Uf)") with a(cl(U;)°) (su,) = svleiug)e- Then (cl(Uf)°); cover cl(A). Since cl(A)
is compact a finite subcover cl(Uf)¢, - - -, cl(Uj;)¢ will do. Then Uy, - - - , U, form a coarse
cover of A. By Lemma 21, there exists a coarse cover Vi, - -+, V; of A with V; XUf. Then,
[su] € TIG1(V}) maps to [sy] by &. Thus, we have proved ker C ima. If conversely,
[a(cl(U$)) (su,)]i € TTGa(A;) with A; a coarse cover of A and A; KUY represents an element
in im&(A), then in particular (cl(Uf)¢ is an open cover containing cl(A). By Lemma 22,
there exists A XU° with cl(U°)¢ covered by cl(Uf)¢. Since ker O im« there exists sy €
ker B(cl(U°)) with sulei( us)e = su;- Then, [su]u € ker B(A) has the property that [sulula, =
&(A;)([su;]u;)- Thus, ker B D im &. This way we proved ker 8 = im &, the sequence G; —
Gy — Gsis exact at Go.
If F is a reflective sheaf on X, then there exists a flabby resolution

0—+F' —-Gy— Gy — -
of sheaves on v(X). Since * is an exact functor, we obtain an exact resolution of flabby sheaves
05F -Gy — G — -

with an isomorphism FV — F. The global section functor on the reduced sequences gives
the same result. [J

Proposition 6. If A is an abelian group and X a proper metric space, then Ay’ = A, x) on v(X)
and Au(x) = Ax on X are isomorpic. In particular, Ax is a reflective sheaf.

Proof. If B C X is a subset and i : B — X denotes the inclusion then v(i) : v(B) —
v(X) is an inclusion of a closed subset. We have A x)(B) = IQBA/UC (x) (cl(U°)%) =

v(i) 1Ay (x) (cI(B)) = Ay(g) (v(B)). There is a bijective map Ax(B) — AV(B)( v(B)) defined
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as follows: A section in Ax(B) is represented by a Higson function ¢ : B — A where A is
equipped with the word length metric. This function can be extended to the boundary v(B)
since it is Higson. Then this function is a continuous map v(B) — A where A is equipped
with the discrete topology. Since a coarse disjoint union of B is 1:1 with disjoint unions of
v(B) by clopen sets we obtain a bijection. This tells us that Ax = AV(X). Applying the -V

functor we obtain a bijection A}, = A]‘j(x) =Ayx)- O

Theorem 13. If X is a proper metric space with asdim(X) = n then H},(X,F) = 0 for every
reflective sheaf F and q > n.

Proof. The space v(X) is paracompact since it is compact. By ([26], Chapitre I1.5.12) it
is sufficient to show that the covering dimension of v(X) does not exceed n. By ([27],
Theorem 1.1) we obtain dim(vX) < asdim(X). Thus the result follows. [

This result can be used to finalize our computations in Section 6.
Theorem 14. If A is a finite abelian group, then

A g=0

HY (Z=0; A) =
Ct( 20; 4) {O otherwise.

If F, denotes the free group with n < oo generators and A is finite again, then

®nA q=0

HT(F,; A) =
at(Fi 4) {O otherwise.

Proof. The cohomology in degree 0 is clear since Z>( has one end and F, has infinitely
many ends. In degree 1, cohomology with finite coefficients vanishes by Lemmas 14 and 9,
respectively. Now, both Z>( and trees have asymptotic dimension 1 [28]. Then, Theorem 13
implies that the higher cohomology groups vanish. [

10. Coarse Homotopy Invariance

This chapter proves Theorem 4.

Lemma 23. If «g,..., a5 : X — Y are coarse maps which are close to each other and ¢ €

CX](Y,A) is a cochain , then

1. g@o(ag x--- X ay) isacochain;

2. the composition of (yo, - --,Yq-1) + (Yo, -+, YisYis---,Yq—1) With the map ¢ is a cochain
in CXI(Y, A);

3. the composition of (yo,---,Yq-2) = Yo, YisYir---,YjsYjs- -, Yq—2) With @ is a cochain
in CXI2(Y, A).

