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Abstract. We study a multimodal journey planning scenario consisting of a public transit 
network and a transfer graph that represents a secondary transportation mode (e.g., walk
ing, cycling, e-scooter). The objective is to compute Pareto-optimal journeys with respect to 
arrival time and the number of used public transit trips. Whereas various existing algo
rithms can efficiently compute optimal journeys in either a pure public transit network or a 
pure transfer graph, combining the two increases running times significantly. Existing 
approaches, therefore, typically only support limited walking between stops by either 
imposing a maximum transfer distance or requiring the transfer graph to be transitively 
closed. To overcome these shortcomings, we propose a novel preprocessing technique 
called unlimited transfers (ULTRA): given an unlimited transfer graph, which may repre
sent any non–schedule based transportation mode, ULTRA computes a small number of 
transfer shortcuts that are provably sufficient for computing a Pareto set of optimal jour
neys. These transfer shortcuts can be integrated into a variety of state-of-the-art public 
transit algorithms, establishing the ULTRA-query algorithm family. Our extensive experi
mental evaluation shows that ULTRA improves these algorithms from limited to unlimited 
transfers without sacrificing query speed. This is true not just for walking, but also for fas
ter transfer modes, such as bicycle or car. Compared with the state of the art for multi
modal journey planning, the fastest ULTRA-based algorithm achieves a speedup of an 
order of magnitude.
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1. Introduction
Research on efficient route-planning algorithms has 
seen remarkable advances in the past two decades. On 
road networks, queries can be answered in less than a 
millisecond with moderate preprocessing effort even 
for continental-scale graphs. Similar results are cur
rently out of reach for public transit networks, but 
state-of-the-art algorithms nevertheless achieve query 
times of a few milliseconds on metropolitan and mid
sized country networks (Bast et al. 2016). Even more 
challenging is the multimodal journey planning prob
lem, which combines schedule-based (i.e., public tran
sit) and non–schedule based (e.g., walking, cycling, 
driving) modes of transportation. Whereas this covers 
a greater variety of possible journeys, solving it effi
ciently remains difficult (Wagner and Zündorf 2017). 

In this work, we consider a multimodal problem that 
augments public transit with a transfer graph, which 
represents one arbitrary, non–schedule based transpor
tation mode. This transfer mode can be used at the start 
and end of a journey to enter and exit the public transit 
network and for transferring between public transit 
vehicles in the middle of the journey. Given a source 
and target vertex in the transfer graph and a departure 
time, the objective is to compute Pareto-optimal jour
neys with respect to arrival time and the number of 
used public transit trips.

1.1. Related Work
Journey planning algorithms for public transit networks 
can be divided into graph-based approaches and algo
rithms that operate directly on the timetable, exploiting 
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its schedule-based structure (Bast et al. 2016). Graph- 
based approaches model the public transit network as a 
graph and then answer queries with Dijkstra’s (1959) 
algorithm, which can be sped up by applying preproces
sing techniques (Delling, Pajor, and Wagner 2009; Bast 
et al. 2010; Bauer, Delling, and Wagner 2011; Delling 
et al. 2015; Bast, Hertel, and Storandt 2016). The two 
main modeling approaches are the time-dependent (Dis
ser, Müller-Hannemann, and Schnee 2008; Pyrga et al. 
2008) and time-expanded (Müller-Hannemann and 
Schnee 2007, Pyrga et al. 2008) models. The time- 
expanded model uses vertices to represent events in 
the timetable (e.g., a vehicle arriving at or departing 
from a stop) and edges to connect consecutive events. 
By contrast, the time-dependent model represents stops 
(e.g., a train station) of the network as vertices and con
nects two stops with an edge if they are served consec
utively by at least one vehicle. Associated with each 
edge is a function that maps departure time to travel 
time. Both models can integrate footpaths (Disser, 
Müller-Hannemann, and Schnee 2008; Bast et al. 2010; 
Delling et al. 2015) but only as direct edges between 
public transit stops. This means that an unrestricted 
footpath network cannot be encoded efficiently because 
the number of edges would be quadratic in the number 
of stops. To ensure a reasonable graph size, footpaths 
are typically restricted to small, connected components 
of nearby stops (Delling, Katz, and Pajor 2012), for 
example, by limiting the maximal duration (e.g., five 
minutes of walking) or distance (e.g., 400 m) (Bast and 
Storandt 2014; Bast, Hertel, and Storandt 2016; Gianna
kopoulou, Paraskevopoulos, and Zaroliagis 2019) of 
footpaths.

Notable timetable-based approaches include the round- 
based public transit optimized router (RAPTOR) (Delling, 
Pajor, and Werneck 2015), connection scan algorithm 
(CSA) (Dibbelt et al. 2018), and the corresponding 
speedup techniques, HypRAPTOR (Delling et al. 2017) 
and ACSA (Dibbelt et al. 2018). Instead of exploring the 
public transit network with Dijkstra’s (1959) algorithm, 
these algorithms rely on array-based scanning operations 
that improve cache locality. As with the graph-based 
approaches, footpaths can be integrated as transfer edges 
between pairs of stops. However, these are required to 
be one-hop transfers; that is, at most one transfer edge 
may be used when transferring between two public tran
sit trips. This removes the need for Dijkstra (1959) 
searches within the transfer graph as every possible des
tination can be reached with a single edge. Additionally, 
both RAPTOR and CSA require that the transfer graph 
is transitively closed, which ensures that optimal jour
neys never require multiple transfer edges in succession. 
RAPTOR can be modified to lift this restriction (Delling, 
Dibbelt, and Pajor 2019), allowing for one-hop transfers 
without a transitive closure. In this case, journeys with 
multiple consecutive transfer edges are prohibited, and 

the algorithm finds optimal journeys among those that 
remain. This can lead to counterintuitive journeys that 
take detours to avoid using two transfer edges in succes
sion. On the other hand, computing the transitive closure 
significantly increases the size of the transfer graph. As 
shown by Wagner and Zündorf (2017), limiting the max
imal transfer duration to 20 minutes before computing 
the transitive closure already leads to a graph that is too 
large for practical applications.

A special case among the timetable-based approa
ches is trip-based routing (TB) (Witt 2015), which 
requires a preprocessing phase that computes transfers 
between pairs of trips. This is done by enumerating all 
possible transfers and then applying a set of pruning 
rules to omit some but not all unnecessary transfers. TB 
requires a transitively closed transfer graph as input 
and was originally only evaluated for very sparse 
transfer graphs. Because it enumerates all transfers 
before pruning them, the preprocessing time is highly 
sensitive to the size of the transfer graph. Lehoux and 
Loiodice (2020) mitigate this by proposing an alterna
tive transfer enumeration method that discards many 
unnecessary transfers before they are enumerated. How
ever, neither version of the TB preprocessing supports 
unrestricted transfer graphs.

Using a restricted transfer graph is often justified 
with the argument that long transfers are rarely useful. 
However, experiments show that the availability of 
unrestricted walking significantly reduces travel times 
(Wagner and Zündorf 2017, Sauer 2018, Phan and Viennot 
2019). Naturally, this effect is even stronger for faster 
transportation modes, such as bicycle or car. Handling 
unrestricted transfer graphs (which may represent any 
non–schedule based transportation mode) requires mul
timodal journey planning algorithms. These algorithms 
typically work by interleaving an existing public transit 
algorithm with Dijkstra (1959) searches on the transfer 
graph. Notable examples are user-constrained contraction 
hierarchies (UCCH) (Dibbelt, Pajor, and Wagner 2015) 
and multimodal multicriteria RAPTOR (MCR) (Delling 
et al. 2013), which are based on a time-dependent, graph- 
based approach and RAPTOR, respectively. Because the 
Dijkstra (1959) searches are expensive, these algorithms 
are slow compared with their pure public transit counter
parts. More recently, HL-RAPTOR and HL-CSA (Phan 
and Viennot 2019) were proposed. Here, RAPTOR and 
CSA are interleaved with two-hop searches based on 
hub labeling (HL) (Abraham et al. 2011) instead of 
Dijkstra (1959). Whereas this requires a moderately 
expensive preprocessing phase, the authors report a 
speedup of 1.7 over the bicriteria variant of MCR for 
HL-RAPTOR.

1.2. Contribution
Preliminary experiments (Sauer 2018) show that the im
pact of unrestricted transfers in Pareto-optimal journeys 
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depends heavily on their position in the journey: ini
tial transfers, which connect the source to the first 
public transit vehicle, and final transfers, connecting 
the final vehicle to the target, are fairly common and 
often have a large impact on the travel time. By con
trast, intermediate transfers between public transit 
trips are only occasionally relevant for optimal jour
neys. This suggests that the number of unique paths 
in the transfer graph that occur as intermediate trans
fers of a Pareto-optimal journey is small. Using this 
insight, we propose a new preprocessing technique 
called unlimited transfers (ULTRA), which computes 
a set of shortcut edges representing these paths. The 
preprocessing step is carefully engineered to ensure 
that the number of shortcuts remains small. Com
bined with efficient one-to-many searches for the ini
tial and final transfers, these shortcuts are provably 
sufficient for answering all possible queries correctly.

ULTRA shortcuts can be used without adjustment 
by any algorithm that requires one-hop transfers bet
ween stops. In our experimental evaluation, we dem
onstrate this for RAPTOR and CSA. The resulting 
multimodal algorithms have roughly the same query 
performance as the original restricted algorithms regard
less of the speed of the considered transfer mode. In par
ticular, ULTRA-CSA is the first multimodal variant of 
CSA. For TB, we show that only minor changes are nec
essary to make ULTRA compute shortcuts between trips 
instead of stops. This allows ULTRA to replace the TB 
preprocessing phase, enabling unlimited transfers. We 
demonstrate that this significantly reduces the number 
of required shortcuts and the query time compared with 
a naive approach, that is, using the output of ULTRA as 
input for the TB preprocessing. Overall, ULTRA-TB out
performs the bicriteria version of MCR, which was pre
viously the fastest multimodal algorithm, by about an 
order of magnitude. This yields query times of a few 
milliseconds on metropolitan networks and less than 
100 ms on the much larger network of Germany.

1.3. Outline
The remainder of this work is structured as follows. 
Section 2 establishes basic notation and gives an over
view of the algorithms on which ULTRA builds. We 
then describe the ULTRA shortcut computation in Sec
tion 3 and prove that it computes a sufficient set of 
transfer shortcuts. Section 4 explains how the transfer 
shortcuts can be integrated into query algorithms that 
require one-hop transfers. We also present modifica
tions to the TB query algorithm to make it more efficient 
in a multimodal setting. We evaluate the performance of 
our preprocessing and query algorithms on real-world 
multimodal networks in Section 5. Finally, we summa
rize our results and give an outlook on potential future 
work in Section 6.

2. Preliminaries
This section establishes basic terminology and intro
duces foundational algorithms.

2.1. Terminology
2.1.1. Network. A public transit network is a four- 
tuple (S, T , R, G) consisting of a set of stops S; a set of 
trips T ; a set of routes R; and a directed, weighted 
transfer graph G � (V,E). A stop is a location in the net
work where passengers can board or disembark a vehi
cle (such as buses, trains, ferries, etc.). A trip T �
〈ɛ0, : : : ,ɛk〉 ∈ T is a sequence of stop events performed 
by the same vehicle. A stop event ɛ � (τarr(ɛ), τdep(ɛ), 
v(ɛ)) represents the vehicle arriving at the stop v(ɛ)
with the arrival time τarr(ɛ) and subsequently depart
ing from the same stop with the departure time τdep(ɛ). 
The ith stop event in T is denoted as T[i]. The length 
|T| :� k is the number of stop events in T. A trip seg
ment Tij :� 〈ɛi, : : : ,ɛj〉 is a contiguous subsequence of T 
that begins at T[i] and ends at T[j]. The set of routes R 

is a partition of T such that two trips that are part of 
the same route visit the same sequence of stops and do 
not overtake each other. A trip Ta ∈ T overtakes a trip 
Tb ∈ T if there exist two indices i< j such that Ta arrives 
at or departs from v(Ta[i]) not before Tb but arrives at 
or departs from v(Ta[j]) not after Tb. Given a trip T, the 
route of T is denoted as R(T). The length |R| of a route 
R is the length of any trip belonging to the route.

The transfer graph G � (V,E) consists of a set of verti
ces V with S ⊆ V and a set of edges E ⊆ V × V. Travel
ing along an edge e � (v, w) ∈ E requires the transfer 
time τtra(e). The notion of transfer time carries over to 
paths P � 〈v1, : : : , vk〉 in G, using the definition τtra(P)
:�
Pk�1

i�1 τtra((vi, vi+1)). Unlike in scenarios with limited 
footpaths, we impose no restrictions on G. It does not 
need to be transitively closed; it may be strongly con
nected; and transfer times may represent walking, 
cycling, or some other non–schedule based mode of 
travel. An example of a public transit network with an 
unrestricted transfer graph is shown in Figure 1.

