
This article was downloaded by: [93.202.182.37] On: 26 October 2023, At: 03:33
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Transportation Science

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

ULTRA: Unlimited Transfers for Efficient Multimodal
Journey Planning
Moritz Baum, Valentin Buchhold, Jonas Sauer, Dorothea Wagner, Tobias Zündorf

To cite this article:
Moritz Baum, Valentin Buchhold, Jonas Sauer, Dorothea Wagner, Tobias Zündorf (2023) ULTRA: Unlimited Transfers for Efficient
Multimodal Journey Planning. Transportation Science

Published online in Articles in Advance 30 Aug 2023

. https://doi.org/10.1287/trsc.2022.0198

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2023 The Author(s)

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/trsc.2022.0198
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org

ULTRA: Unlimited Transfers for Efficient Multimodal
Journey Planning
Moritz Baum,a Valentin Buchhold,a Jonas Sauer,a,* Dorothea Wagner,a Tobias Zündorfa

a Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
*Corresponding author
Contact: moritz@ira.uka.de (MB); buchhold@kit.edu, https://orcid.org/0000-0002-1506-3544 (VB); jonas.sauer2@kit.edu,

https://orcid.org/0000-0002-7196-7468 (JS); dorothea.wagner@kit.edu (DW); tobias.zuendorf@kit.edu (TZ)

Received: July 14, 2022
Revised: November 28, 2022
Accepted: April 26, 2023; May 15, 2023
Published Online in Articles in Advance:
August 30, 2023

https://doi.org/10.1287/trsc.2022.0198

Copyright: © 2023 The Author(s)

Abstract. We study a multimodal journey planning scenario consisting of a public transit
network and a transfer graph that represents a secondary transportation mode (e.g., walk
ing, cycling, e-scooter). The objective is to compute Pareto-optimal journeys with respect to
arrival time and the number of used public transit trips. Whereas various existing algo
rithms can efficiently compute optimal journeys in either a pure public transit network or a
pure transfer graph, combining the two increases running times significantly. Existing
approaches, therefore, typically only support limited walking between stops by either
imposing a maximum transfer distance or requiring the transfer graph to be transitively
closed. To overcome these shortcomings, we propose a novel preprocessing technique
called unlimited transfers (ULTRA): given an unlimited transfer graph, which may repre
sent any non–schedule based transportation mode, ULTRA computes a small number of
transfer shortcuts that are provably sufficient for computing a Pareto set of optimal jour
neys. These transfer shortcuts can be integrated into a variety of state-of-the-art public
transit algorithms, establishing the ULTRA-query algorithm family. Our extensive experi
mental evaluation shows that ULTRA improves these algorithms from limited to unlimited
transfers without sacrificing query speed. This is true not just for walking, but also for fas
ter transfer modes, such as bicycle or car. Compared with the state of the art for multi
modal journey planning, the fastest ULTRA-based algorithm achieves a speedup of an
order of magnitude.

Open Access Statement: This work is licensed under a Creative Commons Attribution 4.0 International
License. You are free to copy, distribute, transmit and adapt this work, but you must attribute this
work as “Transportation Science. Copyright © 2023 The Author(s). https://doi.org/10.1287/trsc.2022.
0198, used under a Creative Commons Attribution License: https://creativecommons.org/licenses/
by/4.0/.”

Funding: This work was supported by Deutsche Forschungsgemeinschaft [Grant WA 654/23-2].
Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.0198.

Keywords: journey planning • public transit • algorithm engineering

1. Introduction
Research on efficient route-planning algorithms has
seen remarkable advances in the past two decades. On
road networks, queries can be answered in less than a
millisecond with moderate preprocessing effort even
for continental-scale graphs. Similar results are cur
rently out of reach for public transit networks, but
state-of-the-art algorithms nevertheless achieve query
times of a few milliseconds on metropolitan and mid
sized country networks (Bast et al. 2016). Even more
challenging is the multimodal journey planning prob
lem, which combines schedule-based (i.e., public tran
sit) and non–schedule based (e.g., walking, cycling,
driving) modes of transportation. Whereas this covers
a greater variety of possible journeys, solving it effi
ciently remains difficult (Wagner and Zündorf 2017).

In this work, we consider a multimodal problem that
augments public transit with a transfer graph, which
represents one arbitrary, non–schedule based transpor
tation mode. This transfer mode can be used at the start
and end of a journey to enter and exit the public transit
network and for transferring between public transit
vehicles in the middle of the journey. Given a source
and target vertex in the transfer graph and a departure
time, the objective is to compute Pareto-optimal jour
neys with respect to arrival time and the number of
used public transit trips.

1.1. Related Work
Journey planning algorithms for public transit networks
can be divided into graph-based approaches and algo
rithms that operate directly on the timetable, exploiting

1

TRANSPORTATION SCIENCE
Articles in Advance, pp. 1–24

ISSN 0041-1655 (print), ISSN 1526-5447 (online) https://pubsonline.informs.org/journal/trsc

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

93
.2

02
.1

82
.3

7]
 o

n
26

 O
ct

ob
er

 2
02

3,
 a

t 0
3:

33
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

mailto:moritz@ira.uka.de
mailto:buchhold@kit.edu
https://orcid.org/0000-0002-1506-3544
mailto:jonas.sauer2@kit.edu
https://orcid.org/0000-0002-7196-7468
mailto:dorothea.wagner@kit.edu
mailto:tobias.zuendorf@kit.edu
https://doi.org/10.1287/trsc.2022.0198
https://doi.org/10.1287/trsc.2022.0198
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1287/trsc.2022.0198

its schedule-based structure (Bast et al. 2016). Graph-
based approaches model the public transit network as a
graph and then answer queries with Dijkstra’s (1959)
algorithm, which can be sped up by applying preproces
sing techniques (Delling, Pajor, and Wagner 2009; Bast
et al. 2010; Bauer, Delling, and Wagner 2011; Delling
et al. 2015; Bast, Hertel, and Storandt 2016). The two
main modeling approaches are the time-dependent (Dis
ser, Müller-Hannemann, and Schnee 2008; Pyrga et al.
2008) and time-expanded (Müller-Hannemann and
Schnee 2007, Pyrga et al. 2008) models. The time-
expanded model uses vertices to represent events in
the timetable (e.g., a vehicle arriving at or departing
from a stop) and edges to connect consecutive events.
By contrast, the time-dependent model represents stops
(e.g., a train station) of the network as vertices and con
nects two stops with an edge if they are served consec
utively by at least one vehicle. Associated with each
edge is a function that maps departure time to travel
time. Both models can integrate footpaths (Disser,
Müller-Hannemann, and Schnee 2008; Bast et al. 2010;
Delling et al. 2015) but only as direct edges between
public transit stops. This means that an unrestricted
footpath network cannot be encoded efficiently because
the number of edges would be quadratic in the number
of stops. To ensure a reasonable graph size, footpaths
are typically restricted to small, connected components
of nearby stops (Delling, Katz, and Pajor 2012), for
example, by limiting the maximal duration (e.g., five
minutes of walking) or distance (e.g., 400 m) (Bast and
Storandt 2014; Bast, Hertel, and Storandt 2016; Gianna
kopoulou, Paraskevopoulos, and Zaroliagis 2019) of
footpaths.

Notable timetable-based approaches include the round-
based public transit optimized router (RAPTOR) (Delling,
Pajor, and Werneck 2015), connection scan algorithm
(CSA) (Dibbelt et al. 2018), and the corresponding
speedup techniques, HypRAPTOR (Delling et al. 2017)
and ACSA (Dibbelt et al. 2018). Instead of exploring the
public transit network with Dijkstra’s (1959) algorithm,
these algorithms rely on array-based scanning operations
that improve cache locality. As with the graph-based
approaches, footpaths can be integrated as transfer edges
between pairs of stops. However, these are required to
be one-hop transfers; that is, at most one transfer edge
may be used when transferring between two public tran
sit trips. This removes the need for Dijkstra (1959)
searches within the transfer graph as every possible des
tination can be reached with a single edge. Additionally,
both RAPTOR and CSA require that the transfer graph
is transitively closed, which ensures that optimal jour
neys never require multiple transfer edges in succession.
RAPTOR can be modified to lift this restriction (Delling,
Dibbelt, and Pajor 2019), allowing for one-hop transfers
without a transitive closure. In this case, journeys with
multiple consecutive transfer edges are prohibited, and

the algorithm finds optimal journeys among those that
remain. This can lead to counterintuitive journeys that
take detours to avoid using two transfer edges in succes
sion. On the other hand, computing the transitive closure
significantly increases the size of the transfer graph. As
shown by Wagner and Zündorf (2017), limiting the max
imal transfer duration to 20 minutes before computing
the transitive closure already leads to a graph that is too
large for practical applications.

A special case among the timetable-based approa
ches is trip-based routing (TB) (Witt 2015), which
requires a preprocessing phase that computes transfers
between pairs of trips. This is done by enumerating all
possible transfers and then applying a set of pruning
rules to omit some but not all unnecessary transfers. TB
requires a transitively closed transfer graph as input
and was originally only evaluated for very sparse
transfer graphs. Because it enumerates all transfers
before pruning them, the preprocessing time is highly
sensitive to the size of the transfer graph. Lehoux and
Loiodice (2020) mitigate this by proposing an alterna
tive transfer enumeration method that discards many
unnecessary transfers before they are enumerated. How
ever, neither version of the TB preprocessing supports
unrestricted transfer graphs.

Using a restricted transfer graph is often justified
with the argument that long transfers are rarely useful.
However, experiments show that the availability of
unrestricted walking significantly reduces travel times
(Wagner and Zündorf 2017, Sauer 2018, Phan and Viennot
2019). Naturally, this effect is even stronger for faster
transportation modes, such as bicycle or car. Handling
unrestricted transfer graphs (which may represent any
non–schedule based transportation mode) requires mul
timodal journey planning algorithms. These algorithms
typically work by interleaving an existing public transit
algorithm with Dijkstra (1959) searches on the transfer
graph. Notable examples are user-constrained contraction
hierarchies (UCCH) (Dibbelt, Pajor, and Wagner 2015)
and multimodal multicriteria RAPTOR (MCR) (Delling
et al. 2013), which are based on a time-dependent, graph-
based approach and RAPTOR, respectively. Because the
Dijkstra (1959) searches are expensive, these algorithms
are slow compared with their pure public transit counter
parts. More recently, HL-RAPTOR and HL-CSA (Phan
and Viennot 2019) were proposed. Here, RAPTOR and
CSA are interleaved with two-hop searches based on
hub labeling (HL) (Abraham et al. 2011) instead of
Dijkstra (1959). Whereas this requires a moderately
expensive preprocessing phase, the authors report a
speedup of 1.7 over the bicriteria variant of MCR for
HL-RAPTOR.

1.2. Contribution
Preliminary experiments (Sauer 2018) show that the im
pact of unrestricted transfers in Pareto-optimal journeys

Baum et al.: Unlimited Transfers for Multimodal Journey Planning
2 Transportation Science, Articles in Advance, pp. 1–24, © 2023 The Author(s)

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

93
.2

02
.1

82
.3

7]
 o

n
26

 O
ct

ob
er

 2
02

3,
 a

t 0
3:

33
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

depends heavily on their position in the journey: ini
tial transfers, which connect the source to the first
public transit vehicle, and final transfers, connecting
the final vehicle to the target, are fairly common and
often have a large impact on the travel time. By con
trast, intermediate transfers between public transit
trips are only occasionally relevant for optimal jour
neys. This suggests that the number of unique paths
in the transfer graph that occur as intermediate trans
fers of a Pareto-optimal journey is small. Using this
insight, we propose a new preprocessing technique
called unlimited transfers (ULTRA), which computes
a set of shortcut edges representing these paths. The
preprocessing step is carefully engineered to ensure
that the number of shortcuts remains small. Com
bined with efficient one-to-many searches for the ini
tial and final transfers, these shortcuts are provably
sufficient for answering all possible queries correctly.

ULTRA shortcuts can be used without adjustment
by any algorithm that requires one-hop transfers bet
ween stops. In our experimental evaluation, we dem
onstrate this for RAPTOR and CSA. The resulting
multimodal algorithms have roughly the same query
performance as the original restricted algorithms regard
less of the speed of the considered transfer mode. In par
ticular, ULTRA-CSA is the first multimodal variant of
CSA. For TB, we show that only minor changes are nec
essary to make ULTRA compute shortcuts between trips
instead of stops. This allows ULTRA to replace the TB
preprocessing phase, enabling unlimited transfers. We
demonstrate that this significantly reduces the number
of required shortcuts and the query time compared with
a naive approach, that is, using the output of ULTRA as
input for the TB preprocessing. Overall, ULTRA-TB out
performs the bicriteria version of MCR, which was pre
viously the fastest multimodal algorithm, by about an
order of magnitude. This yields query times of a few
milliseconds on metropolitan networks and less than
100 ms on the much larger network of Germany.

1.3. Outline
The remainder of this work is structured as follows.
Section 2 establishes basic notation and gives an over
view of the algorithms on which ULTRA builds. We
then describe the ULTRA shortcut computation in Sec
tion 3 and prove that it computes a sufficient set of
transfer shortcuts. Section 4 explains how the transfer
shortcuts can be integrated into query algorithms that
require one-hop transfers. We also present modifica
tions to the TB query algorithm to make it more efficient
in a multimodal setting. We evaluate the performance of
our preprocessing and query algorithms on real-world
multimodal networks in Section 5. Finally, we summa
rize our results and give an outlook on potential future
work in Section 6.

2. Preliminaries
This section establishes basic terminology and intro
duces foundational algorithms.

2.1. Terminology
2.1.1. Network. A public transit network is a four-
tuple (S, T , R, G) consisting of a set of stops S; a set of
trips T ; a set of routes R; and a directed, weighted
transfer graph G � (V,E). A stop is a location in the net
work where passengers can board or disembark a vehi
cle (such as buses, trains, ferries, etc.). A trip T �
〈ɛ0, : : : ,ɛk〉 ∈ T is a sequence of stop events performed
by the same vehicle. A stop event ɛ � (τarr(ɛ), τdep(ɛ),
v(ɛ)) represents the vehicle arriving at the stop v(ɛ)
with the arrival time τarr(ɛ) and subsequently depart
ing from the same stop with the departure time τdep(ɛ).
The ith stop event in T is denoted as T[i]. The length
|T| :� k is the number of stop events in T. A trip seg
ment Tij :� 〈ɛi, : : : ,ɛj〉 is a contiguous subsequence of T
that begins at T[i] and ends at T[j]. The set of routes R

is a partition of T such that two trips that are part of
the same route visit the same sequence of stops and do
not overtake each other. A trip Ta ∈ T overtakes a trip
Tb ∈ T if there exist two indices i< j such that Ta arrives
at or departs from v(Ta[i]) not before Tb but arrives at
or departs from v(Ta[j]) not after Tb. Given a trip T, the
route of T is denoted as R(T). The length |R| of a route
R is the length of any trip belonging to the route.