Proof. We prove 1. first. Suppose D C Y41 is cocontrolled. We show (g x - - - x a;) (D)
is cocontrolled. If R > 0, then (&g x - - - X &) (AR) is cocontrolled since g, .. ., &, are coarse
and close to each other. Thus, there exists some 0 € Y and S > 0 with

DN (g x - % ag)(Ar) C (As[0])7H!

Then,
(g x -+ X ag) H(D)NAR S (g x -+ X ag) " (D) N (mg X -+ X atg) "F o (g X -+ X g) (AR)
C (ap x -+ x ag) 1 (Ag[0]7F1)
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is bounded. Thus, (a9 x - - - x ag) ~}(D) is cocontrolled. Now, supp ¢ is cocontrolled. Then,

supp(@ o (o X - - X ag)) = (w0 X - -+ X &g) "' (SUPP Pimm(agx - xay))
= (g X -+ X ag) "' (supp ¢)

is cocontrolled. If ¢ € Cy,,. a,(Y,A) then po(ag X ---xay) €C, o1 (Aig)n-nag (A iq)(X,A).
Thus, g o (a9 X - - - X &) is blocky. This way we showed that ¢ o (oco X e X zxq) is a cochain.

Now, we prove 2. Name the map (yo,...,yq,l) — (Yo, .- .,yi,yi,...,yq,l) by 4;.
If R > 0, then there exist 0 € Y, S > 0 such that supp ¢|a, C (Ag[0])7"!. Now (Si(A?{_l) C
A% and 6,1 ((As[0])71) C (A5[0])9. We use this to prove

supp(9 0 4;)| g1 = 8 (supp @l s-1))
C o 1(SUPP(P|M)
C 671 ((As[0])T)
C (Ag[o])7.

Thus, ¢ o J; has cocontrolled support. Moreover, if ¢ € Cle .., (Y, A), then we have

pod; € ngl A, (Y, A). Thus, ¢ 0; is blocky. This way, we showed that ¢ o J; defines
a cochain.
The proof of 3. is similar to the proof of 2. and left to the reader. [

Lemma 24. If I is a metric space, hy, hy, hy : I — I coarse maps which are close to each other and
NS CXZ(I,A) is a cocycle then

qi(_l)i(‘P(hO(ZO)w~~/h0(zi)/h1(zi)/~~'/h1(zq71)) +@(h(20), .-, h1(2i), h2(zi), - .., ha(z4-1))
= @(ho(z0),-- - ho(zi), h2(2i), - .., ha(zg-1)))
is a coboundary in CXZ_1 (I, A).
Proof. First, we define for0 <i <j <g—2amap

Xij 11 A
(XO,. . .,xqu) — (p(l’lo()(o),. . .,h()(xl'),hl (Xl'),. . .,h1 (Xj),hz(Xj), .. .,hz(xq,Z))

This map defines a cochain by Lemma 23.
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If (zo,...,2zk—1) € 19 then (2;) is short for (zo, ..., %, ...,zk—1) € I7-1. We compute

0= Z (—1)i+jdqq0(l’l0(20),...,ho(Zi),hl(Zi),...,I’ll(Z]‘),hz(Z]‘),---,hz(Zq_l))

0<i<j<q—1
- 0<i<j<g—1

i . —
(Y (=1 (o(z0), - o (26), - - - B (i), 11 (22), - 11 (2), (7). - 2 (20 1))
k=0

—

+ JZ(fl)i—H‘—‘rk-‘rlq)(hO(ZO)r‘ . '/hO(Zi)/hl (Zi)r‘ . 'rhl (Zk)/ R rhl (Zj)th(Zj)r .. 'th(zq—l))

k=i
-1 L —

+ (—1)l+](P(h0(Zo), e /hO(Zi)/hl(zi)r e ,hl(Z]'), hZ(Zj)/ e /hZ(Zk)r e /hZ(qul)))
k=j

- 0<i<j<g-1

i—1 o

(2 (1) i (2)

k=0

+ (—1)i+j+iq0(h0(20), e /hO(Zifl)/hl (Zi>/- . -/hl (Z]'),hz(Z]'),. . .,hg(zq,l))

