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Abstract

The World Wide Web has revolutionized our access to and sharing of information, our

connections with each other, and our ways of doing business in the modern age of tech-

nology. As the Web is gaining importance and collecting more sensitive data, it becomes

increasingly crucial to Web users to understand its impact on security and privacy. In

this context, large-scale Web measurements are powerful tools for exploring the Web

environment. Large-scale measurements provide valuable insights into the strengths and

weaknesses of the Web. Such measurements, however, represent a major challenge due

to the inherent complexity of the Web’s architecture, varying local regulations, and the

diversity of measurement environments. These factors can quickly bias results and render

study findings inconsistent.

This thesis is aimed at comprehending factors leading to variances and pinpointing feasible

methods to conduct more robust and thus verifiable security- and privacy-related Web

measurements. We employ Metascience methodologies to examine how the robustness of

studies can be enhanced, thereby yieldingmore reliable insights for researchers, developers,

and end users. To this end, we conduct various large-scale Web measurements while

crawling 17 million webpages across the global Web.

We first tackle the aspect of robustness through two comprehensive large-scale measure-

ment studies. These studies were based on running 24 different measurements across 4.5

million pages and scrutinizing the loading dependencies of 1.7 million webpages with

five profiles. We highlight how minimal design choices in a Web measurement study can

significantly influence the results and identify resource characteristics that amplify these

variances. We finally provide guidelines for enhancing robustness of such studies.

Expanding on the robustness findings, we launched an 18-month Web security measure-

ment that covered over 5.6 million websites and 246 distinct software components. This

case study underlines that 95% of the evaluated websites utilize at least one vulnerable

software component. Furthermore, it validated that conducting measurements on a static

dataset is the only reliable approach to completely reproducing a Web measurement.

To tackle the privacy aspect, we carried out another case study examining 2.6 million

webpages across 27 profiles. Our analysis compared various “cookie banner interaction”

browser extensions and their effectiveness in communicating user preferences regarding

cookies. Our results revealed significantly different effects, even between extensions offer-

ing the same functions, and identified side effects that may compromise user privacy.
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Zusammenfassung

Das World Wide Web hat den Zugang zu und Austausch von Informationen im Tech-

nologiezeitalter neu definiert. Mit wachsender Relevanz und Datensammlung wird das

Verständnis für Sicherheit und Datenschutz imWeb immer bedeutsamer. In diesem Zusam-

menhang sind groß angelegte Webmessungen mächtige Methoden, um die Webumgebung

zu erkunden. Sie bieten wertvolle Einblicke in die Stärken und Schwächen des Webs. Sol-

che Messungen stellen jedoch aufgrund der inhärenten Komplexität der Web-Architektur,

variierender lokaler Regulierungen und der Vielfalt der Techniken eine große Herausfor-

derung dar. Diese Faktoren können Ergebnisse schnell verzerren und zu inkonsistenten

Studienergebnissen führen, was eine sorgfältige Durchführung erfordert.

Diese Arbeit zielt darauf ab, die Faktoren zu verstehen, die zu Abweichungen führen, und

praktikable Methoden zu identifizieren, um robustere und somit überprüfbare sicherheits-

und datenschutzbezogene Webmessungen durchzuführen. Wir verwenden Metascience-
Methoden, um zu untersuchen, wie die Robustheit von Studien erhöht werden kann, und

liefern somit zuverlässigere Erkenntnisse für Forscher, Entwickler und Endbenutzer. Zu

diesem Zweck führen wir verschiedene groß angelegte Webmessungen durch.

Zunächst gehen wir auf den Aspekt der Robustheit durch zwei Messstudien ein. Sie basie-

ren auf 24 verschiedenen Messungen auf 4,5 Millionen Seiten und der Überprüfung der

Ressourceabhängigkeiten von 1,7 Millionen Webseiten mit fünf Profilen. Wir zeigen, wie

minimale Designentscheidungen in einer Studie das Ergebnis erheblich beeinflussen kön-

nen und identifizieren Ressourcenmerkmale, die diese Varianzen verstärken. Schließlich

geben wir Empfehlungen für die Erhöhung der Robustheit solcher Studien.

Basierend auf den Erkenntnissen zur Robustheit führten wir eine 18-monatige Sicher-
heitsmessung durch, die über 5,6 Millionen Webseiten und 246 unterschiedliche Software

abdeckte. Diese Fallstudie zeigt, dass 95% derWebseiten mindestens eine verwundbare Soft-

warekomponente einsetzen. Wir verdeutlichen, dass Messungen an statischen Datensätzen

der einzige zuverlässige Ansatz zur kompletten Sicherstellung der Reproduzierbarkeit ist.

Um den Datenschutz-Aspekt anzugehen, führten wir eine weitere Fallstudie durch, bei

der 2,6 Millionen Webseiten mit 27 Profilen untersucht wurden. Unsere Analyse verglich

verschiedene “Cookie-Banner-Interaktion”-Browsererweiterungen und derenWirksamkeit

bei der Kommunikation von Nutzerpräferenzen. Unsere Ergebnisse zeigen signifikant

unterschiedliche Effekte, und identifizieren Nebenwirkungen, die die Privatsphäre des

Benutzers gefährden können.

vii





Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1. Intricacies of the Web and Their Impact on Web Measurements . . . . . 2

1.2. Understanding Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1. Metascience: Studying Science . . . . . . . . . . . . . . . . . . . 3

1.2.2. Enhancing the Robustness of Studies . . . . . . . . . . . . . . . . 4

1.2.3. Threats to the Robustness of Studies . . . . . . . . . . . . . . . . 6

1.3. Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5. Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6. Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7. Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2. Background on Understanding Web Measurements . . . . . . . . . . . . . . . . 15
2.1. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2. Designing Web Measurement Studies . . . . . . . . . . . . . . . . . . . . 15

2.3. Representing Websites as a Tree . . . . . . . . . . . . . . . . . . . . . . . 16

2.4. Web Technologies & Updating . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5. Common Vulnerabilities and Exposures . . . . . . . . . . . . . . . . . . . 16

2.6. Cookies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7. Cookie Banners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3. Robustness: Designing Web Measurement Studies . . . . . . . . . . . . . . . . 19
3.1. Reproducibility and Replicability of Web Measurement Studies . . . . . . 19

3.1.1. Method on Designing Web Measurement Studies . . . . . . . . . 20

3.1.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

ix



Contents

3.1.3. Limitations and Ethics . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.4. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2. On the Similarity of Web Measurements Under Different Experimental

Setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1. Method on Measuring the Differences in Web Measurement Studies 33

3.2.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.3. Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.4. Limitations and Ethics . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.5. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4. Security: Understanding Update Behavior of Websites and Its Impact on Security 59
4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2. Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.1. Identifying Used Software . . . . . . . . . . . . . . . . . . . . . . 61

4.2.2. Identifying Vulnerable Software . . . . . . . . . . . . . . . . . . . 61

4.2.3. Dataset Preparation and Enrichment . . . . . . . . . . . . . . . . 61

4.2.4. Analyzing Updating Behavior & Security Implications . . . . . . 62

4.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.1. Update Behavior on the Web . . . . . . . . . . . . . . . . . . . . 63

4.3.2. Security Impact of Not Updating . . . . . . . . . . . . . . . . . . 67

4.4. Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.1. Recommendations for Researchers . . . . . . . . . . . . . . . . . 70

4.4.2. Recommendations for Developers . . . . . . . . . . . . . . . . . . 70

4.4.3. Recommendations for Users . . . . . . . . . . . . . . . . . . . . . 71

4.5. Limitations and Ethics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.6. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.7. Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5. Privacy: A Large-Scale Study of Cookie Banner Interaction Tools and Their Impact
on Users’ Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2. Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.1. Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.2. Cookie Banner Interaction Tools . . . . . . . . . . . . . . . . . . 78

5.2.3. Manual Extension Verification . . . . . . . . . . . . . . . . . . . . 80

5.2.4. Profiles Used in the Measurement . . . . . . . . . . . . . . . . . . 80

5.2.5. Identifying the Purposes of Cookies . . . . . . . . . . . . . . . . 81

5.2.6. Statistical Comparison of Profiles . . . . . . . . . . . . . . . . . . 82

5.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.1. General Measurement Overview . . . . . . . . . . . . . . . . . . 83

5.3.2. Effects of the Analyzed Extensions . . . . . . . . . . . . . . . . . 83

5.3.3. Types of Used Cookies . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.4. Observed Cookie Usage Patterns . . . . . . . . . . . . . . . . . . 91

5.3.5. Impact of a Site’s Rank . . . . . . . . . . . . . . . . . . . . . . . . 93

x



Contents

5.3.6. Cookies in the Local Storage . . . . . . . . . . . . . . . . . . . . . 94

5.3.7. Potential Subsequent Effect . . . . . . . . . . . . . . . . . . . . . 95

5.3.8. Different Extension Configurations . . . . . . . . . . . . . . . . . 96

5.3.9. Repeated Experiments . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4. Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4.1. Recommendations for Researchers . . . . . . . . . . . . . . . . . 98

5.4.2. Recommendations for Developers . . . . . . . . . . . . . . . . . . 99

5.4.3. Recommendations for Users . . . . . . . . . . . . . . . . . . . . . 99

5.5. Limitations and Ethics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.6. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.7. Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6. Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.1. Research Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2.1. Robustness of Web Measurements . . . . . . . . . . . . . . . . . 107

6.2.2. Web Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2.3. Web Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3. Concluding Thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A. Supplementary Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
A.1. Availability of Data & Code Artifacts . . . . . . . . . . . . . . . . . . . . 127

A.2. Appendix for Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A.2.1. Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A.2.2. Experimental Design and Additional Results for Similarity Study 130

A.3. Appendix for Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

A.3.1. Overview of the Top Identified CWEs . . . . . . . . . . . . . . . 133

A.3.2. Average Age of the Top 20 Software Used in Website Ranking . . 133

A.3.3. Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A.4. Appendix for Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A.4.1. Success Rates of the analyzed Extension in the Manual Test . . . 134

A.4.2. Failure Rates of the Crawler . . . . . . . . . . . . . . . . . . . . . 136

A.4.3. Cookies in the Different Profiles . . . . . . . . . . . . . . . . . . . 136

A.4.4. Configurations of Consent-O-Matic . . . . . . . . . . . . . . . . . 136

A.4.5. Statistical Effects of Different Consent-O-Matic Configurations . 137

A.4.6. Locations of the Repeated Measurements . . . . . . . . . . . . . 138

A.4.7. Analysis on Cookies that Could Not be Classified . . . . . . . . . 138

xi





List of Figures

1.1. Current challenges in life cycle of Web measurement studies. . . . . . . . . . 2

1.2. A visual overview of contributions of this thesis. . . . . . . . . . . . . . . . . 8

3.1. Observed tracking requests and trackers by profile. . . . . . . . . . . . . . . 28

3.2. Similarity of trackers on page level by profiles. . . . . . . . . . . . . . . . . . 29

3.3. Fluctuation in the number of tracking requests and domains for each day in

the long running experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4. Distribution of the observed trees’ depth/breadth. We cap the scaling at 2500

to improve the readability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5. Distribution of the similarities of all observed nodes per tree and the similarities

of parents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6. Volume of different types of nodes in the trees. Nodes after depth six are

combined into one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.7. Number of children each node has at a specific depth. We capped the number

of children at 30 and combined all depth level deeper than 20 into one. . . . 45

3.8. The similarity of children and parents. We combined all nodes occurring at a

depth deeper than four (“4+”) to increase readability. . . . . . . . . . . . . . . 45