The transfer graph G � (V,E) consists of a set of verti
ces V with S ⊆ V and a set of edges E ⊆ V × V. Travel
ing along an edge e � (v, w) ∈ E requires the transfer
time τtra(e). The notion of transfer time carries over to
paths P � 〈v1, : : : , vk〉 in G, using the definition τtra(P)
:�
Pk�1

i�1 τtra((vi, vi+1)). Unlike in scenarios with limited
footpaths, we impose no restrictions on G. It does not
need to be transitively closed; it may be strongly con
nected; and transfer times may represent walking,
cycling, or some other non–schedule based mode of
travel. An example of a public transit network with an
unrestricted transfer graph is shown in Figure 1.

2.1.2. Journeys. A journey describes the movement of
a passenger through the network from a source vertex
s ∈ V to a target vertex t ∈ V. Each ride of the passenger
in a public transit vehicle can be described by a trip
segment, whereas the transfers between the rides are
represented by paths in the transfer graph. An interme
diate transfer between two trip segments Tij

a and Tmn
b is

a path P in G such that (1) the path begins with the last
stop of Tij

a , that is, v(Ta[j]); (2) the path ends with the
first stop of Tmn

b , that is, v(Tb[m]); and (3) the transfer
time of the path is sufficient to reach Tmn

b after vacating
Tij

a . This can be expressed formally as τarr(Ta[j]) + τtra

(P) ≤ τdep(Tb[m]). An initial transfer before a trip seg
ment Tij is a path in G from the source s to the first stop

Baum et al.: Unlimited Transfers for Multimodal Journey Planning
Transportation Science, Articles in Advance, pp. 1–24, © 2023 The Author(s) 3

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

93
.2

02
.1

82
.3

7]
 o

n
26

 O
ct

ob
er

 2
02

3,
 a

t 0
3:

33
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

of Tij. Correspondingly, a final transfer after a trip seg
ment Tij is a path in G from the last stop of Tij to the
target t.

A journey J � 〈P0, Tij
0 , : : : , Tmn

k�1, Pk〉 is an alternating
sequence of transfers and trip segments. Note that
some or all of the transfers may be empty, that is, con
sist of a single stop only. Given source and target verti
ces s, t ∈ V, we call journey J an s–t journey if P0 begins
with s and Pk ends with t. The departure time of the
journey is defined as τdep(J) :� τdep(T0[i])� τtra(P0) and
the arrival time as τarr(J) :� τarr(Tk�1[n])+ τtra(Pk). The
number of trips used by the journey is denoted as
|J| :� k. An important special case is a journey J � 〈P0〉
that consists solely of a path in the transfer graph.
Because such a journey does not use any trips, it can be
traversed at any time. Thus, its departure time τdep(J)
has to be stated separately, and its arrival time is then
given by τarr(J) :� τdep(J) + τtra(P0). The vertex sequence
of J is the concatenation of its transfers: V(J) � P0◦
P1◦⋯ ◦Pk. A subjourney of J is a journey Js � 〈P′x,
Tgh

x , : : : , Tpq
y�1, P′y〉 such that 〈Tgh

x , : : : , Tpq
y�1 〉 is a contigu

ous subsequence of J, P′x is a suffix of Px, and P′y is a
prefix of Py. If x � 0 and P′x � P0, we call Js a prefix of J.
Conversely, if y � k and P′y � Pk, we call Js a suffix of J.
Note that a subjourney may start or end in the middle
of a transfer but never in the middle of a trip segment.
Given two vertices v, w ∈ V(J), the subjourney of J from
v to w is denoted as Jvw .

2.1.3. Problem Statement. To evaluate the usefulness
of a journey J, we mainly consider the two criteria
arrival time τarr(J) and number of trips |J|. Given a set
of criteria, a journey J weakly dominates another jour
ney J′ if J is not worse than J′ in any criterion. More
over, J strongly dominates J′ if J is strictly better than J′
in at least one criterion and not worse in the others.
Given a query consisting of source and target vertices
s, t ∈ V and an earliest departure time τdep, a journey is
called feasible if it is an s–t journey that does not depart
earlier than τdep. A feasible journey J is called Pareto-

optimal if no other feasible journey exists that strongly
dominates J. A Pareto set is a set J containing a mini
mal number of Pareto-optimal journeys such that every
feasible journey is weakly dominated by a journey in
J . For a given query, the objective is to compute a
Pareto set with respect to the two criteria: arrival time
and number of trips. See Figure 1 for a Pareto set of
journeys in the shown example network.

2.1.4. Departure Buffer Times. Many works on public
transit routing (e.g., Pyrga et al. 2008, Delling et al.
2015) allow a minimum change time to be specified for
each stop. It must be observed when transferring bet
ween two trips at the same stop but not when entering
a trip after arriving via a path in the transfer graph or
when entering the first trip at the start of the journey.
The minimum change time is useful for modeling stops
that represent larger stations with multiple platforms.
Here, the minimum change time represents the time
needed to change between platforms. This modeling
choice is reasonable for settings with direct transfers
between stops. However, when allowing an unrestricted
transfer graph, it can lead to inconsistencies. Given a
stop with minimum change time τ, if a path starting and
ending at this stop with a transfer time less than τ exists,
then taking that path allows passengers to circumvent
the minimum change time.

To prevent this, we introduce departure buffer times
as an alternative modeling approach. Each stop v ∈ S

has a nonnegative departure buffer time τbuf(v), which
is the minimum amount of time that has to pass after
arriving at the stop before a vehicle can be boarded.
Unlike the minimum change time, the departure buffer
time always has to be observed when a trip is entered
even if the stop was reached via a transfer or if the trip
is the first one in the journey. Departure buffer times
can be integrated into the network implicitly by reduc
ing the departure times of the stop events accordingly.
For each stop event ɛ � (τarr(ɛ),τdep(ɛ), v(ɛ)), we obtain
the reduced stop event ɛ′ � (τarr(ɛ),τdep(ɛ)� τbuf(v(ɛ)),

Figure 1. (Color online) An Example of a Public Transit Network with an Unrestricted Transfer Graph

Notes. Edges in the transfer graph (thin lines) are labeled with their travel time. Routes are displayed as sequences of thick lines. The lines (s, w) and
(w, x) belong to the same route. Each edge is labeled with the departure and arrival times of the associated in trips in the format τdep→ τarr. For a
query from s to t with departure time 0, a Pareto set with respect to arrival time and number of trips consists of the journeys J0 � 〈〈s, v, w, y, t〉〉 with
arrival time 10, J1 � 〈〈s, v, w〉, 〈3→ 7〉, 〈z, t〉〉with arrival time 8, and J2 � 〈〈s〉, 〈1→ 2, 2→ 3〉, 〈x〉, 〈5→ 7〉, 〈t〉〉with arrival time 7.

Baum et al.: Unlimited Transfers for Multimodal Journey Planning
4 Transportation Science, Articles in Advance, pp. 1–24, © 2023 The Author(s)

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

93
.2

02
.1

82
.3

7]
 o

n
26

 O
ct

ob
er

 2
02

3,
 a

t 0
3:

33
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

v(ɛ)). Note that this may cause stop events to appear as
if they depart before they arrive. However, because the
departure time is only relevant when entering the trip
at the current stop and not when remaining seated in
the trip, this does not lead to trips that travel backward
in time. In the following, we do not discuss departure
buffer times explicitly and instead assume that they are
integrated into the departure times as described here.

2.2. Algorithms
We now give an overview of the algorithms on which
ULTRA is based.

2.2.1. Dijkstra’s (1959) Algorithm. Given a graph G �
(V, E) with edge length function ℓ : E→ R+0 and a
source vertex s ∈ V, Dijkstra’s (1959) algorithm com
putes for each vertex v the length of the shortest s–v
path. It maintains for each vertex v a tentative distance
dist[v], which is initialized with ∞. Additionally, it
maintains a priority queue Q of vertices ordered by
their key, which is the tentative distance. Initially, s is
inserted into Q with key dist[s] � 0. Then, vertices are
extracted from Q in increasing order of key. Each
extracted vertex v is settled by relaxing its outgoing
edges. An edge e � (v, w) ∈ E is relaxed by comparing
the tentative distance dist[w] to the distance dist[v] +
ℓ(e) that is achieved by traversing e. If the latter is smal
ler, dist[w] is updated accordingly, and w is inserted
into Q with key dist[w].

2.2.2. Contraction Hierarchies. To explore the transfer
graph, ULTRA utilizes algorithms based on contraction
hierarchies (CH) (Geisberger et al. 2012), a preproces
sing technique originally developed to speed up one-
to-one queries in road networks. The basic building
block of CH is vertex contraction: a vertex is contracted
by removing it from the graph and inserting shortcut
edges between its neighbors such that shortest path
distances in the graph are preserved. The CH prepro
cessing phase for a graph G � (V, E) iteratively con
tracts the vertices of G in a heuristically determined
order. The position of a vertex in this contraction order
is called its rank. The output of this preprocessing
phase is an augmented graph G+ � (V, E+) that con
tains all original edges and all inserted shortcut edges.
The augmented graph can be split into an upward
graph G↑ � (V, E↑) containing only edges from lower to
higher ranked vertices and a corresponding downward
graph G↓ � (V, E↓). Queries are answered with a bidi
rectional variant of Dijkstra’s (1959) algorithm, in which
the forward search explores G↑ and the backward
search explores G↓.

Bucket-CH (Knopp et al. 2007, Geisberger et al. 2012)
is an extension of CH for one-to-many queries. It oper
ates in three phases. First, given the graph G � (V, E),
the CH precomputation is performed. Second, given

the set Vt ⊆ V of targets, a bucket containing distances
to the targets is computed for every vertex. This is
done by performing a backward search on G↓ from
every target vertex t ∈ Vt. For each vertex v settled by
this search with distance dist(v, t), the entry (t, dist
(v, t)) is added to the bucket of v. Finally, given a query
with source vertex s, the algorithm performs a forward
search on G↑. For each vertex v settled by this search
with distance dist(s, v), the bucket of v is evaluated. For
each bucket entry (t, dist (v, t)), the shortest distance to
t found so far is compared with dist(s, v) +dist(v, t) and
updated if it is improved.

Multimodal algorithms, such as UCCH and MCR,
employ a special variant of the CH precomputation
that we call core-CH (Bauer et al. 2010; Delling et al.
2013; Dibbelt, Pajor, and Wagner 2015). Here, the pre
computation is not allowed to contract vertices that
coincide with stops. Thus, a set of core vertices Vc with
S ⊆ Vc ⊆ V is left uncontracted. In addition to the (par
tially) augmented graph, this yields a core graph Gc �

(Vc, Ec), which consists of Vc and all shortcuts that
were inserted between core vertices. If only stops are
allowed as core vertices, the number of core edges is
quadratic in the number of stops. This slows down
both the precomputation and query algorithms to the
point at which they become impractical. In practice, the
contraction process is, therefore, stopped once the aver
age vertex degree in the core graph surpasses a speci
fied limit.

2.2.3. RAPTOR. To explore the public transit network,
ULTRA employs algorithms from the RAPTOR family.
RAPTOR (Delling, Pajor, and Werneck 2015) answers
one-to-one and one-to-all queries in a public transit net
work with one-hop transfers. It operates in rounds, in
which the ith round finds journeys with i trips by
appending an additional trip to journeys found in the
previous round. For each stop v ∈ S and each round i,
the algorithm maintains a tentative arrival time τarr

(v, i), which is the earliest arrival time among all jour
neys to v with at most i trips found so far. Each round
consists of a route scanning phase followed by a trans
fer relaxation phase. Round i assumes that every stop v
for which τarr(v, i� 1) is improved in round i � 1 has
been marked. Before either phase is performed, τarr(v, i)
is initialized with τarr(v, i� 1) for each stop v ∈ S. Then,
the route scanning phase collects all routes that visit
marked stops and scans them. A route R is scanned by
iterating across all visited stops, starting at the first
marked stop. During the scan, the algorithm maintains
an active trip Tmin, which is the earliest trip of R that
can be entered at any of the already processed stops.
Let v be the jth stop of R. If Tmin has already been
set, the algorithm checks whether exiting Tmin at v
with arrival time τarr(Tmin[j]) improves τarr(v, i). If
so, τarr(v, i) is updated accordingly, and v is marked.

Baum et al.: Unlimited Transfers for Multimodal Journey Planning
Transportation Science, Articles in Advance, pp. 1–24, © 2023 The Author(s) 5

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

93
.2

02
.1

82
.3

7]
 o

n
26

 O
ct

ob
er

 2
02

3,
 a

t 0
3:

33
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Afterward, the algorithm checks whether there is an
earlier trip than Tmin that can be entered when arriving
at v with arrival time τarr(v, i� 1). If so, Tmin is updated
accordingly. After all collected routes have been scanned,
the transfer relaxation phase is performed. For every
marked stop v, each outgoing transfer edge e � (v, w) ∈
E is relaxed. If τarr(v, i) + τtra(e) is smaller than τarr(w, i),
the latter is updated, and w is marked as well. For a
query with source stop s ∈ S and departure time τdep,
the algorithm initializes τarr(s, 0) with 0 and all other
arrival times in round 0 with ∞. Then, round 0 is per
formed, which marks s and relaxes its outgoing trans
fers. Afterward, new rounds are performed until no
more stops have been marked.

An extension of RAPTOR called McRAPTOR (Delling,
Pajor, and Werneck 2015) is able to Pareto-optimize
additional criteria besides arrival time and number of
trips. In turn, McRAPTOR can be extended to support
multimodal scenarios with unlimited transfers. The
resulting algorithm, MCR (Delling et al. 2013), replaces
the transfer relaxation phase of (Mc)RAPTOR with a
Dijkstra (1959) search on a core graph computed with
core-CH. ULTRA employs the bicriteria variant of
MCR, which was originally proposed under the name
MR-∞, but which we call MR for the sake of simplicity.
MR maintains the tentative arrival time τarr(v, i) for
every core vertex v ∈ Vc, not just for stops. The transfer
relaxation phase runs Dijkstra’s (1959) algorithm on the
core graph, using τarr(·, i) as the tentative distances. The
priority queue is initialized with all marked stops, and
all stops that are settled by the search are themselves
marked. Note that the Dijkstra (1959) search on the
core graph can only guarantee to find shortest paths
between pairs of stops. However, the source and target
vertices s, t ∈ V may not necessarily be stops. Initial
and final transfers are, therefore, explored with sea
rches on the upward and downward graph produced
by core-CH, respectively.

Another RAPTOR extension, rRAPTOR (Delling, Pajor,
and Werneck 2015), answers range queries, which ask
for a Pareto set of journeys for every departure time
within a given interval. rRAPTOR exploits the observa
tion that every Pareto-optimal journey (except for a
direct transfer from s to t) starts by entering a trip at s
or a stop reachable via a transfer from s. This limits the
number of possible departure times to a small set DT

of discrete values. For each of these departure times,
rRAPTOR performs a run of the basic RAPTOR algo
rithm. The departure times are processed in descend
ing order, and the arrival times τarr(·, ·) are not reset
between runs. As a result, journeys found during the
current run are implicitly pruned by journeys that
depart later and neither arrive later nor have more
trips. This property of rRAPTOR is called self-pruning.