+ (—1)i+j+i+1(p(ho(20), .. .,ho(zi),hl (Zi+l),. . .,]’11 (Z]'),hz(Z]'),. . .,l’lz(Zq_l))

j—1 .
+ ) (_1)Z+]+k+1Xi,jfl(2k)
k=it1

(1) g ho(z0)s o hozi), B (21) o By (2t ) B2 (2D o B (g )M

+ (—1)i+j+jq)(ho(20),. . ~/h0(zi)/h1(zi)/- . .,hl(Zj),hz(Zj+1),. . .,hz(Zq,l))

q-1 L
+ Y (DT (2)
k=1

We arrived at a sum where the terms marked with , , , either contribute the
desired terms or cancel each other out. The terms with x;; add to a coboundary.

We first look at the terms ,,,. If0 <i<j<g—1the term for
i+1,j cancels with the term fori,j. If 0 < i < j < g—1 the term for i,j
cancels with the term for i,j — 1. We did not yet count the terms fori =
0,0 < j < g—1which give (—=1)/¢(h1(z0),-..,h1(z}), h2(2j), ..., h2(z4-1)). The terms
forj =4q—1,0 <i<g—1contribute (—1)'¢(ho(z0), ..., ho(z), (), ..., h1(zg-1))-
Finally if 0 < i = j < g —1 then = is counted only once and contributes
(=1 o (ho(20), . .., ho(zi), ha(2i), - . - ha(zg-1))-
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It remains to show that the other terms contribute a coboundary:

i—1

. j—1
=) (Z(_l)lJr]JrkXifl,jfl(ﬁk)“‘ Yo (—1)rEy i—1(2k)

0<i<j<q71 k=0 k=i+1
+ Z 1+]+k (ﬁk))
k=j+1
i J
— E Z z+]+k 'ﬁk)‘i‘ Z ( 1>1+]+k?(z,j(2k)
0<l<]<q = k=i+1
+ Z 1+]+k (2k))
k=j+1
:dqu( Z (*1)i+j}(ij)(20,...,Zq_l).
0<i<j<g—2

O

Lemma 25. If I is a metric space, ¢ € CX](I, A) a cochain and (ht); a family of coarse maps
I — I with the properties

1. d(zo,z1) > d(he(z0), he(z1)) for every zg,z1 € L t;
2. d(zo,0) =d(h(zp),0) for every zg € I, t and some 0 € I;

then for every R > 0, there exists S > 0 such that
supp ¢ (g (-), - Iy () |59 S (As[O]) T+
independent of to, ..., tg.

Proof. If R > 0 then supp ¢|a, is bounded, namely, contained in (Ag[0])7*! for some

S>0.
supp (¢ © (g x -+ X hy,))| g3 = (hty X -+ X Iy )~ (supp Pl -+ iy, (83
C (g x -+ X hy) " (supp @l g )
C (hiy x -+ x ey ) H((AgO])TH)
= (Bg[0])T*
O

The proof of Theorem 15 can be illustrated by an example. Proposition 7 carries out
the essential step of the proof for X = Zx.

Proposition 7. If Iy := Zxo X Zso C Z? the projection

7'[210—)220
(x,y)—x+y

induces an isomorphism in cohomology 7t* inverse to the induced map 1* associated to the inclusion
1:x— (x,0).

Proof. In the following proof, z; is short for <;l> and Z abbreviates ( <;O> S, <;7)) or
i 0 q

()G
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We show that the map

pi=1om:Ip— Iy
(x,y) = (x+y,0)

induces the same map p* in cohomology as the identity on .
For t € Ny we define an auxilary map

hy : In — Iy
(x+ty—t) t<
(x,y) ’ /
(x+y,0) t>y.