2.1.2. Journeys. A journey describes the movement of 
a passenger through the network from a source vertex 
s ∈ V to a target vertex t ∈ V. Each ride of the passenger 
in a public transit vehicle can be described by a trip 
segment, whereas the transfers between the rides are 
represented by paths in the transfer graph. An interme
diate transfer between two trip segments Tij

a and Tmn
b is 

a path P in G such that (1) the path begins with the last 
stop of Tij

a , that is, v(Ta[j]); (2) the path ends with the 
first stop of Tmn

b , that is, v(Tb[m]); and (3) the transfer 
time of the path is sufficient to reach Tmn

b after vacating 
Tij

a . This can be expressed formally as τarr(Ta[j]) + τtra 

(P) ≤ τdep(Tb[m]). An initial transfer before a trip seg
ment Tij is a path in G from the source s to the first stop 
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of Tij. Correspondingly, a final transfer after a trip seg
ment Tij is a path in G from the last stop of Tij to the 
target t.

A journey J � 〈P0, Tij
0 , : : : , Tmn

k�1, Pk〉 is an alternating 
sequence of transfers and trip segments. Note that 
some or all of the transfers may be empty, that is, con
sist of a single stop only. Given source and target verti
ces s, t ∈ V, we call journey J an s–t journey if P0 begins 
with s and Pk ends with t. The departure time of the 
journey is defined as τdep(J) :� τdep(T0[i])� τtra(P0) and 
the arrival time as τarr(J) :� τarr(Tk�1[n])+ τtra(Pk). The 
number of trips used by the journey is denoted as 
|J| :� k. An important special case is a journey J � 〈P0〉
that consists solely of a path in the transfer graph. 
Because such a journey does not use any trips, it can be 
traversed at any time. Thus, its departure time τdep(J)
has to be stated separately, and its arrival time is then 
given by τarr(J) :� τdep(J) + τtra(P0). The vertex sequence 
of J is the concatenation of its transfers: V(J) � P0◦
P1◦⋯ ◦Pk. A subjourney of J is a journey Js � 〈P′x, 
Tgh

x , : : : , Tpq
y�1, P′y〉 such that 〈Tgh

x , : : : , Tpq
y�1 〉 is a contigu

ous subsequence of J, P′x is a suffix of Px, and P′y is a 
prefix of Py. If x � 0 and P′x � P0, we call Js a prefix of J. 
Conversely, if y � k and P′y � Pk, we call Js a suffix of J. 
Note that a subjourney may start or end in the middle 
of a transfer but never in the middle of a trip segment. 
Given two vertices v, w ∈ V(J), the subjourney of J from 
v to w is denoted as Jvw .

2.1.3. Problem Statement. To evaluate the usefulness 
of a journey J, we mainly consider the two criteria 
arrival time τarr(J) and number of trips |J|. Given a set 
of criteria, a journey J weakly dominates another jour
ney J′ if J is not worse than J′ in any criterion. More
over, J strongly dominates J′ if J is strictly better than J′
in at least one criterion and not worse in the others. 
Given a query consisting of source and target vertices 
s, t ∈ V and an earliest departure time τdep, a journey is 
called feasible if it is an s–t journey that does not depart 
earlier than τdep. A feasible journey J is called Pareto- 

optimal if no other feasible journey exists that strongly 
dominates J. A Pareto set is a set J containing a mini
mal number of Pareto-optimal journeys such that every 
feasible journey is weakly dominated by a journey in 
J . For a given query, the objective is to compute a 
Pareto set with respect to the two criteria: arrival time 
and number of trips. See Figure 1 for a Pareto set of 
journeys in the shown example network.

2.1.4. Departure Buffer Times. Many works on public 
transit routing (e.g., Pyrga et al. 2008, Delling et al. 
2015) allow a minimum change time to be specified for 
each stop. It must be observed when transferring bet
ween two trips at the same stop but not when entering 
a trip after arriving via a path in the transfer graph or 
when entering the first trip at the start of the journey. 
The minimum change time is useful for modeling stops 
that represent larger stations with multiple platforms. 
Here, the minimum change time represents the time 
needed to change between platforms. This modeling 
choice is reasonable for settings with direct transfers 
between stops. However, when allowing an unrestricted 
transfer graph, it can lead to inconsistencies. Given a 
stop with minimum change time τ, if a path starting and 
ending at this stop with a transfer time less than τ exists, 
then taking that path allows passengers to circumvent 
the minimum change time.

To prevent this, we introduce departure buffer times 
as an alternative modeling approach. Each stop v ∈ S 

has a nonnegative departure buffer time τbuf(v), which 
is the minimum amount of time that has to pass after 
arriving at the stop before a vehicle can be boarded. 
Unlike the minimum change time, the departure buffer 
time always has to be observed when a trip is entered 
even if the stop was reached via a transfer or if the trip 
is the first one in the journey. Departure buffer times 
can be integrated into the network implicitly by reduc
ing the departure times of the stop events accordingly. 
For each stop event ɛ � (τarr(ɛ),τdep(ɛ), v(ɛ)), we obtain 
the reduced stop event ɛ′ � (τarr(ɛ),τdep(ɛ)� τbuf(v(ɛ)), 

Figure 1. (Color online) An Example of a Public Transit Network with an Unrestricted Transfer Graph 

Notes. Edges in the transfer graph (thin lines) are labeled with their travel time. Routes are displayed as sequences of thick lines. The lines (s, w) and 
(w, x) belong to the same route. Each edge is labeled with the departure and arrival times of the associated in trips in the format τdep→ τarr. For a 
query from s to t with departure time 0, a Pareto set with respect to arrival time and number of trips consists of the journeys J0 � 〈〈s, v, w, y, t〉〉 with 
arrival time 10, J1 � 〈〈s, v, w〉, 〈3→ 7〉, 〈z, t〉〉with arrival time 8, and J2 � 〈〈s〉, 〈1→ 2, 2→ 3〉, 〈x〉, 〈5→ 7〉, 〈t〉〉with arrival time 7.
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v(ɛ)). Note that this may cause stop events to appear as 
if they depart before they arrive. However, because the 
departure time is only relevant when entering the trip 
at the current stop and not when remaining seated in 
the trip, this does not lead to trips that travel backward 
in time. In the following, we do not discuss departure 
buffer times explicitly and instead assume that they are 
integrated into the departure times as described here.

2.2. Algorithms
We now give an overview of the algorithms on which 
ULTRA is based.

2.2.1. Dijkstra’s (1959) Algorithm. Given a graph G �
(V, E) with edge length function ℓ : E→ R+0 and a 
source vertex s ∈ V, Dijkstra’s (1959) algorithm com
putes for each vertex v the length of the shortest s–v 
path. It maintains for each vertex v a tentative distance 
dist[v], which is initialized with ∞. Additionally, it 
maintains a priority queue Q of vertices ordered by 
their key, which is the tentative distance. Initially, s is 
inserted into Q with key dist[s] � 0. Then, vertices are 
extracted from Q in increasing order of key. Each 
extracted vertex v is settled by relaxing its outgoing 
edges. An edge e � (v, w) ∈ E is relaxed by comparing 
the tentative distance dist[w] to the distance dist[v] +
ℓ(e) that is achieved by traversing e. If the latter is smal
ler, dist[w] is updated accordingly, and w is inserted 
into Q with key dist[w].

2.2.2. Contraction Hierarchies. To explore the transfer 
graph, ULTRA utilizes algorithms based on contraction 
hierarchies (CH) (Geisberger et al. 2012), a preproces
sing technique originally developed to speed up one- 
to-one queries in road networks. The basic building 
block of CH is vertex contraction: a vertex is contracted 
by removing it from the graph and inserting shortcut 
edges between its neighbors such that shortest path 
distances in the graph are preserved. The CH prepro
cessing phase for a graph G � (V, E) iteratively con
tracts the vertices of G in a heuristically determined 
order. The position of a vertex in this contraction order 
is called its rank. The output of this preprocessing 
phase is an augmented graph G+ � (V, E+) that con
tains all original edges and all inserted shortcut edges. 
The augmented graph can be split into an upward 
graph G↑ � (V, E↑) containing only edges from lower to 
higher ranked vertices and a corresponding downward 
graph G↓ � (V, E↓). Queries are answered with a bidi
rectional variant of Dijkstra’s (1959) algorithm, in which 
the forward search explores G↑ and the backward 
search explores G↓.

Bucket-CH (Knopp et al. 2007, Geisberger et al. 2012) 
is an extension of CH for one-to-many queries. It oper
ates in three phases. First, given the graph G � (V, E), 
the CH precomputation is performed. Second, given 

the set Vt ⊆ V of targets, a bucket containing distances 
to the targets is computed for every vertex. This is 
done by performing a backward search on G↓ from 
every target vertex t ∈ Vt. For each vertex v settled by 
this search with distance dist(v, t), the entry (t, dist 
(v, t)) is added to the bucket of v. Finally, given a query 
with source vertex s, the algorithm performs a forward 
search on G↑. For each vertex v settled by this search 
with distance dist(s, v), the bucket of v is evaluated. For 
each bucket entry (t, dist (v, t)), the shortest distance to 
t found so far is compared with dist(s, v) +dist(v, t) and 
updated if it is improved.

Multimodal algorithms, such as UCCH and MCR, 
employ a special variant of the CH precomputation 
that we call core-CH (Bauer et al. 2010; Delling et al. 
2013; Dibbelt, Pajor, and Wagner 2015). Here, the pre
computation is not allowed to contract vertices that 
coincide with stops. Thus, a set of core vertices Vc with 
S ⊆ Vc ⊆ V is left uncontracted. In addition to the (par
tially) augmented graph, this yields a core graph Gc �

(Vc, Ec), which consists of Vc and all shortcuts that 
were inserted between core vertices. If only stops are 
allowed as core vertices, the number of core edges is 
quadratic in the number of stops. This slows down 
both the precomputation and query algorithms to the 
point at which they become impractical. In practice, the 
contraction process is, therefore, stopped once the aver
age vertex degree in the core graph surpasses a speci
fied limit.

2.2.3. RAPTOR. To explore the public transit network, 
ULTRA employs algorithms from the RAPTOR family. 
RAPTOR (Delling, Pajor, and Werneck 2015) answers 
one-to-one and one-to-all queries in a public transit net
work with one-hop transfers. It operates in rounds, in 
which the ith round finds journeys with i trips by 
appending an additional trip to journeys found in the 
previous round. For each stop v ∈ S and each round i, 
the algorithm maintains a tentative arrival time τarr 

(v, i), which is the earliest arrival time among all jour
neys to v with at most i trips found so far. Each round 
consists of a route scanning phase followed by a trans
fer relaxation phase. Round i assumes that every stop v 
for which τarr(v, i� 1) is improved in round i � 1 has 
been marked. Before either phase is performed, τarr(v, i)
is initialized with τarr(v, i� 1) for each stop v ∈ S. Then, 
the route scanning phase collects all routes that visit 
marked stops and scans them. A route R is scanned by 
iterating across all visited stops, starting at the first 
marked stop. During the scan, the algorithm maintains 
an active trip Tmin, which is the earliest trip of R that 
can be entered at any of the already processed stops. 
Let v be the jth stop of R. If Tmin has already been 
set, the algorithm checks whether exiting Tmin at v 
with arrival time τarr(Tmin[j]) improves τarr(v, i). If 
so, τarr(v, i) is updated accordingly, and v is marked. 
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Afterward, the algorithm checks whether there is an 
earlier trip than Tmin that can be entered when arriving 
at v with arrival time τarr(v, i� 1). If so, Tmin is updated 
accordingly. After all collected routes have been scanned, 
the transfer relaxation phase is performed. For every 
marked stop v, each outgoing transfer edge e � (v, w) ∈
E is relaxed. If τarr(v, i) + τtra(e) is smaller than τarr(w, i), 
the latter is updated, and w is marked as well. For a 
query with source stop s ∈ S and departure time τdep, 
the algorithm initializes τarr(s, 0) with 0 and all other 
arrival times in round 0 with ∞. Then, round 0 is per
formed, which marks s and relaxes its outgoing trans
fers. Afterward, new rounds are performed until no 
more stops have been marked.

An extension of RAPTOR called McRAPTOR (Delling, 
Pajor, and Werneck 2015) is able to Pareto-optimize 
additional criteria besides arrival time and number of 
trips. In turn, McRAPTOR can be extended to support 
multimodal scenarios with unlimited transfers. The 
resulting algorithm, MCR (Delling et al. 2013), replaces 
the transfer relaxation phase of (Mc)RAPTOR with a 
Dijkstra (1959) search on a core graph computed with 
core-CH. ULTRA employs the bicriteria variant of 
MCR, which was originally proposed under the name 
MR-∞, but which we call MR for the sake of simplicity. 
MR maintains the tentative arrival time τarr(v, i) for 
every core vertex v ∈ Vc, not just for stops. The transfer 
relaxation phase runs Dijkstra’s (1959) algorithm on the 
core graph, using τarr(·, i) as the tentative distances. The 
priority queue is initialized with all marked stops, and 
all stops that are settled by the search are themselves 
marked. Note that the Dijkstra (1959) search on the 
core graph can only guarantee to find shortest paths 
between pairs of stops. However, the source and target 
vertices s, t ∈ V may not necessarily be stops. Initial 
and final transfers are, therefore, explored with sea
rches on the upward and downward graph produced 
by core-CH, respectively.