3.9. Resource types by average parent similarity. . . . . . . . . . . . . . . . . . . 46

3.10. Resource types by average child similarity. . . . . . . . . . . . . . . . . . . . 46

3.11. Similarity of associated and used IP addresses by used profiles. To increase

readability, we combine all nodes after depth eleven (“11+”). . . . . . . . . . 53

4.1. Fractions of utilized outdated software products on the analyzed domains in

comparison to their subdomains (1 = no product is up-to-date). . . . . . . . . 65

4.2. Average age (in month) of top utilized 10 software types for all measurement

points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

xiii



LIST OF FIGURES

4.3. Fraction of processing a new release for top used eight software types. . . . 67

4.4. AVG CVSS by popularity of websites. Vulnerability severity is significantly

lower for high-ranked websites. . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5. Fraction of CVSS score distribution on websites for all measurement points

(10 = Critical, 0=No Vulnerability). . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1. Cookies observed per page with different profiles. . . . . . . . . . . . . . . . 85

5.2. Number of cookies in the different profiles by cookie usage category. To

increase readability, the y-axis is cut at 100. The upper whisker of the category

“Unknown” in profile #9 is around 150. . . . . . . . . . . . . . . . . . . . . . 88

5.3. Similarity of the observed cookies for each cookie type by extension group. . 92

5.4. Cookie usage patterns of the analyzed webpages for the different profiles over

time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5. Number of cookies observed in each profile based on the popularity of a site

and the type of a cookie. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.6. Distribution of number of records for tracking requests and different cookie cat-

egories grouped by different configurations (allowed cookie types) of Consent-
O-Matic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

A.1. Number of identified trackers for each profile and their resource type. . . . . 128

A.2. Depiction of our vertical (blue) and horizontal (red) comparison approach. . 132

A.3. Average similarity of children and parent nodes for different resource types

based on their tree depth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

A.4. Average age (in month) of the top 20 used software by website ranking. The

share of software in our dataset is shown in brackets – Blank cells: no website

identified in the corresponding ranking. . . . . . . . . . . . . . . . . . . . . . 135

A.5. Number of cookies in the different profiles by cookie usage category. To

increase readability, the y-axis is cut at 100. The upper whisker of the category

“Unknown” in profile #9 is around 150. . . . . . . . . . . . . . . . . . . . . . 136

xiv



List of Tables

3.1. Criteria to design Web measurement studies. . . . . . . . . . . . . . . . . . . 25

3.2. Overview of the used profiles. Profile #2 and #3 use the same setup. . . . . . 35

3.3. High-level overview of the measured trees. . . . . . . . . . . . . . . . . . . . 38

3.4. Similarity of nodes at different depths. . . . . . . . . . . . . . . . . . . . . . . 41

3.5. Effects of resource on loading dependencies. . . . . . . . . . . . . . . . . . . 43

3.6. Implications depending on different profiles. . . . . . . . . . . . . . . . . . . 49

3.7. Profile differences compared to profile #2 (Sim1). ➋: Starting at depth two. ➊: For

nodes with at least one child. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1. Overview of all measurement points. . . . . . . . . . . . . . . . . . . . . . . 64

5.1. Overview of the used extensions that claim to interact with cookie banners au-

tomatically. The date indicates the last update of the extension. User numbers

as of 02/23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2. Overview of the measurement profiles. Profiles #3 and #7 are custom ex-

tensions as described in Section 5.2.4. The last column marks tools that can

process all banner types (and do not state any limitations of banner interaction)

with a ✓. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3. Overview of the high-level results per profile. The table lists (1) for each profile

the number of third- and first-party cookies; (2) the different cookie categories:

“Strictly Necessary” (Strict.), “Performance” (Perf.), “Functionality ” (Func.),

and “Targeting/Advertising” (Targ.); (3) the number of cookies in the local

storage; and (4) number of observed tracking requests. . . . . . . . . . . . . 84

A.1. Observed size of the trees and similarities of children and parents across the

buckets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

A.2. Top 10 vulnerabilities in our last measurement point (M#18) by relative fre-

quency on websites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

xv



LIST OF TABLES

A.3. Some examples of vulnerabilities identified on analyzed websites that run

outdated software. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A.4. Overview of the success rates of the extension to interact with the 19 cookie

banners in our manual test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

A.5. Kruskal-Wallis test results for tracking request numbers and cookie types

across different Consent-O-Matic configurations. . . . . . . . . . . . . . . . . 137

A.6. Locations and times of the repeated measurements. . . . . . . . . . . . . . . 138

A.7. Overview of the top unclassified cookies, their overall occurrence in our

dataset, an example value, and their expected functionality based on an Internet

search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

xvi



Chapter 1

Introduction

The World Wide Web (WWW, or the Web) has brought a paradigm shift in communication

and data exchange, which profoundly impacted various aspects of modern life. Today, the

Web is a platform for various purposes, from personal communication to entertainment

via streaming services to facilitating business operations. As the Web continues to evolve,

the number of populations with Web access is also increasing [157], with the substantial

benefits offered by the Web playing a significant role in our daily lives.

Since this enrichment increases the volume of sensitive information processed via the Web

and given the Web’s pivotal role in contemporary society, it is imperative to comprehend

its multifaceted components and their impact on security and privacy. This includes

identifying the prevailing challenges, formulating responsive actions, and implementing

optimization strategies to enhance its safety and privacy. An effective approach to achiev-

ing this is to conduct large-scale Web measurements using Web crawlers (e.g., Wget [55],
cURL [29], Selenium [147]), which enable data collection on webpages. These measure-

ments provide valuable insights based on real-world data and help us understand emerging

trends and challenges in the online ecosystem.

Various stakeholders (e.g., developers, end users) utilize these insights to guide their

actions, which underlines the global impact of such measurements. However, carrying

out these measurements is inherently complex. Numerous factors have a direct impact

on the results (e.g., utilized tools, local regulations) [162, 4]. When overlooked, these

factors can introduce biases to the findings, which may adversely affect the stakeholders

(e.g., developers, end users). Understanding the factors that lead to variances in Web

measurements is essential for obtaining reliable results. Such factors include the natural

complex architecture of the Web [113], local legal regulations [47, 150], varied features and

techniques of tools [44, 58, 173, 126, 137], and different measurement strategies [4]. Thus,

the dynamic and complex architecture of the Web, along with various challenges such as

controlling confounding factors, ensuring reproducibility, and maintaining transparency,

pose considerable difficulties in different stages of a Web measurement study [22].

In this context, it is crucial to gain a deep understanding of the variance in Web measure-

ments, investigate contributing factors, and explore ways to enhance the “robustness” of

Web measurements and minimize bias in the results. In this thesis, we therefore explore

methods to improve the reliability of Web measurements in the realm of security and

privacy, aiming to provide more reliable insights to the key stakeholders of the Web.
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Figure 1.1.: Current challenges in life cycle of Web measurement studies.

1.1. Intricacies of the Web and Their Impact on Web
Measurements

We now explore factors that lead to variances in Web measurements under the influence

of the Web’s inherent structure and measurement design choices. A visual representation

of the challenges in life cycle of a Web measurement study can be seen in Figure 1.1.

The way data travels across the Web is influenced by its infrastructure, which includes

components such as undersea cables and satellite networks. This can introduce variances

in latency, such as ping times, connection speeds, and data loss, depending on the chosen

transmission path [51]. Cloud platforms with their diverse architectures and technologies

can lead to differences in data access times, processing speeds, and data consistency [46].

Content Delivery Networks (CDNs) employ various algorithms and strategies for content

distribution. This can result in variances in content delivery times, cache refresh rates,

and regional content optimization [141]. DNS servers, depending on their hierarchy and

location, might exhibit different resolution times, caching strategies, and error rates [3].

Web servers, contingent on their hardware and software configurations, can differ in

processing speeds, response strategies, and resource utilization [50, 27]. The multitude of

web browsers interprets and processes Web content in their unique ways. This can lead to

variances in content rendering and user-web interactions [136]. The dynamics of websites

means that sites often adjust their content based on user profiles, behavioral data, or geo-

graphical locations. This dynamics can introduce variances in content display and website

loading times [82]. Regulatory mandates set by authorities and organizations can cause

regional differences in Web accessibility, content filtering, and security protocols [87].

Apart from these components, several other factors contribute to variances inWebmeasure-

ments. We now focus on aspects primarily influenced by the design choices of researchers

when conducting such measurements. The data source utilized, such as top lists from
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sources like Tranco orAlexa, can inherently introduce biases, with some sources potentially

offering a more comprehensive or skewed perspective [100]. The tools and frameworks

employed, ranging from Selenium, OpenWPM to Puppeteer, can significantly impact on the

type and accuracy of data collected [87]. The choice of network, be it a university network,

VPN, government infrastructure, or a private network, can introduce variances due to

speed, reliability, and potential filtering or throttling differences [164, 103]. The specific

metrics chosen for measurement, such as tracking requests or HTTP security headers, can

also lead to different outcomes, as some metrics might be more susceptible to external

influences than others [64]. The measurement strategy, which might involve interac-

tions with the target, and the measurement design, like designing a specific measurement

pipeline, play crucial roles in determining the robustness and consistency of results [4].

Other factors, such as relying on static data sources like the HTTPArchive.org, Archive.org
or dynamically measuring websites, may also influence the measurements [64].

Each factor can introduce variances in Web measurements, which highlights the need

for thorough and context-sensitive analysis. Consequently, the demand for robust Web

measurements that account for these and other considerations is evident. In the subsequent

sections, we delve into robustness within a scientific context, exploring potential avenues

to achieve more robust Web measurements.

1.2. Understanding Robustness

Above all, it is necessary to define robustnesswithin the context of scientific studies. Robust-
ness is an element of scientific practices that remains invariant under partly independent

multiple determinations and refers to the ability to produce consistent and reliable study

results across different assumptions, variations, or conditions [148, 174]. In our interpreta-

tion of this definition for the context of Web measurements, robustness implies that the

outcomes of Web measurement studies should remain consistent and reliable, regardless

of the natural complexity of the Web, the tools used, local regulations, or measurement

strategies. The results should be consistent even when subjected to different assumptions

or conditions, whether technical, geographical, or legal. This ensures that insights derived

from such studies are not merely applicable to specific scenarios but can be generalized,

offering reliable guidance to a broad spectrum of Web stakeholders.

We now explore ways to enhance the robustness of the studies and investigate the chal-

lenges and methods and how these approaches can contribute to enhancing the robustness

of Web measurement studies.

1.2.1. Metascience: Studying Science

The history of science reveals that leading scholars have consistently sought to explore the

scientific method’s fundamental aspects and identify ways to implement them efficiently.

Despite their solid theoretical foundations and numerous successes, it remains an ongoing
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challenge to determine how to apply these core principles to achieve robust results [53].

At this juncture, Metascience, or the field of “studying science”, allows us to take a step back

and critically evaluate our methods and practices within research. Thus, Metascience deals
not only with the what and why of science but also with the how. This reflection allows to

increase the overall quality of science by studying how repeatability, reproducibility, and
replicability can be achieved [112, 10].

In Metascience, researchers mainly focus on approaches to enhancing and factors that

jeopardize the robustness of studies. These two aspects are addressed in detail below.

1.2.2. Enhancing the Robustness of Studies

Prominently, Ioannidis et al. [81] provide a comprehensive exploration of the core themes

within Metascience that are pivotal for bolstering the robustness of research. We now

provide an overview of these themes and subsequently interpret their relevance and

application in the realm of Web measurement studies.