We obtain p(x,y) = hy(x,y). The (h;); satisfy the conditions of Lemmas 24 and 25.
Suppose g > 2. Let ¢ € CXZ(IO,A) be a cocyle. Then, (h —id} )¢ € imd,_; since
ht,idj, are close. Thus, there is some i; € CXZfl(IO,A) with d; 191 = hi ¢ — ¢. Namely,
q—1

¢t(ZO/ .. -/qul) = Z(—l)i(p(ZO, .. -/Zirht(zi)f . ,]/lt(qul)).
i=0

Then, define the map

()G =5 o () Gin)

This map is well defined, since for each fixed point in I, only finitely many terms in the

above sum are defined. If R > 0, then Lemma 25 implies that there exists some S > 0

such that each summand of ¢| ;1 has support contained in (Ag[0])7. This implies that
R

supp({| 4-1) € (As[0])7. Thus, $ has cocontrolled support. Now, $ may or may not be
R

blocky. We have to go the extra step to produce a map with cocontrolled support which is
also blocky. To obtain such a map, we are going to add a coboundary.
By Lemma 24 we obtain

q-1 ,
hoy1(2) + hiya(2) = ;J(—nlcp(ho(zo),...,ho(zi),hl(zi),...,hl(zq_l))
-1
+‘7 (=D o(h1(z0),- -, h1(z:), ha (1), - - B2 (zg-1))
i=0
q—1

(=)' p(ho(20), - - -, ho(2i), ha(zi), - . ha(2g-1)) + dg—2x1(Z)
i=0

2(2) +dg-2x1(2)-

in the next step, we obtain

q-1 ‘
V2(2) 391 (2) = L1 qlholzo), o (2 a(a) - ha(zg)
-1
+ qZ(—l)iq)(hZ(Zo), cee ,hz(zi), h3(Zi), . ,hg(Zq_l))
i=0
q—1

Ny

(=D g(ho(z0), - - ho(2:), h3(2), - - 13(24-1)) + dg—2xa(
0

¥3(2) +dg-2x2(2).

)
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Successively, we obtain

max(y;)—1
90 =t () G2+ & oo () (i)

By the proof of Lemma 24 the map d; _»x; satisfies the conditions of Lemma 25. Thus, the

sum Z?;alx =1 dg—2xt has cocontrolled support. This implies that the map

o) () = v (G) ()

has cocontrolled support. We have

-1
¥(zo, -, 2g-1) = g(—l)lﬂzo/---,ZirP(Zi)r---/P(qul))-
-1

144 (I, A). This way we

Thus, ¢ is blocky, namely, if ¢ € Czl,...,A,, (In,A) then ¢ € CZ

have proved that ¢ is a cochain.
Lastly, we have

() ) = () ()

(dg—19)(2)

_ X1 )\ _ ... *o -1
= lpmaX[yi(<yl)’ v <yq)> ilprmx[yi((]/0>"”l (%1—1))
z

= (dq—llpmax;yi (
= h:(naxiyi(p<z) - (P(Z)
=(r'e—9)2)
Thus, p*¢ — ¢ defines a coboundary. This way, we showed p* induces the identity on
H! (Iy, A) for g > 1. It remains to show the statement for g = 0.
Since Ij is one-ended a cocycle, ¢ € CY?(Iy, A) is represented by a constant a € A

function on Iy except on a bounded set. Then, p* ¢ is constant a € A except on a bounded
set. Thus, p* is the same map as the identity on HY?(Iy, A). O

Now, denote I := R>( x R>¢ and equip this space with the Manhattan metric. Namely,
if (Sl, tl)/ (Sz, tz) € I then,

d((s1,t1), (s2,t2)) = [s2 —s1| + |[t2 — t1].

If X is a metric space and xg € X a point, then the asymptotic product of X and I is defined
to be
X«+I={(xi) e XxI|d(x,x0) =4d(i,(0,0))}

The paper [18] shows that X * I is the pullback of d(-, x9) and d(-, (0,0)). Moreover, we can
define a well-defined homotopy theory: If X is a metric space, define maps

p: X =+ Xx1 n:X—=>Xx1
x— (x,(d(x,%),0)) x> (x,(0,d(x,x0)))

Definition 4. If o, B : X — Y are two coarse maps, they are coarsely homotopic if there exists a
coarsemap h : X x I = Ywithhoiw =waandhoy = B.

The paper [18] shows that coarse homotopy is an equivalence relation and compares
this theory with other homotopy theories on the coarse category.
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Lemma 26. If X is a metric space, then e(X * I) = e(X).