Another RAPTOR extension, rRAPTOR (Delling, Pajor, 
and Werneck 2015), answers range queries, which ask 
for a Pareto set of journeys for every departure time 
within a given interval. rRAPTOR exploits the observa
tion that every Pareto-optimal journey (except for a 
direct transfer from s to t) starts by entering a trip at s 
or a stop reachable via a transfer from s. This limits the 
number of possible departure times to a small set DT 

of discrete values. For each of these departure times, 
rRAPTOR performs a run of the basic RAPTOR algo
rithm. The departure times are processed in descend
ing order, and the arrival times τarr(·, ·) are not reset 
between runs. As a result, journeys found during the 
current run are implicitly pruned by journeys that 
depart later and neither arrive later nor have more 
trips. This property of rRAPTOR is called self-pruning.

2.2.4. Trip-Based Routing. A faster alternative to RAP
TOR for one-to-one queries is TB (Witt 2015). It in
cludes a preprocessing phase that computes transfers 
between pairs of stop events by first generating all pos
sible transfers and then removing unnecessary ones in 
a transfer-reduction phase. The query algorithm resem
bles a breadth-first search on the set of stop events. 
Instead of tentative arrival times at stops, TB maintains 
a reached index r(T) for each trip T. This is the index k 
of the first stop event T[k] that has already been 
reached by the search. Initially, it is set to |T|. As with 
RAPTOR, TB operates in rounds, in which each round 
scans trip segments collected in a first in, first out 
(FIFO) queue. When the algorithm reaches a stop event 
T[j], it calls the Enqueue operation: if j < r(T), the trip 
segment Tjk with k � r(T)� 1 is added to the queue of 
the next round. Then, the reached index is updated: for 
each trip T′ of the route R(T) that does not depart 
before T, the reached index r(T′) is set to min(r(T′), j). 
Initially, the algorithm processes stops that are reach
able from the source stop s with a transfer. For each 
stop v and each route R visiting v, the algorithm finds 
the earliest trip of R that can be entered at v and calls 
the Enqueue operation for the corresponding stop 
event. Then, the algorithm performs rounds until the 
next queue is empty. A trip segment Tjk is scanned by 
iterating over the stop events from T[j] to T[k]. For 
each stop event T[i], the outgoing precomputed trans
fers are relaxed. A transfer (T[i], T′[i′]) is relaxed by 
calling the Enqueue operation for T′[i′]. Additionally, 
TB maintains a Pareto set of journeys at the target stop 
t. If t is reachable from v(T[i]) via a transfer, the algo
rithm adds the produced journey to the Pareto set and 
removes dominated journeys.

3. Shortcut Computation
We now present the ULTRA preprocessing phase, 
which computes shortcut edges that represent interme
diate transfers between trips. These shortcuts must be 
sufficient for answering every point-to-point query cor
rectly. This is achieved if every query can be answered 
with a Pareto set of journeys whose intermediate trans
fers are all represented by shortcuts. On the other 
hand, the number of shortcuts should be as small as 
possible to allow for fast queries.

We present two variants of the ULTRA preproces
sing, which differ in the granularity of the computed 
shortcuts: In the stop-to-stop variant, shortcuts connect 
pairs of stops. This is sufficient for most public transit 
algorithms, including RAPTOR and CSA. The event- 
to-event variant computes shortcuts between stop events, 
which are required by TB. Unlike stop-to-stop shortcuts, 
these also provide information about the specific trips 
between which a transfer is necessary. Both variants are 
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identical except for a few crucial details, which are dis
cussed explicitly as appropriate.

ULTRA works by enumerating a set of journeys J c 

with exactly two trips such that all required shortcuts 
occur as intermediate transfers in J c. For each enumer
ated journey, the intermediate transfer is unpacked, 
and a shortcut is generated for it. Before we describe 
the algorithm, we first establish a definition for J c that 
is sufficient for answering all queries but keeps the 
number of shortcuts as low as possible. We then pro
vide a high-level overview of the ULTRA shortcut 
computation and prove that it enumerates J c. After
ward, we discuss running time optimizations to make 
the algorithm efficient in practice. Finally, we compare 
event-to-event ULTRA to the TB preprocessing and 
show that it is more effective at discarding unnecessary 
transfers.

3.1. Enumerating a Sufficient Set of Journeys
Consider the subproblem in which only queries bet
ween fixed source and target vertices s, t ∈ V must be 
answered. Then, the following naive algorithm com
putes a sufficient set of shortcuts: Enumerate the set 
J opt of all s–t journeys J that are Pareto-optimal for the 
departure time τdep(J) and generate a shortcut for every 
intermediate transfer that occurs in J opt. This produces 
more shortcuts than necessary: if there are multiple 
Pareto-optimal journeys that are equivalent in both cri
teria, only one of them is required to answer a query. 
The goal is, therefore, to find a set J canon ⊆ J opt of jour
neys that excludes such duplicates but is still sufficient 
for answering all queries correctly. We observe that 
every journey in J canon with more than two trips can 
be decomposed into subjourneys with two trips each. 
Every shortcut that occurs in J canon also occurs in the 
much smaller set containing only these subjourneys. To 
exploit this algorithmically, we require that J canon is 
closed under subjourney decomposition, that is, every 
subjourney of a journey in J canon is itself contained in 
J canon.

3.1.1. Tiebreaking Sequences. In order to achieve clo
sure under subjourney decomposition, ties between 
equivalent journeys must be broken in a consistent 
manner. For this purpose, we define total orderings on 
the sets of routes and vertices with a route index func
tion idR : R→ N and a vertex index function idV :

V→ N. Then, ties between equivalent journeys are bro
ken as follows: journeys that end with trip segments 
are preferred over journeys that end with (nonempty) 
transfers. For journeys that end with a trip segment Tij, 
the index of the route R(T) and the index i at which the 
trip segment starts are used as tiebreakers in this order. 
For journeys that end with an edge (w, v), ties are bro
ken first by considering the arrival time at w and then 
by considering the vertex index idV(w). If two journeys 

share a nonempty suffix, this suffix is ignored, and the 
respective prefixes of the journeys are compared ins
tead. To formalize these tiebreaking rules, we associate 
with each s–t journey J a unique tiebreaking sequence. 
The tiebreaking sequence X(v, J) of a vertex v ∈ V(J)
with v ≠ s is defined as

X(v, J) :�

〈τarr(Jsv ), idR (R(T)), i, ∞, ∞〉
if Jsv ends with a trip segment Tij

〈τarr(Jsv ),∞, ∞, τarr(Jsw ), idV(w)〉
if Jsv ends with an edge(w, v):

8
>>><

>>>:

The tiebreaking sequence of an s–t journey J with ver
tex sequence V(J) � 〈s � v1, : : : , vk � t 〉 is defined as X(J)
:� X(vk, J)◦⋯ ◦X(v2, J). This sequence is unique among 
all s–t journeys. In particular, if two journeys J and J′ end 
with trip segments Tij

a ≠ Tmn
b , then their tiebreaking 

sequences are different. If τarr(J) � τarr(J′) and R(Ta)

� R(Tb), then Ta � Tb, and j � n must hold because the 
trips cannot overtake each other. Then, the tiebreaking 
sequences are different because of i ≠ m. Sequences are 
ordered lexicographically: for sequences A � 〈a1, a2, : : : , 
ak〉 and B � 〈b1, b2, : : : , bk〉 of equal length, A < B if a1 <
b1, or a1�b1 and 〈a2, : : : , ak〉 < 〈b2, : : : , bk〉. For sequences 
of different length, the shorter one is padded with �∞ on 
the right side before they are compared.

3.1.2. Canonical Journeys. Because tiebreaking sequ
ences are strictly ordered, ambiguities between equiva
lent journeys can be resolved by replacing the criterion 
arrival time with the tiebreaking sequence. We say that 
an s–t journey J canonically dominates another s–t jour
ney J′ if X(J) < X(J′) and |J| ≤ |J′|. Because the two tieb
reaking sequences cannot be equal, there is no need to 
distinguish between strong and weak canonical domi
nance. An s–t journey J is called canonical if it is Pareto- 
optimal with respect to the tiebreaking sequence and 
number of trips for the departure time τdep(J), that is, if 
no other s–t journey exists that is feasible for τdep(J)
and canonically dominates J. Because no two journeys 
can be equivalent in both criteria, the set that consists 
of all feasible canonical journeys is the only Pareto set 
for any given query. We call this the canonical Pareto 
set. The set J canon is the union of the canonical Pareto 
sets for all possible s–t queries. This set is closed under 
subjourney decomposition.

Lemma 1. For every canonical s–t journey J and every 
pair v, w ∈ V(J) of vertices visited by J, the subjourney Jvw 
is canonical.

Proof. Assume that Jvw is not canonical. Then, there is 
a journey J′vw such that J′vw is feasible for τdep(Jvw ), 
X(J′vw ) < X(Jvw ) and |J′vw | ≤ |Jvw|. Because J′vw does not 
depart earlier or arrive later than Jvw , replacing Jvw 
with J′vw in J yields a feasible journey J′ with |J′| ≤ |J|. 
Adding the prefix Jsv to J′vw and Jvw adds identical 

Baum et al.: Unlimited Transfers for Multimodal Journey Planning 
Transportation Science, Articles in Advance, pp. 1–24, © 2023 The Author(s) 7 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

93
.2

02
.1

82
.3

7]
 o

n 
26

 O
ct

ob
er

 2
02

3,
 a

t 0
3:

33
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



suffixes to both tiebreaking sequences. This does not 
change their relative order, so X(J′sw ) < X(Jsw ). Simi
larly, adding the suffix Jwt to J′sw and Jsw adds identical 
prefixes to both tiebreaking sequences, which does 
not change their relative order. Therefore, X(J′) < X(J)
and J is not canonical. w

3.1.3. Candidate Journeys. We exploit the closure of 
J canon under subjourney decomposition by defining a 
suitable set of subjourneys that need to be enumerated. 
A candidate is a journey that consists of two trips con
nected by an intermediate transfer but with empty ini
tial and final transfers. Every canonical journey that 
uses at least two trips can be decomposed into candi
date subjourneys. By Lemma 1, these subjourneys are 
themselves canonical. Accordingly, every shortcut that 
occurs in J canon also occurs in the set J c ⊆ J canon of 
canonical candidate journeys. A sufficient set of short
cuts can, therefore, be computed by enumerating J c.

3.1.4. Canonical MR. Canonical Pareto sets can be com
puted by making slight modifications to MR in order to 
ensure proper tiebreaking: first, at the start of each 
round, the collected routes are sorted according to idR 

before they are scanned. The second change concerns 
the keys of vertices in the Dijkstra (1959) priority 
queue. In standard MR, the key of a vertex v in round i 
is the tentative arrival time τarr(v, i) at v with i trips. 
This is now replaced with 〈τarr(v, i), idV(v)〉. The result
ing implementation of MR, which we call canonical 
MR, finds equivalent journeys in increasing order of 
tiebreaking sequence. Hence, canonical journeys are 
found first, and all other equivalent journeys are dis
carded because they are weakly dominated by them. 
This is proven by the following lemma.

Lemma 2. Canonical MR returns the canonical Pareto set 
for every query.

Proof. See Online Appendix A.
The journeys returned by a straightforward (nonca

nonical) implementation of MR are not closed under 
subjourney decomposition. An example demonstrat
ing this is given in Online Appendix B.

3.2. Algorithm Overview
We now describe how J c can be enumerated effici
ently. Directly applying the definition of J c yields a 
simple but wasteful approach: for every possible source 
stop and every possible departure time, a one-to-all 
canonical MR search restricted to the first two rounds is 
performed. A candidate Jc is canonical if there is no fea
sible journey Jw with at most two trips that canonically 
dominates Jc (and is, therefore, found before Jc by the 
respective canonical MR search). If such a journey Jw 

exists, we call it a witness because its existence proves 
that Jc is not canonical. Unlike candidates, witnesses 

may have nonempty initial or final transfers, and they 
may use fewer than two trips. If there is no witness for a 
candidate Jc, the corresponding canonical MR search 
includes Jc in its Pareto set. A shortcut representing the 
intermediate transfer of Jc is then generated.

3.2.1. Adapting rRAPTOR. The reason this approach is 
wasteful is that it does not exploit the self-pruning 
property of rRAPTOR: if journeys with later departure 
times are explored first, they can be used to dominate 
worse journeys with an earlier departure time. We, 
therefore, adapt rRAPTOR to the ULTRA setting: the 
RAPTOR search that is performed in each run is 
replaced with a canonical two-round MR search. This 
version of rRAPTOR is then invoked for each possible 
source stop s ∈ S with a departure time interval that 
covers the entire duration of the timetable.