Methods focus on the execution of research. Methods encompass the basic aspects of

“performing research”, from study design to ethics. This area covers biases and question-

able practices, emphasizing meta-analysis, evidence integration, and the importance of

collaborative team science and ethical considerations.

Methods in Web Measurements

InWeb measurements, “methods” refer to the systematic approaches used to gather,

process, and analyze Web data. This involves selecting appropriate metrics, tools,

and algorithms that can accurately capture Web activities. Addressing biases, espe-

cially those introduced by tools or the dynamic nature of the Web, becomes crucial.

Collaborative efforts, perhaps in the form of open-source toolkits or platforms, can

ensure consistency and ethical data collection across different studies.

Reporting emphasizes the communication of research. Reporting is centered around

“communicating research”, ensuring adherence to reporting standards and transparent

disclosure of conflicts of interest. It addresses biases in reporting and dissemination,

emphasizing the importance of study registration, conflict management, and methods to

monitor and mitigate such issues.
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Reporting in Web Measurements

For Web measurements, “reporting” emphasizes the clear and transparent presen-

tation of data, ensuring that metrics are both understandable and actionable. This

includes adhering to standards in presenting web metrics, disclosing potential con-

flicts (e.g., platform affiliations), and ensuring that findings are accessible not just

to certain groups but also to a broader audience, including researchers, developers,

and end users.

Reproducibility targets the verification of research. Reproducibility focuses on “verifying

research” through data sharing and ensuring consistent results across repeated studies,

which includes reproducibility, replicability, and repeatability. This domain tackles obsta-

cles to data sharing, the importance of replication studies, and strategies to enhance the

reproducibility and self-correction of published research.

Reproducibility in Web Measurements

In the context of Web measurements, “reproducibility” is about ensuring that

measurements can be consistently re-achieved across different environments or

time frames. This requires open sharing of tools, datasets, and methodologies.

Overcoming obstacles like platform-specific nuances or time-bound web activities

is essential to ensure that findings are not just one-off observations but can be

reliably reproduced.

Evaluation involves both pre-publication and post-publication peer review. Evaluation re-

volves around “evaluating research”, incorporating pre- and post-publication peer reviews

and other assessment criteria. It assesses the effectiveness and costs of traditional and novel

peer review methods, seeking ways to refine and improve these evaluation techniques.

Evaluation in Web Measurements

Evaluating Web measurements means assessing the methodologies and techniques

used to collect and interpret Web data. Peer reviews, both prior to and after publi-

cation, ensure methodological relevance and precision. Considering conventional

and innovative review approaches is vital to maintaining research quality and

relevance in this dynamic domain.

Incentives address the rewards associated with research. Incentives pertain to “rewarding

research”, focusing on the criteria for promotions, rewards, and penalties in research

evaluations. This area evaluates the accuracy and effectiveness of both traditional and
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innovative approaches to ranking and assessing the quality and value of research, teams,

and institutions.

Incentives in Web Measurements

In the context of Web measurements, “incentives” relate to the recognition and

rewards for producing robust, innovative, and impactful measurement method-

ologies. This could involve academic promotions, citations for open-source tools,

badges for study artifacts or industry recognitions. Balancing these incentives with

ethical considerations, especially in a rapidly evolving web landscape, is pivotal.

1.2.3. Threats to the Robustness of Studies

Certain factors inherently challenge the goal of “Enhancing the Robustness of Studies”.
Munafò et al.’s manifesto [112], based on the framework above, reveals various factors

associated with the scientific method [56] that can threaten the robustness, and thus the

verifiability, of studies. These factors can be either deliberate [131, 85] or unintentional

[12, 23]. Stodden et al. [153] highlight a lack of availability in research data and code,

while Makel et al. [106] discuss the scarcity of replication. Kerr et al. [88] introduce the

expression “HARking”, describing the practice of researchers forming hypotheses based

on previously known results. Simmons et al. [145] discuss the flexibility in data collection

and analysis. Banerjee et al. [13] explore how to test a hypothesis, encompassing Type I
and Type II errors and potential pitfalls. Other threats to reproducible science include

poor study design, P-hacking, insufficient quality control, and publication bias [112]. In

this context, multiple studies [80, 151, 26, 102] demonstrate that research findings can be

incorrect or exaggerated, leading to a significant waste of research resources.

The challenges highlighted are not confined to a specific scientific domain; they are uni-

versal. Rigorous data collection and analysis are fundamental across all scientific fields.

Web measurements, despite their specialization, are deeply rooted in this principle. The

complexities of the Web only amplify these challenges, underscoring that Web measure-

ments, just like procedures in any scientific discipline, must adhere to universal standards

of accuracy, transparency, and reproducibility. Yet, Web measurements are an exercise in

data science, and, just like any other scientific discipline, subject to the same universal

challenges and demands for rigorousness, transparency, and reproducibility.

1.3. Research Questions

In light of these factors, this thesis aims to explore the application of the Metascience
scientific method to security- and privacy-related Web measurements to identify the

challenges and potential solutions within this research area. By employing metascientific

exploration, we aim to identify the factors that lead to variances and, consequently, bias
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in Web measurements to better understand the dynamics of the Web and conduct more

robust Web measurements.

This thesis primarily investigates the three major elements of Metascience: methods,

reporting, and reproducibility. We have excluded the elements of evaluation and incentives,

as these occur after a study has been conducted, as was defined in [112]. Furthermore,

evaluation and incentives are largely shaped by external factors beyond the control of

individual researchers. They reflect broader issues within the scientific community rather

than particular problems within individual studies.

Consequently, we formulate the central research question of our study as follows:

RQ1 Robustness ?

How can we ensure the robustness of Web measurement studies, and which factors

lead to variances in security- and privacy-related Web measurements?

Our objective is to pinpoint factors that lead to variances in security- and privacy-related

Webmeasurements and to createmore robustmeasurementmethods. This is fundamentally

important and serves as a basis for reliable, trustworthy, and reproducible research through

robust methods. We can achieve more reliable results by gaining a better understanding

and control of the factors causing these variances [112, 81]. These enhanced measurements

can capture challenges more accurately and provide more precise insights and actionable

recommendations for the stakeholders.

From this consideration, we derive the second research question, which serves as a case

study, drawing upon the findings of RQ1 and illustrating the practical implications of these

refined measurement techniques within the Web security domain:

RQ2 Security ?

Having the findings from RQ1, how can we conduct Web security measurements,

as a case study to understand the update behavior and vulnerability of websites?

Understanding privacy on the Web is as crucial as security. Robust and reliable Web

measurements help understand the practices and mechanisms of privacy protection, thus

facilitating improvements in these practices. In light of these aspects, our investigation

leads to the third research question:

RQ3 Privacy ?

Having the findings from RQ1, how can we conduct Web privacy measurements,

as a case study to understand the effectiveness and impact of privacy tools?

By integrating these three research questions, we propose a comprehensive approach to

enhancing Web security and privacy by applying the principles of Metascience to Web

7



1. Introduction

foo.com

X
1

Y
1

Z
1

X
2

Y
2

Z
2

X
3

Y
3

Z
3

X
4

Y
4

Y
4

Researchers Design Options Reporting Use of Reports
by Stakeholders

Measurement 
Environment

Conducting
Measurement

Processing
Data

Te
ch

n
iq

u
es

Lo
ca

ti
on

In
te

rn
et

C
on

ac
ti

on
In

te
ra

ct
io

n
s

M4

M1

M2

M3

Challenges in
Web Measurement Studies

Ca
se

 S
tu

dy

Case Study

Chapter 4

Update Behavior
and Vulnerability

of Websites

Chapter 5

Effectiveness and
Side Effects of
Privacy Tools

Security and Privacy

• Insights
• Guidelines
• Lessons Learned
• Recommendations

Findings for Researchers,
Developers, End Users

Robust Study

• Insights
• Guidelines
• Lessons Learned
• Recommendations

Findings for
Researchers

Chapter 3

Causition &
Correlation

Figure 1.2.: A visual overview of contributions of this thesis.

measurements. Based on our findings, we aim to provide robust results for key stakeholders.

In this work, we identify three key target groups that stand to benefit significantly from

robust Web measurements:

Researchers — Investigators of the Web. Web crawlers have become increasingly signif-

icant in modern research, with 16% of studies from popular scientific conferences and

symposiums on computer networks utilizing web crawler techniques to obtain data and

provide insights for stakeholders such as other researchers, developers, and end users [4].

However, due to the complexity of the Web, measurement variances and reproducibility

and replicability often occur, making it essential to explore ways to ensure that Web

measurements are reproducible and replicable and provide robust results.

Developers — Providers of the Web. As providers of the Web, developers, and operators

play a key role in the overall security and privacy of the Web and are assigned major

responsibility in this respect. Consequently, it is essential to investigate the extent of their

platforms’ resilience to impacts on security and privacy.

End users — Consumers of the Web. Currently, 63% of the global population actively

engage with the Web, a percentage that continues to grow [157]. This widespread usage

makes ensuring and assessing software components’ security and privacy increasingly

vital, guided by robust findings from reliable studies.

1.4. Contributions

The primary contributions of this thesis guide researchers in performing robust Web

measurement studies. Drawing on our findings, we conduct two Web security and privacy

case studies to offer insights, practical guidelines, and actionable recommendations for

researchers, developers, and end users through multiple large-scale measurements.

In this thesis, we executed multiple comprehensive large-scale Web measurements uti-

lizing 74 distinct measurement profiles (i.e., various web browsers, geographic locations,

and measurement methodologies) resulting in the crawling of six million sites and 17

million webpages across the global Web. Our research covers various components of
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the Web, providing an evaluation to understand the dynamic nature of the Web and the

factors contributing to its complexity. The methodologies and evaluations enhance our

understanding and facilitate the generation of robust, replicable, and reproducible Web

measurements. Based on the findings of our measurements, we provide security- and

privacy-related insights and propose guidelines and recommendations for researchers,

developers, and end users alike. The contributions of this thesis are outlined below. An

overview of them is also given in Figure 1.2.

■ Robustness of Web Measurements — Enhancing robustness of Web measurement
studies. We developed an open-source framework, MultiCrawl 1

, which enables

the design of comprehensive Web measurement setups. Utilizing this framework,

we conducted two large-scale Web measurements to identify the challenges when

designing reproducible and replicable studies. In the first study, of 4.5 million pages

using 24 different profiles, our findings indicate that even minor modifications in

the measurement design directly affect the results, leading to observable differences

in the collected data. In a second study with five different profiles on 1.7 million

webpages, wewant to understandwhere, how, andwhy differences arise when visiting
webpages. Thus, we identify the characteristics (e.g., tracking, third-party inclusions,

or content types) of resources within websites that contribute to increased dynamism

and, consequently, variations. We provide recommendations and guidelines for

enhancing robustness of Web measurements (Chapter 3).

■ Security of theWeb—Understanding vulnerability of the software components. In the
second part of this thesis, we delve into the security aspects of the Web. We analyze

large-scale measurements made on 5.6 million websites over 18 months and examine

246 distinct server-side and client-side software distributions. We demonstrate

that nearly all examined websites (95%) employ at least one software component

with a known vulnerability, and the number of vulnerable websites increases over

time. It is also found that 96% of these websites employ at least one outdated

software component which is often older than four years. We finally provide insights,

guidelines, and actionable recommendations to enhance Web security (Chapter 4).