Proof. Denote by 7 the projection of X x I to the first factor. Since 77 is a surjective coarse
map, the inequality e(X * I) > e(X) follows easily.

Now, suppose X x I = A U B is a coarse disjoint union. This means that A, B are
disjoint and form a coarse cover of X. Namely, the set Ag[A] N Ag[B] is bounded for every
R > 0. Then, theset {x € X | 3i,j € I : (x,i) € A, (x,]) € B} is bounded. Without loss of
generality, we assume it is empty. Thus, for fixed x € X either (x,i) € A foreveryi € I or
(x,i) € Bforeveryi € I.

Now, we show 7(A), (B) form a coarse disjoint union. They are disjoint by the
assumption. Let R > 0 be a number and let x € 71(A),y € 7(B) be two points with
d(x,y) < R. Then, (x,0) € A, (y,0) € B with d((x,0),(y,0)) < R. Then, the set
((x,0), (y,0)) is bounded, which implies that (x,y) is bounded. O

Theorem 15. If two maps a, B : X — Y are coarsely homotopic, then they induce the same map
in cohomology.

Proof. We just need to show that the projection 7r : X * I — X which sends an element
(x,1) to x induces an isomorphism in cohomology. Indeed, since 7t 0 i) = idx = 7o 1 the
maps ), 1] are both the unique inverse to 77*. Then, & = h oy and B = h o induce the
same map in cohomology.

Now, Proposition 7 already showed 7t* is an isomorphism with Z>( in place of X and
Iy in place of I. The same proof can be transferred to this situation where we use Lemma 26
for the step in degree 0.

Namely, we proceed as follows. In the following proof, z; is short for (x;, (s;, t;)) and z
abbreviates (zo, ..., zg) or (2o,---,24-1)-

We show that the map

pi=gom:XxI = Xx1
(x,(s,t)) = (x,(s+1,0))

induces the same map p* in cohomology as the identity on X * I.
For n € Ny, we define an auxilary map

hy : X*xI— Xx* 1

(x, (s, 1)) = {

(x,(s+mn,t—n)) n<t
(x,(s+1¢0)) n>t.

We obtain p(x, (s,t)) = (x, (s +1,0)) = h|;j41(x, (s,t)). The (hy)n satisfy the conditions of
Lemmas 24 and 25.
Suppose g > 2. Let ¢ € CX] (X * I, A) be a cocyle. Then, (h; — idy, )¢ € imd,_; since

hy, idx.g are close. Thus, there is some ¢, € CXZ_1 (X1, A)with dg 1 = hy,¢ — ¢. Namely,

q—1 .
¥n(20,- - 2g-1) = Y (=1)'¢(z0, - -, zi, hu(2i), - .., hu(24-1)).-
i=0
Then, define the map
Lmax(t/)j
P((x0, (s0,t0)), -+ (g1, (Sg-1,tg-1))) = Y (hatpr)((x0, (s0,t0)), - - -, (¥g—1, (Sg-1,4-1)))-
n=0

This map is well defined since for each fixed point in (X * I)7, only finitely many terms in

the above sum are defined. If R > 0, then Lemma 25 implies that there exists some S > 0

such that each summand of ¢|,,1 has support contained in (A[0])7. This implies that
R
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supp({| 4-1) € (As[0])7. Thus, § has cocontrolled support. Now, § may or may not be
R

blocky. We have to go the extra step to produce a map with cocontrolled support which is
also blocky. To obtain such a map, we are going to add a coboundary.
By Lemma 24, we obtain

|
_

q

ho1(2) + i91(2) = Y (=D'p(ho(z0), - - - ho(zi), 11 (2i), - .. b1 (zg-1))

ing|

-
LI

(=191 (20), -, 11 (20), ha(20), - - T (241))

+
IC\)

K
|
—_

(=)' p(ho(20), - - -, ho(2i), ha(zi), - - ha(2g-1)) + dg—2x1 ()
i=0

2(2) +dg2x1(2).