We can make further improvements by carefully 
choosing the departure times for which runs are per
formed. rRAPTOR performs a run for every possible 
departure time τdep at s. A departure time τdep is possi
ble if there is a stop v (which may be s itself) that is 
reachable from s via an initial transfer of length τtra 

(s, v) and a trip that departs from v at τdep + τtra(s, v). If 
transfers are unrestricted, the number of possible depar
ture times is very high because, typically, most stops in 
the network are reachable from s. Accordingly, a str
aightforward multimodal adaptation of rRAPTOR per
forms many runs and is, therefore, slow. In the context 
of ULTRA, however, most possible departure times 
require a nonempty initial transfer, which means that 
the corresponding runs would not find any candidates. 
Because the goal is to enumerate candidates, ULTRA 
only performs the runs for departure events that occur 
directly at s. Let DT � {τ0

dep, : : : ,τk
dep} be the set of pos

sible departure times directly at s, sorted in ascending 
order. The run for τi

dep explores candidates departing at 
τi

dep and witnesses with departure times in the interval 
[τi

dep, τi+1
dep). We define τk+1

dep :�∞ to ensure that the run 
for τk

dep explores all witnesses that depart after τk
dep. By 

integrating the witness search into the candidate runs, 
the algorithm skips many witnesses that would be 
required to answer a range query but are irrelevant for 
dominating candidates. Thus, the ULTRA preproces
sing is much faster than a straightforward multimodal 
adaptation of rRAPTOR.

Algorithm 1 (ULTRA Transfer Shortcut Computation)
Input: Public transit network (S, T , R, G), core 
graph Gc � (Vc, Ec)

Output: Shortcut graph Gs � (S, Es)

1 for each s ∈ S do
2 Clear all arrival labels and Dijkstra (1959) 

queues
3 τtra(s, ·) ←Compute transfer times in Gc from 

s to all stops
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4 DT ←Collect departure times of trips at s
5 for each τi

dep ∈DT in descending order do 
//canonical MR run

6 Collect and sort routes reachable within 
[τi

dep,τi+1
dep)

//first round

7 Scan routes
8 Relax transfers
9 Collect and sort routes serving updated 

stops 
//second round

10 Scan routes
11 Ecanon←Relax transfers, thereby collecting 

shortcuts
12 Es← Es ∪ Ecanon.

3.2.2. Pseudocode. High-level pseudocode for the ULT
RA shortcut computation scheme is given by Algorithm 1. 
For each source stop s ∈ S, the algorithm performs the 
modified multimodal rRAPTOR search described in Sec
tion 3.2.1. To avoid redundant Dijkstra (1959) searches, ini
tial transfers to all other stops are explored only once per 
source stop (line 3), and the results are then reused for 
each run in line 6. The departure times at s for which runs 
need to be performed are collected in line 4. The runs are 
performed in lines 6–12. Each run consists of two canonical 
MR rounds, which are subdivided into three phases: col
lecting routes and sorting them according to idR (lines 4 
and 6), scanning routes (lines 7 and 10), and relaxing trans
fers with a Dijkstra (1959) search (lines 8 and 11). After the 
final transfer relaxation phase in line 11, the remaining can
didates that have not been dominated by witnesses are 
canonical, so shortcuts representing their intermediate 
transfers are added to the shortcut graph in line 12.

3.2.3. Extracting Shortcuts. The final transfer relaxa
tion phase in line 11 identifies canonical candidates 
and extracts their shortcuts. Whenever a stop is settled 
during the Dijkstra (1959) search, the algorithm checks 
whether the corresponding journey J is a candidate, 
that is, has an empty initial and final transfer. If so, 
we know that J is canonical because any witness 
that canonically dominates it would have been found 
already. Therefore, an edge representing the intermedi
ate transfer of J is added to the shortcut graph Gs. In 
order to extract the intermediate transfer, each vertex v 
maintains two parent pointers p1[v] and p2[v], where 
pk[v] is the parent for reaching v using k trips (i.e., 
within the kth MR round). If the journey to v ends with 
a trip, pk[v] points to the stop at which this trip was 
entered. If the journey ends with a transfer, it points to 
the stop at which the transfer starts. For a candidate 
ending at a stop t, the shortcut representing its interme
diate transfer is given by (p1[p2[t]], p2[t]). Because 
intermediate transfers only need to be extracted for 

candidates, the parent pointer is set to a special value ⊥
if the corresponding journey has a nonempty initial or 
final transfer. Then, the final Dijkstra (1959) search in 
line 11 can check whether the journey ending at a stop 
v is a candidate or a witness by inspecting p2[v].

The event-to-event variant of ULTRA generates short
cuts not between stops, but between stop events. The 
parent pointer definitions are changed accordingly: if the 
journey to a vertex v ends with a trip, pk[v] now points 
to the stop event at which this trip was entered. If the 
journey ends with a transfer, it points to the stop event at 
which the preceding trip was exited. Because only candi
dates have valid parent pointers and candidates have 
empty initial transfers, this preceding trip always exists. 
For a candidate that ends at a stop t, the corresponding 
shortcut is now given by (p1[v(p2[t])], p2[t]).

3.2.4. Repairing Self-Pruning. Using a rRAPTOR-based 
approach with self-pruning allows ULTRA to discard 
many irrelevant candidates early on. However, self- 
pruning can also cause the algorithm to discard canoni
cal journeys. By exploring journeys with later departure 
times first, rRAPTOR implicitly maximizes departure 
time as a third criterion. With this additional criterion, 
there may be queries for which all Pareto-optimal jour
neys include suboptimal subjourneys. An example of 
this is shown in Figure 2. In this case, some canonical 
candidates are suboptimal for three criteria and, there
fore, not found by the rRAPTOR-based scheme. More
over, in the depicted network, there is no Pareto set for 
two criteria that is closed under subjourney decomposi
tion and only includes journeys that are Pareto-optimal 
for three criteria. Hence, the problem cannot be avoided 
by defining J canon in a different manner. Instead, we 
modify the dominance criterion to ensure that canonical 
journeys are not discarded.

For a journey J, let run(J) be the highest i with τi
dep ∈

DT such that τdep(J) ≥ τi
dep. This is the run in which 

our modified rRAPTOR finds J. For each vertex v and 
round i, the algorithm maintains a label ℓ(v, i) � (τarr 

(v, i), p i[v], run(v, i)), where τarr(v, i) is the tentative arri
val time, pi[v] is the parent pointer, and run(v, i) is the 
run of the journey corresponding to this label, which we 
denote as J(v, i). Let ℓ � (τarr, p, j) be the label of a new 
journey J that is found by the algorithm at v in round i. 
Normally, rRAPTOR discards J if it is weakly domi
nated by J(v, i), that is, τarr(v, i) ≤ τarr. Otherwise, it 
replaces ℓ(v, i) with ℓ. Our modified algorithm discards 
J if it is weakly dominated by J(v, i) and one of the fol
lowing conditions is fulfilled: (1) J is not a prefix of a 
candidate, that is, p � ⊥; (2) J is strongly dominated by 
J(v, i), that is, τarr(v, i) < τarr or τarr(v, i� 1) ≤ τarr; or (3) 
J(v, i) is found in the current run, that is, run(v, i) � j. 
With this modified dominance condition, we can prove 
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that the ULTRA preprocessing computes a sufficient 
shortcut graph.

Theorem 1. For every canonical journey J � 〈P0, Tij
0 , : : : , 

Tmn
k�1, Pk〉, every intermediate transfer in J is represented by 

an edge in the shortcut graph computed by ULTRA.

Proof. Consider an intermediate transfer Px+1 of J and 
the corresponding candidate subjourney Jc � 〈Tgh

x , 
Px+1, Tpq

x+1 〉. We show that the modified rRAPTOR 
search for the source stop v(Tx[g]) finds this candidate 
in the run for τdep(Jc) and inserts a shortcut for it. 
Assume Jc is not found. Then, some prefix J′ of Jc is 
discarded by the search in favor of a witness Jw. By 
Lemma 1, J′ is canonical and, therefore, not strongly 
dominated by Jw. Then, by our modified dominance 
criterion, Jw must have been found in the same canoni
cal MR run as J′. However, by Lemma 2, canonical 
MR discards Jw in favor of J′, a contradiction. w

3.3. Optimizations
We now discuss running time optimizations that are 
not mentioned in the high-level overview given by 
Algorithm 1. These optimizations are crucial for achiev
ing fast preprocessing times.

3.3.1. Initial Route Collection. An rRAPTOR run with 
departure time τi

dep explores journeys that depart at s 
within the interval [τi

dep,τi+1
dep). Line 6 collects the set 

R(τi
dep) of routes that must be scanned in the first 

round of this run. This set consists of all routes R for 
which there is a stop v visited by R and a trip T of R 
such that τdep(T, v)� τtra(s, v) ∈ [τi

dep,τi+1
dep). In order to 

speed up this step, the set R(τi
dep) is precomputed 

when τi
dep is added to the set DT of candidate depar

ture times in line 4. This leads to the following proce
dure for calculating DT and R(·): first, the algorithm 
collects all departure triplets (v, τdep, R) of departure 
stop v, departure time τdep, and route R that occur in 
the network. They are then sorted by their departure 
time at s, which is τdep� τtra(s, v), and processed in 
descending order. The algorithm maintains a tentative 
set R′ of routes for the next candidate departure time 
that is added to DT . For each triplet (v, τdep, R), the 

algorithm checks whether v � s. If v ≠ s, R is added to 
R′. Otherwise, τdep is a candidate departure time. If 
τdep is already contained in DT , the algorithm already 
found another route departing from s at τdep, so R is 
added to R(τdep). Otherwise, τdep is added to DT , 
R(τdep) is set to R′ ∪ {R}, and R′ is cleared.

3.3.2. Limited Dijkstra (1959) Searches. The algorithm 
can be sped up by introducing a stopping criterion to the 
Dijkstra (1959) search for final transfers in line 11. For 
this purpose, the preceding route scanning phase in line 
10 counts the number of stops that are marked because 
their tentative arrival time is improved by a candidate. 
Whenever such a stop is settled in line 11, the counter is 
decreased. Once the counter reaches zero, we know that 
the Dijkstra (1959) search has processed all candidates 
that have been found in this run, so it is stopped.

A similar stopping criterion is applied to the interme
diate Dijkstra (1959) search in line 8. Here, the first route 
scanning phase in line 7 counts the stops whose tenta
tive arrival time is improved by a candidate prefix, that 
is, a journey with an empty initial transfer. As in line 11, 
the Dijkstra (1959) search is stopped as soon as no such 
stops are left in the queue. This does not affect the cor
rectness of the computed shortcut graph Gs because all 
candidates are still processed. However, some of the 
witnesses that are pruned might be required to domi
nate noncanonical candidates. In this case, superfluous 
shortcuts are added to Gs. This can be counteracted by 
continuing the Dijkstra (1959) search for some time after 
the last candidate prefix has been extracted. We in
troduce a parameter τ̄wit called the witness limit that 
determines how long the search continues. Let τarr be 
the arrival time of the last extracted candidate prefix. 
Instead of stopping the Dijkstra (1959) search immedi
ately, it continues until the smallest element in the 
queue has an arrival time greater than τarr + τ̄wit.

Once a Dijkstra (1959) search is stopped, the remain
ing witness labels are kept in the queue because they 
may dominate candidates in later runs. This requires 
that the two Dijkstra (1959) searches in lines 8 and 11 
use separate queues so that labels from the final Dijk
stra (1959) search of a previous run do not interfere 

Figure 2. (Color online) An Example Network Showing the Conflict Between Canonicity and Self-Pruning 

Notes. Every s-t journey that is Pareto-optimal with respect to the three criteria, arrival time, number of trips, and departure time, includes a sub
optimal subjourney. Transfer edges (thin lines) are labeled with their travel time, whereas trips (thick lines) are labeled with τdep→ τarr. The two 
Pareto-optimal journeys are J � 〈〈s〉, 〈0→ 1〉, 〈a, b〉, 〈2→ 3〉, 〈c, d, e〉, 〈7→ 8〉, 〈t〉〉 and J′ � 〈〈s〉, 〈0→ 1〉, 〈a, b, c′〉, 〈4→ 5〉, 〈d, e〉, 〈7→ 8〉, 〈t〉〉. The 
subjourney Jbt of J is not Pareto-optimal because it has an earlier departure time than J′bt and is otherwise equivalent. Likewise, the subjourney J′sd 
is suboptimal because it has a later arrival time than Jsd.
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with the intermediate Dijkstra (1959) search of the cur
rent run. As a consequence, if a label is discarded 
because it is dominated, it must be explicitly removed 
from any queues that still contain it. Moreover, the run 
in which a label is settled may no longer be the same 
one in which it was enqueued. Accordingly, the run in 
which a journey J is found may no longer equal run(J). 
To ensure that the dominance condition is applied cor
rectly, the run of a newly created label is carried over 
from its parent label rather than setting it to the cur
rently performed run.

With these changes, the only remaining part of the 
algorithm that performs an unlimited Dijkstra (1959) 
search on the core graph is the initial transfer relaxation 
in line 3. Unlike the searches for the intermediate and 
final transfers, this search is only performed once for 
every source stop instead of once per run, so its impact 
on the overall running time is small.

3.3.3. Pruning with Found Shortcuts. Once a shortcut 
is found and added to the shortcut graph Gs, it is no 
longer necessary to find candidates that produce the 
same shortcut. We exploit this by further restricting the 
definition of candidates: a journey is only classified as a 
candidate if its intermediate transfer is not contained in 
the set of already computed shortcuts. Because this 
reduces the number of candidates, the stopping crite
rion for the Dijkstra (1959) searches in lines 8 and 
11 may be applied earlier, further saving preproces
sing time.