■ Privacy of the Web — Understanding the efficiency of privacy tools. Lastly, we

shift our focus to the privacy aspects on the Web through further large-scale mea-

surements, involving 2.5 million webpages with 27 different profiles, to evaluate

the effectiveness of “cookie banner interaction” tools. In these measurements, we

examine the effectiveness of “consent banner interaction” extensions to enhanceWeb

privacy for the stakeholders. We observe notable differences even among extensions

with the same features and capabilities (e.g., accepting functional cookies), show

how these extensions interact with consent banners in distinct ways, and provide

insights, guidelines, and recommendations to enhance the efficiency of developing

and deploying these tools (Chapter 5).

1 https://github.com/nrllh/multicrawl
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1.5. Impact

Within the scope of the studies conducted for this thesis, we furnish several insights into

enhancing the robustness of Web measurements and reinforcing the security and privacy

of the Web for different stakeholders. To ensure the use of our findings to researchers,

developers, and end users, we translate them into pragmatic guidelines and actionable

recommendations. Thus, we strive to make an impact on strengthening the robustness of

the Web’s security and privacy, thereby creating a more secure and privacy-enhanced envi-

ronment for its users. In the following, we outline the potential impact of our findings on

the aforementioned stakeholders and elucidate how they will benefit from our research:

Researchers. This thesis’s methodologies, techniques, and findings serve as a robust

foundation for future Web security and privacy research. They provide a roadmap for

designing and conducting large-scale Web measurements to enhance robustness. These

insights could prompt a broader adoption of robust measurement methods, leading to

more reliable results and, subsequently, more accurate interpretations and conclusions.

Developers. The prevalence of outdated and vulnerable software components underlines

the need for more efficient software update mechanisms. Hence, developers can leverage

these insights to introduce new strategies for enhancing the efficiency of software updates

and improving overall Web security. Moreover, our evaluation of various privacy tools

can guide developers in creating more effective and efficient privacy-enhancing solutions,

thereby contributing to enhanced privacy on the Web.

End users. The results of the studies reflect the current state of vulnerabilities on the Web

and the impact and side effects of privacy tools for end users, thus raising their awareness.

Based on our actionable recommendations, users can navigate the Web more securely and

make more informed decisions about the tools they use to protect their privacy.

We hope this effort will contribute to enhancing overall security and privacy on the Web.

1.6. Thesis Overview

The following chapters deal with large-scaleWebmeasurements to improve their robustness
within the contexts of security and privacy.

Chapter 2 lays the foundation for understanding Web measurements, introducing the

concepts and practices involved. We define the key terminology used in Web measurement

studies. We then discuss the methodologies and techniques for designing robust Web

measurement studies. We explore different Web security and privacy aspects. This chapter

provides a holistic view of the elements utilized in this thesis and considerations in

conducting Web measurement studies.

Chapter 3 focuses on the enhancing robustness aspects of Web measurement studies.

We start by addressing the robustness of Web measurement studies, emphasizing the
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importance of consistent methodologies and procedures for ensuring the reliability of

research findings. Next, we explore the similarity of Web privacy measurements and

examine the factors that contribute to the comparability of results across different studies.

This chapter aims to provide a comprehensive understanding of the design considerations

necessary for conducting robustWebmeasurement studies to draw reproducible, replicable,

and verifiable conclusions.

Chapter 4 shifts our focus to security by specifically examining the update behavior

of websites and its impact on security. We investigate the factors influencing update

practices and the consequences of outdated software components for Web security. By

analyzing real-world data, we aim to provide insights into the relationship between website

maintenance and security vulnerabilities and provide recommendations for researchers,

developers, and end users. This case study shows that static open-source data, such as

HTTPArchive, ensures fully reproducible Web measurement results.

Chapter 5 concentrates on privacy and studies consent banner interaction tools and their

impacts on user privacy. We analyze the effectiveness and, efficiency, and consequences of

various consent banner interaction tools. Through this in-depth investigation, we aim to

provide insights into the role of such tools in Web privacy and provide recommendations

for researchers, developers, and end users based on our findings. Additionally, this Chapter

illustrates the variance in results of the privacy tools with similar functionalities.

Chapter 6 concludes the thesis by highlighting the implications of our research, and

briefly discusses potential avenues for future exploration.

Appendix A provides references to our code, raw measurement data, queries for the

entire data processing pipeline and evaluation, and other supplementary materials of all

presented works in this thesis.

1.7. Publications

This thesis is based on several peer-reviewed academic papers published at various com-

petitive research conferences. We explore the interconnectedness of these papers and the

ensuing chapters. This highlights also my contributions to these collective works.

Chapter 3 is primarily based on two papers. The first, “Reproducibility and Replicability

of Web Measurement Studies”, was co-authored with Matteo Große-Kampmann, Tobias

Urban, ChristianWressnegger, Thorsten Holz, and Norbert Pohlmann and published at The
Web Conference 2022 (WWW 2022). I was responsible for the design of the measurement

framework and the evaluation of the measurement data, in collaboration with Tobias Urban.

Matteo Große-Kampmann contributed the literature review to the paper, and he included

the relevant results in his doctoral thesis. Therefore, the results related to the literature

review are not included in this thesis. Christian and Thorsten supervised the paper’s

finalization. The second paper, “On the Similarity of Web Measurements Under Different
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Experimental Setups”, was written in collaboration with Jan Hörnemann, Matteo Große-

Kampmann, Tobias Urban, Norbert Pohlmann, Thorsten Holz, and Christian Wressnegger.

This paper stands to be published at the Internet Measurement Conference (IMC 2023). I

made the measurements and conducted the complete data analysis with contributions

of Jan Hörnemann and having in-depth discussions with Tobias Urban. The paper was

finalized by Matteo Große-Kampmann, Thorsten Holz, and Christian Wressnegger.

Chapter 4 relies on the paper “Our (in)Secure Web: Understanding Update Behavior of

Websites and Its Impact on Security”. This publication, a joint effort with Tobias Urban,

Kevin Wittek, and Norbert Pohlmann, was presented at the Passive and Active Measure-
ment Conference (PAM 2021). I was responsible for carrying out the entire measurement

procedure and appraising the resulting data, guided by Tobias Urban. The finalization of

the paper was handled by Tobias Urban.

Finally, the paper “A Large-Scale Study of Cookie Banner Interaction Tools and Their

Impact on Users’ Privacy” serves as a basis for Chapter 5. This work, co-authored with

Tobias Urban, Norbert Pohlmann, and Christian Wressnegger, is slated for presentation at

the 24th Privacy Enhancing Technologies Symposium (PETS 2024). My role was to lead the

design of the measurement framework and analyze the results. The paper was finalized by

Tobias Urban and Christian Wressnegger.

These papers form the foundation of this thesis:

■ Reproducibility and Replicability of Web Measurement Studies

Nurullah Demir, Matteo Große-Kampmann, Tobias Urban, Christian Wressnegger,

Thorsten Holz, and Norbert Pohlmann

In Proc. of 31st ACM Web Conference 2022 (WWW) [35]
Best paper award candidate

■ On the Similarity of Web Measurements Under Different Experimental Setups

NurullahDemir, JanHörnemann, MatteoGroße-Kampmann, Tobias Urban, Norbert

Pohlmann, Thorsten Holz, and Christian Wressnegger

In Proc. of the 23rd Internet Measurement Conference 2023 (IMC) [36]

■ Our (in)Secure Web: Understanding Update Behavior of Websites and Its Impact on

Security

Nurullah Demir, Tobias Urban, Kevin Wittek, and Norbert Pohlmann

In Proc. of 22nd Passive and Active Network Measurement 2021 (PAM) [39]

■ A Large-Scale Study of Cookie Banner Interaction Tools and Their Impact on Users’

Privacy

Nurullah Demir, Tobias Urban, Norbert Pohlmann, and Christian Wressnegger

In the 23rd Privacy Enhancing Technologies Symposium 2024 (PETS) [38]

Additionally, several publications (e.g., book chapters, peer-reviewed papers) were pro-

duced during my doctoral study, although they are not incorporated into this thesis.
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■ Angriffe auf die Künstliche Intelligenz – Bedrohungen und Schutzmaßnahmen

Dominik Adler, Nurullah Demir, Norbert Pohlmann

In Proc. of DATAKONTEXT-Fachverlag. 2023 [2]

■ Towards Understanding First-Party Cookie Tracking in the Field

Nurullah Demir, Daniel Theis, Tobias Urban, and Norbert Pohlmann
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Chapter 2

Background on Understanding Web
Measurements

This chapter offers an overview of the theoretical foundations of the research presented in

this thesis. We begin with an introduction to key terminology in Section 2.1, followed by a

discussion of the design considerations of Web measurement studies in Section 2.2. In Sec-

tion 2.3, we explore the representation of websites as trees. We then explore the importance

of understanding Web technologies and updating practices in the context of vulnerabilities

in Section 2.4 and Section 2.5. Lastly, we examine the role of cookies in Section 2.6 and the

use of cookie banners for tracking and consent management in Section 2.7.

2.1. Terminology

We start by introducing key terminology. In this thesis, we use the term site (or website)
to describe a registerable domain, sometimes referred to as eTLD+1 (“extended Top Level

Domain plus one”). Examples for sites are foo.com and bar.co.nz. Each site may have

several subdomains (e.g., news.foo.com and sport.foo.com). Following the definition of

RFC 6454 [15], we call the tuple of protocol (e.g., HTTPS), subdomain (or hostname), and

port origin. This distinction is important since the well-known security concept Same-
Origin Policy (SOP) guarantees that pages of different origins cannot access each other.

We use the term page (or webpage) to describe a single HTML file hosted at a specific URL

(e.g., https://news.foo.com/bar.html).

2.2. Designing Web Measurement Studies

Web measurements are indispensable for understanding the web, its adherence to leg-

islation, and the functioning of its vast ecosystems [162, 161, 39]. They illuminate web

content trends and the extent of vulnerabilities in technologies such as TLS [132, 11, 110],

and infrastructural aspects as SSL or HTTP/3 adoption [160, 16].

However, the complexity and dynamism of the web make these measurements challenging.

The dynamic content display mechanisms and variations in technology stacks complicate

web measurements [25]. Prior work has shown that slight setup changes can significantly

influence the results, emphasizing the importance of understanding how various factors
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2. Background on Understanding Web Measurements

affect the outcomes [34]. The provided examples highlight that conducting Web mea-

surements is complex, and previous studies have already shown that the outcome of an

experiment is affected by several factors (cf. Section 1.1). This thesis aims to fill a research

gap by examining the structure and dependencies of dynamic content.

2.3. Representing Websites as a Tree

With their overall complexity and dynamic content, websites necessitate a uniform repre-

sentation to conduct systematic analysis. One efficient representation is a tree that models

all resources and their dependencies [161, 75, 146]. We build trees following previous

work to enhance our thesis’s comparability. The edges in a tree symbolize HTTP com-

munication, and loaded content represent a node. Thus, if an element on a page loads

additional content, such as images (i.e., nodes), it will trigger HTTP requests (i.e., edges).

This approach is used in one of our study (cf. Section 3.2).

2.4. Web Technologies & Updating

To implement modern web applications, service providers rely on a diverse set of server-

side (e.g., PHP or MySQL) and client-side technologies (e.g., HTML or JavaScript). This

combination of different technologies often results in a very complex and dynamic architec-

ture, not always under full control of the service provider (e.g., usage of third parties [75]).

Furthermore, the update frequency of web technologies is higher compared to desktop

software [158]. Web applications are commonly composed of different modules that rely

on each other to perform a given task. Hence, one vulnerability in any of these modules

might undermine the security of the entire web app, depending on the severity of the vul-

nerability. Once a vulnerability of an application is publicly known or privately reported to

the developers (see also Section 2.5), the provider of that application (hopefully) provides

an update to fix it. Therefore, service providers need to check the availability of updates

of the used components and their dependencies and transitive dependencies regularly.