In the next step, we obtain

q—1 ,
¥2(2) + hyyn (2) = 470(—1)’4’(}10(20), oo rho(zi) ha(2i), - - ha(2g-1))
1
Y 1 (a0, (i) (20 (2 1)
i=0
q—1

(=1) p(ho(z0), -, ho(zi), h3(zi), ..., h3(zg—1)) + dg—2x2(Z)

i

0
= 3(2) +dg2x2(2).

Successively, we obtain

$(2) = P maxty) | +1((x0, (50, t0)), -, (xg-1, (54-1,t4-1)))
Lmax(tj)J
+ dg—2xn((x0, (s0,t0)), - -, (xg-1, (S4-1,t5-1))

n=1
By the proof of Lemma 24, the map d,;»x: satisfies the conditions of Lemma 25. Thus, the
sum Zf;alx =1 dg—2xt has cocontrolled support. This implies that the map
¥((x0, (50, £0)), -+ (Xg—1, (S9-1,£9-1))) = P max(t;) | +1( (X0, (s0,t0)), - - -, (xg-1, (sg-1,t5-1)))

has cocontrolled support. We have

q-1 .
¥(z0,...,29-1) = Y (=1)'9(20, ..., 2i, p(2i), ..., p(24-1))-
i=0
Thus, ¥ is blocky; namely, if ¢ € CZLM’An(X xI,A) theny € CZ:}A,-QAJ-(X « I, A). This way,

we have proved that ¢ is a cochain.
Lastly, we have
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= (dqfllplmax(fjﬂ +1)(2)
= hﬁ[max(@-)] +1¢(z) - (P(z)
=(F9-9)()
Thus, p*¢ — ¢ defines a coboundary. This way, we showed p* induces the identity on
H1(X %1, A) for g > 1. It remains to show the statement for g = 0.
The proof of Lemma 26 shows that p* induces the identity on H Yg (X *1,A). Namely,

if ¢ € kerdY{ then there are only boundedly many x € X such that ¢ has mixed values on
{x} % I. Thus ¢ is the same map as (x, (s,t)) — ¢(x, (s +1,0)) up to bounded error. [

A metric space X is called coarsely contractible if the map d(xo, -) is a coarse homo-
topy equivalence.

Lemma 27. If X is a coarsely contractible metric space, then H,(X, A) = 0 for every q > 0 and
finite abelian group A.

Proof. By definition, the map d(xp, -) is a coarse homotopy equivalence. Therefore, it
induces an isomorphism in cohomology by Theorem 15. Since Zx is acyclic, so is X by
Theorem 14. [

11. Cohomology of Free Abelian Groups

This chapter proves Theorem 6.

If X is a uniquely geodesic metric space and a,b, c € X then a geodesic triangle A(a, b, ¢)
with vertices a, b, ¢ is the union of the geodesics joining a to b, b to ¢ and c to a. There is a
comparison map f : A(a,b,c) — A(f(a), f(b), f(c)) € R? which is an isometry on each of
the edges. Then, X is called CAT(0) if d(x,y) < ||f(x) — f(y)|| for every x,y € A(a, b, c) for
everya,b,c € X.

Lemma 28. If X is a CAT(0) space then X x Rx is coarsely contractible.

Proof. We define two maps

HZXXR20—>RZO l:Rzo%XXRZO
(x,1) — d(x,x0) +i i (xo,1)
and show that they are coarse homotopy inverses.
Since X is CAT(0), there exists for every x € X a geodesic v, : [0,1] — X joining xg to x.

The inequality d(yx(t), 7y (t)) < d(x,y) holds for every t € [0, 1] by the curvature condition.
We define

I’IZ(XXRzo)*I—)XXRZO
((x,1), (s,8)) = (7x(F), i+ 8d(x, x0)).
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‘ -

8 — _S_ P
Here 5 = ST and t =

577+ The map h joins ¢ o 7t to idx 7., It remains to show that & is
coarse. If R > 0 and d((

X1, Z.1)/ (sll tl))/ ((x2/ iZ)/ (52/ tZ)) SﬁR/ then

+

—

d(’)/xl (fl>/ IYXz(EZ)) < d(’%ﬁ (%\1)/7&(?2)) + d(7x1(f2)r '7362(?2))