2.2.4. Trip-Based Routing. A faster alternative to RAP
TOR for one-to-one queries is TB (Witt 2015). It in
cludes a preprocessing phase that computes transfers
between pairs of stop events by first generating all pos
sible transfers and then removing unnecessary ones in
a transfer-reduction phase. The query algorithm resem
bles a breadth-first search on the set of stop events.
Instead of tentative arrival times at stops, TB maintains
a reached index r(T) for each trip T. This is the index k
of the first stop event T[k] that has already been
reached by the search. Initially, it is set to |T|. As with
RAPTOR, TB operates in rounds, in which each round
scans trip segments collected in a first in, first out
(FIFO) queue. When the algorithm reaches a stop event
T[j], it calls the Enqueue operation: if j < r(T), the trip
segment Tjk with k � r(T)� 1 is added to the queue of
the next round. Then, the reached index is updated: for
each trip T′ of the route R(T) that does not depart
before T, the reached index r(T′) is set to min(r(T′), j).
Initially, the algorithm processes stops that are reach
able from the source stop s with a transfer. For each
stop v and each route R visiting v, the algorithm finds
the earliest trip of R that can be entered at v and calls
the Enqueue operation for the corresponding stop
event. Then, the algorithm performs rounds until the
next queue is empty. A trip segment Tjk is scanned by
iterating over the stop events from T[j] to T[k]. For
each stop event T[i], the outgoing precomputed trans
fers are relaxed. A transfer (T[i], T′[i′]) is relaxed by
calling the Enqueue operation for T′[i′]. Additionally,
TB maintains a Pareto set of journeys at the target stop
t. If t is reachable from v(T[i]) via a transfer, the algo
rithm adds the produced journey to the Pareto set and
removes dominated journeys.

3. Shortcut Computation
We now present the ULTRA preprocessing phase,
which computes shortcut edges that represent interme
diate transfers between trips. These shortcuts must be
sufficient for answering every point-to-point query cor
rectly. This is achieved if every query can be answered
with a Pareto set of journeys whose intermediate trans
fers are all represented by shortcuts. On the other
hand, the number of shortcuts should be as small as
possible to allow for fast queries.

We present two variants of the ULTRA preproces
sing, which differ in the granularity of the computed
shortcuts: In the stop-to-stop variant, shortcuts connect
pairs of stops. This is sufficient for most public transit
algorithms, including RAPTOR and CSA. The event-
to-event variant computes shortcuts between stop events,
which are required by TB. Unlike stop-to-stop shortcuts,
these also provide information about the specific trips
between which a transfer is necessary. Both variants are

Baum et al.: Unlimited Transfers for Multimodal Journey Planning
6 Transportation Science, Articles in Advance, pp. 1–24, © 2023 The Author(s)

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

93
.2

02
.1

82
.3

7]
 o

n
26

 O
ct

ob
er

 2
02

3,
 a

t 0
3:

33
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

identical except for a few crucial details, which are dis
cussed explicitly as appropriate.

ULTRA works by enumerating a set of journeys J c

with exactly two trips such that all required shortcuts
occur as intermediate transfers in J c. For each enumer
ated journey, the intermediate transfer is unpacked,
and a shortcut is generated for it. Before we describe
the algorithm, we first establish a definition for J c that
is sufficient for answering all queries but keeps the
number of shortcuts as low as possible. We then pro
vide a high-level overview of the ULTRA shortcut
computation and prove that it enumerates J c. After
ward, we discuss running time optimizations to make
the algorithm efficient in practice. Finally, we compare
event-to-event ULTRA to the TB preprocessing and
show that it is more effective at discarding unnecessary
transfers.

3.1. Enumerating a Sufficient Set of Journeys
Consider the subproblem in which only queries bet
ween fixed source and target vertices s, t ∈ V must be
answered. Then, the following naive algorithm com
putes a sufficient set of shortcuts: Enumerate the set
J opt of all s–t journeys J that are Pareto-optimal for the
departure time τdep(J) and generate a shortcut for every
intermediate transfer that occurs in J opt. This produces
more shortcuts than necessary: if there are multiple
Pareto-optimal journeys that are equivalent in both cri
teria, only one of them is required to answer a query.
The goal is, therefore, to find a set J canon ⊆ J opt of jour
neys that excludes such duplicates but is still sufficient
for answering all queries correctly. We observe that
every journey in J canon with more than two trips can
be decomposed into subjourneys with two trips each.
Every shortcut that occurs in J canon also occurs in the
much smaller set containing only these subjourneys. To
exploit this algorithmically, we require that J canon is
closed under subjourney decomposition, that is, every
subjourney of a journey in J canon is itself contained in
J canon.

3.1.1. Tiebreaking Sequences. In order to achieve clo
sure under subjourney decomposition, ties between
equivalent journeys must be broken in a consistent
manner. For this purpose, we define total orderings on
the sets of routes and vertices with a route index func
tion idR : R→ N and a vertex index function idV :

V→ N. Then, ties between equivalent journeys are bro
ken as follows: journeys that end with trip segments
are preferred over journeys that end with (nonempty)
transfers. For journeys that end with a trip segment Tij,
the index of the route R(T) and the index i at which the
trip segment starts are used as tiebreakers in this order.
For journeys that end with an edge (w, v), ties are bro
ken first by considering the arrival time at w and then
by considering the vertex index idV(w). If two journeys

share a nonempty suffix, this suffix is ignored, and the
respective prefixes of the journeys are compared ins
tead. To formalize these tiebreaking rules, we associate
with each s–t journey J a unique tiebreaking sequence.
The tiebreaking sequence X(v, J) of a vertex v ∈ V(J)
with v ≠ s is defined as

X(v, J) :�

〈τarr(Jsv), idR (R(T)), i, ∞, ∞〉
if Jsv ends with a trip segment Tij

〈τarr(Jsv),∞, ∞, τarr(Jsw), idV(w)〉
if Jsv ends with an edge(w, v):

8
>>><

>>>:

The tiebreaking sequence of an s–t journey J with ver
tex sequence V(J) � 〈s � v1, : : : , vk � t 〉 is defined as X(J)
:� X(vk, J)◦⋯ ◦X(v2, J). This sequence is unique among
all s–t journeys. In particular, if two journeys J and J′ end
with trip segments Tij

a ≠ Tmn
b , then their tiebreaking

sequences are different. If τarr(J) � τarr(J′) and R(Ta)

� R(Tb), then Ta � Tb, and j � n must hold because the
trips cannot overtake each other. Then, the tiebreaking
sequences are different because of i ≠ m. Sequences are
ordered lexicographically: for sequences A � 〈a1, a2, : : : ,
ak〉 and B � 〈b1, b2, : : : , bk〉 of equal length, A < B if a1 <
b1, or a1�b1 and 〈a2, : : : , ak〉 < 〈b2, : : : , bk〉. For sequences
of different length, the shorter one is padded with �∞ on
the right side before they are compared.

3.1.2. Canonical Journeys. Because tiebreaking sequ
ences are strictly ordered, ambiguities between equiva
lent journeys can be resolved by replacing the criterion
arrival time with the tiebreaking sequence. We say that
an s–t journey J canonically dominates another s–t jour
ney J′ if X(J) < X(J′) and |J| ≤ |J′|. Because the two tieb
reaking sequences cannot be equal, there is no need to
distinguish between strong and weak canonical domi
nance. An s–t journey J is called canonical if it is Pareto-
optimal with respect to the tiebreaking sequence and
number of trips for the departure time τdep(J), that is, if
no other s–t journey exists that is feasible for τdep(J)
and canonically dominates J. Because no two journeys
can be equivalent in both criteria, the set that consists
of all feasible canonical journeys is the only Pareto set
for any given query. We call this the canonical Pareto
set. The set J canon is the union of the canonical Pareto
sets for all possible s–t queries. This set is closed under
subjourney decomposition.

Lemma 1. For every canonical s–t journey J and every
pair v, w ∈ V(J) of vertices visited by J, the subjourney Jvw
is canonical.

Proof. Assume that Jvw is not canonical. Then, there is
a journey J′vw such that J′vw is feasible for τdep(Jvw),
X(J′vw) < X(Jvw) and |J′vw | ≤ |Jvw|. Because J′vw does not
depart earlier or arrive later than Jvw , replacing Jvw
with J′vw in J yields a feasible journey J′ with |J′| ≤ |J|.
Adding the prefix Jsv to J′vw and Jvw adds identical

Baum et al.: Unlimited Transfers for Multimodal Journey Planning
Transportation Science, Articles in Advance, pp. 1–24, © 2023 The Author(s) 7

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

93
.2

02
.1

82
.3

7]
 o

n
26

 O
ct

ob
er

 2
02

3,
 a

t 0
3:

33
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

suffixes to both tiebreaking sequences. This does not
change their relative order, so X(J′sw) < X(Jsw). Simi
larly, adding the suffix Jwt to J′sw and Jsw adds identical
prefixes to both tiebreaking sequences, which does
not change their relative order. Therefore, X(J′) < X(J)
and J is not canonical. w

3.1.3. Candidate Journeys. We exploit the closure of
J canon under subjourney decomposition by defining a
suitable set of subjourneys that need to be enumerated.
A candidate is a journey that consists of two trips con
nected by an intermediate transfer but with empty ini
tial and final transfers. Every canonical journey that
uses at least two trips can be decomposed into candi
date subjourneys. By Lemma 1, these subjourneys are
themselves canonical. Accordingly, every shortcut that
occurs in J canon also occurs in the set J c ⊆ J canon of
canonical candidate journeys. A sufficient set of short
cuts can, therefore, be computed by enumerating J c.

3.1.4. Canonical MR. Canonical Pareto sets can be com
puted by making slight modifications to MR in order to
ensure proper tiebreaking: first, at the start of each
round, the collected routes are sorted according to idR

before they are scanned. The second change concerns
the keys of vertices in the Dijkstra (1959) priority
queue. In standard MR, the key of a vertex v in round i
is the tentative arrival time τarr(v, i) at v with i trips.
This is now replaced with 〈τarr(v, i), idV(v)〉. The result
ing implementation of MR, which we call canonical
MR, finds equivalent journeys in increasing order of
tiebreaking sequence. Hence, canonical journeys are
found first, and all other equivalent journeys are dis
carded because they are weakly dominated by them.
This is proven by the following lemma.

Lemma 2. Canonical MR returns the canonical Pareto set
for every query.

Proof. See Online Appendix A.
The journeys returned by a straightforward (nonca

nonical) implementation of MR are not closed under
subjourney decomposition. An example demonstrat
ing this is given in Online Appendix B.

3.2. Algorithm Overview
We now describe how J c can be enumerated effici
ently. Directly applying the definition of J c yields a
simple but wasteful approach: for every possible source
stop and every possible departure time, a one-to-all
canonical MR search restricted to the first two rounds is
performed. A candidate Jc is canonical if there is no fea
sible journey Jw with at most two trips that canonically
dominates Jc (and is, therefore, found before Jc by the
respective canonical MR search). If such a journey Jw

exists, we call it a witness because its existence proves
that Jc is not canonical. Unlike candidates, witnesses

may have nonempty initial or final transfers, and they
may use fewer than two trips. If there is no witness for a
candidate Jc, the corresponding canonical MR search
includes Jc in its Pareto set. A shortcut representing the
intermediate transfer of Jc is then generated.

3.2.1. Adapting rRAPTOR. The reason this approach is
wasteful is that it does not exploit the self-pruning
property of rRAPTOR: if journeys with later departure
times are explored first, they can be used to dominate
worse journeys with an earlier departure time. We,
therefore, adapt rRAPTOR to the ULTRA setting: the
RAPTOR search that is performed in each run is
replaced with a canonical two-round MR search. This
version of rRAPTOR is then invoked for each possible
source stop s ∈ S with a departure time interval that
covers the entire duration of the timetable.

We can make further improvements by carefully
choosing the departure times for which runs are per
formed. rRAPTOR performs a run for every possible
departure time τdep at s. A departure time τdep is possi
ble if there is a stop v (which may be s itself) that is
reachable from s via an initial transfer of length τtra

(s, v) and a trip that departs from v at τdep + τtra(s, v). If
transfers are unrestricted, the number of possible depar
ture times is very high because, typically, most stops in
the network are reachable from s. Accordingly, a str
aightforward multimodal adaptation of rRAPTOR per
forms many runs and is, therefore, slow. In the context
of ULTRA, however, most possible departure times
require a nonempty initial transfer, which means that
the corresponding runs would not find any candidates.
Because the goal is to enumerate candidates, ULTRA
only performs the runs for departure events that occur
directly at s. Let DT � {τ0

dep, : : : ,τk
dep} be the set of pos

sible departure times directly at s, sorted in ascending
order. The run for τi

dep explores candidates departing at
τi

dep and witnesses with departure times in the interval
[τi

dep, τi+1
dep). We define τk+1

dep :�∞ to ensure that the run
for τk

dep explores all witnesses that depart after τk
dep. By

integrating the witness search into the candidate runs,
the algorithm skips many witnesses that would be
required to answer a range query but are irrelevant for
dominating candidates. Thus, the ULTRA preproces
sing is much faster than a straightforward multimodal
adaptation of rRAPTOR.

Algorithm 1 (ULTRA Transfer Shortcut Computation)
Input: Public transit network (S, T , R, G), core
graph Gc � (Vc, Ec)

Output: Shortcut graph Gs � (S, Es)

1 for each s ∈ S do
2 Clear all arrival labels and Dijkstra (1959)

queues
3 τtra(s, ·) ←Compute transfer times in Gc from

s to all stops

Baum et al.: Unlimited Transfers for Multimodal Journey Planning
8 Transportation Science, Articles in Advance, pp. 1–24, © 2023 The Author(s)

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

93
.2

02
.1

82
.3

7]
 o

n
26

 O
ct

ob
er

 2
02

3,
 a

t 0
3:

33
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

4 DT ←Collect departure times of trips at s
5 for each τi

dep ∈DT in descending order do
//canonical MR run

6 Collect and sort routes reachable within
[τi

dep,τi+1
dep)

//first round

7 Scan routes
8 Relax transfers
9 Collect and sort routes serving updated

stops
//second round

10 Scan routes
11 Ecanon←Relax transfers, thereby collecting

shortcuts
12 Es← Es ∪ Ecanon.

3.2.2. Pseudocode. High-level pseudocode for the ULT
RA shortcut computation scheme is given by Algorithm 1.
For each source stop s ∈ S, the algorithm performs the
modified multimodal rRAPTOR search described in Sec
tion 3.2.1. To avoid redundant Dijkstra (1959) searches, ini
tial transfers to all other stops are explored only once per
source stop (line 3), and the results are then reused for
each run in line 6. The departure times at s for which runs
need to be performed are collected in line 4. The runs are
performed in lines 6–12. Each run consists of two canonical
MR rounds, which are subdivided into three phases: col
lecting routes and sorting them according to idR (lines 4
and 6), scanning routes (lines 7 and 10), and relaxing trans
fers with a Dijkstra (1959) search (lines 8 and 11). After the
final transfer relaxation phase in line 11, the remaining can
didates that have not been dominated by witnesses are
canonical, so shortcuts representing their intermediate
transfers are added to the shortcut graph in line 12.