However, it should be noted that not all updates fix security issues, and, therefore, it is not

necessary or desired (e.g., for stability reasons) to install all updates right away.

2.5. Common Vulnerabilities and Exposures

Once vulnerabilities in software systems are discovered, reported to a vendor, or shared

with the internet community publicly, they are published in vulnerability database plat-

forms (e.g., in the National Vulnerability Database (NVD)). The NVD utilizes the stan-

dardized Common Vulnerabilities and Exposures (CVE) data format and enriches this data.

Each CVE entry is provided in a machine-readable format and contains details regarding

the vulnerability (e.g., vulnerability type, vulnerability severity, affected software, and
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version(s)). The primary purpose of each CVE entry is to determine which software is

affected by a vulnerability and helps to estimate its consequences. Each entry in the

NVD database is composed of several data fields, of which we now describe the one most

important for our study in Chapter 4.

In the NVD database, the field ID of a CVE entry uniquely identifies the entry and also

states the year when the vulnerability was made public, followed by a sequence number

(e.g., CVE-2020-2883), the field CVE_data_timestamp indicates when the CVE entry was

created. Furthermore, each CVE entry also includes a list of known software configu-

rations that are affected by the vulnerability (field configurations), formally known as

Common Platform Enumeration (CPE). CPE defines a naming scheme to identify products

by combining, amongst other values, the vendor, product name, and version. For example

the CPE (in version 2.3) cpe:2.3:a:nodejs:node.js:4.0.0:[...] identifies the product

node.js provided by the vendor nodejs in version 4.0.0. Furthermore, the configurations

field lists all conditions under which the given vulnerability can be exploited (e.g., combi-

nation of used products). Finally, the field impact describes the practical implications of

the vulnerability (e.g., a description of the attack vector) and holds a score, the Common
Vulnerability Scoring System (CVSS), ranging from 0 to 10, which indicates the severity of

the CVE (with ten being the most severe). Again, it is worth noting that it not definite that

if one uses a software product – for which a vulnerability exists – that it is exploitable by

an attacker. For example, if an SQL-Injection is possible via the comment function of a

blog, it can only be exploited if the comment function is enabled. Thus, our results can be

seen as an upper bound.

2.6. Cookies

A cookie is a piece of text communicated via an HTTP header or set via JavaScript. More

specifically, a cookie is a key-value pair set on a client by a visited website or third-party

present on that website. Cookies were implemented to allow stateful communication in

the otherwise stateless HTTP protocol [14]. Therefore, they are often used to manage

sessions, store persistent client-side data, and often for user tracking purposes [161].

Various organizations proposed categories of cookies to account for the wide range of use

cases and to bring some transparency to the usage of cookies(e.g., the IAB Europe proposed
17 categories of cookies [74]).

2.7. Cookie Banners

Websites often display so-called “cookie banners” that inform users about the usage of

cookies and sometimes provide them some level of control over the type and amount

of cookies a website may set. In the field, three types of such banners have been estab-

lished [163, 33]: (1) banners that only inform users that a site uses cookies without control,

(2) banners that allow users to accept or reject all cookies, and (3) banners that provide
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fine-grain control of different types of cookies a page may set. Different services have

emerged that help website providers manage the communication of consent. Such services

are often referred to as “consent management platforms” (CMP) [176, 66, 92]. In a nutshell,

CMPs are standard “off-the-shelf” software that aim to automate the consent management

process for websites.
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Chapter 3

Robustness: Designing Web
Measurement Studies

Given the complexity of the Web, it is challenging to reproduce or even replicate the

results of Web measurements. Many factors directly influence their reproducibility and

replicability. However, reproducibility and replicability of a scientific study are essential.

In this Chapter, it is discussed how to enhance the reproducibility and replicability of

Web measurements. We first examine the circumstances under which the results of Web

measurements vary and then identify where, how, and why this variance is observed.

Thus, this Chapter consists of two related comprehensive studies. In the first study

(cf. Section 3.1), we discuss challenges and best practices in designing Web measurements

and present a set of criteria for researchers to enhance the robustness of their studies.

Subsequently, we conduct a comprehensive Web measurement to verify these criteria

and understand their effect on the robustness of the measurements. In the second study

(cf. Section 3.2), we delve deeper into our analysis by conducting another measurement

with multiple profiles to investigate the precise reasons for the differing results in Web

measurements. For this, we construct trees for each page per profile and compare these

trees. This analysis helps us better understand the complexity of the Web, thus allowing

us to take measures to enhance the robustness of Web measurements.
1

3.1. Reproducibility and Replicability of Web Measurement
Studies

As the Web has grown to an essential part of our day-to-day life, the complexity of the

employed web applications has increased drastically. This development has been accompa-

nied by undesirable practices, such as user tracking [162, 40, 83], fingerprinting [122, 44],

1
The remainder of this Chapter is mainly based on two published papers. The first, “Reproducibility

and Replicability of Web Measurement Studies”, was showcased in the 31st ACMWeb Conference 2022

(WWW) proceedings. This work was co-authored by Matteo Große-Kampmann, Tobias Urban, Christian

Wressnegger, Thorsten Holz, and Norbert Pohlmann [34]. The second paper, “On the Similarity of Web

Privacy Measurements Under Different Experimental Setups”, stands to be presented in the proceedings

of the 23rd Internet Measurement Conference 2023 (IMC) and co-authored by Jan Hörnemann, Matteo

Große-Kampmann, Tobias Urban, Norbert Pohlmann, Thorsten Holz, and Christian Wressnegger and

presented in this thesis with additional analyses [36]. It is dedicated to Tarık.
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or even outright malicious activities, such as XSS attacks [178]. Web measurement studies

are an essential tool to understand, identify, and quantify such threats, and they allow us

to explore isolated phenomenons at a large scale. As the modern Web is highly dynamic

and ever-changing, this is an inherently difficult task. To conduct studies across thousands

of websites, researchers can partly rely on crawling frameworks such as OpenWPM [44],

but more often, they have to extend existing work or build new crawlers on their own to

adapt to new developments on the Web.

This trend, however, raises the question of whether different measurement studies using

different frameworks for gathering data are comparable and to which extent experiments

can be reproduced or replicated. In particular, in the field of Web-based measurements,

ensuring replicability requires a tremendous effort to describe, document, and openly

communicate the details of the experimental setup and implementations. However, if the

community cannot verify and reenact drawn conclusions, the entire scientific process is at

risk of becoming unreliable—something that has unfortunately been observed in different

research disciplines in the past [79, 144, 31, 114].

In this section, we systematize such effects, provide best practices and criteria that help de-

sign studies, and additionally perform a large-scaleWebmeasurement study that highlights

the impact of these subtle differences. We define criteria that help designing experimental

setups that are reproducible and replicable. In a large-scale study for which we visit 4.5

million pages on over 8,800 sites with 24 browser profiles, we show that slight changes in

the experimental setup alters the results to an extent where cross-comparability of studies

is not feasible (see Section 3.1.2). For example, we find that the identified trackers on pages

can vary by 25% based on the used browser configuration.

In summary, we make the following contributions:

■ Guidelines for robust Web measurements. We highlight the challenges of de-

signing Web measurements and provide guidelines that help setting up experiments

that effectively address them.

■ MutliCrawl. We provide an open-source framework to conduct comprehensive

measurements, accommodating various profiles with configurations such as different

locations, browsers, and interactions.

■ Impact analysis. To increase the comparability of future and previousWeb measure-

ments, we perform experiments utilizing 24 measurement setups and compare the

measured differences that emerge from the utilized frameworks. We also emphasize

factors threatening the robustness of Web measurements.

3.1.1. Method on Designing Web Measurement Studies

The rapidly changing, variable content and the general trend towards providing more

content online makes the Web a challenging subject for measurement studies. As an

example, suppose one visits the same website at the same time with different browser

instances. The loaded content (e.g., ads or other dynamic content) likely differs and, thus,
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the overall results of measurement studies might deviate (e.g., when identifying embedded

trackers or analyzing shown ads). This simple example illustrates that repeated experiments

may show (slightly) different results and conducting such experiments in an uncontrolled

environment is bristled with obstacles, endangering replicability. However, the cornerstone

of academic work is the possibility to scrutinize conclusions and results. We thus pick up

the definitions of the Association for Computing Machinery [10] for a) repeatability (“Same
team, same experimental setup” ), b) reproducibility (“Different team, same experimental
setup” ), and c) replicability (“Different team, different experimental setup” ).

We put a particular emphasis on reproducibility and replicability of published studies, and

leave repeatability aside, as by definition it can only be achieved by the team that conducted

the experiment in the first place. Thus, reproducibility and replicability are essential to

our analysis, as these enable us to verify and compare results of existing work.

3.1.1.1. Challenges and Best Practices

In the following, we present design patterns and best practices that help to plan Web mea-

surement studies so that future studies can be designed to be reproducible and replicable.

We create these guidelines based on the surveyed literature and our own experience in

this research area. For all surveyed papers, we analyze the documented setup of each

experiment, abstract general design choices, and develop best practices that are intended

to provide an overview of aspects which need to be considered when designing Web

measurements in practice. It is essential to highlight that our guidelines are not intended

to point fingers or criticize previous work, but to highlight pitfalls and challenges that can

impact a study’s outcome.

Method to Design the Best Practices. To derive the best practices, we analyze different

experiment design choices of the papers and compare the outcomes of the works. This

allows us to identify generalizable and common aspects that are shared across different

works. For example, if one work visits sub-pages and another work only visits landing

pages but both find different levels of tracking activities, we create a best practices that

researchers should take this behavior into account. Moreover, we use these best practices

to derive criteria that measurement studies should follow to allow for reproducibility of

conducted experiments.

Building the Dataset. Naturally, each Web measurement study has to identify websites

and pages to be analyzed during the experiment. For this step, one can distinguish between

three methodically different approaches, which all come with up- and downsides.

P1 Artificially selecting websites and pages. As the Web is ever-growing and consists of

a myriad of sites with even more pages, measuring all of them in a single experiment is

not feasible in a reasonable way. A commonly accepted way of focusing an experiment

is to use a so-called “top-list” that ranks popular sites (e.g., Alexa [5], Tranco [100], or

others [8, 105]). These lists, however, only include the landing page (or the eTLD+1) which
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are used for the experiment. While, at first glance, this might seem reasonable, recent

works have shown that sub-sites (e.g., https://www.example.com/news) show a significantly

different behavior than the respective landing pages [161, 8], and that the rank of a website

also might impact the results [179]. Consequently, we advocate to name the sources

(e.g., top-list) of sites that have been analyzed, detail how they have been picked, and list

all analyzed pages (e.g., in an appendix). Similar to the highlighted challenges to enable

repeatability, it is necessary to point out which criteria are used to choose or eliminate

entries from a given set of sites.

P2 Using user clickstream data. Another approach is to use clickstreams observed from

real users or analyze their traffic directly. While such an approach is more realistic, they

are harder to collect. However, studies that explicitly need to understand the effects of a

phenomenon for individual users need to take this step [17, 121, 49]. If ‘only’ the presence

of a phenomenon is of interest (e.g., if secure CSPs are used), artificially selected sites can

suit the purpose.

P3 Use existing sources. Using a previously collected public datasets (e.g., HTTPArchive
[70]), is the only option that allows the reproduction of results, offers high repeatability,

and enables to compare properties. However, one is bound to analyze phenomena for

which data is already present in the desired granularity [39], which is often not the case.