< |fl — 22|d(XO,X1) +d(x1,x2)
21 )
= — d(xg,x1) +d(xq,x
e o) + ()
1 15)

< _
~ |d(xp,x1) d(xp,x1) —R

(d(x0,x1) — R)ty —d(x0,x1)t2

d(xp,x1) + R

= R
d(xo,xl) —R +
- ZRR LR
1— R
d(x[]/xl)
<4R+R

for d(x, x1) large compared to R. Then,

i1 + 81d(x1, x0) — (i2 + $2d(x2, %0) )|
< iy — ia| + [81d(x1, x0) — 81d(x2, x0) | + [81d(x2, x0) — 824 (x2, x0) |
< R+ 81d(x1,x2) +4R
< 6R

for d(xo, x;) large compared to R. Thus, & is coarsely uniform.
IfS > 0and ((x,i),(s,t)) € h"1(As[(x0,0)]) then,

fd(x, x0) = td(7x(1),72(0)) = d(7x(F), 7x(0)) < S ©)
and
8d(x, xg) < S. (6)

The inequalities (5) and (6) add to an inequality d(x, xp) < S. This inequality and |i| < S
show that & is coarsely proper. This way, we have showed that / is a coarse map. [

Lemma 28 in particular implies that R~ x R~ is a coarsely contractible subspace of
R”. In fact, R' x R>g x R" 1~ and R’ x Ry x R"~1~ are coarsely contractible subspaces
of R" and so is every finite intersection of them.

Lemma 29. If F is a sheaf on a metric space X and (U;); a Leray cover of X, namely, a coarse
cover such that every finite intersection U, N - - - N U, is F-acyclic, then

HY (X, F) = HI((Ws)i, F).
The right side denotes Cech-cohomology of the cover (U;);.

Proof. For sheaves on a topological space, there exist a number of proofs for this result. We
mimic the proof of ([20], Theorem II1.4.5).

Embed F in a flabby sheaf G and take the quotient F7. Then, there is a short exact
sequence of sheaves

0—-F—G— F —0. (7)
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Since H' (Ui, N -+ -N U, F) = 0 there is a short exact sequence of abelian groups
0— F(Ujn---NUy) = G(UN---NU,) = Fi(UyN---NU; ) — 0.
Taking products, we obtain an exact sequence of Cech-cocomplexes
0 — C((Up)i, F) = C*((Up)i, G) — C*((Up)i, F1) — 0.

This results in a long exact sequence of Cech cohomology. Since G is flabby, its Cech
cohomology vanishes for g > 0. This way, we get an exact sequence

0= H((Uy)i, F) = H((U);, G) — HO((Up)i, 1) = H'((U)i, F) 0. (8)
and isomorphisms
HI((U;)i, F1) = HIH((Uy)i, F) ©)
for each g > 1. Associated to the exact sequence of sheaves (7) there is an exact sequence
0 = HY(X,F) = HY(X,G) — HY(X, F1) = HY (X, F) — 0. (10)

Since HO((U;);, H) = H%(X,H) for any sheaf H we can compare the exact sequences (8)
and (10) and obtain
H'((Up);, F) = Ha(X, F).

Now, the long exact sequence in cohomology for (7) and Uj, N - - - N U;, being F-acyclic
implies that U;; N --- N Ui,, is Fi-acyclic. Thus, F; satisfies the conditions of this Lemma.
This way, we use induction and isomorphisms (9) to obtain the result forg > 1. O

Theorem 16. We can compute cohomology:

ADA nzl,qzo
H(Z"A) = A n#1,q=0vqg=n—1

0 otherwise.
if A is a finite abelian group.

Proof. If n = 1, this result is already Theorem 14.

Suppose n > 2. We compute cohomology of R”. The result for Z" follows since
the spaces Z" and R" are coarsely equivalent. For i = 1,...,n define U;" := Ri-1 x
R>p x R"~ and u; := Ri-1 x Ry x R"%. A finite intersection of those halfspaces is
coarsely contractible by Lemma 28. We show the (U;", U, ); form a coarse cover. Let
%= (x1,...,%) € Ny (AR[(U)] N AR[(U;)¢]) be a point. We show d(%, (0,...,0)) <
nR. Ifi = 1,...,nthen ¥ € Ag[(U; )] implies x; > —R. Additionally, ¥ € Ag[(U;")‘]
implies x; < R. Together they imply d(x;,0) < R and in all together the result. Thus,
U = (U;",U;); forms a Leray cover.