3.2.3. Extracting Shortcuts. The final transfer relaxa
tion phase in line 11 identifies canonical candidates
and extracts their shortcuts. Whenever a stop is settled
during the Dijkstra (1959) search, the algorithm checks
whether the corresponding journey J is a candidate,
that is, has an empty initial and final transfer. If so,
we know that J is canonical because any witness
that canonically dominates it would have been found
already. Therefore, an edge representing the intermedi
ate transfer of J is added to the shortcut graph Gs. In
order to extract the intermediate transfer, each vertex v
maintains two parent pointers p1[v] and p2[v], where
pk[v] is the parent for reaching v using k trips (i.e.,
within the kth MR round). If the journey to v ends with
a trip, pk[v] points to the stop at which this trip was
entered. If the journey ends with a transfer, it points to
the stop at which the transfer starts. For a candidate
ending at a stop t, the shortcut representing its interme
diate transfer is given by (p1[p2[t]], p2[t]). Because
intermediate transfers only need to be extracted for

candidates, the parent pointer is set to a special value ⊥
if the corresponding journey has a nonempty initial or
final transfer. Then, the final Dijkstra (1959) search in
line 11 can check whether the journey ending at a stop
v is a candidate or a witness by inspecting p2[v].

The event-to-event variant of ULTRA generates short
cuts not between stops, but between stop events. The
parent pointer definitions are changed accordingly: if the
journey to a vertex v ends with a trip, pk[v] now points
to the stop event at which this trip was entered. If the
journey ends with a transfer, it points to the stop event at
which the preceding trip was exited. Because only candi
dates have valid parent pointers and candidates have
empty initial transfers, this preceding trip always exists.
For a candidate that ends at a stop t, the corresponding
shortcut is now given by (p1[v(p2[t])], p2[t]).

3.2.4. Repairing Self-Pruning. Using a rRAPTOR-based
approach with self-pruning allows ULTRA to discard
many irrelevant candidates early on. However, self-
pruning can also cause the algorithm to discard canoni
cal journeys. By exploring journeys with later departure
times first, rRAPTOR implicitly maximizes departure
time as a third criterion. With this additional criterion,
there may be queries for which all Pareto-optimal jour
neys include suboptimal subjourneys. An example of
this is shown in Figure 2. In this case, some canonical
candidates are suboptimal for three criteria and, there
fore, not found by the rRAPTOR-based scheme. More
over, in the depicted network, there is no Pareto set for
two criteria that is closed under subjourney decomposi
tion and only includes journeys that are Pareto-optimal
for three criteria. Hence, the problem cannot be avoided
by defining J canon in a different manner. Instead, we
modify the dominance criterion to ensure that canonical
journeys are not discarded.

For a journey J, let run(J) be the highest i with τi
dep ∈

DT such that τdep(J) ≥ τi
dep. This is the run in which

our modified rRAPTOR finds J. For each vertex v and
round i, the algorithm maintains a label ℓ(v, i) � (τarr

(v, i), p i[v], run(v, i)), where τarr(v, i) is the tentative arri
val time, pi[v] is the parent pointer, and run(v, i) is the
run of the journey corresponding to this label, which we
denote as J(v, i). Let ℓ � (τarr, p, j) be the label of a new
journey J that is found by the algorithm at v in round i.
Normally, rRAPTOR discards J if it is weakly domi
nated by J(v, i), that is, τarr(v, i) ≤ τarr. Otherwise, it
replaces ℓ(v, i) with ℓ. Our modified algorithm discards
J if it is weakly dominated by J(v, i) and one of the fol
lowing conditions is fulfilled: (1) J is not a prefix of a
candidate, that is, p � ⊥; (2) J is strongly dominated by
J(v, i), that is, τarr(v, i) < τarr or τarr(v, i� 1) ≤ τarr; or (3)
J(v, i) is found in the current run, that is, run(v, i) � j.
With this modified dominance condition, we can prove

Baum et al.: Unlimited Transfers for Multimodal Journey Planning
Transportation Science, Articles in Advance, pp. 1–24, © 2023 The Author(s) 9

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

93
.2

02
.1

82
.3

7]
 o

n
26

 O
ct

ob
er

 2
02

3,
 a

t 0
3:

33
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

that the ULTRA preprocessing computes a sufficient
shortcut graph.

Theorem 1. For every canonical journey J � 〈P0, Tij
0 , : : : ,

Tmn
k�1, Pk〉, every intermediate transfer in J is represented by

an edge in the shortcut graph computed by ULTRA.

Proof. Consider an intermediate transfer Px+1 of J and
the corresponding candidate subjourney Jc � 〈Tgh

x ,
Px+1, Tpq

x+1 〉. We show that the modified rRAPTOR
search for the source stop v(Tx[g]) finds this candidate
in the run for τdep(Jc) and inserts a shortcut for it.
Assume Jc is not found. Then, some prefix J′ of Jc is
discarded by the search in favor of a witness Jw. By
Lemma 1, J′ is canonical and, therefore, not strongly
dominated by Jw. Then, by our modified dominance
criterion, Jw must have been found in the same canoni
cal MR run as J′. However, by Lemma 2, canonical
MR discards Jw in favor of J′, a contradiction. w

3.3. Optimizations
We now discuss running time optimizations that are
not mentioned in the high-level overview given by
Algorithm 1. These optimizations are crucial for achiev
ing fast preprocessing times.

3.3.1. Initial Route Collection. An rRAPTOR run with
departure time τi

dep explores journeys that depart at s
within the interval [τi

dep,τi+1
dep). Line 6 collects the set

R(τi
dep) of routes that must be scanned in the first

round of this run. This set consists of all routes R for
which there is a stop v visited by R and a trip T of R
such that τdep(T, v)� τtra(s, v) ∈ [τi

dep,τi+1
dep). In order to

speed up this step, the set R(τi
dep) is precomputed

when τi
dep is added to the set DT of candidate depar

ture times in line 4. This leads to the following proce
dure for calculating DT and R(·): first, the algorithm
collects all departure triplets (v, τdep, R) of departure
stop v, departure time τdep, and route R that occur in
the network. They are then sorted by their departure
time at s, which is τdep� τtra(s, v), and processed in
descending order. The algorithm maintains a tentative
set R′ of routes for the next candidate departure time
that is added to DT . For each triplet (v, τdep, R), the

algorithm checks whether v � s. If v ≠ s, R is added to
R′. Otherwise, τdep is a candidate departure time. If
τdep is already contained in DT , the algorithm already
found another route departing from s at τdep, so R is
added to R(τdep). Otherwise, τdep is added to DT ,
R(τdep) is set to R′ ∪ {R}, and R′ is cleared.

3.3.2. Limited Dijkstra (1959) Searches. The algorithm
can be sped up by introducing a stopping criterion to the
Dijkstra (1959) search for final transfers in line 11. For
this purpose, the preceding route scanning phase in line
10 counts the number of stops that are marked because
their tentative arrival time is improved by a candidate.
Whenever such a stop is settled in line 11, the counter is
decreased. Once the counter reaches zero, we know that
the Dijkstra (1959) search has processed all candidates
that have been found in this run, so it is stopped.

A similar stopping criterion is applied to the interme
diate Dijkstra (1959) search in line 8. Here, the first route
scanning phase in line 7 counts the stops whose tenta
tive arrival time is improved by a candidate prefix, that
is, a journey with an empty initial transfer. As in line 11,
the Dijkstra (1959) search is stopped as soon as no such
stops are left in the queue. This does not affect the cor
rectness of the computed shortcut graph Gs because all
candidates are still processed. However, some of the
witnesses that are pruned might be required to domi
nate noncanonical candidates. In this case, superfluous
shortcuts are added to Gs. This can be counteracted by
continuing the Dijkstra (1959) search for some time after
the last candidate prefix has been extracted. We in
troduce a parameter τ̄wit called the witness limit that
determines how long the search continues. Let τarr be
the arrival time of the last extracted candidate prefix.
Instead of stopping the Dijkstra (1959) search immedi
ately, it continues until the smallest element in the
queue has an arrival time greater than τarr + τ̄wit.

Once a Dijkstra (1959) search is stopped, the remain
ing witness labels are kept in the queue because they
may dominate candidates in later runs. This requires
that the two Dijkstra (1959) searches in lines 8 and 11
use separate queues so that labels from the final Dijk
stra (1959) search of a previous run do not interfere

Figure 2. (Color online) An Example Network Showing the Conflict Between Canonicity and Self-Pruning

Notes. Every s-t journey that is Pareto-optimal with respect to the three criteria, arrival time, number of trips, and departure time, includes a sub
optimal subjourney. Transfer edges (thin lines) are labeled with their travel time, whereas trips (thick lines) are labeled with τdep→ τarr. The two
Pareto-optimal journeys are J � 〈〈s〉, 〈0→ 1〉, 〈a, b〉, 〈2→ 3〉, 〈c, d, e〉, 〈7→ 8〉, 〈t〉〉 and J′ � 〈〈s〉, 〈0→ 1〉, 〈a, b, c′〉, 〈4→ 5〉, 〈d, e〉, 〈7→ 8〉, 〈t〉〉. The
subjourney Jbt of J is not Pareto-optimal because it has an earlier departure time than J′bt and is otherwise equivalent. Likewise, the subjourney J′sd
is suboptimal because it has a later arrival time than Jsd.

Baum et al.: Unlimited Transfers for Multimodal Journey Planning
10 Transportation Science, Articles in Advance, pp. 1–24, © 2023 The Author(s)

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

93
.2

02
.1

82
.3

7]
 o

n
26

 O
ct

ob
er

 2
02

3,
 a

t 0
3:

33
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

with the intermediate Dijkstra (1959) search of the cur
rent run. As a consequence, if a label is discarded
because it is dominated, it must be explicitly removed
from any queues that still contain it. Moreover, the run
in which a label is settled may no longer be the same
one in which it was enqueued. Accordingly, the run in
which a journey J is found may no longer equal run(J).
To ensure that the dominance condition is applied cor
rectly, the run of a newly created label is carried over
from its parent label rather than setting it to the cur
rently performed run.

With these changes, the only remaining part of the
algorithm that performs an unlimited Dijkstra (1959)
search on the core graph is the initial transfer relaxation
in line 3. Unlike the searches for the intermediate and
final transfers, this search is only performed once for
every source stop instead of once per run, so its impact
on the overall running time is small.

3.3.3. Pruning with Found Shortcuts. Once a shortcut
is found and added to the shortcut graph Gs, it is no
longer necessary to find candidates that produce the
same shortcut. We exploit this by further restricting the
definition of candidates: a journey is only classified as a
candidate if its intermediate transfer is not contained in
the set of already computed shortcuts. Because this
reduces the number of candidates, the stopping crite
rion for the Dijkstra (1959) searches in lines 8 and
11 may be applied earlier, further saving preproces
sing time.

Whenever a potential candidate is found during the
second route scanning phase in line 10, the stop-to-stop
variant of ULTRA checks if the corresponding shortcut
is already contained in Gs. If so, the journey is classified
as a witness by setting its parent pointer to ⊥. In the
event-to-event variant, this check is more expensive
because the number of shortcuts is much larger. Fur
thermore, because an event-to-event shortcut typically
occurs in many fewer candidate journeys than its stop-
to-stop counterpart, it is much less likely that the
shortcut is already contained in Gs. Our preliminary
experiments show that the benefit of potentially dis
missing a candidate no longer outweighs the work
required to look up the shortcut. Therefore, the check
is skipped in the event-to-event variant.

When a candidate is extracted from the Dijkstra
(1959) queue in line 11 and a shortcut is inserted for it,
there may be other candidates remaining in the queue
that use the same intermediate transfer. These must be
turned into witnesses by setting the respective parent
pointers to ⊥. This requires keeping track of all candi
dates belonging to a particular shortcut. Within a single
canonical MR run, the search can find at most one
intermediate transfer ending at a particular stop or
stop event. In stop-to-stop ULTRA, each stop v, there
fore, maintains a list of all nondominated candidates

whose intermediate transfer ends at v. The event-
to-event variant does the same for each stop event.
When a shortcut is inserted, all candidates in the corre
sponding list are turned into witnesses.

3.3.4. Transfer Graph Contraction. As with MCR (Del
ling et al. 2013), the Dijkstra (1959) searches are per
formed on a core graph, which is constructed with
core-CH in advance. Because ULTRA only needs to
compute journeys between pairs of stops rather than
arbitrary vertices in the transfer graph, only transfers
that start and end at stops are relevant. Accordingly,
the initial and final transfer searches that MCR per
forms on the upward and downward CH graphs can
be omitted.

Another type of contraction is performed for cliques
of stops that have a pairwise distance of zero in the
transfer graph. These cliques typically occur when dif
ferent platforms of a larger station are modeled as indi
vidual stops. Each such clique is contracted into a
single stop in order to decrease the number of canoni
cal MR runs that need to be performed. The number of
runs for a source stop s is equal to the number of
unique departure times at s. If a departure time occurs
at multiple stops within a clique with transfer distance
zero, then the algorithm performs one run for this
departure time at each stop. The journeys found by
these runs are identical save for initial transfers of
length zero. By contracting the clique into a single stop,
these redundant runs are merged into one. This does
not affect the correctness of the algorithm because it
is conceptually equivalent to allowing candidates to
begin with an initial transfer of length zero.

3.3.5. Parallelization. Finally, we observe that ULTRA
allows for trivial parallelization. The preprocessing
algorithm searches for candidates once for every possi
ble source stop (line 1 of Algorithm 1). As these sear
ches are mostly independent of each other, they can be
distributed to parallel threads, and the results are then
combined in a final sequential step. The only aspect of
the algorithm that introduces a dependency between
the searches for different source stops is the restricted
candidate definition: a journey is only considered a
candidate if no shortcut has yet been added for its
intermediate transfer. If a shortcut was added by a
different thread, the algorithm does not notice this.
However, because this is merely a performance optimi
zation, the algorithm remains correct if only shortcuts
added by the current thread are considered.

3.4. Integration with Trip-Based Routing
Unlike other public transit algorithms, TB on its own
already requires a preprocessing step even when used
without ULTRA. One possible approach for enabling
unlimited transfers in TB is with a sequential three-

Baum et al.: Unlimited Transfers for Multimodal Journey Planning
Transportation Science, Articles in Advance, pp. 1–24, © 2023 The Author(s) 11

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

93
.2

02
.1

82
.3

7]
 o

n
26

 O
ct

ob
er

 2
02

3,
 a

t 0
3:

33
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

phase algorithm: First, shortcuts between stops are
generated with the stop-to-stop variant of the ULTRA
preprocessing. These are then used as input for the TB
preprocessing, which generates event-to-event short
cuts that can be used by the ULTRA-TB query. How
ever, we show that an integrated two-phase approach
is superior. Here, the TB preprocessing is replaced
entirely by the event-to-event variant of the ULTRA
preprocessing. The resulting shortcuts between stop
events are then used as input for the ULTRA-TB query.
The advantage of the integrated approach is that it pro
duces fewer shortcuts because ULTRA applies stricter
pruning rules than the TB preprocessing. Both algo
rithms enumerate journeys with at most two trips in
order to find witnesses that prove that a potential short
cut is not necessary. The TB preprocessing does this in
a transfer-reduction step after all potential shortcuts
have been generated. Because the latter is no longer
feasible with unlimited transfers, ULTRA interleaves
the generation and pruning of shortcuts. Furthermore,
ULTRA examines a larger set of witnesses. In the TB
preprocessing, witnesses must start with the same stop
event as the candidate, whereas ULTRA also considers
witnesses that start with a nonempty initial transfer or
a different initial trip. Furthermore, because the TB pre
processing explores intermediate transfers by iterating
along the stop sequence of the initial trip in reverse, a
candidate cannot be pruned by witnesses that exit the
initial trip before the candidate. Overall, ULTRA has
more options for pruning candidates and, thus, pro
duces fewer shortcuts.