Whenever a potential candidate is found during the 
second route scanning phase in line 10, the stop-to-stop 
variant of ULTRA checks if the corresponding shortcut 
is already contained in Gs. If so, the journey is classified 
as a witness by setting its parent pointer to ⊥. In the 
event-to-event variant, this check is more expensive 
because the number of shortcuts is much larger. Fur
thermore, because an event-to-event shortcut typically 
occurs in many fewer candidate journeys than its stop- 
to-stop counterpart, it is much less likely that the 
shortcut is already contained in Gs. Our preliminary 
experiments show that the benefit of potentially dis
missing a candidate no longer outweighs the work 
required to look up the shortcut. Therefore, the check 
is skipped in the event-to-event variant.

When a candidate is extracted from the Dijkstra 
(1959) queue in line 11 and a shortcut is inserted for it, 
there may be other candidates remaining in the queue 
that use the same intermediate transfer. These must be 
turned into witnesses by setting the respective parent 
pointers to ⊥. This requires keeping track of all candi
dates belonging to a particular shortcut. Within a single 
canonical MR run, the search can find at most one 
intermediate transfer ending at a particular stop or 
stop event. In stop-to-stop ULTRA, each stop v, there
fore, maintains a list of all nondominated candidates 

whose intermediate transfer ends at v. The event- 
to-event variant does the same for each stop event. 
When a shortcut is inserted, all candidates in the corre
sponding list are turned into witnesses.

3.3.4. Transfer Graph Contraction. As with MCR (Del
ling et al. 2013), the Dijkstra (1959) searches are per
formed on a core graph, which is constructed with 
core-CH in advance. Because ULTRA only needs to 
compute journeys between pairs of stops rather than 
arbitrary vertices in the transfer graph, only transfers 
that start and end at stops are relevant. Accordingly, 
the initial and final transfer searches that MCR per
forms on the upward and downward CH graphs can 
be omitted.

Another type of contraction is performed for cliques 
of stops that have a pairwise distance of zero in the 
transfer graph. These cliques typically occur when dif
ferent platforms of a larger station are modeled as indi
vidual stops. Each such clique is contracted into a 
single stop in order to decrease the number of canoni
cal MR runs that need to be performed. The number of 
runs for a source stop s is equal to the number of 
unique departure times at s. If a departure time occurs 
at multiple stops within a clique with transfer distance 
zero, then the algorithm performs one run for this 
departure time at each stop. The journeys found by 
these runs are identical save for initial transfers of 
length zero. By contracting the clique into a single stop, 
these redundant runs are merged into one. This does 
not affect the correctness of the algorithm because it 
is conceptually equivalent to allowing candidates to 
begin with an initial transfer of length zero.

3.3.5. Parallelization. Finally, we observe that ULTRA 
allows for trivial parallelization. The preprocessing 
algorithm searches for candidates once for every possi
ble source stop (line 1 of Algorithm 1). As these sear
ches are mostly independent of each other, they can be 
distributed to parallel threads, and the results are then 
combined in a final sequential step. The only aspect of 
the algorithm that introduces a dependency between 
the searches for different source stops is the restricted 
candidate definition: a journey is only considered a 
candidate if no shortcut has yet been added for its 
intermediate transfer. If a shortcut was added by a 
different thread, the algorithm does not notice this. 
However, because this is merely a performance optimi
zation, the algorithm remains correct if only shortcuts 
added by the current thread are considered.

3.4. Integration with Trip-Based Routing
Unlike other public transit algorithms, TB on its own 
already requires a preprocessing step even when used 
without ULTRA. One possible approach for enabling 
unlimited transfers in TB is with a sequential three- 
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phase algorithm: First, shortcuts between stops are 
generated with the stop-to-stop variant of the ULTRA 
preprocessing. These are then used as input for the TB 
preprocessing, which generates event-to-event short
cuts that can be used by the ULTRA-TB query. How
ever, we show that an integrated two-phase approach 
is superior. Here, the TB preprocessing is replaced 
entirely by the event-to-event variant of the ULTRA 
preprocessing. The resulting shortcuts between stop 
events are then used as input for the ULTRA-TB query. 
The advantage of the integrated approach is that it pro
duces fewer shortcuts because ULTRA applies stricter 
pruning rules than the TB preprocessing. Both algo
rithms enumerate journeys with at most two trips in 
order to find witnesses that prove that a potential short
cut is not necessary. The TB preprocessing does this in 
a transfer-reduction step after all potential shortcuts 
have been generated. Because the latter is no longer 
feasible with unlimited transfers, ULTRA interleaves 
the generation and pruning of shortcuts. Furthermore, 
ULTRA examines a larger set of witnesses. In the TB 
preprocessing, witnesses must start with the same stop 
event as the candidate, whereas ULTRA also considers 
witnesses that start with a nonempty initial transfer or 
a different initial trip. Furthermore, because the TB pre
processing explores intermediate transfers by iterating 
along the stop sequence of the initial trip in reverse, a 
candidate cannot be pruned by witnesses that exit the 
initial trip before the candidate. Overall, ULTRA has 
more options for pruning candidates and, thus, pro
duces fewer shortcuts.

4. Query Algorithms
ULTRA shortcuts can be combined with any public 
transit query algorithm that normally requires one- 
hop transfers. The idea is to replace the original trans
fer graph with the precomputed shortcuts and run the 
algorithm on the resulting network. Some algorithms, 
including RAPTOR, CSA, and TB, normally require 
that the transfer graph is transitively closed. Whereas 
this is not the case for the ULTRA shortcut graph, this 
is not a problem: Theorem 1 proves that journeys with 
two consecutive shortcut edges are never required to 
answer a query correctly. Accordingly, if a transitive 
edge is missing in the shortcut graph, we know that it 
is never required as part of an optimal journey.

Whereas the shortcut graph covers intermediate tra
nsfers between two trips, it does not provide any infor
mation for transferring from the source to the first trip 
or transferring from the last trip to the target. In this sec
tion, we describe how initial and final transfers can be 
integrated into the query algorithms efficiently. Addi
tionally, we describe optimizations for the TB query 

algorithm that make it more efficient in a scenario with 
unlimited transfers.

4.1. Query Algorithm Framework
The ULTRA query algorithm exploits the fact that, for 
initial and final transfers, one endpoint of the transfer 
is fixed. All initial transfers start at the source vertex s 
of the query, whereas all final transfers end at the tar
get vertex t. Therefore, initial and final transfers can 
be explored with two additional one-to-many queries 
on the original transfer graph: a forward query to 
compute distances from s to all stops and a backward 
query for the distances from all stops to t. ULTRA 
uses bucket-CH for this task as it is one of the fastest 
known one-to-many algorithms and allows for opti
mization of local queries. Thus, ULTRA requires three 
preprocessing steps in total: First, a core graph is con
structed with core-CH. This is then used as input for 
the transfer shortcut computation outlined in Section 
3. The third step is the bucket-CH preprocessing for 
the original transfer graph G. The query algorithm 
then takes as input the public transit network, transfer 
shortcut graph, and bucket-CH data. Pseudocode for 
the query algorithm is shown in Algorithm 2.

A query begins with a bidirectional CH search from 
s to t in line 1. This yields the travel time τtra(s, t) for a 
direct transfer from s to t (which may be ∞ if no direct 
transfer is possible). A naive approach would then 
perform a forward bucket-CH query from s and a 
reverse bucket-CH query from t, yielding for every 
stop v the initial transfer distance τtra(s, v) and the 
final transfer distance τtra(v, t). However, not all of 
these distances are actually needed. An initial transfer 
to a stop v cannot be part of an optimal journey if 
τtra(s, v) ≥ τtra(s, t) because any journey containing the 
initial transfer is dominated by the direct transfer 
from s to t. Likewise, no optimal journey can include a 
final transfer to a stop v with τtra(v, t) ≥ τtra(s, t). The 
algorithm exploits this by using the forward and back
ward search spaces Vs and Vt of the bidirectional CH 
query. Because the CH search is stopped once the 
shortest s–t path is found, these contain no vertices 
whose distance from s and to t, respectively, is greater 
than τtra(s, t). Therefore, it is sufficient to scan the for
ward buckets of all vertices in Vs (line 2) and the back
ward buckets of all vertices in Vt (line 2). Additional 
query time can be saved by sorting the entries of each 
bucket in ascending order of distance during the pre
processing phase. Then, the scan for the forward 
bucket of a vertex v can be stopped once it reaches a 
stop w within the bucket with τtra(s, v) + τtra(v, w) ≥
τtra(s, t) (and analogously for backward buckets). 
Doing so drastically improves local queries as they do 
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not need to evaluate all stops, but only stops that are 
close to the source or target.
Algorithm 2 (ULTRA Query Algorithm Framework)

Input: Public transit network (S, T , R, G), transfer 
shortcut graph Gs � (S, Es), bucket-CH data for G, 
source vertex s, departure time τdep, and target vertex t
Output: Pareto set J of s–t journeys for departure 
time τdep 

1 (τtra(s, t),Vs , Vt ) ←Run a CH query from s to t 
with departure time τdep

2 τtra(s, ·) ←Evaluate the vertex-to-stop buckets for 
vertices in Vs

3 τtra(·, t) ←Evaluate the stop-to-vertex buckets for 
vertices in Vt

4 G̃s
← (S ∪ {s, t},Es)

5 Add edge (s, t)with travel time τtra(s, t)
6 for each v ∈ S \ {s, t}with τtra(s, v) < τtra(s, t) do
7 Add edge (s, v) to G̃s with travel time τtra(s, v)
8 for each v ∈ S \ {s, t}with τtra(v, t) < τtra(s, t) do
9 Add edge (v, t) to G̃s with travel time τtra(v, t)
10 Run black-box public transit algorithm on (S ∪
{s, t},T , R, G̃s

).
After the distances for the initial and final transfers 

are computed, the algorithm creates a temporary copy 
G̃s of the shortcut graph Gs, which contains s and t as 
additional vertices. In lines 5–9, this temporary graph 
is complemented with edges for the initial and final 
transfers and the direct transfer from s and t, using the 
distances obtained from the bucket-CH queries. Finally, 
a public transit algorithm is invoked as a black box on 
the public transit network with the temporary graph G̃s 

in line 10. The temporary graph is sufficient for obtain
ing correct results as it contains edges for all necessary 
initial, intermediate, and final transfers and an edge for 
a direct transfer from source to target. Because there are 
no additional requirements on the black-box public 
transit algorithm, it is easy to see that any existing algo
rithm can be used with ULTRA shortcuts.

If the public transit algorithm is not treated as a black 
box, the performance can be improved further by 
omitting the construction of G̃s. Most public transit 
algorithms, including RAPTOR and CSA, maintain a 
tentative arrival time at each stop, which is improved 
as new journeys are found. Instead of adding an edge 
from s to a stop v, the tentative arrival time of v can be 
initialized with τdep + τtra(s, v). To incorporate final 
transfers, whenever the tentative arrival time at a stop 
v is set to some value τ, the algorithm can try to 
improve the tentative arrival time at t with τ+ τtra(v, t).

4.2. Improved TB Query
Unlike most algorithms, TB already distinguishes bet
ween initial/final and intermediate transfers, exploring 
different graphs for both. The original transfer graph G 
is only used for the initial and final transfers, whereas 
intermediate transfers are explored using the precomputed 

event-to-event transfers. In the context of ULTRA, this 
requires a modification to the query framework shown 
in Algorithm 2: the temporary graph G̃s now only con
tains the edges added for the initial and final transfers 
and not the ULTRA shortcuts. The query then uses G̃s 

for the initial and final transfers and the unmodified 
event-to-event shortcut graph Ge � (Ve, Ee) for the inter
mediate transfers.

Additionally, the TB query algorithm can be opti
mized further for networks with unlimited transfers. 
The original query, as introduced by Witt (2015), is 
optimized for a use case in which only a few stops are 
reachable with an initial or final transfer. However, 
with unlimited transfers, it is typical for almost all 
stops to be reachable. Therefore, we restructure the 
query to allow the huge number of possible initial and 
final transfers to be processed more efficiently. Pseudo
code for the modified query is given by Algorithm 3. In 
the following, we describe this algorithm in detail.

4.2.1. Initial Transfer Evaluation. As in the generic 
ULTRA query, the algorithm begins with the bucket- 
CH search (lines 1–3). This yields a minimum arrival 
time τarr(s, v) for every reached stop v as well as the 
minimum arrival time τmin at t via a direct transfer. If 
τmin <∞, a label representing the s–t journey with zero 
trips is added to the result set L in line 5. The algorithm 
then identifies trips that are reachable via an initial 
transfer (lines 8–19). In the original TB query (Witt 
2015), this is done by iterating over all stops that are 
reachable via an initial transfer. For each such stop v 
and each route R visiting v, the algorithm identifies the 
earliest trip of R that can be entered at v after taking 
the initial transfer. This approach is efficient as long as 
the number of stops reachable via an initial transfer is 
small. However, in a scenario with unlimited transfers 
in which almost all stops are reachable, consecutive 
stops of a route often share the same earliest reachable 
trip. This can cause the same trip to be found multiple 
times, leading to redundant work. To avoid this, we 
propose a new approach for evaluating the initial trans
fers, which is based on two steps of the RAPTOR algo
rithm: collecting updated routes and scanning routes.