From this set of best practices, we derive four criteria (C1–C4) that a measurement study

should meet (see group “Dataset” in Table 3.1). While criteria C1–C3 (“documentation of
the analyzed sites” ) are directly related to the named practices, criterion C4 is intended to

highlight that some phenomena need to be analyzed over time to understand their scale,

we analyze its effects in Section 3.1.2.

Experiment Design. One way or another, Web measurement studies rely on a crawler.

Selecting, building, and customizing such a crawler is an essential step in preparing

each study, such that one needs to prudently design and implement it to ensure that the

experiment is stable, repeatable, and comparable.

Building the Crawler. We now discuss design decisions when performing a study using

artificial browsing data (i.e., not using user-generated or public data). We review the

essential steps that should be taken into account when designing such a study:

P4 Choosing a technology. Previous work relies on different measurement setups ranging

from simple tools like cURL [29] to sophisticated measurement frameworks that can spawn

several browsers at once like OpenWPM [111, 44]. As prior work has shown, the decision

of which tool to use impacts the results [4].

P5 Customization of the crawler. Naturally, each study uses a (slightly) different mea-

surement setup. When customizing a crawler, it is inevitable to elaborate on the steps

taken and discuss possible artifacts and limitations of the approach. While necessary, each

customization step might impact the results (e.g., different user agents) and, therefore,

needs to be documented [104]. We discuss these effects in more detail in Section 3.1.2.
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P6 Avoiding crawler detection. Crawlers and other bots make up approx. 37% of traffic on

the Web [76] and it has been shown that this significantly affects crawling studies [170, 78,

107]. Consequently, some service providers define behavior guidelines to limit crawling

traffic, or try to detect and block them altogether [86]. These defense mechanisms might

substantially impact the results of measurement studies if sites present different content

or none at all. Hence, the authors’ choice to avoid and if so how and to which extent an

evasion technique was implemented needs to be discussed transparently. However, it is

commonly accepted (and often necessary) to circumvent bot detection mechanisms [161,

162, 44].

P7 Mimicking User Interaction. Modern websites are no longer static HTML pages, but

interactive applications that load different sets of content depending on the users’ actions.

Resources are often only loaded once visible to the user (known as “lazy loading”) to

improve the website’s loading speed and for search engine optimization purposes [62].

This means that crawlers that do not interact with a page (e.g., scrolling) will miss crucial

resources [161, 162, 87, 180]. Therefore, interaction mechanisms need to be documented,

and limitations of lacking user interaction should be discussed.

Based on these four aspects of a crawling setup, we derive criteria C5, C6, C7, C8, and C10.

We split the customization step (P5) into two criteria (C6 & C7) to account for differences

whether a crawler was modified (e.g., a function was altered) or extended (e.g., a browser

extension was used). Furthermore, we add a criterion that urges authors to make the

crawler publicly available (C9). Since the effects of C5 and C11 are not yet adequately

discussed by previous work, we analyze them in Section 3.1.2.

Experiment Environment. After selecting the sites to visit and building the crawler,

the experimental environment must be crafted. In the following, we describe essential

environmental aspects that may impact the crawler and, therefore, the experiment’s

outcome.

P8 Geolocation of crawls. A critical factor for each experiment is the location from which

the measurement study is conducted. Depending on the location (e.g., based on the IP

address of the crawling machine), websites might deliver different content [72]. This may,

for instance, be founded in cloaking, legislation (e.g., the GDPR or CCPA [179, 162, 30,

161]), or even censorship [117, 21]. Such impacts have to be accounted for (e.g., via using

a VPN setup) and actions to address them need to be disclosed in detail.

P9 Defining the page visit strategy. For the page visit strategy, we distinguish between

stateless and stateful crawls. A stateless crawler (i.e., browser) is reset completely between

each page visit, such that each visit creates a new HTTP session that updates the browser’s

internal resources. On the contrary, some (e.g., only the cookie jar) or all of this information

is kept in stateful crawls, as a “real” browser would. Consequently, authors need to

document what part of a browser profile is maintained statefully, what part is reset, and

when [44, 180]. This distinction has a severe impact on the outcome of the experiment:

In stateful experiments, the order of visited pages potentially impacts the results, and it

accounts for HTTP session-specific phenomena, such as opt-in to cookie tracking. Stateless
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crawls, in turn, allow to study session-independent attributes. Note that this practice does

not account for browser profiles that were populated before the measurement took place

(e.g., by pre-filling the cookie jar), we account for this in P11.

P10 Setting up Browser Configuration. A browser’ configuration plays an important

role for Web-based measurements. Depending on the browser (e.g., version) the crawled

entities might act differently. To allow comparability and reproducibility of experiments, it

is essential to share basic configuration details, which may impact the study’s outcomes [98,

169, 180]. Such design choices range from installed extensions, used block-lists, login

strategies, used browser version, content of the cookie jar, etcetera.

P11 Describe shortcomings and limitations. Naturally, a Web measurement can never be

complete regarding, for instance, coverage or realism. The experimental design accounts

for these “natural” boundaries, but each design choice will likely impose certain restrictions

and limitations. To allow the research community to acknowledge and assess the outcomes

of an experiment fully, it is inevitable to discuss the limitations of its design [133, 128].

From these practices, each can be mapped to a single criterion (C11, C12, C13, and C17).

We add an additional criterion (C15) asking to make results publicly available, as this

particularly helps to replicate or reproduce an experiment. Moreover, we set up two criteria

that help assessing the findings of a paper: First, asking for an ethical discussion (C18)

and second, urging to provide a general overview of the measured results (C16).

3.1.1.2. Design and Evaluation Criteria

Based on the best practices described in the previous section, we derived the named 18

criteria to allow reproducibility and replicability of a study. In a first step, two experts,

both with an extensive professional and academic background in security and privacy on

the Web, assessed an identical, randomly selected subset of the surveyed papers (𝑛 = 25)

to test the applicability of the criteria. This exploratory evaluation has shown a very high

interrater reliability (Cohen’s kappa: 𝜅 = 0.94), which indicates that the designed criteria

can be unambiguously applied. In a few cases, the experts have disagreed, which however

turned out to be founded in an initially ambiguous formulation of one criteria, which was

adjusted accordingly. In a second step, the criteria have then been applied to 117 papers in

our corpus [34]. The results of this survey are included in one of the co-author’s doctoral

thesis. Table 3.1 lists all 18 criteria and provides a brief description of each.

3.1.2. Results

In this section, we proceed to demonstrate the impact of insufficiently documented ex-

perimental setups of large-scale studies along four exemplarily case studies focusing on

C4, C5, C10, and C12. The first three are chosen because the literature currently does not

provide enough evidence on their impact, while C12 is used to verify that our framework

is able to reproduce previous results.
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Table 3.1.: Criteria to design Web measurement studies.

ID Criterion Description

D
at
as
et

C1 State analyzed sites States used dataset, toplist, or user click-

streams, including version.

C2 State analyzed pages Offers a .csv or comparable with all ana-

lyzed pages (i.e., distinct URLs).

C3 State site or page selection Discusses the selection process of ana-

lyzed sites.

C4 Perform multiple measurements Discuss which pages are analyzed in con-

secutive measurement runs, if appropri-

ate.

Ex
pe

ri
m
en

tD
es
ig
n

Bu
ild

in
g
th
e
C
ra
w
le
r C5 Name crawling tech. Describes the used crawling technology

(e.g., OpenWPM).

C6 State adjustments to crawling tech. States which technology features were

used and/or (slightly) adjusted.

C7 Describe extensions to crawling tech. Describes which new features were devel-

oped to conduct, if any were made.

C8 State bot detection evasion approach Discusses which means were taken that

the crawler was not detected, if necessary.

C9 Used crawler is publicly available Provides the crawler in a public location.

C10 Mimic user interaction Describes how the user interaction was

implemented, if applicable.

Ex
pe
ri
m
en
tE

nv
.

C11 Describe crawling strategy Describes which crawling strategy was

used (e.g., stateless vs. stateful).

C12 Document a crawl’s location States from which location(s) the study

was conducted.

C13 State browser adjustments Discusses properties of the browser

(e.g., user agent, version, used exten-

sions).

C14 Describe data processing pipeline Describes the data processing steps in de-

tail.

Ev
al
ua

ti
on

C15 Make results are openly available Authors provide the (raw) measurement

results.

C16 Provide a result/success overview Describes the outcome of the measure-

ment process on a higher level.

C17 Limitations Discusses the limitations of the experi-

ment.

C18 Ethical discussion Discusses ethical implications of the ex-

periment (e.g., exploiting vulnerabilities).
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3.1.2.1. Web Measurement Approach

To show the impact of seemingly small changes in a measurement setup on the replicability

of an experiment, we perform a Web measurement study that uses 25 different setups.

More specifically, we compare results of four browsers (Firefox, Firefox headless, Chrome,
and Chrome headless – C5), three regions (Europe, Asia, and North America – C12), and

two types of website interactions (“none’’ and “simple interaction” – C10) individually.

Overall, we cross-compare 24 different setups. Additionally, we perform a repeating study

that measures the same sites and pages on a daily basis – C4.

The data corpus of our study consists of the top 10k Tranco [100] websites and we collect

the first 25 subpages for each site (as identified by the JavaScript engine), if possible. We

designed a pipeline that coordinates all page visits across the profiles. Our measurement

setup consists of virtual machines (VMs) orchestrated by a “commander” instance to

organize parallel page visits. For example, one VM performs the measurement using

Chrome from the US with user interaction, while another does the same for the EU. A

detailed description of our framework can be found in Appendix A.2.1.

The commander is in charge of starting the measurement for each site in parallel across

the VMs. Each VM starts 10 browsers (one for each site) in parallel using the defined

profile. Once the analysis of a page is finished, the same browser instance is moving to

the next page of the same site. Hence, subsequent visits of pages will not be synchronized

across all VMs. On the landing page level, the timing differences in our experiment are

only 17 seconds on average. However, the timing differences on subpage level are 3min

(SD: 7min). When visiting a page, each browser logs all HTTP requests and responses and

stores them in a central database. We wait until a page has finished loading or a timeout

of 30 seconds is reached, close the browser, and move on to the next page.

3.1.2.2. Replicability of Measurements

We highlight the impact of individual criteria based on four examples and explore them

along two dimensions: (1)Web tracking and (2) usage ofContent Security Policies by a page.

Method. To compare the results of the 24 profiles, we use the Jaccard index. For each
page, we have a set of observed trackers and CSPs (i.e., 24 sets). The Jaccard index is used

to gauge the similarity of sets. The index computes the similarity by dividing the size of

the intersections with the size of the union of all sets. By design, the index ranges from 0

to 1, where 1 denotes that the sets are equal and 0 indicates that they have no element in

common. This allows us to compare and quantify the differences in observed trackers on

page level across all profiles. The Jaccard index is used to compare the similarity of two

sets. Since we compare multiple sets, we compute the pairwise similarity between all sets

and use the arithmetic mean to state the similarity for a given page.

We analyze the impact on privacy-related studies along with the presence of trackers.

More specifically, we analyze which tracking requests are observable when visiting a page.
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To identify them, we use the tracking filter list EasyList (as off 07/05/2021) [42]), which

we provide in the supplementary data of this work (see Section A.1). If an observed URL

is present on the list, we consider it to be a tracking request. Furthermore, we use the

eTLD+1 part of these URLs to identify trackers, in terms of domain names.