4. Query Algorithms
ULTRA shortcuts can be combined with any public
transit query algorithm that normally requires one-
hop transfers. The idea is to replace the original trans
fer graph with the precomputed shortcuts and run the
algorithm on the resulting network. Some algorithms,
including RAPTOR, CSA, and TB, normally require
that the transfer graph is transitively closed. Whereas
this is not the case for the ULTRA shortcut graph, this
is not a problem: Theorem 1 proves that journeys with
two consecutive shortcut edges are never required to
answer a query correctly. Accordingly, if a transitive
edge is missing in the shortcut graph, we know that it
is never required as part of an optimal journey.

Whereas the shortcut graph covers intermediate tra
nsfers between two trips, it does not provide any infor
mation for transferring from the source to the first trip
or transferring from the last trip to the target. In this sec
tion, we describe how initial and final transfers can be
integrated into the query algorithms efficiently. Addi
tionally, we describe optimizations for the TB query

algorithm that make it more efficient in a scenario with
unlimited transfers.

4.1. Query Algorithm Framework
The ULTRA query algorithm exploits the fact that, for
initial and final transfers, one endpoint of the transfer
is fixed. All initial transfers start at the source vertex s
of the query, whereas all final transfers end at the tar
get vertex t. Therefore, initial and final transfers can
be explored with two additional one-to-many queries
on the original transfer graph: a forward query to
compute distances from s to all stops and a backward
query for the distances from all stops to t. ULTRA
uses bucket-CH for this task as it is one of the fastest
known one-to-many algorithms and allows for opti
mization of local queries. Thus, ULTRA requires three
preprocessing steps in total: First, a core graph is con
structed with core-CH. This is then used as input for
the transfer shortcut computation outlined in Section
3. The third step is the bucket-CH preprocessing for
the original transfer graph G. The query algorithm
then takes as input the public transit network, transfer
shortcut graph, and bucket-CH data. Pseudocode for
the query algorithm is shown in Algorithm 2.

A query begins with a bidirectional CH search from
s to t in line 1. This yields the travel time τtra(s, t) for a
direct transfer from s to t (which may be ∞ if no direct
transfer is possible). A naive approach would then
perform a forward bucket-CH query from s and a
reverse bucket-CH query from t, yielding for every
stop v the initial transfer distance τtra(s, v) and the
final transfer distance τtra(v, t). However, not all of
these distances are actually needed. An initial transfer
to a stop v cannot be part of an optimal journey if
τtra(s, v) ≥ τtra(s, t) because any journey containing the
initial transfer is dominated by the direct transfer
from s to t. Likewise, no optimal journey can include a
final transfer to a stop v with τtra(v, t) ≥ τtra(s, t). The
algorithm exploits this by using the forward and back
ward search spaces Vs and Vt of the bidirectional CH
query. Because the CH search is stopped once the
shortest s–t path is found, these contain no vertices
whose distance from s and to t, respectively, is greater
than τtra(s, t). Therefore, it is sufficient to scan the for
ward buckets of all vertices in Vs (line 2) and the back
ward buckets of all vertices in Vt (line 2). Additional
query time can be saved by sorting the entries of each
bucket in ascending order of distance during the pre
processing phase. Then, the scan for the forward
bucket of a vertex v can be stopped once it reaches a
stop w within the bucket with τtra(s, v) + τtra(v, w) ≥
τtra(s, t) (and analogously for backward buckets).
Doing so drastically improves local queries as they do

Baum et al.: Unlimited Transfers for Multimodal Journey Planning
12 Transportation Science, Articles in Advance, pp. 1–24, © 2023 The Author(s)

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

93
.2

02
.1

82
.3

7]
 o

n
26

 O
ct

ob
er

 2
02

3,
 a

t 0
3:

33
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

not need to evaluate all stops, but only stops that are
close to the source or target.
Algorithm 2 (ULTRA Query Algorithm Framework)

Input: Public transit network (S, T , R, G), transfer
shortcut graph Gs � (S, Es), bucket-CH data for G,
source vertex s, departure time τdep, and target vertex t
Output: Pareto set J of s–t journeys for departure
time τdep

1 (τtra(s, t),Vs , Vt) ←Run a CH query from s to t
with departure time τdep

2 τtra(s, ·) ←Evaluate the vertex-to-stop buckets for
vertices in Vs

3 τtra(·, t) ←Evaluate the stop-to-vertex buckets for
vertices in Vt

4 G̃s
← (S ∪ {s, t},Es)

5 Add edge (s, t)with travel time τtra(s, t)
6 for each v ∈ S \ {s, t}with τtra(s, v) < τtra(s, t) do
7 Add edge (s, v) to G̃s with travel time τtra(s, v)
8 for each v ∈ S \ {s, t}with τtra(v, t) < τtra(s, t) do
9 Add edge (v, t) to G̃s with travel time τtra(v, t)
10 Run black-box public transit algorithm on (S ∪
{s, t},T , R, G̃s

).
After the distances for the initial and final transfers

are computed, the algorithm creates a temporary copy
G̃s of the shortcut graph Gs, which contains s and t as
additional vertices. In lines 5–9, this temporary graph
is complemented with edges for the initial and final
transfers and the direct transfer from s and t, using the
distances obtained from the bucket-CH queries. Finally,
a public transit algorithm is invoked as a black box on
the public transit network with the temporary graph G̃s

in line 10. The temporary graph is sufficient for obtain
ing correct results as it contains edges for all necessary
initial, intermediate, and final transfers and an edge for
a direct transfer from source to target. Because there are
no additional requirements on the black-box public
transit algorithm, it is easy to see that any existing algo
rithm can be used with ULTRA shortcuts.

If the public transit algorithm is not treated as a black
box, the performance can be improved further by
omitting the construction of G̃s. Most public transit
algorithms, including RAPTOR and CSA, maintain a
tentative arrival time at each stop, which is improved
as new journeys are found. Instead of adding an edge
from s to a stop v, the tentative arrival time of v can be
initialized with τdep + τtra(s, v). To incorporate final
transfers, whenever the tentative arrival time at a stop
v is set to some value τ, the algorithm can try to
improve the tentative arrival time at t with τ+ τtra(v, t).

4.2. Improved TB Query
Unlike most algorithms, TB already distinguishes bet
ween initial/final and intermediate transfers, exploring
different graphs for both. The original transfer graph G
is only used for the initial and final transfers, whereas
intermediate transfers are explored using the precomputed

event-to-event transfers. In the context of ULTRA, this
requires a modification to the query framework shown
in Algorithm 2: the temporary graph G̃s now only con
tains the edges added for the initial and final transfers
and not the ULTRA shortcuts. The query then uses G̃s

for the initial and final transfers and the unmodified
event-to-event shortcut graph Ge � (Ve, Ee) for the inter
mediate transfers.

Additionally, the TB query algorithm can be opti
mized further for networks with unlimited transfers.
The original query, as introduced by Witt (2015), is
optimized for a use case in which only a few stops are
reachable with an initial or final transfer. However,
with unlimited transfers, it is typical for almost all
stops to be reachable. Therefore, we restructure the
query to allow the huge number of possible initial and
final transfers to be processed more efficiently. Pseudo
code for the modified query is given by Algorithm 3. In
the following, we describe this algorithm in detail.

4.2.1. Initial Transfer Evaluation. As in the generic
ULTRA query, the algorithm begins with the bucket-
CH search (lines 1–3). This yields a minimum arrival
time τarr(s, v) for every reached stop v as well as the
minimum arrival time τmin at t via a direct transfer. If
τmin <∞, a label representing the s–t journey with zero
trips is added to the result set L in line 5. The algorithm
then identifies trips that are reachable via an initial
transfer (lines 8–19). In the original TB query (Witt
2015), this is done by iterating over all stops that are
reachable via an initial transfer. For each such stop v
and each route R visiting v, the algorithm identifies the
earliest trip of R that can be entered at v after taking
the initial transfer. This approach is efficient as long as
the number of stops reachable via an initial transfer is
small. However, in a scenario with unlimited transfers
in which almost all stops are reachable, consecutive
stops of a route often share the same earliest reachable
trip. This can cause the same trip to be found multiple
times, leading to redundant work. To avoid this, we
propose a new approach for evaluating the initial trans
fers, which is based on two steps of the RAPTOR algo
rithm: collecting updated routes and scanning routes.

Lines 8 and 9 collect all routes that visit a stop that is
reachable via an initial transfer. This is analogous to
collecting routes that visit marked stops at the begin
ning of a RAPTOR round. Then, all collected routes are
scanned. As in RAPTOR, a route R is scanned by proces
sing its stops in the order in which they are visited by R.
The algorithm maintains an active trip Tmin, which is the
earliest trip of R that is reachable from any of the already
processed stops. Initially, Tmin is set to a dummy value ⊥
(line 11). Let v be the next stop to be processed during
the scan of R. To check if Tmin can be improved, the algo
rithm finds the earliest trip T′min of R that can be boarded
when arriving at v with the arrival time τarr (s, v). If no

Baum et al.: Unlimited Transfers for Multimodal Journey Planning
Transportation Science, Articles in Advance, pp. 1–24, © 2023 The Author(s) 13

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

93
.2

02
.1

82
.3

7]
 o

n
26

 O
ct

ob
er

 2
02

3,
 a

t 0
3:

33
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

reachable trip is found for any of the previous stops in R
(i.e., Tmin � ⊥), then T′min is found with a binary search.
Otherwise, the algorithm starts a linear search from Tmin

and looks backward for earlier trips. Because T′min is
often not much earlier than Tmin, this is faster than a
binary search in practice. Note that T′min is not found if it
is later than Tmin, but in this case, entering T′min at v does
not produce an optimal journey, so it can be discarded. If
T′min is earlier than Tmin, then Tmin is updated, and the
Enqueue operation is called for the corresponding stop
event in line 18. The Enqueue operation itself is unchanged
from the original TB query. If T′min is the earliest trip in
R, the remainder of the route scan can be skipped.
Algorithm 3 (ULTRA-Trip-Based Query)

Input: Public transit network (S, T , R, G), transfer
shortcut graph Ge � (Ve, Ee), bucket-CH data for G,
source vertex s, departure time τdep, and target ver
tex t
Output: Labels L representing Pareto set of s–t jour
neys for departure time τdep

1 (τtra(s, t),Vs , Vt) ←Run a CH query from s to t
with departure time τdep

2 τtra(s, ·) ←Evaluate the vertex-to-stop buckets for
vertices in Vs

3 τtra(·, t) ←Evaluate the stop-to-vertex buckets for
vertices in Vt

4 τmin← τdep + τtra(s, t)
5 if τmin <∞ then L←{(τmin, 0)}
6 for each v ∈ S do τarr(s, v) ← τdep + τtra(s, v)
7 R′, Q1←∅
8 for each v ∈ S with τtra(s, v) < τtra(s, t) do
9 R′ ←R′ ∪ {Routes from R that contain v}
10 for each R ∈R′ do
11 Tmin←⊥
12 for i from 0 to |R|� 1 do
13 v← i-th stop of R
14 if τarr(s, v) ≥ τmin then continue
15 T′min←earliest T ∈ R departing from v
16 if T′min is earlier than Tmin then
17 Tmin← T′min

18 Enqueue(Tmin[i], Q1)
19 if Tmin is the first trip in R then break
20 n← 1
21 while Qn is not empty do
22 for each Tjk ∈Qn do
23 for i from j to k do
24 if τarr(T[i]) ≥ τmin then break
25 if τarr(T[i]) + τtra(v(T[i]), t) < τmin then
26 τmin← τarr(T[i]) + τtra(v(T[i]), t)
27 L← L ∪ {(τmin, n)}, removing domi

nated labels
28 Qn+1←∅
29 for each Tjk ∈Qn do
30 for i from j to k do
31 if τarr(T[i]) ≥ τmin then break
32 for each (T[i], T′[i′]) ∈ Ee do
33 Enqueue(T′[i′], Qn+1)
34 n← n+ 1.

4.2.2. Trip Scanning. The trip-scanning phase (lines
20–34) is identical to the original TB query algorithm
except for the evaluation of final transfers. It is orga
nized in rounds, in which the nth round scans the trip
segments that were previously collected in the FIFO
queue Qn. A trip segment Tjk is scanned by iterating
over all stop events from T[j] to T[k]. When scanning a
stop event T[i], the algorithm checks whether a final
transfer from the ith stop of the trip T to the target
exists in line 24. If such a transfer exists and improves
the earliest known arrival time τmin at the target, then
the algorithm has found a new Pareto-optimal journey.
In this case, τmin is updated, and a label representing
the newly found journey is added to the result set L. If
L already contains a label with n trips (note that a
Pareto set can only contain one such label), this label is
replaced. After the final transfers are evaluated, the
algorithm relaxes the outgoing shortcuts from T[i]. For
each shortcut (T[i], T′[i′]) ∈ Ee, the Enqueue operation
is called for T′[i′]. This adds the relevant segment of T′
to the queue Qn+1 of trips that are scanned in the
next round.

Note that the trips in Qn are scanned twice: once to
evaluate the final transfers and then again to relax
transfer shortcuts. This is done for two reasons: First,
separating the two scans improves memory locality as
τtra(·, t) is only accessed by the first scan and Ee is only
accessed by the second scan. Second, τmin is improved
throughout the first scan, which enables stricter prun
ing of trips that cannot contribute to Pareto-optimal
journeys in line 31 of the second scan.

4.2.3. Data Structures and Memory Layout. In order to
achieve optimal performance, the query algorithm needs
to use a streamlined memory layout. To this end, the
FIFO queues Qn are implemented using dynamic arrays.
This enables an efficient Enqueue operation and efficient
scanning of the entries in Qn. The shortcuts Ee are stored
in an array such that all outgoing shortcuts of a stop
event T[i] are consecutive in memory and the outgoing
shortcuts of the next stop event T[i+ 1] follow directly
afterward. Finally, note that the trip scanning step only
needs access to the arrival time τarr(T[i]) and the stop
v(T[i]) of a stop event T[i]. Therefore, these values are
stored separately from the departure time τdep(T[i]) of
the stop event, which improves memory locality.