Lines 8 and 9 collect all routes that visit a stop that is 
reachable via an initial transfer. This is analogous to 
collecting routes that visit marked stops at the begin
ning of a RAPTOR round. Then, all collected routes are 
scanned. As in RAPTOR, a route R is scanned by proces
sing its stops in the order in which they are visited by R. 
The algorithm maintains an active trip Tmin, which is the 
earliest trip of R that is reachable from any of the already 
processed stops. Initially, Tmin is set to a dummy value ⊥
(line 11). Let v be the next stop to be processed during 
the scan of R. To check if Tmin can be improved, the algo
rithm finds the earliest trip T′min of R that can be boarded 
when arriving at v with the arrival time τarr (s, v). If no 
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reachable trip is found for any of the previous stops in R 
(i.e., Tmin � ⊥), then T′min is found with a binary search. 
Otherwise, the algorithm starts a linear search from Tmin 

and looks backward for earlier trips. Because T′min is 
often not much earlier than Tmin, this is faster than a 
binary search in practice. Note that T′min is not found if it 
is later than Tmin, but in this case, entering T′min at v does 
not produce an optimal journey, so it can be discarded. If 
T′min is earlier than Tmin, then Tmin is updated, and the 
Enqueue operation is called for the corresponding stop 
event in line 18. The Enqueue operation itself is unchanged 
from the original TB query. If T′min is the earliest trip in 
R, the remainder of the route scan can be skipped.
Algorithm 3 (ULTRA-Trip-Based Query)

Input: Public transit network (S, T , R, G), transfer 
shortcut graph Ge � (Ve, Ee), bucket-CH data for G, 
source vertex s, departure time τdep, and target ver
tex t
Output: Labels L representing Pareto set of s–t jour
neys for departure time τdep 

1 (τtra(s, t),Vs , Vt ) ←Run a CH query from s to t 
with departure time τdep

2 τtra(s, ·) ←Evaluate the vertex-to-stop buckets for 
vertices in Vs

3 τtra(·, t) ←Evaluate the stop-to-vertex buckets for 
vertices in Vt

4 τmin← τdep + τtra(s, t)
5 if τmin <∞ then L←{(τmin, 0)}
6 for each v ∈ S do τarr(s, v) ← τdep + τtra(s, v)
7 R′, Q1←∅
8 for each v ∈ S with τtra(s, v) < τtra(s, t) do
9 R′ ←R′ ∪ {Routes from R that contain v}
10 for each R ∈R′ do
11 Tmin←⊥
12 for i from 0 to |R|� 1 do
13 v← i-th stop of R
14 if τarr(s, v) ≥ τmin then continue
15 T′min←earliest T ∈ R departing from v
16 if T′min is earlier than Tmin then
17 Tmin← T′min

18 Enqueue(Tmin[i], Q1)
19 if Tmin is the first trip in R then break
20 n← 1
21 while Qn is not empty do
22 for each Tjk ∈Qn do
23 for i from j to k do
24 if τarr(T[i]) ≥ τmin then break
25 if τarr(T[i]) + τtra(v(T[i]), t) < τmin then
26 τmin← τarr(T[i]) + τtra(v(T[i]), t)
27 L← L ∪ {(τmin, n)}, removing domi

nated labels
28 Qn+1←∅
29 for each Tjk ∈Qn do
30 for i from j to k do
31 if τarr(T[i]) ≥ τmin then break
32 for each (T[i], T′[i′]) ∈ Ee do
33 Enqueue(T′[i′], Qn+1)
34 n← n+ 1.

4.2.2. Trip Scanning. The trip-scanning phase (lines 
20–34) is identical to the original TB query algorithm 
except for the evaluation of final transfers. It is orga
nized in rounds, in which the nth round scans the trip 
segments that were previously collected in the FIFO 
queue Qn. A trip segment Tjk is scanned by iterating 
over all stop events from T[j] to T[k]. When scanning a 
stop event T[i], the algorithm checks whether a final 
transfer from the ith stop of the trip T to the target 
exists in line 24. If such a transfer exists and improves 
the earliest known arrival time τmin at the target, then 
the algorithm has found a new Pareto-optimal journey. 
In this case, τmin is updated, and a label representing 
the newly found journey is added to the result set L. If 
L already contains a label with n trips (note that a 
Pareto set can only contain one such label), this label is 
replaced. After the final transfers are evaluated, the 
algorithm relaxes the outgoing shortcuts from T[i]. For 
each shortcut (T[i], T′[i′]) ∈ Ee, the Enqueue operation 
is called for T′[i′]. This adds the relevant segment of T′
to the queue Qn+1 of trips that are scanned in the 
next round.

Note that the trips in Qn are scanned twice: once to 
evaluate the final transfers and then again to relax 
transfer shortcuts. This is done for two reasons: First, 
separating the two scans improves memory locality as 
τtra(·, t) is only accessed by the first scan and Ee is only 
accessed by the second scan. Second, τmin is improved 
throughout the first scan, which enables stricter prun
ing of trips that cannot contribute to Pareto-optimal 
journeys in line 31 of the second scan.

4.2.3. Data Structures and Memory Layout. In order to 
achieve optimal performance, the query algorithm needs 
to use a streamlined memory layout. To this end, the 
FIFO queues Qn are implemented using dynamic arrays. 
This enables an efficient Enqueue operation and efficient 
scanning of the entries in Qn. The shortcuts Ee are stored 
in an array such that all outgoing shortcuts of a stop 
event T[i] are consecutive in memory and the outgoing 
shortcuts of the next stop event T[i+ 1] follow directly 
afterward. Finally, note that the trip scanning step only 
needs access to the arrival time τarr(T[i]) and the stop 
v(T[i]) of a stop event T[i]. Therefore, these values are 
stored separately from the departure time τdep(T[i]) of 
the stop event, which improves memory locality.

5. Experiments
All algorithms were implemented in C++17 and com
piled with GCC version 10.3.0 and optimization flag 
-O3. Experiments were performed on the following 
machines: 
• Xeon: A machine with two eight-core Intel Xeon 

Skylake SP Gold 6144 CPUs clocked at 3.50 GHz with a 
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boost frequency of 4.2 GHz, 192 GiB of DDR4-2666 
RAM, and 24.75 MiB of L3 cache.
• Eypc: A machine with two 64-core AMD Epyc 

Rome 7742 CPUs clocked at 2.25 GHz with a boost fre
quency of 3.4 GHz, 1,024 GiB of DDR4-3200 RAM, and 
256 MiB of L3 cache.

Source code for ULTRA is available at https://github. 
com/kit-algo/ULTRA.

5.1. Networks
We evaluated our algorithms on the transportation net
works of Stuttgart, London, Switzerland, and Ger
many. The Stuttgart network represents the greater 
region of Stuttgart and comprises two identical busi
ness days. It was previously used by Mallig, Kager
bauer, and Vortisch (2013) and Briem et al. (2017) and 
is not publicly available. The public transit timetable 
of London was obtained from Transport for London 
(https://data.london.gov.uk) and covers a single Tues
day in the periodic summer schedule of 2011. It was 
previously used to evaluate RAPTOR (Delling, Pajor, 
and Werneck 2015), MCR (Delling et al. 2013), and TB 
(Witt 2015). The Switzerland network was extracted 
from a publicly available general transit feed specifica
tion (http://gtfs.geops.ch/) and consists of two succes
sive business days (May 30 and 31, 2017). Finally, the 
Germany network was provided by Deutsche Bahn for 
research purposes and is not publicly available. It is 
based on data from bahn.de for winter 2011/2012, com
prising two successive identical days, and was previ
ously used to evaluate CSA (Dibbelt et al. 2018) and TB 
(Witt 2015). Both the Switzerland and Germany net
works were previously used by Wagner and Zündorf 
(2017). For each network, we computed the set R of 
routes greedily by iterating across the set T of trips: for 
each trip T, we checked if a route R with the same stop 
sequence as T was already generated such that T does 
not overtake any trips in R and is not overtaken by any 
of them itself. If so, we added T to R. Otherwise, we 
generated a new route for T.

We constructed unrestricted transfer graphs by ex
tracting road graphs, including pedestrian zones and 
staircases, from OpenStreetMap (https://download.geo 
fabrik.de/). Unless stated otherwise, we used walking 
as the transfer mode, assuming a constant speed of 
4.5 km/h. The transfer graph was connected to the 
public transit network using the procedure outlined by 
Wagner and Zündorf (2017). For each stop v ∈ S, we 
located its (geographically) nearest neighbor w ∈ V in 
the transfer graph. If v and w were less than five meters 
apart and v was also the nearest neighbor of w, we 
identified v with w. Otherwise, we added a new vertex 
for v and connected it to w if the distance was less than 
100 meters. Afterward, vertices with degrees one and 
two were contracted unless they coincided with stops. 
Remote and isolated parts of the networks were removed 

by applying a bounding box and removing everything 
except the largest connected component.

To obtain transitively closed transfer graphs (for 
comparison with standard RAPTOR, CSA, and TB), 
we inserted edges between all stops whose distance in 
the transfer graph lies below a certain threshold (nine 
minutes for Stuttgart and Switzerland, eight minutes 
for Germany, four minutes for London) and then 
computed the transitive closure. Following Wagner 
and Zündorf (2017), the thresholds were chosen so 
that the resulting graph has an average vertex degree 
of about 100. An overview of the networks is given in 
Table 1.

5.2. Preprocessing
In this section, we evaluate the performance of the 
ULTRA preprocessing phase, which includes the core- 
CH transfer graph contraction, the shortcut computa
tion, and the bucket-CH computation. We analyze the 
effects of the parameters core degree, witness limit, 
and transfer speed in detail for the Switzerland net
work and then discuss more general results for all four 
networks.

5.2.1. Core Degree and Witness Limit. The two main 
parameters influencing the performance of the ULTRA 
preprocessing are the average vertex degree of the con
tracted core graph and the witness limit τ̄wit. Figure 3
shows the impact of these parameters on the Switzerland 
network. The lowest preprocessing times are achieved 
with a core degree of 14. Although the actual shortcut 
computation is slightly faster for higher core degrees, 
this is offset by the increased time required to contract 
the transfer graph. The witness limit τ̄wit has a larger 
impact on the preprocessing time. Choosing a witness 
limit of zero instead of ∞ nearly cuts the preprocessing 
time in half. Regardless of core degree or witness limit, 
the event-to-event variant takes about one minute longer 
than the stop-to-stop variant. Both parameters have a 
negligible effect on the number of computed shortcuts. 
For all following experiments, we therefore choose a core 
degree of 14 and a witness limit of zero to minimize the 

Table 1. Sizes of the Public Transit Networks and the 
Accompanying Transfer Graphs

Stuttgart London Switzerland Germany

Stops 13,584 19,682 25,125 243,167
Routes 12,351 1,955 13,786 230,255
Trips 91,304 114,508 350,006 2,381,394
Stop events 1,561,972 4,508,644 4,686,865 48,380,936
Vertices 1,166,604 181,642 603,691 6,870,496
Edges 3,682,232 575,364 1,853,260 21,367,044
Transitive edges 1,369,928 3,212,206 2,639,402 22,571,280

Note. Also reported is the number of edges in the transitively closed 
transfer graph used to compare ULTRA to unimodal algorithms.
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preprocessing time. The only exception is the Germany 
network, for which we use a core degree of 20. This is 
because the share of the core-CH computation in the 
overall running time is significantly lower for this net
work because of its much larger size. Preprocessing 
results for the stop-to-stop variant on all four networks 
are listed in Table 2.

5.2.2. ULTRA-TB Preprocessing. To evaluate the effec
tiveness of the event-to-event ULTRA shortcut compu
tation, we compare it to the original TB preprocessing, 
using the transitively closed transfer graphs as input, 
and to a naive sequential approach, that is, using stop- 
to-stop ULTRA shortcuts as input for the TB preproces
sing. An overview of the results is given in Table 3. The 
integrated ULTRA preprocessing drastically reduces 
the number of shortcuts compared with the sequential 
approach. This reduction ranges from a factor of 6 for 
the London network to more than 15 for Germany. 
Regarding computation time, the sequential approach 
using the optimized TB preprocessing proposed by 
Lehoux and Loiodice (2020) is only marginally faster 
than the integrated approach. Overall, the integrated 
preprocessing is clearly preferable because it produces 
many fewer shortcuts with only a minor overhead in 
running time.

Remarkably, event-to-event ULTRA significantly out
performs the original TB preprocessing in both number 
of shortcuts and computation time despite operating on 

Figure 3. (Color online) Impact of Core Degree and Witness Limit on ULTRA Preprocessing 

Notes. Measured are the running time of the ULTRA preprocessing and the number of shortcuts for the Switzerland network on the Xeon 
machine. Preprocessing time includes both contracting the transfer graph and computing the shortcuts. The time required for the bucket-CH 
computation, which is independent of both parameters, is excluded.