By Lemma 29, the metric cohomology of R" is the Cech cohomology of . In the
topological world the sphere S"~! admits a Leray cover by V= {(x1,...,xn) € S >
0} and V. := {(x1,...,%s) € S""!|x; < 0}. The combinatorical information of this cover
is the same as that of /. Thus, both covers have the same nerve. Since the nerve contains
all the cohomological information, we just proved that R" (as a metric space) has the same
cohomology as "~ ! (as a topological space). This proves the claim. [J
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There is another method we can use to compute the cohomology of R”. If X is a CAT(0)
metric space, then the coarse cone over X is given by X x R>g. Lemma 28 tells us that the
coarse cone is coarsely contractible. Now, the coarse suspension of a CAT(0) metric space X
is given by X x R.

Lemma 30. If X isa CAT(0) metric space, then the coarse suspension shifts coarse sheaf cohomology
by one degree, namely, FI},(X, A) = I:Ig:rl(X xR,A) forg > 1.

Proof. We cover X x R by two sets U; = {(x,t)|t < d(xo,x)} and Up = {(x, )]t >
—d(x,x0)}. They form a coarse cover: if (y,s) € U§, (x,t) € U5 with d((y,s), (x,t)) <R
then |s —t| < R, s > d(xp,y) and t < —d(xp,x). Since s is positive and ¢ is negative, we
obtain [s|, |t| < R. Furthermore, d(xo,y) < s < Rand d(xg,x) < [t| < R. Thus, U, U,
coarsely cover X.

There are coarse homotopy equivalences U, Uy ~ X X R>pand U; NU, ~ X. Namely,
the inclusion 7 : X x R>¢ — Uy has a coarse homotopy inverse

p12u2—)XXR20

(5.1 {(x,t) t>0
’ (x,0) t<0

The coarse homotopy connecting iy o py with idy, is given by

hy:Upyx1— U

. (x,it) t<0
’t 7 7 H
((5,), (0, 1) {M o
Here 7 := % We show F is coarse: If d(((x,t), (i,7)), ((y,s), (n,m))) < R then in particular

d(x,y) < Rand
d(it, ns) < d(it,is) + d(is, nis) < 2R.

Thus, hy is coarsely uniform. If d((x, ft), (x0,0)) < Sthend(x,xp) < Sandif t < 0 then
|t <d(x,x9) < Sorift>0thend(t0) <S. Thus, h is coarsely proper.

The coarse homotopy equivalence connecting X with Uy N Uy is given by ip : x — (x,0)
and its inverse is

p:UiNtlh = X
(x,t) — x.

The coarse homotopy joining i o p to idy, ny, is given by

hzi(ulﬁUQ)*I%ulﬂ U,
((x, 1), (0,])) = (x,1t).
We prove that h; is coarsely proper; the property coarsely uniform can be shown similarly

as for hy. If d((x,it), (x0,0)) < S then d(x,x9) < Sand || < d(x,xy) < S.
Then, the long exact sequence of Theorem 8 gives us

. ~ ~ 1 +1
HY(X,A) = HL(Uy Ny, A) = HLT (U UL, A) = HLH(X X R, A)

indegreeq > 1. O
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Remark 3. The suspension functor has a right adjoint, the loop space. If X is a metric space,
then the loop space of X, ()X consists of coarse maps R — X. A subset E C QX x QX is an
entourage if for every R > 0 the set {(¢(r), p(")) | (¢, ¢) € E,|r —¢'| < R} is an entourage in
Y. Note that QY defined this way does not have a connected coarse structure. Then, there exists a
natural isomorphism

Hom(X x R,Y) = Hom(X,QY).

Suppose coarse maps R" — Y denote the n — 1th coarse homotopy group of Y. If we insert R" for
X in the adjoint relation, then we can see that the loop space shifts coarse homotopy groups down
a dimension.
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