5. Experiments
All algorithms were implemented in C++17 and com
piled with GCC version 10.3.0 and optimization flag
-O3. Experiments were performed on the following
machines:
• Xeon: A machine with two eight-core Intel Xeon

Skylake SP Gold 6144 CPUs clocked at 3.50 GHz with a

Baum et al.: Unlimited Transfers for Multimodal Journey Planning
14 Transportation Science, Articles in Advance, pp. 1–24, © 2023 The Author(s)

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

93
.2

02
.1

82
.3

7]
 o

n
26

 O
ct

ob
er

 2
02

3,
 a

t 0
3:

33
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

boost frequency of 4.2 GHz, 192 GiB of DDR4-2666
RAM, and 24.75 MiB of L3 cache.
• Eypc: A machine with two 64-core AMD Epyc

Rome 7742 CPUs clocked at 2.25 GHz with a boost fre
quency of 3.4 GHz, 1,024 GiB of DDR4-3200 RAM, and
256 MiB of L3 cache.

Source code for ULTRA is available at https://github.
com/kit-algo/ULTRA.

5.1. Networks
We evaluated our algorithms on the transportation net
works of Stuttgart, London, Switzerland, and Ger
many. The Stuttgart network represents the greater
region of Stuttgart and comprises two identical busi
ness days. It was previously used by Mallig, Kager
bauer, and Vortisch (2013) and Briem et al. (2017) and
is not publicly available. The public transit timetable
of London was obtained from Transport for London
(https://data.london.gov.uk) and covers a single Tues
day in the periodic summer schedule of 2011. It was
previously used to evaluate RAPTOR (Delling, Pajor,
and Werneck 2015), MCR (Delling et al. 2013), and TB
(Witt 2015). The Switzerland network was extracted
from a publicly available general transit feed specifica
tion (http://gtfs.geops.ch/) and consists of two succes
sive business days (May 30 and 31, 2017). Finally, the
Germany network was provided by Deutsche Bahn for
research purposes and is not publicly available. It is
based on data from bahn.de for winter 2011/2012, com
prising two successive identical days, and was previ
ously used to evaluate CSA (Dibbelt et al. 2018) and TB
(Witt 2015). Both the Switzerland and Germany net
works were previously used by Wagner and Zündorf
(2017). For each network, we computed the set R of
routes greedily by iterating across the set T of trips: for
each trip T, we checked if a route R with the same stop
sequence as T was already generated such that T does
not overtake any trips in R and is not overtaken by any
of them itself. If so, we added T to R. Otherwise, we
generated a new route for T.

We constructed unrestricted transfer graphs by ex
tracting road graphs, including pedestrian zones and
staircases, from OpenStreetMap (https://download.geo
fabrik.de/). Unless stated otherwise, we used walking
as the transfer mode, assuming a constant speed of
4.5 km/h. The transfer graph was connected to the
public transit network using the procedure outlined by
Wagner and Zündorf (2017). For each stop v ∈ S, we
located its (geographically) nearest neighbor w ∈ V in
the transfer graph. If v and w were less than five meters
apart and v was also the nearest neighbor of w, we
identified v with w. Otherwise, we added a new vertex
for v and connected it to w if the distance was less than
100 meters. Afterward, vertices with degrees one and
two were contracted unless they coincided with stops.
Remote and isolated parts of the networks were removed

by applying a bounding box and removing everything
except the largest connected component.

To obtain transitively closed transfer graphs (for
comparison with standard RAPTOR, CSA, and TB),
we inserted edges between all stops whose distance in
the transfer graph lies below a certain threshold (nine
minutes for Stuttgart and Switzerland, eight minutes
for Germany, four minutes for London) and then
computed the transitive closure. Following Wagner
and Zündorf (2017), the thresholds were chosen so
that the resulting graph has an average vertex degree
of about 100. An overview of the networks is given in
Table 1.

5.2. Preprocessing
In this section, we evaluate the performance of the
ULTRA preprocessing phase, which includes the core-
CH transfer graph contraction, the shortcut computa
tion, and the bucket-CH computation. We analyze the
effects of the parameters core degree, witness limit,
and transfer speed in detail for the Switzerland net
work and then discuss more general results for all four
networks.

5.2.1. Core Degree and Witness Limit. The two main
parameters influencing the performance of the ULTRA
preprocessing are the average vertex degree of the con
tracted core graph and the witness limit τ̄wit. Figure 3
shows the impact of these parameters on the Switzerland
network. The lowest preprocessing times are achieved
with a core degree of 14. Although the actual shortcut
computation is slightly faster for higher core degrees,
this is offset by the increased time required to contract
the transfer graph. The witness limit τ̄wit has a larger
impact on the preprocessing time. Choosing a witness
limit of zero instead of ∞ nearly cuts the preprocessing
time in half. Regardless of core degree or witness limit,
the event-to-event variant takes about one minute longer
than the stop-to-stop variant. Both parameters have a
negligible effect on the number of computed shortcuts.
For all following experiments, we therefore choose a core
degree of 14 and a witness limit of zero to minimize the

Table 1. Sizes of the Public Transit Networks and the
Accompanying Transfer Graphs

Stuttgart London Switzerland Germany

Stops 13,584 19,682 25,125 243,167
Routes 12,351 1,955 13,786 230,255
Trips 91,304 114,508 350,006 2,381,394
Stop events 1,561,972 4,508,644 4,686,865 48,380,936
Vertices 1,166,604 181,642 603,691 6,870,496
Edges 3,682,232 575,364 1,853,260 21,367,044
Transitive edges 1,369,928 3,212,206 2,639,402 22,571,280

Note. Also reported is the number of edges in the transitively closed
transfer graph used to compare ULTRA to unimodal algorithms.

Baum et al.: Unlimited Transfers for Multimodal Journey Planning
Transportation Science, Articles in Advance, pp. 1–24, © 2023 The Author(s) 15

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

93
.2

02
.1

82
.3

7]
 o

n
26

 O
ct

ob
er

 2
02

3,
 a

t 0
3:

33
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

https://github.com/kit-algo/ULTRA
https://github.com/kit-algo/ULTRA
https://data.london.gov.uk
http://gtfs.geops.ch/
https://download.geofabrik.de/
https://download.geofabrik.de/

preprocessing time. The only exception is the Germany
network, for which we use a core degree of 20. This is
because the share of the core-CH computation in the
overall running time is significantly lower for this net
work because of its much larger size. Preprocessing
results for the stop-to-stop variant on all four networks
are listed in Table 2.

5.2.2. ULTRA-TB Preprocessing. To evaluate the effec
tiveness of the event-to-event ULTRA shortcut compu
tation, we compare it to the original TB preprocessing,
using the transitively closed transfer graphs as input,
and to a naive sequential approach, that is, using stop-
to-stop ULTRA shortcuts as input for the TB preproces
sing. An overview of the results is given in Table 3. The
integrated ULTRA preprocessing drastically reduces
the number of shortcuts compared with the sequential
approach. This reduction ranges from a factor of 6 for
the London network to more than 15 for Germany.
Regarding computation time, the sequential approach
using the optimized TB preprocessing proposed by
Lehoux and Loiodice (2020) is only marginally faster
than the integrated approach. Overall, the integrated
preprocessing is clearly preferable because it produces
many fewer shortcuts with only a minor overhead in
running time.

Remarkably, event-to-event ULTRA significantly out
performs the original TB preprocessing in both number
of shortcuts and computation time despite operating on

Figure 3. (Color online) Impact of Core Degree and Witness Limit on ULTRA Preprocessing

Notes. Measured are the running time of the ULTRA preprocessing and the number of shortcuts for the Switzerland network on the Xeon
machine. Preprocessing time includes both contracting the transfer graph and computing the shortcuts. The time required for the bucket-CH
computation, which is independent of both parameters, is excluded.

Table 2. Stop-to-Stop ULTRA Preprocessing Results

Stuttgart London Switzerland Germany

Core-CH time 1:45 0:19 1:09 20:16
Number of core vertices 25,631 23,860 33,219 313,351
Number of core edges 358,842 334,112 465,067 6,267,050
Shortcut computation time 4:27 18:01 8:54 8:01:25
Number of shortcuts 83,086 190,388 170,713 2,907,691
Bucket-CH time 2:13 0:11 0:43 14:49

Notes. All running times were measured on the Xeon machine and are
displayed as (hh:)mm:ss. The core-CH and bucket-CH computations
were run sequentially, whereas the shortcut computation used all 16
cores.

Baum et al.: Unlimited Transfers for Multimodal Journey Planning
16 Transportation Science, Articles in Advance, pp. 1–24, © 2023 The Author(s)

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

93
.2

02
.1

82
.3

7]
 o

n
26

 O
ct

ob
er

 2
02

3,
 a

t 0
3:

33
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

an unrestricted transfer graph instead of a transitively
closed one. This underscores that the original TB pre
processing was only designed for very limited transfer
graphs and confirms the findings of Lehoux and Loio
dice (2020) that it does not scale well for larger graphs.
Compared with the optimized TB preprocessing, ULTRA
is slower by a factor of about two to three on most net
works. On the Stuttgart network, the slowdown is about
eight. The difference is explained by the fact that Stuttgart
is the only network in which the transitively closed trans
fer graph has fewer edges than the full transfer graph.
Overall, the preprocessing results show that ULTRA is
much more effective than the TB preprocessing at identi
fying necessary transfers at the cost of a somewhat higher
preprocessing time.

5.2.3. Parallelization. The previous experiments used
all 16 cores of the Xeon machine for the shortcut com
putation. To assess the impact of parallelization on the
preprocessing time, we evaluate the running time of
the stop-to-stop shortcut computation for different num
bers of threads. Additionally, we compare running times
of the Epyc machine, which has worse single-core perfor
mance but contains more cores. Running times on both
machines are listed in Table 4. Overall, the parallelized
shortcut computation achieves good speedups for all net
works on both machines. For the Switzerland network,
the maximal speedup is 13.5 on the Xeon machine and
74.6 on the Epyc machine. The speedup for the entire
preprocessing phase, including the sequential core-CH
and bucket-CH computation times on the Xeon machine,
drops to 11.4 and 38.6, respectively. Independently of the
network, we observe the smallest speedup when switch
ing from 64 to 128 threads on the Epyc machine. In this
case the speedup is most likely limited by the mem
ory bandwidth.

The results are similar for the event-to-event variant.
On the Switzerland network, the single-threaded perfor
mance on the Xeon machine is 2:07:00 for the sequential

approach and 2:10:10 for the integrated approach. This
corresponds to speedup factors of 13.1 and 13.5, respec
tively, which matches the speedups observed for the
stop-to-stop variant and the TB preprocessing.

5.2.4. Transfer Speed. To test the impact of the transfer
mode on the shortcut computation, we changed the
transfer speed in the Switzerland network from 4.5 km/h
to values between 1 and 140 km/h. We considered two
ways of applying the transfer speed: in the first version,
the speed on an edge is not allowed to exceed the speed
limit given in the road network. This models fast trans
fer modes such as cars fairly realistically. In the second
version, speed limits are ignored, and the same constant
speed is assumed for every edge. This allows us to ana
lyze to what extent the effects observed in the first ver
sion are caused by the speed limit data. Figure 4 reports
the preprocessing times and number of shortcuts (both
stop-to-stop and event-to-event) measured for each
configuration. In all measurements, the preprocessing
time remained below 15 minutes. The number of stop-to-
stop shortcuts initially increases with the transfer speed

Table 3. Number of Shortcuts and Preprocessing Times for Different TB Preprocessing Variants

Stuttgart London Switzerland Germany

Shortcuts (transitive) 7,387,445 50,242,519 31,507,264 458,826,534
Shortcuts (transitive, optimized) 7,387,586 50,240,558 31,507,543 458,763,050
Shortcuts (sequential) 19,361,708 53,179,082 65,485,696 1,195,573,925
Shortcuts (sequential, optimized) 19,361,129 53,181,238 65,484,976 1,195,509,797
Shortcuts (integrated) 1,973,321 8,576,120 6,938,012 77,515,291
Time (transitive) 9:30 1:42:35 1:01:54 73:43:07
Time (transitive, optimized) 0:37 13:12 4:41 2:55:06
Time (sequential) 4:41 18:43 9:40 8:57:46
Time (sequential, optimized) 4:37 18:28 9:24 8:22:37
Time (integrated) 4:42 20:43 9:40 8:37:49

Notes. “Transitive” refers to the original TB preprocessing on the transitively closed transfer graph. “Sequential” uses stop-to-stop ULTRA
shortcuts as input for the TB preprocessing, whereas “integrated” uses event-to-event ULTRA shortcuts directly. “Optimized” refers to the
improved TB preprocessing algorithm of Lehoux and Loiodice (2020). Running times were measured on the Xeon machine with 16 cores and are
displayed as (hh:)mm:ss.

Table 4. Impact of Parallelization on the Running Time of
the Stop-to-Stop ULTRA Shortcut Computation

Machine Cores Stuttgart London Switzerland Germany

Xeon 1 59:28 4:00:31 2:00:29 100:02:46
2 30:42 2:05:06 1:02:24 54:12:12
4 15:49 1:06:24 32:17 29:02:18
8 8:28 34:52 17:13 15:26:13
16 4:27 18:01 8:54 8:01:25

Epyc 1 1:14:37 4:53:01 2:25:26 122:35:42
2 40:38 2:43:33 1:21:57 72:42:27
4 20:10 1:19:21 40:39 37:56:49
8 10:03 39:54 20:23 19:11:35
16 5:05 19:54 10:08 9:49:56
32 2:37 10:08 5:11 4:57:06
64 1:29 5:52 2:55 2:56:49

128 0:54 3:44 1:57 2:53:57

Note. Running times are displayed as (hh:)mm:ss.

Baum et al.: Unlimited Transfers for Multimodal Journey Planning
Transportation Science, Articles in Advance, pp. 1–24, © 2023 The Author(s) 17

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

93
.2

02
.1

82
.3

7]
 o

n
26

 O
ct

ob
er

 2
02

3,
 a

t 0
3:

33
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

until it peaks at about 300,000 between 10 and 20 km/h
(roughly the speed of a bicycle). In the event-to-event
variant, the behavior is the opposite: the number of
shortcuts is highest for 1 km/h and decreases from there.
Above 20 km/h, both variants exhibit a slight increase in
the number of shortcuts, which is more pronounced if
speed limits are obeyed. Overall, the results show that
ULTRA is practical for all transfer speeds in terms of
both preprocessing time and the number of shortcuts.

To explain the difference in behavior between the
two variants, consider how the transfer speed affects
Pareto-optimal journeys. As the transfer mode becomes
faster, it becomes increasingly feasible to cover large
distances in the transfer graph quickly. This has two
effects: on the one hand, more witnesses that require
long initial or final transfers become feasible and start
dominating slower candidates. Accordingly, the num
ber of canonical candidates decreases from 409 million
for 1 km/h to 114 million for 10 km/h. This explains
the decrease in the number of event-to-event shortcuts.
On the other hand, longer intermediate transfers between

trips also become feasible. This means that, although
there are fewer canonical candidates for higher transfer
speeds, the shortcuts that occur in them tend to cover
larger distances in the transfer graph. The number of
stop pairs within a certain distance of each other grows
roughly quadratically with the distance. This explains
why the number of stop-to-stop shortcuts rises for higher
transfer speeds even as the number of event-to-event
shortcuts declines.