Table 2. Stop-to-Stop ULTRA Preprocessing Results

Stuttgart London Switzerland Germany

Core-CH time 1:45 0:19 1:09 20:16
Number of core vertices 25,631 23,860 33,219 313,351
Number of core edges 358,842 334,112 465,067 6,267,050
Shortcut computation time 4:27 18:01 8:54 8:01:25
Number of shortcuts 83,086 190,388 170,713 2,907,691
Bucket-CH time 2:13 0:11 0:43 14:49

Notes. All running times were measured on the Xeon machine and are 
displayed as (hh:)mm:ss. The core-CH and bucket-CH computations 
were run sequentially, whereas the shortcut computation used all 16 
cores.
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an unrestricted transfer graph instead of a transitively 
closed one. This underscores that the original TB pre
processing was only designed for very limited transfer 
graphs and confirms the findings of Lehoux and Loio
dice (2020) that it does not scale well for larger graphs. 
Compared with the optimized TB preprocessing, ULTRA 
is slower by a factor of about two to three on most net
works. On the Stuttgart network, the slowdown is about 
eight. The difference is explained by the fact that Stuttgart 
is the only network in which the transitively closed trans
fer graph has fewer edges than the full transfer graph. 
Overall, the preprocessing results show that ULTRA is 
much more effective than the TB preprocessing at identi
fying necessary transfers at the cost of a somewhat higher 
preprocessing time.

5.2.3. Parallelization. The previous experiments used 
all 16 cores of the Xeon machine for the shortcut com
putation. To assess the impact of parallelization on the 
preprocessing time, we evaluate the running time of 
the stop-to-stop shortcut computation for different num
bers of threads. Additionally, we compare running times 
of the Epyc machine, which has worse single-core perfor
mance but contains more cores. Running times on both 
machines are listed in Table 4. Overall, the parallelized 
shortcut computation achieves good speedups for all net
works on both machines. For the Switzerland network, 
the maximal speedup is 13.5 on the Xeon machine and 
74.6 on the Epyc machine. The speedup for the entire 
preprocessing phase, including the sequential core-CH 
and bucket-CH computation times on the Xeon machine, 
drops to 11.4 and 38.6, respectively. Independently of the 
network, we observe the smallest speedup when switch
ing from 64 to 128 threads on the Epyc machine. In this 
case the speedup is most likely limited by the mem
ory bandwidth.

The results are similar for the event-to-event variant. 
On the Switzerland network, the single-threaded perfor
mance on the Xeon machine is 2:07:00 for the sequential 

approach and 2:10:10 for the integrated approach. This 
corresponds to speedup factors of 13.1 and 13.5, respec
tively, which matches the speedups observed for the 
stop-to-stop variant and the TB preprocessing.

5.2.4. Transfer Speed. To test the impact of the transfer 
mode on the shortcut computation, we changed the 
transfer speed in the Switzerland network from 4.5 km/h 
to values between 1 and 140 km/h. We considered two 
ways of applying the transfer speed: in the first version, 
the speed on an edge is not allowed to exceed the speed 
limit given in the road network. This models fast trans
fer modes such as cars fairly realistically. In the second 
version, speed limits are ignored, and the same constant 
speed is assumed for every edge. This allows us to ana
lyze to what extent the effects observed in the first ver
sion are caused by the speed limit data. Figure 4 reports 
the preprocessing times and number of shortcuts (both 
stop-to-stop and event-to-event) measured for each 
configuration. In all measurements, the preprocessing 
time remained below 15 minutes. The number of stop-to- 
stop shortcuts initially increases with the transfer speed 

Table 3. Number of Shortcuts and Preprocessing Times for Different TB Preprocessing Variants

Stuttgart London Switzerland Germany

Shortcuts (transitive) 7,387,445 50,242,519 31,507,264 458,826,534
Shortcuts (transitive, optimized) 7,387,586 50,240,558 31,507,543 458,763,050
Shortcuts (sequential) 19,361,708 53,179,082 65,485,696 1,195,573,925
Shortcuts (sequential, optimized) 19,361,129 53,181,238 65,484,976 1,195,509,797
Shortcuts (integrated) 1,973,321 8,576,120 6,938,012 77,515,291
Time (transitive) 9:30 1:42:35 1:01:54 73:43:07
Time (transitive, optimized) 0:37 13:12 4:41 2:55:06
Time (sequential) 4:41 18:43 9:40 8:57:46
Time (sequential, optimized) 4:37 18:28 9:24 8:22:37
Time (integrated) 4:42 20:43 9:40 8:37:49

Notes. “Transitive” refers to the original TB preprocessing on the transitively closed transfer graph. “Sequential” uses stop-to-stop ULTRA 
shortcuts as input for the TB preprocessing, whereas “integrated” uses event-to-event ULTRA shortcuts directly. “Optimized” refers to the 
improved TB preprocessing algorithm of Lehoux and Loiodice (2020). Running times were measured on the Xeon machine with 16 cores and are 
displayed as (hh:)mm:ss.

Table 4. Impact of Parallelization on the Running Time of 
the Stop-to-Stop ULTRA Shortcut Computation

Machine Cores Stuttgart London Switzerland Germany

Xeon 1 59:28 4:00:31 2:00:29 100:02:46
2 30:42 2:05:06 1:02:24 54:12:12
4 15:49 1:06:24 32:17 29:02:18
8 8:28 34:52 17:13 15:26:13
16 4:27 18:01 8:54 8:01:25

Epyc 1 1:14:37 4:53:01 2:25:26 122:35:42
2 40:38 2:43:33 1:21:57 72:42:27
4 20:10 1:19:21 40:39 37:56:49
8 10:03 39:54 20:23 19:11:35
16 5:05 19:54 10:08 9:49:56
32 2:37 10:08 5:11 4:57:06
64 1:29 5:52 2:55 2:56:49

128 0:54 3:44 1:57 2:53:57

Note. Running times are displayed as (hh:)mm:ss.
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until it peaks at about 300,000 between 10 and 20 km/h 
(roughly the speed of a bicycle). In the event-to-event 
variant, the behavior is the opposite: the number of 
shortcuts is highest for 1 km/h and decreases from there. 
Above 20 km/h, both variants exhibit a slight increase in 
the number of shortcuts, which is more pronounced if 
speed limits are obeyed. Overall, the results show that 
ULTRA is practical for all transfer speeds in terms of 
both preprocessing time and the number of shortcuts.

To explain the difference in behavior between the 
two variants, consider how the transfer speed affects 
Pareto-optimal journeys. As the transfer mode becomes 
faster, it becomes increasingly feasible to cover large 
distances in the transfer graph quickly. This has two 
effects: on the one hand, more witnesses that require 
long initial or final transfers become feasible and start 
dominating slower candidates. Accordingly, the num
ber of canonical candidates decreases from 409 million 
for 1 km/h to 114 million for 10 km/h. This explains 
the decrease in the number of event-to-event shortcuts. 
On the other hand, longer intermediate transfers between 

trips also become feasible. This means that, although 
there are fewer canonical candidates for higher transfer 
speeds, the shortcuts that occur in them tend to cover 
larger distances in the transfer graph. The number of 
stop pairs within a certain distance of each other grows 
roughly quadratically with the distance. This explains 
why the number of stop-to-stop shortcuts rises for higher 
transfer speeds even as the number of event-to-event 
shortcuts declines.

Once the transfer speed becomes faster than public 
transit, the direct transfer from source to target domi
nates all other journeys, including all candidates. Acc
ordingly, we should expect the number of shortcuts to 
eventually reach zero for very high transfer speeds. 
The reason this is not observed in our measurements is 
that not all stops in our network instances are reachable 
from each other in the transfer graph. Consider what 
happens in the shortcut computation for journeys bet
ween stops s and t that are isolated in the transfer 
graph. In this case, a direct transfer is not possible 
regardless of the transfer speed. In fact, unless there is 

Figure 4. (Color online) Impact of Transfer Speed on Preprocessing Time and Number of Shortcuts 

Notes. All measurements for the Switzerland network with a core degree of 14 and a witness limit of zero. For the two lines at the bottom of the 
right plots, shortcuts were only added if the source and target of the candidate journey are connected by a path in the transfer graph.
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a route that serves both s and t, all s–t journeys with at 
most two trips are candidates, and the shortcut compu
tation adds shortcuts for the canonical ones. In our 
Switzerland network, 624 stops are isolated in the 
transfer graph, usually as a result of incomplete or 
imperfect data. If we omit shortcuts for candidates 
whose source and target stop are not connected in the 
transfer graph, the number of shortcuts behaves as 
expected: If speed limits are obeyed, a few shortcuts 
remain even for the highest transfer speed. If they are 
ignored, a direct transfer is always the fastest option, 
and thus, no shortcuts are required.

5.2.5. Shortcut Graph Structure. The stop-to-stop short
cut graph computed by ULTRA for Switzerland is 
structurally very different from the transitively closed 
transfer graph we created for comparison with pure 
public transit algorithms. This is already evidenced by 
the fact that the shortcut graph is much less dense, con
taining only 6% as many edges as the transitively closed 
graph. Furthermore, the transitive graph consists of 
many small, fully connected components with the largest 
one containing only 1,004 vertices. By contrast, the larg
est strongly connected component in the shortcut graph 
contains 10,891 vertices, which corresponds to 43% of all 
stops. Accordingly, a transitive closure of the shortcut 
graph would contain more than 100 million edges.

As Wagner and Zündorf (2017) observed when con
structing a transitively closed transfer graph, preserv
ing all transfers with a duration of up to a few minutes 
already leads to an average vertex degree of more than 
100. This means algorithms that require a transitively 
closed transfer graph cannot be efficient and at the 
same time guarantee that long transfers are found. 

Figure 5 (left side) shows the distribution of travel 
times for the ULTRA shortcuts. Note that the high 
number of shortcuts with travel time zero is caused by 
cases in which multiple stops model the same physical 
location. Most of the shortcuts have a travel time of 
more than nine minutes (≈ 29 seconds) and are, there
fore, not contained in the transitive transfer graph. In 
fact, only 26,826 edges are shared between the two 
graphs, which constitute 1.0% of all transitive edges 
and 15.7% of all shortcuts. Altogether, this shows that 
the transitively closed graph fails to represent most of 
the relevant intermediate transfers at the expense of 
many superfluous ones.

As with the transfer speed experiment, Figure 5 dis
tinguishes between shortcuts generated by candidates 
whose source and target stop are connected in the 
transfer graph and shortcuts in which source and target 
are isolated. We observe that most of the very long 
shortcuts are produced by candidates with isolated 
stops. To analyze how often longer shortcuts are re
quired, we examine the distribution of the event-to- 
event shortcuts in Figure 5 (right side). Because stop 
events occur at a fixed point time, a stop-to-stop short
cut that is required at several times throughout the day 
corresponds to multiple event-to-event shortcuts. Thus, 
the number of event-to-event shortcuts with a certain 
travel time reflects more accurately how frequently 
these shortcuts are required. Approximately one third 
of all event-to-event shortcuts have a travel time of 
zero. Most of these connect pairs of trips at the same 
stop and, therefore, have no stop-to-stop counterpart. 
Among the remaining shortcuts, most have a travel 
time between 1 minute (≈26 s) and 34 minutes (≈211 s). 
This is in contrast to the stop-to-stop shortcuts, most of 

Figure 5. (Color online) Distribution of the ULTRA Shortcuts with Respect to Their Transfer Time for the Switzerland Network 

Notes. The bar between 2i and 2i�1 corresponds to the number of shortcuts with a transfer time in the interval [2i, 2i�1). An exception is the first 
bar, which also contains shortcuts with a transfer time of less than a second. The lower portion of each bar represents shortcuts for which the 
source and the target of the corresponding candidate journey are connected by a path in the transfer graph. Left: Shortcuts between stops as com
puted by the ULTRA preprocessing. Right: Shortcuts between stop events as computed by the ULTRA-TB preprocessing.
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which have a travel time of more than one hour (≈212 

s). This shows that very long shortcuts are only rarely 
required. Furthermore, the fraction of shortcuts that are 
generated by candidates with isolated source and tar
get is much lower in the event-to-event variant than in 
the stop-to-stop variant.

5.3. Queries
To evaluate the impact of ULTRA on the query perfor
mance, we test three public transit algorithms: CSA, 
RAPTOR, and TB. For CSA and RAPTOR, we compare 
our new ULTRA variant to the original algorithm on a 
transitively closed transfer graph and a multimodal 
variant with Dijkstra (1959) searches. For TB, no multi
modal variants are proposed thus far. We, therefore, 
compare the original TB algorithm on a transitively 
closed transfer graph to ULTRA-TB with sequential 
and integrated preprocessing. Because we do not con
sider parallelized query algorithms, we use the Xeon 
machine (which has better single-core performance) for 
all following experiments.

Additional experiments evaluating the impact of the 
query distance on the running times can be found in 
Online Appendix C. Furthermore, a comparison with 
the HL-based approaches proposed by Phan and Vien
not (2019) can be found in Online Appendix D. Because 
the original evaluation of the HL-based algorithms was 
based on a comparison of running times measured on 
different machines, we reimplemented all query algo
rithms and evaluated them on the same machine. In 
these experiments, we were only able to observe a mar
ginal speedup of HL-RAPTOR compared with MR.