To get a better understanding of the impact of different measurement setups for security

studies, we analyze the presence of Content Security Policies (CSP). CSPs help to mitigate

specific attack vectors on the Web (e.g., XSS attacks). They are implemented by an HTTP

header that contains different directives that define sources from which content may be

loaded. We analyze differences in CSPs by inspecting the used CSP directives and all

attributes within a directive. We omit all variable attributes (e.g., nonces) in the analysis

since they change by design. Furthermore, we compare the semantic effect of a directive

(i.e., ordering is ignored).

General Measurement Overview. Our total website corpus consists of 10k distinct sites

and we found 182,586 subpages on those sites, including the landing pages. Across all

profiles, we successfully visited 4.5M pages on 8,883 sites. The sites that could not be

crawled are not meant to be visited by a human (e.g., link shorteners, content delivery

networks, or ad networks). The resulting database has a size of roughly 1.1 TB, which

is openly available (see Section A.1). On average, each profile visited 179,404 pages (SD:

6,947; max: 186,972; min: 158,691). In our analysis, we only consider pages for which

we observed at least 17 successful crawls across the 24 profiles. Hence, roughly 70% of

the profiles have to visit a page so that we consider it. Furthermore, this guarantees that

at least one profile in each category successfully crawled a page. 178,452 (92%) of the

analyzed pages fall into this category. Note that 134,120 (75%) of pages were successfully

crawled by all profiles.

Figure 3.1 provides an overview of the number of observed tracking requests and trackers

(eTLD+1) for each page by profile. Generally, we see that Firefox profiles are tracked more

than their Chrome counterparts. Furthermore, profiles in the US are tracked more than

profiles from other regions. Finally, user interaction seems to have a significant effect in

terms of tracking, while running browsers in headless mode makes only little difference.

More details about our results are presented in the following sections.

Impact of Different Browsers (C5). First, we study the impact of the four browsers that

we analyzed (i.e., Firefox, Firefox headless, Chrome, and Chrome headless) in terms of their

impact on tracking. Regarding HTTP requests, we see that Chrome-based profiles make

on average 2% (SD: 18.5%) more HTTP requests than Firefox-based profiles. Furthermore,

we see that every 10th (SD: 1.5, min: 7, max: 12) HTTP request is a tracking request. We

observed that for Chrome, every 10th HTTP request is a tracking request, while for Firefox
it is every 9th. Overall, we identified for all Firefox profiles 12% more tracking requests

than for the Chrome profiles. Only for four out of the 12 Chrome profiles, we could detect

more trackers than for the respective Firefox profiles. However, on average, we identified

3.9 (SD:8.6) distinct trackers (eTLD+1) per page for the Firefox profiles and 3.9 (SD:8.1, min:
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Figure 3.1.: Observed tracking requests and trackers by profile.

0, max: 68) distinct trackers for the Chrome profiles.Hence, the number of distinct tracking

domains stays similar, while the volume of requests differs between the two browsers.

We turn to the effects of when a browser is used in headless or native (“GUI”) mode.

We observed only in two of the six Chrome headless profiles more trackers (10% per

page) than in their counterparts. Overall, the headless Chrome profiles only contained

3% fewer trackers. When we run Firefox in headless mode, we noted almost reversed

results. For four out of six Firefox Headless profiles, we could detect 5% more trackers than

native Firefox profiles. Across all of these profiles, we see marginal differences regarding

the number of trackers when we run browsers in headless mode. This is in contrast to

previous work that has shown the importance of this feature [4]. However, in some of

the profiles, we observe substantial differences, which indicates that the outcome of an

experiment is not determined by the used browser mode exclusively. Moreover, different

combinations of design choices mutually affect the results, highlighting the need for proper

documentation.

Across all pages, the mean Jaccard similarity in observed distinct trackers for browsers

Chrome and Firefox is 0.59 (SD: 0.32, min: 0, max: 1). Overall, we identified only 1% more

trackers for Firefox headless profiles. However, we find a big difference in terms of identified

trackers. Across all pages, the mean Jaccard similarity in observed distinct trackers for

headless and non-headless profiles is 0.53 (SD: 0.48, min: 0, max: 1). Overall, the similarity

in observed trackers comes with a medium Jaccard similarity for this category but with a

significant standard deviation. While we observed a perfect similarity (1) for 19% of the

pages, we found no similarity (0) for 11% of them (see also 3.2). This effect is magnified if

we only look at the headless and non-headless browser where we find perfect similarity

for 35% of the pages and no similarity for 34%. Hence, in the worst case, studies that only

alter the browser (or the display mode) might find different results, depending on the

analyzed pages.
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Figure 3.2.: Similarity of trackers on page level by profiles.

The distribution of the computed Jaccard values for each page is given in Figure 3.2 (black

bar). Most pages (34.1%) always issue a very similar set of trackers no matter which profile

visited the page (similarity ≥ 0.8). It is worth noting that we identified on such pages

1.9 distinct trackers on average. These pages only contain few trackers, but those are

often present independently of the used profile. On 45.5% of the analyzed pages, we found

a medium similarity (0.3 ≤ sim. < 0.8) in the observed trackers. On those pages, we

observed on average 5.2 trackers. Finally, 20.4% of the analyzed pages show almost no

similarity (< 0.3) in the observed trackers. On those pages, we observed on average 4.0

trackers. Thus, pages that include more trackers also include a different set of trackers

based on the used profile. In the following sections, we discuss the impact of other criteria

on the similarity in more detail.

Our results show that the number of tracking requests observed in the Firefox-based
measurements is higher than in the Chrome-based ones. However, we did not find a

statistically significant effect that running browsers in headless mode affects the number of

observed trackers. However, we find a statistically significant difference (𝑝-value < 0.001)

in terms of identified distinct trackers.

We now describe our security analysis regarding CSP. Overall, we identified CSPs on

17.596 pages (10%). Compared to tracking analysis, we find very high similarity for CSPs.

We find that on 16.355 pages (93%) the identified CSP headers are semantically identical.

Hence, overall we get a Jaccard similarity of roughly .97. However, on the pages that

served different CSPs (1.063), the mean Jaccard similarity is 0.68 (SD:0.25). Furthermore,

we did not find that any profile had a significant impact on this phenomenon. This result

is expectable since some of our features cannot be detected when the website is visited

(e.g., user interaction) and, thus, cannot impact the results. Due to the low impact of our

profiles on served CPSs, we dropped the CSP analysis in the other section because we

found comparable results. Future work could analyze the impact of different browser

profiles on more variable security features.
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Impact of Simulated User Interaction (C10). Regarding simulating user interactions, our

analysis shows that interaction on pages causes a sharp increase in HTTP traffic (on

average by 20%) while the number of tracking requests increases by 35%. Hence, the

amount of tracking requests increases disproportional with the number of all observed

requests. For profiles with interaction, we observed on average 7.2 (SD: 8.8) distinct

trackers (eTLD+1) per page and for the other profiles 6.7 (SD: 8.3). Thus, these high-level

figures already indicate that the choice to simulate user interaction impacts the results of

a study. When analyzing Chrome and Firefox separately, we see statistically significant

(𝑝-value < 0.001) differences. This again indicates that the effect of a single criterion

cannot straightforwardly be attributed but that they jointly impact the results. For Chrome
we find on average 6% (SD: 10%, min: -9%, max: 14%) ) more HTTP requests when we

perform interactions and, surprisingly, we see an average increase of 36% (SD: 6%, min:

29%, max: 43%) for the Firefox profiles. Of these requests we see that for Chrome 5.6%
are tracking requests. For Firefox we see that 73% (SD: 21%, min: 43%, max: 92%) of these

request are used to track users. This difference might be an artifact of our measurement

framework and should be analyzed in future work in more detail.

Across all pages, the mean Jaccard similarity in observed distinct trackers for profiles

with interaction and non-interaction is 0.67 (SD: 0.28 min: 0, max: 1). These results fit the

observation that the number of observed trackers (eTLD+1) does not increase by a lot

by user interaction. If the number of trackers stays similar, one can expect that the set

of trackers per page stays similar. Almost half of all pages (47%) show a high similarity

of more than 0.8 (see also Figure 3.2), which also indicates this trend. However, for a

third (33%) of all pages, we find a similarity of 0.5 or less. This shows that while the

overall similarity is quite substantial for a non-negligible number of pages, the results

differ considerably.

Impact of Different Locations (C12). In this section, we want to analyze the regional

effects of an experiment. On average, we see that profiles from the USA are tracked most

in terms of distinct trackers (eTLD+1) on a page (6.93; SD: 8.5), followed by Japan (5.6; SD:

6.39), and EU profiles (4.49; SD: 5.42). These results propagate to the number of observed

tracking requests.

Across all pages, the mean Jaccard similarity in observed distinct trackers for the profiles in

the different regions is 0.62 (SD: 0.30 min: 0, max: 1). In terms of the analyzed criterion, the

location has a significant effect on tracking and has only a limited effect on the difference

in observed trackers. Half of all analyzed pages (50%) show a similarity of 0.7 or more

(see Figure 3.2), and only 29% of the pages show a similarity of 0.4 or less—which should

be accounted for in an experiment. This is in line with previous work that found that

only a few online advertising companies altered their business model due to privacy

regulations (e.g., withdrawing from the European market) [162]. Overall, we note that

privacy measurements and analyses can vary up to 65% depending on the region (e.g., due

to different legislation). Thus, our analysis finds that the region plays a crucial role in

privacy measurements. These findings are consistent with previous work [162, 161].
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Figure 3.3.: Fluctuation in the number of tracking requests and domains for each day in the long

running experiment.

Impact of Multiple Measurements (C4). Finally, we want to assess the temporal effects

for measurement studies. In the following, we look at the absolute number of identified

tracking requests and the number of observed distinct tracking domains (eTLD+1). Fig-

ure 3.3 shows the result of this analysis. Over twelve days, we saw a variation of up to 27%

(max on day 3–80,274; min on day 9–58,951) in observed tracking requests. The standard

deviation of such requests is 8,203. However, the number of distinct tracking domains

remains almost stable during the experiment (variation of 3.5%). Our results suggest that

depending on the day of each measurement, the number of tracking attempts—in terms of

tracking request—frequently varies, but the companies (domains) that are active in the

ecosystem remain stable. Thus, studies that analyze the ecosystem will find similar results,

while studies that aim to analyze the extent of a tracking phenomenon might see different

results based on the measurement day. In terms of replicability and reproducibility, this is

challenging since even the same setup measures different levels of tracking on different

days, which might lead to different conclusions of a study. Our results show how important

repeated measurements are to draw more robust conclusions.

3.1.3. Limitations and Ethics

One limitation of our measurement is that—for scaling reasons—the site visits are not fully

synchronized. We argue that this limitation will have minor influence on the results of

our study, as the site visits still happen within a small time window (mean time difference

is 3min). We thus assume that sites will still hold similar content. The experiment design

comes with the limitation that our crawler does not interact with websites as an actual

human would, which is probably impossible in an automated fashion. From an ethical

point of view, our crawler creates traffic on the visited websites that could be omitted

and save resources, and we might see ads that might drain the budget of the advertising
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company. Since our crawler only visits each page once (once a day for the long-running

experiment), we argue that these issues are minor and can be accepted.

3.1.4. Related Work

Recently different works, similar to our measurement study, focused on the comparability

of various crawling tools used in Web measurement studies. Most recently, [87] compared

how different measurement tools and setups affect the results of a study. Similarly to us,

they used other locations and browser modes to perform the measurement. In their study,

the authors focus on “request/traffic volumes”, JavaScript libraries loaded, and known

ad/tracking domains loaded. [4] presented a survey on tools used in Web measurements

and performed an experiment to compare the outcomes of these tools. In their study, the

authors compare metrics like request/response sizes or used cipher suits. Both works

find, similar to our results, that different crawlers impact the results of an experiment.