Once the transfer speed becomes faster than public
transit, the direct transfer from source to target domi
nates all other journeys, including all candidates. Acc
ordingly, we should expect the number of shortcuts to
eventually reach zero for very high transfer speeds.
The reason this is not observed in our measurements is
that not all stops in our network instances are reachable
from each other in the transfer graph. Consider what
happens in the shortcut computation for journeys bet
ween stops s and t that are isolated in the transfer
graph. In this case, a direct transfer is not possible
regardless of the transfer speed. In fact, unless there is

Figure 4. (Color online) Impact of Transfer Speed on Preprocessing Time and Number of Shortcuts

Notes. All measurements for the Switzerland network with a core degree of 14 and a witness limit of zero. For the two lines at the bottom of the
right plots, shortcuts were only added if the source and target of the candidate journey are connected by a path in the transfer graph.

Baum et al.: Unlimited Transfers for Multimodal Journey Planning
18 Transportation Science, Articles in Advance, pp. 1–24, © 2023 The Author(s)

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

93
.2

02
.1

82
.3

7]
 o

n
26

 O
ct

ob
er

 2
02

3,
 a

t 0
3:

33
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

a route that serves both s and t, all s–t journeys with at
most two trips are candidates, and the shortcut compu
tation adds shortcuts for the canonical ones. In our
Switzerland network, 624 stops are isolated in the
transfer graph, usually as a result of incomplete or
imperfect data. If we omit shortcuts for candidates
whose source and target stop are not connected in the
transfer graph, the number of shortcuts behaves as
expected: If speed limits are obeyed, a few shortcuts
remain even for the highest transfer speed. If they are
ignored, a direct transfer is always the fastest option,
and thus, no shortcuts are required.

5.2.5. Shortcut Graph Structure. The stop-to-stop short
cut graph computed by ULTRA for Switzerland is
structurally very different from the transitively closed
transfer graph we created for comparison with pure
public transit algorithms. This is already evidenced by
the fact that the shortcut graph is much less dense, con
taining only 6% as many edges as the transitively closed
graph. Furthermore, the transitive graph consists of
many small, fully connected components with the largest
one containing only 1,004 vertices. By contrast, the larg
est strongly connected component in the shortcut graph
contains 10,891 vertices, which corresponds to 43% of all
stops. Accordingly, a transitive closure of the shortcut
graph would contain more than 100 million edges.

As Wagner and Zündorf (2017) observed when con
structing a transitively closed transfer graph, preserv
ing all transfers with a duration of up to a few minutes
already leads to an average vertex degree of more than
100. This means algorithms that require a transitively
closed transfer graph cannot be efficient and at the
same time guarantee that long transfers are found.

Figure 5 (left side) shows the distribution of travel
times for the ULTRA shortcuts. Note that the high
number of shortcuts with travel time zero is caused by
cases in which multiple stops model the same physical
location. Most of the shortcuts have a travel time of
more than nine minutes (≈ 29 seconds) and are, there
fore, not contained in the transitive transfer graph. In
fact, only 26,826 edges are shared between the two
graphs, which constitute 1.0% of all transitive edges
and 15.7% of all shortcuts. Altogether, this shows that
the transitively closed graph fails to represent most of
the relevant intermediate transfers at the expense of
many superfluous ones.

As with the transfer speed experiment, Figure 5 dis
tinguishes between shortcuts generated by candidates
whose source and target stop are connected in the
transfer graph and shortcuts in which source and target
are isolated. We observe that most of the very long
shortcuts are produced by candidates with isolated
stops. To analyze how often longer shortcuts are re
quired, we examine the distribution of the event-to-
event shortcuts in Figure 5 (right side). Because stop
events occur at a fixed point time, a stop-to-stop short
cut that is required at several times throughout the day
corresponds to multiple event-to-event shortcuts. Thus,
the number of event-to-event shortcuts with a certain
travel time reflects more accurately how frequently
these shortcuts are required. Approximately one third
of all event-to-event shortcuts have a travel time of
zero. Most of these connect pairs of trips at the same
stop and, therefore, have no stop-to-stop counterpart.
Among the remaining shortcuts, most have a travel
time between 1 minute (≈26 s) and 34 minutes (≈211 s).
This is in contrast to the stop-to-stop shortcuts, most of

Figure 5. (Color online) Distribution of the ULTRA Shortcuts with Respect to Their Transfer Time for the Switzerland Network

Notes. The bar between 2i and 2i�1 corresponds to the number of shortcuts with a transfer time in the interval [2i, 2i�1). An exception is the first
bar, which also contains shortcuts with a transfer time of less than a second. The lower portion of each bar represents shortcuts for which the
source and the target of the corresponding candidate journey are connected by a path in the transfer graph. Left: Shortcuts between stops as com
puted by the ULTRA preprocessing. Right: Shortcuts between stop events as computed by the ULTRA-TB preprocessing.

Baum et al.: Unlimited Transfers for Multimodal Journey Planning
Transportation Science, Articles in Advance, pp. 1–24, © 2023 The Author(s) 19

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

93
.2

02
.1

82
.3

7]
 o

n
26

 O
ct

ob
er

 2
02

3,
 a

t 0
3:

33
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

which have a travel time of more than one hour (≈212

s). This shows that very long shortcuts are only rarely
required. Furthermore, the fraction of shortcuts that are
generated by candidates with isolated source and tar
get is much lower in the event-to-event variant than in
the stop-to-stop variant.

5.3. Queries
To evaluate the impact of ULTRA on the query perfor
mance, we test three public transit algorithms: CSA,
RAPTOR, and TB. For CSA and RAPTOR, we compare
our new ULTRA variant to the original algorithm on a
transitively closed transfer graph and a multimodal
variant with Dijkstra (1959) searches. For TB, no multi
modal variants are proposed thus far. We, therefore,
compare the original TB algorithm on a transitively
closed transfer graph to ULTRA-TB with sequential
and integrated preprocessing. Because we do not con
sider parallelized query algorithms, we use the Xeon
machine (which has better single-core performance) for
all following experiments.

Additional experiments evaluating the impact of the
query distance on the running times can be found in
Online Appendix C. Furthermore, a comparison with
the HL-based approaches proposed by Phan and Vien
not (2019) can be found in Online Appendix D. Because
the original evaluation of the HL-based algorithms was
based on a comparison of running times measured on
different machines, we reimplemented all query algo
rithms and evaluated them on the same machine. In
these experiments, we were only able to observe a mar
ginal speedup of HL-RAPTOR compared with MR.

5.3.1. CSA Queries. Unlike the other algorithms we
evaluate, CSA only supports optimizing arrival time as
the sole criterion. Whereas profile CSA, a CSA variant
for range queries, also supports optimizing the number

of trips as a second criterion, no bicriteria variant of
basic CSA has been published thus far. We conducted
preliminary experiments that showed a bicriteria vari
ant of CSA is outperformed by RAPTOR. Therefore,
we only consider single-criterion optimization for CSA.
Unlike RAPTOR, no Dijkstra (1959) based multimodal
variant of CSA has been proposed thus far. We, there
fore, implemented a naive multimodal version of CSA,
which we call multimodal CSA (MCSA), as a baseline
for our comparison. This algorithm alternates connec
tion scans with Dijkstra (1959) searches on the con
tracted core graph in a similar manner to MCR. Query
times for all three CSA variants are reported in Table 5.

On all networks, ULTRA-CSA has a similar running
time to CSA with transitively closed transfers. Cau
tion has to be taken when comparing these running
times because CSA does not support fully multimodal
vertex-to-vertex queries and was, therefore, evaluated
on a different set of stop-to-stop queries. Nonetheless,
our experiments demonstrate that ULTRA enables
CSA to use unrestricted transfers without performance
loss. Compared with MCSA, the ULTRA approach is
faster by about a factor of three to four on most net
works and even more on the Stuttgart network, which
has a particularly large transfer graph. By replacing the
core-CH search of MCSA with a bucket-CH query,
ULTRA speeds up the exploration of initial and final
transfers by a factor of six to eight. The time required
for the exploration of intermediate transfers is difficult
to measure directly because it is interleaved with the
individual connection scans. Nevertheless, we observe
that using ULTRA shortcuts speeds up the connection
scanning phase in its entirety by a factor of two to four
compared with MCSA.

On all networks except Stuttgart, the multimodal
variants scan significantly fewer connections than CSA
on the transitively closed transfer graph. This is a direct

Table 5. Query Performance for CSA, MCSA, and ULTRA-CSA

Network Algorithm Full graph

Scans, k Time, ms

Connection Edge Init. Scan Total

Stuttgart CSA* ◦ 52.6 281 0.0 1.4 1.4
MCSA • 113.7 238 10.1 6.4 16.5
ULTRA-CSA • 113.4 42 1.2 1.7 2.9

London CSA* ◦ 83.9 663 0.0 3.0 3.0
MCSA • 58.2 182 4.6 4.5 9.1
ULTRA-CSA • 57.7 53 0.8 1.9 2.7

Switzerland CSA* ◦ 135.2 787 0.1 4.9 4.9
MCSA • 88.2 241 8.4 8.1 16.4
ULTRA-CSA • 87.6 59 1.1 2.9 4.0

Germany CSA* ◦ 2,587.8 6,351 1.3 144.3 145.5
MCSA • 1,662.1 3,191 142.8 195.2 338.0
ULTRA-CSA • 1,657.3 877 22.4 107.4 129.8

Notes. Query times are divided into two phases: initialization including initial transfers (Init.), and connection scans including intermediate
transfers (Scan). All results are averaged over 10,000 random queries. Note that CSA (marked with *) only supports stop-to-stop queries with
transitive transfers. The other two algorithms have been evaluated for vertex-to-vertex queries on the full graph.

Baum et al.: Unlimited Transfers for Multimodal Journey Planning
20 Transportation Science, Articles in Advance, pp. 1–24, © 2023 The Author(s)

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

93
.2

02
.1

82
.3

7]
 o

n
26

 O
ct

ob
er

 2
02

3,
 a

t 0
3:

33
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

result of the fact that fully multimodal journeys usually
have a shorter travel time (Wagner and Zündorf 2017).
Because CSA scans connections in chronological order,
the number of scanned connections correlates directly
with the earliest arrival time of the query. The Stuttgart
network exhibits the opposite behavior because the
transfer graph covers a much larger geographical area
than the public transit network. Therefore, if the source
and target are picked among all vertices instead of only
stops, the average query distance increases and the
search space becomes larger.

5.3.2. RAPTOR Queries. To evaluate RAPTOR, we used
the MR variant of MCR as the multimodal baseline
algorithm. The results of our comparison are shown in
Table 6. The share of the overall running time spent
exploring the transfer graph (i.e., the Init and Relax
phases) is reduced from 50% to 75% for MR to 20% to

40% for ULTRA-RAPTOR. The Init phase exhibits the
same speedup that was already observed for CSA.
Because RAPTOR explores intermediate transfers in a
separate phase, the impact of using ULTRA shortcuts
can now be measured directly. Compared with the
Dijkstra (1959) searches on the core graph performed by
MR, exploring the transfer shortcuts is up to an order of
magnitude faster. Overall, ULTRA-RAPTOR is two to
three times as fast as MR and has a similar running
time to RAPTOR with transitive transfers.

5.3.3. Trip-Based Queries. We continue with evaluat
ing our improved ULTRA-TB query algorithm. Table 7
compares the query performance for ULTRA-TB with
sequential and integrated preprocessing as well as the
original TB query algorithm on the transitively closed
transfer graph. ULTRA-TB with integrated preproces
sing achieves significantly lower query times than the

Table 6. Query Performance for RAPTOR, MR, and ULTRA-RAPTOR

Network Algorithm Full graph

Scans, k Time, ms

Route Edge Init. Coll. Scan Relax Total

Stuttgart RAPTOR* ◦ 19.8 756 0.2 1.6 2.1 2.1 5.9
MR • 35.6 687 12.3 5.2 5.2 11.1 33.5
ULTRA-RAPTOR • 37.9 105 1.4 3.5 3.5 1.0 9.6

London RAPTOR* ◦ 4.4 2,573 0.3 1.1 2.2 5.4 8.9
MR • 5.0 500 6.4 1.9 2.7 7.0 18.0
ULTRA-RAPTOR • 5.4 179 1.2 1.5 2.3 1.2 6.2

Switzerland RAPTOR* ◦ 26.2 2,115 0.4 2.4 5.0 5.0 12.8
MR • 33.0 731 10.6 4.8 7.2 11.7 34.1
ULTRA-RAPTOR • 35.9 177 1.6 3.3 6.2 1.4 12.5

Germany RAPTOR* ◦ 472.9 26,420 7.0 102.6 120.4 74.2 304.2
MR • 541.4 12,359 154.2 187.5 153.5 236.2 731.4
ULTRA-RAPTOR • 599.7 3,165 33.0 144.0 151.7 33.3 362.1

Notes. Query times are divided into phases: initialization, including scanning initial transfers (Init.), collecting routes (Coll.), scanning routes
(Scan), and relaxing transfers (Relax). All results are averaged over 10,000 random queries. Note that RAPTOR (marked with *) only supports
stop-to-stop queries with transitive transfers, whereas the other three algorithms support vertex-to-vertex queries on the full graph and are
evaluated accordingly.

Table 7. Query Performance for TB and ULTRA-TB (Sequential and Integrated)

Network Algorithm Full graph

Scans, k Time, ms

Trip Shortcut B-CH Initial Scan Total

Stuttgart TB* ◦ 10.9 223 0.0 0.0 1.5 1.6
ULTRA-TB (seq.) • 25.1 1,417 1.2 1.0 5.8 7.9
ULTRA-TB (int.) • 15.3 112 1.1 0.8 1.7 3.6

London TB* ◦ 15.3 830 0.0 0.0 3.7 3.7
ULTRA-TB (seq.) • 23.5 1,021 0.8 0.7 5.1 6.6
ULTRA-TB (int.) • 14.5 153 0.8 0.6 1.9 3.3

Switzerland TB* ◦ 23.4 662 0.0 0.0 4.5 4.5
ULTRA-TB (seq.) • 34.9 1,620 1.0 1.2 7.1 9.3
ULTRA-TB (int.) • 19.5 138 1.0 1.0 2.2 4.3

Germany TB* ◦ 389.1 16,331 0.0 0.0 106.6 106.9
ULTRA-TB (seq.) • 467.5 43,219 19.9 19.3 162.6 202.0
ULTRA-TB (int.) • 196.5 2,057 19.6 19.3 37.9 77.0

Notes. Query times are divided into phases: the bucket-CH query (B-CH), the initial transfer evaluation (Initial), and the scanning of trips (Scan).
All results are averaged over 10,000 random queries. Note that TB (marked with *) only supports stop-to-stop queries with transitive transfers,
whereas the other two algorithms support vertex-to-vertex queries on the full graph.

Baum et al.: Unlimited Transfers for Multimodal Journey Planning
Transportation Science, Articles in Advance, pp. 1–24, © 2023 The Author(s) 21

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

93
.2

02
.1

82
.3

7]
 o

n
26

 O
ct

ob
er

 2
02

3,
 a

t 0
3:

33
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

state of the art. Depending on the network, it has a
speedup of 2–5 over ULTRA-RAPTOR and 5–10 over
MR, which was previously the fastest multimodal jour
ney planning algorithm (cf. Table 6). As with RAPTOR
and CSA, ULTRA-TB is able to match the query perfor
mance of the original TB algorithm despite solving a
harder multimodal problem. Furthermore, ULTRA-TB
achieves a similar performance to ULTRA-CSA despite
optimizing an additional criterion.