5.3.1. CSA Queries. Unlike the other algorithms we 
evaluate, CSA only supports optimizing arrival time as 
the sole criterion. Whereas profile CSA, a CSA variant 
for range queries, also supports optimizing the number 

of trips as a second criterion, no bicriteria variant of 
basic CSA has been published thus far. We conducted 
preliminary experiments that showed a bicriteria vari
ant of CSA is outperformed by RAPTOR. Therefore, 
we only consider single-criterion optimization for CSA. 
Unlike RAPTOR, no Dijkstra (1959) based multimodal 
variant of CSA has been proposed thus far. We, there
fore, implemented a naive multimodal version of CSA, 
which we call multimodal CSA (MCSA), as a baseline 
for our comparison. This algorithm alternates connec
tion scans with Dijkstra (1959) searches on the con
tracted core graph in a similar manner to MCR. Query 
times for all three CSA variants are reported in Table 5.

On all networks, ULTRA-CSA has a similar running 
time to CSA with transitively closed transfers. Cau
tion has to be taken when comparing these running 
times because CSA does not support fully multimodal 
vertex-to-vertex queries and was, therefore, evaluated 
on a different set of stop-to-stop queries. Nonetheless, 
our experiments demonstrate that ULTRA enables 
CSA to use unrestricted transfers without performance 
loss. Compared with MCSA, the ULTRA approach is 
faster by about a factor of three to four on most net
works and even more on the Stuttgart network, which 
has a particularly large transfer graph. By replacing the 
core-CH search of MCSA with a bucket-CH query, 
ULTRA speeds up the exploration of initial and final 
transfers by a factor of six to eight. The time required 
for the exploration of intermediate transfers is difficult 
to measure directly because it is interleaved with the 
individual connection scans. Nevertheless, we observe 
that using ULTRA shortcuts speeds up the connection 
scanning phase in its entirety by a factor of two to four 
compared with MCSA.

On all networks except Stuttgart, the multimodal 
variants scan significantly fewer connections than CSA 
on the transitively closed transfer graph. This is a direct 

Table 5. Query Performance for CSA, MCSA, and ULTRA-CSA

Network Algorithm Full graph

Scans, k Time, ms

Connection Edge Init. Scan Total

Stuttgart CSA* ◦ 52.6 281 0.0 1.4 1.4
MCSA • 113.7 238 10.1 6.4 16.5
ULTRA-CSA • 113.4 42 1.2 1.7 2.9

London CSA* ◦ 83.9 663 0.0 3.0 3.0
MCSA • 58.2 182 4.6 4.5 9.1
ULTRA-CSA • 57.7 53 0.8 1.9 2.7

Switzerland CSA* ◦ 135.2 787 0.1 4.9 4.9
MCSA • 88.2 241 8.4 8.1 16.4
ULTRA-CSA • 87.6 59 1.1 2.9 4.0

Germany CSA* ◦ 2,587.8 6,351 1.3 144.3 145.5
MCSA • 1,662.1 3,191 142.8 195.2 338.0
ULTRA-CSA • 1,657.3 877 22.4 107.4 129.8

Notes. Query times are divided into two phases: initialization including initial transfers (Init.), and connection scans including intermediate 
transfers (Scan). All results are averaged over 10,000 random queries. Note that CSA (marked with *) only supports stop-to-stop queries with 
transitive transfers. The other two algorithms have been evaluated for vertex-to-vertex queries on the full graph.
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result of the fact that fully multimodal journeys usually 
have a shorter travel time (Wagner and Zündorf 2017). 
Because CSA scans connections in chronological order, 
the number of scanned connections correlates directly 
with the earliest arrival time of the query. The Stuttgart 
network exhibits the opposite behavior because the 
transfer graph covers a much larger geographical area 
than the public transit network. Therefore, if the source 
and target are picked among all vertices instead of only 
stops, the average query distance increases and the 
search space becomes larger.

5.3.2. RAPTOR Queries. To evaluate RAPTOR, we used 
the MR variant of MCR as the multimodal baseline 
algorithm. The results of our comparison are shown in 
Table 6. The share of the overall running time spent 
exploring the transfer graph (i.e., the Init and Relax 
phases) is reduced from 50% to 75% for MR to 20% to 

40% for ULTRA-RAPTOR. The Init phase exhibits the 
same speedup that was already observed for CSA. 
Because RAPTOR explores intermediate transfers in a 
separate phase, the impact of using ULTRA shortcuts 
can now be measured directly. Compared with the 
Dijkstra (1959) searches on the core graph performed by 
MR, exploring the transfer shortcuts is up to an order of 
magnitude faster. Overall, ULTRA-RAPTOR is two to 
three times as fast as MR and has a similar running 
time to RAPTOR with transitive transfers.

5.3.3. Trip-Based Queries. We continue with evaluat
ing our improved ULTRA-TB query algorithm. Table 7
compares the query performance for ULTRA-TB with 
sequential and integrated preprocessing as well as the 
original TB query algorithm on the transitively closed 
transfer graph. ULTRA-TB with integrated preproces
sing achieves significantly lower query times than the 

Table 6. Query Performance for RAPTOR, MR, and ULTRA-RAPTOR

Network Algorithm Full graph

Scans, k Time, ms

Route Edge Init. Coll. Scan Relax Total

Stuttgart RAPTOR* ◦ 19.8 756 0.2 1.6 2.1 2.1 5.9
MR • 35.6 687 12.3 5.2 5.2 11.1 33.5
ULTRA-RAPTOR • 37.9 105 1.4 3.5 3.5 1.0 9.6

London RAPTOR* ◦ 4.4 2,573 0.3 1.1 2.2 5.4 8.9
MR • 5.0 500 6.4 1.9 2.7 7.0 18.0
ULTRA-RAPTOR • 5.4 179 1.2 1.5 2.3 1.2 6.2

Switzerland RAPTOR* ◦ 26.2 2,115 0.4 2.4 5.0 5.0 12.8
MR • 33.0 731 10.6 4.8 7.2 11.7 34.1
ULTRA-RAPTOR • 35.9 177 1.6 3.3 6.2 1.4 12.5

Germany RAPTOR* ◦ 472.9 26,420 7.0 102.6 120.4 74.2 304.2
MR • 541.4 12,359 154.2 187.5 153.5 236.2 731.4
ULTRA-RAPTOR • 599.7 3,165 33.0 144.0 151.7 33.3 362.1

Notes. Query times are divided into phases: initialization, including scanning initial transfers (Init.), collecting routes (Coll.), scanning routes 
(Scan), and relaxing transfers (Relax). All results are averaged over 10,000 random queries. Note that RAPTOR (marked with *) only supports 
stop-to-stop queries with transitive transfers, whereas the other three algorithms support vertex-to-vertex queries on the full graph and are 
evaluated accordingly.

Table 7. Query Performance for TB and ULTRA-TB (Sequential and Integrated)

Network Algorithm Full graph

Scans, k Time, ms

Trip Shortcut B-CH Initial Scan Total

Stuttgart TB* ◦ 10.9 223 0.0 0.0 1.5 1.6
ULTRA-TB (seq.) • 25.1 1,417 1.2 1.0 5.8 7.9
ULTRA-TB (int.) • 15.3 112 1.1 0.8 1.7 3.6

London TB* ◦ 15.3 830 0.0 0.0 3.7 3.7
ULTRA-TB (seq.) • 23.5 1,021 0.8 0.7 5.1 6.6
ULTRA-TB (int.) • 14.5 153 0.8 0.6 1.9 3.3

Switzerland TB* ◦ 23.4 662 0.0 0.0 4.5 4.5
ULTRA-TB (seq.) • 34.9 1,620 1.0 1.2 7.1 9.3
ULTRA-TB (int.) • 19.5 138 1.0 1.0 2.2 4.3

Germany TB* ◦ 389.1 16,331 0.0 0.0 106.6 106.9
ULTRA-TB (seq.) • 467.5 43,219 19.9 19.3 162.6 202.0
ULTRA-TB (int.) • 196.5 2,057 19.6 19.3 37.9 77.0

Notes. Query times are divided into phases: the bucket-CH query (B-CH), the initial transfer evaluation (Initial), and the scanning of trips (Scan). 
All results are averaged over 10,000 random queries. Note that TB (marked with *) only supports stop-to-stop queries with transitive transfers, 
whereas the other two algorithms support vertex-to-vertex queries on the full graph.
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state of the art. Depending on the network, it has a 
speedup of 2–5 over ULTRA-RAPTOR and 5–10 over 
MR, which was previously the fastest multimodal jour
ney planning algorithm (cf. Table 6). As with RAPTOR 
and CSA, ULTRA-TB is able to match the query perfor
mance of the original TB algorithm despite solving a 
harder multimodal problem. Furthermore, ULTRA-TB 
achieves a similar performance to ULTRA-CSA despite 
optimizing an additional criterion.

Although ULTRA-TB with sequential preprocessing 
still outperforms other algorithms, it is slower than the 
integrated version by a factor of two. This is because 
the integrated preprocessing reduces the number of 
relaxed shortcuts by around an order of magnitude. 
This, in turn, reduces the overall search space and 
thereby the number of scanned trips. Overall, the trip 
scanning phase is sped up by a factor of three to four 
and only takes up around half of the overall query time. 
The remaining half is spent performing the bucket-CH 
searches and evaluating initial trips, both of which are 
unaffected by the number of transfer shortcuts.

5.3.4. Impact of Transfer Speed. In addition to overall 
query performance, we also measured how the query 
times of MR, ULTRA-RAPTOR, and ULTRA-TB are 
impacted by the transfer speed. Results are shown in 
Figure 6 (left side). The performance gains for ULTRA- 
RAPTOR compared with MR are similar for all transfer 
speeds and, in fact, slightly better for higher speeds. To 
explain this, we observe that the time required for the 
route scanning phase decreases as the transfer speed 
increases. This is because the total number of rounds 

and, thus, the number of scanned routes decreases for 
higher transfer speeds. ULTRA-RAPTOR benefits more 
from this because the share of the route scanning phase 
in the overall running time is greater for ULTRA- 
RAPTOR than for MR. In all cases, the entire query 
time for ULTRA-RAPTOR is similar to or lower than 
the time that MR takes for the route scanning phases 
only. ULTRA-TB achieves its highest speedup over the 
other two algorithms for medium transfer speeds, for 
which the number of event-to-event shortcuts is lowest. 
For very high transfer speeds, the bucket-CH search for 
the initial and final transfers starts to dominate the 
overall running time of both ULTRA-based algorithms. 
Accordingly, the speedup of ULTRA-TB over ULTRA- 
RAPTOR decreases.

The impact of the transfer speed on the travel time of 
the fastest journey is shown in Figure 6 (right side). As 
the transfer speed increases, the overall travel time de
creases. The time that is spent on an initial or final trans
fer also decreases at first, but its share in the overall travel 
time becomes larger. From 10 km/h onward, transferring 
directly from source to target starts becoming the best 
option for more queries, and consequently, the time spent 
on initial and final transfers starts increasing. For very 
high transfer speeds, a direct transfer is almost always 
the fastest option. This matches our observation that 
intermediate transfers become useless for high transfer 
speeds unless the source and target are isolated from 
each other in the transfer graph. In contrast to initial and 
final transfers, intermediate transfers have a very small 
impact on the overall travel time, further demonstrating 
that long intermediate transfers are rarely needed.

Figure 6. (Color online) Impact of Transfer Speed on Query and Travel Times 

Notes. All measurements averaged over 10,000 random queries on the Switzerland network with a core degree of 14 and a witness limit of zero. 
Left: Query performance of MR, ULTRA-RAPTOR, and ULTRA-TB. Speed limits were obeyed during the construction of the transfer graph. For 
MR and ULTRA-RAPTOR, query times are divided into route collecting/scanning, transfer relaxation, and remaining time. Right: Total travel 
time and time spent on initial/final and intermediate transfers for the journey with minimal arrival time. The time required for a direct transfer 
from source to target is shown for reference. To allow for this comparison, we only chose random queries for which the source and target vertex 
are connected in the transfer graph.
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6. Conclusion
We proposed ULTRA, a technique that accelerates the 
computation of Pareto-optimal journeys in a public 
transit network with an unrestricted transfer graph. 
The centerpiece of ULTRA is a preprocessing step that 
computes shortcuts that provably represent all neces
sary intermediate transfers. With parallelization, this 
step takes only a few minutes for metropolitan and 
midsized country networks and about three hours for 
Germany. The number of computed shortcuts is low 
regardless of the speed of the transfer mode. ULTRA 
shortcuts can be used without adjustments by any pub
lic transit algorithm that requires one-hop transfers. 
This enables the computation of unrestricted multi
modal journeys without incurring the performance 
losses of existing multimodal algorithms. In particular, 
combining ULTRA with CSA yields the first efficient 
multimodal variant of CSA. To combine ULTRA with 
TB, we develop tailored versions of the ULTRA prepro
cessing and the TB query. The resulting ULTRA-TB 
algorithm outperforms MR, the fastest previously known 
multimodal algorithm for bicriteria optimization, by an 
order of magnitude.

Future work could involve extending ULTRA to 
support more optimization criteria, such as walking 
distance or cost, and multiple non–schedule based 
transportation modes. Furthermore, it would be inter
esting to adapt our approach to scenarios in which 
public transit vehicles can be delayed. Without adapta
tion, ULTRA can no longer guarantee optimal results 
in such a setting because journeys with delayed vehi
cles might require additional intermediate transfers 
that are not covered by the shortcut set. We suspect, 
however, that the underlying assumption of ULTRA 
(i.e., the set of required intermediate transfers is small) 
is still valid in a scenario with delays.
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