Although ULTRA-TB with sequential preprocessing
still outperforms other algorithms, it is slower than the
integrated version by a factor of two. This is because
the integrated preprocessing reduces the number of
relaxed shortcuts by around an order of magnitude.
This, in turn, reduces the overall search space and
thereby the number of scanned trips. Overall, the trip
scanning phase is sped up by a factor of three to four
and only takes up around half of the overall query time.
The remaining half is spent performing the bucket-CH
searches and evaluating initial trips, both of which are
unaffected by the number of transfer shortcuts.

5.3.4. Impact of Transfer Speed. In addition to overall
query performance, we also measured how the query
times of MR, ULTRA-RAPTOR, and ULTRA-TB are
impacted by the transfer speed. Results are shown in
Figure 6 (left side). The performance gains for ULTRA-
RAPTOR compared with MR are similar for all transfer
speeds and, in fact, slightly better for higher speeds. To
explain this, we observe that the time required for the
route scanning phase decreases as the transfer speed
increases. This is because the total number of rounds

and, thus, the number of scanned routes decreases for
higher transfer speeds. ULTRA-RAPTOR benefits more
from this because the share of the route scanning phase
in the overall running time is greater for ULTRA-
RAPTOR than for MR. In all cases, the entire query
time for ULTRA-RAPTOR is similar to or lower than
the time that MR takes for the route scanning phases
only. ULTRA-TB achieves its highest speedup over the
other two algorithms for medium transfer speeds, for
which the number of event-to-event shortcuts is lowest.
For very high transfer speeds, the bucket-CH search for
the initial and final transfers starts to dominate the
overall running time of both ULTRA-based algorithms.
Accordingly, the speedup of ULTRA-TB over ULTRA-
RAPTOR decreases.

The impact of the transfer speed on the travel time of
the fastest journey is shown in Figure 6 (right side). As
the transfer speed increases, the overall travel time de
creases. The time that is spent on an initial or final trans
fer also decreases at first, but its share in the overall travel
time becomes larger. From 10 km/h onward, transferring
directly from source to target starts becoming the best
option for more queries, and consequently, the time spent
on initial and final transfers starts increasing. For very
high transfer speeds, a direct transfer is almost always
the fastest option. This matches our observation that
intermediate transfers become useless for high transfer
speeds unless the source and target are isolated from
each other in the transfer graph. In contrast to initial and
final transfers, intermediate transfers have a very small
impact on the overall travel time, further demonstrating
that long intermediate transfers are rarely needed.

Figure 6. (Color online) Impact of Transfer Speed on Query and Travel Times

Notes. All measurements averaged over 10,000 random queries on the Switzerland network with a core degree of 14 and a witness limit of zero.
Left: Query performance of MR, ULTRA-RAPTOR, and ULTRA-TB. Speed limits were obeyed during the construction of the transfer graph. For
MR and ULTRA-RAPTOR, query times are divided into route collecting/scanning, transfer relaxation, and remaining time. Right: Total travel
time and time spent on initial/final and intermediate transfers for the journey with minimal arrival time. The time required for a direct transfer
from source to target is shown for reference. To allow for this comparison, we only chose random queries for which the source and target vertex
are connected in the transfer graph.

Baum et al.: Unlimited Transfers for Multimodal Journey Planning
22 Transportation Science, Articles in Advance, pp. 1–24, © 2023 The Author(s)

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

93
.2

02
.1

82
.3

7]
 o

n
26

 O
ct

ob
er

 2
02

3,
 a

t 0
3:

33
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

6. Conclusion
We proposed ULTRA, a technique that accelerates the
computation of Pareto-optimal journeys in a public
transit network with an unrestricted transfer graph.
The centerpiece of ULTRA is a preprocessing step that
computes shortcuts that provably represent all neces
sary intermediate transfers. With parallelization, this
step takes only a few minutes for metropolitan and
midsized country networks and about three hours for
Germany. The number of computed shortcuts is low
regardless of the speed of the transfer mode. ULTRA
shortcuts can be used without adjustments by any pub
lic transit algorithm that requires one-hop transfers.
This enables the computation of unrestricted multi
modal journeys without incurring the performance
losses of existing multimodal algorithms. In particular,
combining ULTRA with CSA yields the first efficient
multimodal variant of CSA. To combine ULTRA with
TB, we develop tailored versions of the ULTRA prepro
cessing and the TB query. The resulting ULTRA-TB
algorithm outperforms MR, the fastest previously known
multimodal algorithm for bicriteria optimization, by an
order of magnitude.

Future work could involve extending ULTRA to
support more optimization criteria, such as walking
distance or cost, and multiple non–schedule based
transportation modes. Furthermore, it would be inter
esting to adapt our approach to scenarios in which
public transit vehicles can be delayed. Without adapta
tion, ULTRA can no longer guarantee optimal results
in such a setting because journeys with delayed vehi
cles might require additional intermediate transfers
that are not covered by the shortcut set. We suspect,
however, that the underlying assumption of ULTRA
(i.e., the set of required intermediate transfers is small)
is still valid in a scenario with delays.

Acknowledgments
The authors thank Laurent Viennot and Tim Zeitz for helpful
suggestions, and Sascha Witt for fruitful discussions about
the trip-based routing algorithm. This manuscript is partially
based on extended abstracts that appeared in the proceedings
of the 27th Annual European Symposium on Algorithms
(Baum et al. 2019) and the 20th Symposium on Algorithmic
Approaches for Transportation Modelling, Optimization, and
Systems (Sauer, Wagner, and Zündorf 2020) as well as the
PhD thesis of one of its authors (Zündorf 2020).

References
Abraham I, Delling D, Goldberg AV, Werneck RF (2011) A hub-

based labeling algorithm for shortest paths in road networks.
Pardalos PM, Rebennack S, eds. Proc. 10th Internat. Sympos.
Experiment. Algorithms, Lecture Notes in Computer Science, vol.
6630 (Springer, Berlin), 230–241.

Bast H, Storandt S (2014) Frequency-based search for public transit.
Huang Y, Schneider M, Gertz M, Krumm J, Sankaranarayanan
J, eds. Proc. 22nd SIGSPATIAL Internat. Conf. Adv. Geographic

Inform. Systems (Association for Computing Machinery, New
York), 13–22.

Bast H, Hertel M, Storandt S (2016) Scalable transfer patterns. Good
rich M, Mitzenmacher M, eds. Proc. 18th Workshop Algorithm
Engrg. Experiments (Society for Industrial and Applied Mathe
matics, Philadelphia), 15–29.

Bast H, Carlsson E, Eigenwillig A, Geisberger R, Harrelson C, Ray
chev V, Viger F (2010) Fast routing in very large public trans
portation networks using transfer patterns. de Berg M, Meyer
U, eds. Proc. 18th Annual Eur. Sympos. Algorithms, Lecture Notes
in Computer Science, vol. 6346 (Springer, Berlin), 290–301.

Bast H, Delling D, Goldberg A, Müller-Hannemann M, Pajor T,
Sanders P, Wagner D, Werneck RF (2016) Route Planning in
Transportation Networks. Kliemann L, Sanders P, eds. Algo
rithm Engineering: Selected Results and Surveys, Lecture Notes in
Computer Science, vol. 9220 (Springer, Berlin), 19–80.

Bauer R, Delling D, Wagner D (2011) Experimental study of speed
up techniques for timetable information systems. Networks 57(1):
38–52.

Bauer R, Delling D, Sanders P, Schieferdecker D, Schultes D,
Wagner D (2010) Combining hierarchical and goal-directed
speed-up techniques for Dijkstra’s algorithm. J. Experiment.
Algorithmics 15:1–31.

Baum M, Buchhold V, Sauer J, Wagner D, Zündorf T (2019) Unli
mited transfers for multi-modal route planning: An efficient
solution. Bender MA, Svensson O, Herman G, eds. Proc. 27th
Annual Eur. Sympos. Algorithms, Leibniz International Proceedings
in Informatics, vol. 144 (Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, Dagstuhl), 1–16.

Briem L, Buck S, Ebhart H, Mallig N, Strasser B, Vortisch P, Wagner
D, Zündorf T (2017) Efficient traffic assignment for public
transit networks. Iliopoulos CS, Pissis SP, Puglisi SJ, Raman R,
eds. Proc. 16th Internat. Sympos. Experiment. Algorithms, Leib
niz International Proceedings in Informatics, vol. 75 (Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl), 1–14.

Delling D, Dibbelt J, Pajor T (2019) Fast and exact public transit
routing with restricted Pareto sets. Kobourov S, Meyerhenke H,
eds. Proc. 21st Workshop Algorithm Engrg. Experiments (Society
for Industrial and Applied Mathematics, Philadelphia), 54–65.

Delling D, Katz B, Pajor T (2012) Parallel computation of best con
nections in public transportation networks. J. Experiment. Algo
rithmics 17:1–26.

Delling D, Pajor T, Wagner D (2009) Engineering time-expanded
graphs for faster timetable information. Ahuja RK, Möhring RH,
Zaroliagis CD, eds. Robust and Online Large-Scale Optimization:
Models and Techniques for Transportation Systems, Lecture Notes
in Computer Science, vol. 5868 (Springer, Berlin), 182–206.

Delling D, Pajor T, Werneck RF (2015) Round-based public transit
routing. Transportation Sci. 49(3):591–604.

Delling D, Dibbelt J, Pajor T, Werneck RF (2015) Public transit label
ing. Proc. 14th Internat. Sympos. Experiment. Algorithms, Lecture
Notes in Computer Science, vol. 9125 (Springer, Berlin), 273–285.

Delling D, Dibbelt J, Pajor T, Zündorf T (2017) Faster transit routing
by hyper partitioning. Proc. 17th Workshop Algorithmic Approaches
Transportation Model. Optim. Systems, OpenAccess Series in Infor
matics, vol. 59 (Schloss Dagstuhl–Leibniz-Zentrum für Informa
tik), 1–14.

Delling D, Dibbelt J, Pajor T, Wagner D, Werneck RF (2013) Com
puting multimodal journeys in practice. Bonifaci V, Demetrescu
C, Marchetti-Spaccamela A, eds. Proc. 12th Internat. Sympos.
Experiment. Algorithms, Lecture Notes in Computer Science, vol.
7933 (Springer, Berlin), 260–271.

Dibbelt J, Pajor T, Wagner D (2015) User-constrained multimodal
route planning. J. Experiment. Algorithmics 19:1–19.

Dibbelt J, Pajor T, Strasser B, Wagner D (2018) Connection scan
algorithm. J. Experiment. Algorithmics 23:1–56.

Baum et al.: Unlimited Transfers for Multimodal Journey Planning
Transportation Science, Articles in Advance, pp. 1–24, © 2023 The Author(s) 23

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

93
.2

02
.1

82
.3

7]
 o

n
26

 O
ct

ob
er

 2
02

3,
 a

t 0
3:

33
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Dijkstra EW (1959) A note on two problems in connexion with graphs.
Numerische Mathematik 1:269–271.

Disser Y, Müller-Hannemann M, Schnee M (2008) Multi-criteria
shortest paths in time-dependent train networks. McGeoch CC,
ed. Proc. Seventh Internat. Workshop Experiment. Efficient Algo
rithms, Lecture Notes in Computer Science, vol. 5038 (Springer,
Berlin), 347–361.

Geisberger R, Sanders P, Schultes D, Vetter C (2012) Exact routing
in large road networks using contraction hierarchies. Transpor
tation Sci. 46(3):388–404.

Giannakopoulou K, Paraskevopoulos A, Zaroliagis CD (2019) Multi
modal dynamic journey-planning. Algorithms 12(10):1–16.

Knopp S, Sanders P, Schultes D, Schulz F, Wagner D (2007) Comput
ing many-to-many shortest paths using highway hierarchies.
Applegate D, Brodal GS, eds. Proc. Ninth Workshop Algorithm
Engrg. Experiments (Society for Industrial and Applied Mathe
matics, Philadelphia), 36–45.

Lehoux V, Loiodice C (2020) Faster preprocessing for the trip-
based public transit routing algorithm. Huisman D, Zaroliagis
CD, eds. Proc. 20th Sympos. Algorithmic Approaches Transportation
Model. Optim. Systems, OpenAccess Series in Informatics, vol. 85
(Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl),
1–12.

Mallig N, Kagerbauer M, Vortisch P (2013) mobiTopp—A modular
agent-based travel demand modelling framework. Procedia Comput.
Sci. 19:854–859.

Müller-Hannemann M, Schnee M (2007) Finding all attractive train
connections by multi-criteria Pareto search. Geraets F, Kroon L,
Schöbel A, Wagner D, Zaroliagis CD, eds. Algorithmic Methods

for Railway Optimization, Lecture Notes in Computer Science,
vol. 4359 (Springer, Berlin), 246–263.

Phan DM, Viennot L (2019) Fast public transit routing with unrest
ricted walking through hub labeling. Kotsireas I, Pardalos P,
Parsopoulos KE, Souravlias D, Tsokas A, eds. Proc. Special Event
Anal. Experiment. Algorithms, Lecture Notes in Computer Sci
ence, vol. 11544 (Springer, Berlin), 237–247.

Pyrga E, Schulz F, Wagner D, Zaroliagis CD (2008) Efficient models
for timetable information in public transportation systems. J.
Experiment. Algorithmics 12:1–39.

Sauer J (2018) Faster public transit routing with unrestricted walk
ing. Unpublished master’s thesis, Karlsruhe Institute of Tech
nology, Germany.

Sauer J, Wagner D, Zündorf T (2020) Integrating ULTRA and trip-
based routing. Huisman D, Zaroliagis CD, eds. Proc. 20th Sympos.
Algorithmic Approaches Transportation Model. Optim. Systems, Open
Access Series in Informatics, vol. 85 (Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, Dagstuhl), 1–15.

Wagner D, Zündorf T (2017) Public transit routing with unrestricted
walking. D’Angelo G, Dollevoet T, eds. Proc. 17th Workshop Algorith
mic Approaches Transportation Model. Optim. Systems, OpenAccess
Series in Informatics, vol. 59 (Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, Dagstuhl), 1–14.

Witt S (2015) Trip-based public transit routing. Bansal N, Finocchi I,
eds. Proc. 23rd Annual Eur. Sympos. Algorithms, Lecture Notes in
Computer Science, vol. 9294 (Springer, Berlin), 1025–1036.

Zündorf T (2020) Multimodal journey planning and assignment in
public transportation networks. Unpublished PhD thesis, Karls
ruhe Institute of Technology, Germany.

Baum et al.: Unlimited Transfers for Multimodal Journey Planning
24 Transportation Science, Articles in Advance, pp. 1–24, © 2023 The Author(s)

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

93
.2

02
.1

82
.3

7]
 o

n
26

 O
ct

ob
er

 2
02

3,
 a

t 0
3:

33
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

	ULTRA: Unlimited Transfers for Efficient Multimodal Journey Planning
	Introduction
	Preliminaries
	Shortcut Computation
	Query Algorithms
	Experiments
	Conclusion