Cassel et al. found that mobile browsers receive fewer tracking-and-advertising requests

than desktop browsers in a comparative study [25]. In contrast to our work, they focus

on tracking and show differences between mobile and stationary devices. Similar to our

approach to systematize and evaluate our community’s researcher methods, other studies

were performed by various authors in different domains [134, 6, 125, 9, 90]. Our work

focuses on a different research object than the named studies, namely the Web.

3.2. On the Similarity of Web Measurements Under Different
Experimental Setups

Modern websites are intricate and complex software applications, which offer a vast array

of features. They often rely heavily on third-party services for their construction and

operation. These services are embedded to dynamically load additional content, such as

ads or fonts, which may only sometimes be under the control of the site operators [75, 97].

This dynamic loading process can introduce a non-deterministic set of objects on a page,

potentially affecting commonly studied phenomena such asweb trackingmechanisms [161]

or HTTP headers [135]. Consequently, the same web page could present different objects

during web measurement studies.

Researchers often resort to web measurements to comprehend various phenomena, like

web tracking, security mechanisms, or the behavior of social media sites, that affect

millions of users [162, 40, 83, 122, 1, 37, 30]. However, the dynamic nature of the web

poses a significant challenge to these measurements. Tools such as OpenWPM [44] or

custom-built crawlers are used to scale up these experiments. Despite this, the effects

of different measurement setups and the root causes of measurement discrepancies still

need to be more adequately understood. Prior research has indicated that even minor

changes in a web measurement setup can significantly affect the results and conclusions

of a study [4, 34, 87, 25, 135].
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While previous studies have mostly explored the effects of such practices, they have yet to

delve into why results differ. This study bridges that gap by investigating the effects of

various measurement setups, providing a detailed illustration of differences in datasets

resulting from the respective setups. We examine the similarity of embedded first- and

third-party objects across five different measurement profiles. Leveraging these profiles,

we conduct a large-scale web measurement covering nearly 25,000 sites and over 350,000

pages, forming the foundation of our analysis. Afterward, we construct dependency trees
for each visited page and cross-compare these trees, enabling us to identify and quantify

differences and determine to what extent they exist.

This approach aids us in fostering a deeper understanding of the comparability of privacy

studies, by cross-comparing the similarity of different trees horizontally (i.e., nodes at a

specific depth) and vertically (i.e., loading dependencies of an object). Our experiment

contributes to establishing more robust measurement setups, ensuring reliable results and

reproducibility for future work, and understanding why current measurements lack these

aspects. Moreover, it provides insights into the comparability of different works.

In summary, our contributions include:

■ Differences in dependency trees. We illustrate that trees obtained from different

profiles present notable differences in dimensions, node types, and loading depen-

dencies. These findings suggest that each page visit or measurement introduces a

degree of variance, impacting the comparability and reproducibility of a study.

■ Causes of differences. We identify the entity loading a node and the resource

type of the node as primary factors influencing the differences observed in the

trees. Specifically, we detail that a node’s content type (e.g., iframes or images) and

its loading context (e.g., third-party) are key drivers in introducing dissimilarities

between web measurements.

■ Effects of measurement setups. We examine the differences caused by minor

changes in web measurement setups. Our findings reveal that even identical setups

operating in parallel and visiting the same pages can yield significantly different

results. Furthermore, we demonstrate that simple design choices (e.g., mimicked

user interaction) can produce almost incomparable results.

3.2.1. Method on Measuring the Differences in Web Measurement
Studies

In this Section, we describe our experimental setup (cf. Section 3.2.1.1) and our approach

to measuring the differences between webpages (cf. Section 3.2.1.2).
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3.2.1.1. Measurement Approach

This work investigates the causes of differences in the results of Web measurement studies

when using different setups. We run semi-parallel measurements and define five profiles

whose measurement results we compare. We develop our measurement framework along

with recent findings on how to run robust Web measurements [180, 107, 161, 4, 179]. This

design choice is intentional to allow the comparison of our work with previous work, which

is currently lacking in our community [34]. Our measurement setup is based on the openly

available framework of Demir et al. that implements a best-effort approach to conduct

parallel Web measurements [34]. We describe the used framework in Appendix A.2.2 to

foster reproducibility of our work.

In general, we use the following non-parametric tests: (1) theWilcoxon signed-rank test

to assess differences between two continuous variables, (2) the Mann-Whitney U test

to determine differences between two independent variables, and (3) the Kruskal-Wallis
test to assess if there are differences in the central tendency (median) of a continuous

dependent variable across multiple groups. For all tests, we use a significance level of

𝛼 = .05.

Experimental Design. In the following, we describe the configuration of the five different

browser profiles that we use in our experiment. We resort to these profiles since these

types have been used by previous works [34] to highlight existing comparability issues in

our community. Using methods or profiles that others have not used before could tamper

with our intention to identify issues with existing approaches. All of these profiles are

based on the Firefox browser, and we utilize OpenWPM (v0.18.0), a common and popular

crawling framework [44], to capture the traffic we are interested in. We choose to utilize

OpenWPM as it is widely used in the Web measurement community and, therefore, serves

as a good foundation to conduct our experiments. As the framework already comes with a

rich feature set, we only made adjustments to mimic user interaction, which is described

later in this section. The named design choices regarding the measurement framework

help to increase the comparability and reproducibility of our work.

We cross-compare these five profiles to understand the differences in the analyzed pages.

The profiles differentiate in the used version, whether user interaction is mimicked (“user

interaction”) or not, and if the GUI of the browser is spawned or the headless mode is

used (“GUI”). Two of the profiles (#2 and #3) use the identical setup to directly compare

the differences between two equal browser instances running in parallel, visiting the

same pages. Table 3.2 lists the used profiles. We chose the “user interaction” and “GUI”

configurations because, on the one hand, recent results show that such information is

often omitted in setup descriptions [34] but could, thus, heavily impact comparability.

Furthermore, both options are often omitted to speed up crawls to analyze more pages in

an experiment. On the other hand, mimicked user interaction significantly impacts the

embedded objects and third-party content (i.e., more content is loaded, for example, due

to lazy loading). We chose the usage of a GUI as a parameter since previous works found

a varying impact of this feature [34, 87]. In terms of the used browser version, we used
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Table 3.2.: Overview of the used profiles. Profile #2 and #3 use the same setup.

# Name Version Interaction GUI Country

1 Old 86.0.1 ✓ ✓ DE

2 Sim1 95.0 ✓ ✓ DE

3 Sim2 95.0 ✓ ✓ DE

4 NoAction 95.0 ✗ ✓ DE

5 Headless 95.0 ✓ ✗ DE

the most recent stable Firefox version available when we started the experiment (v95.0;

release date 12/2021) and a version that is roughly one year older (v86.0.1; 02/2021). This

distinction allows us to simulate differences onewould face when comparing current results

to ones from previous studies. Naturally, this approach will not reflect results that would

have been obtained in previous works since websites, standards, and browser features

change over time. Yet, our approach allows us to understand differences introduced by

other browser versions. Furthermore, a roughly ten-month-old browser should still be

supported by most websites. We make our browser profiles and the crawling technology

openly available (cf. Appendix A.1).

To simulate a genuine user and the interactions of such a user is nearly impossible. However,

such interaction can severely impact a site’s behavior (e.g., lazy loading of content). In

our profile, without user interaction (#4), we do not interact with the website, asides from

waiting for it to finish loading or until the timeout of the framework is reached. All other

profiles mimic simple user interaction with the visited page. Once the browser loads the

page, we wait until the page finished loading (or a timeout is reached) and then simulate

Page Down, Tab, and End keystrokes with short periods of delay in between. We resort

to these keys as they will probably not result in loading a different page. The timeout

and the specific keystrokes have been used by prior work (e.g., [37]). Such mimicked

user interaction might also interfere with bot detection mechanisms in a way that such

methods do not detect our crawler. We use the options of OpenWPM to define which

user interface is used (options native and headless). To use an older browser version, we

adjusted OpenWPM’s configuration to install the older binary.

Website Dataset. The basis of the set of websites to analyze is the widely used quasi-

standard Tranco list [100]. We used a randomly sampled subset of sites from the list based

on the pages’ rank. We used the top 5k sites from the list and randomly selected 5k sites

from each of the following buckets: 5,001–10k, 10,001–50k, 50,001–250k, and 250,001–500k.

We used these 25k sites as a starting point to identify the pages to analyze. We visited

the landing page of each of these sites three days before our experiment to collect 25

subpages (i.e., first-party links on the page) for each of them to get a broader view of a

site’s behavior [161, 34, 8]. We repeated the process recursively if the landing page did not

hold enough links. We provide a list of all analyzed pages and sites in Appendix A.1.
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3.2.1.2. Measuring Differences in Websites

A webpage can be modeled along the loading dependencies of the elements present on

it (i.e., as a tree). We generally build the ‘dependency trees’ for each page to measure

differences in websites based on the observed HTTP traffic (i.e., requests and responses).

Each node in a tree represents an HTML element on a page (e.g., image, JavaScript, or CSS

document), and the edges represent an HTTP request that leads to the content loading

(child node). This approach is similar to methods used by previous works [161, 97, 75],

which increases the comparability of our work. Naturally, the URL of the loaded resource

is an excellent way to identify a node. However, we noticed similar or equal resources

are often loaded via different URLs. One reason is that session identifiers or other ids

assigned to a user (e.g., browser fingerprints) are included in requests as parameters. For

example, the URLs foo.com/scriptA.js?s_id=1234 and foo.com/scriptA.js?s_id=abcd

could load the same or very similar script. Since we want to compare the trees, using

the URL as an identifier and property to compare would distort the results because very

similar or equal resources would not be compared. Comparing e.g., MD5 hashes of the

loaded content is also unsuitable since sometimes the loaded content differs slightly as

it includes the identifier. In our experiment, we still use the URL but adjust each URL to

circumvent the mentioned challenges. To avoid complex (and maybe error-prone) content

comparisons, we drop the values of query parameters and keep the remaining parts of the

query string (e.g., foo.com?s_id=). Thus, depending on the browsers’ profiles, different

JavaScript libraries (e.g., different versions) might be loaded. However, in our analysis, we

treat them as the same node. It is important to note that this step is performed during the

analysis phase and not during the measurement. In our experiment, we had to apply this

technique to 40% of the observed URLs across all profiles. We elaborate on the limitations

of this approach in Section 3.2.4.

To build the trees, we resort to (1) JavaScript call stacks, (2) HTTP redirects and (3) (nested)

iframe structures, which are all collected and provided by the measurement tool. Starting

with the latter, OpenWPM stores the parent frame that issued a request, and thus we can

assign each request to a parent frame and recursively build (sub)branches. We insert each

frame at the corresponding position in a branch and combine branches if they all share

the same parent node. Regarding JavaScript, we inspect the call stacks, which OpenWPM
stores for each request. In each call stack, we inspect the latest entry (i.e., the event that

issued the request). Thus, we identify the function and URL responsible for issuing a

request and assign the caller as the parent node. We choose not to walk over the entire

call stack because it does not directly indicate the dependencies of requests but instead of

function calls. However, the latest entry always includes the URLs (request) responsible

for the call. To find CSS dependencies, we also analyze the “call stack,” which incorporates

the CSS loading dependencies [19]. Thus, we handle them the same way as JavaScript

dependencies. This is an artifact of the used Firefox and OpenWPM environment. All

loaded resources that are not assigned to any branch are attached to the tree’s root node

(i.e., the loaded page itself). Eventually, each tree consists of all first- and third-party

elements of a page, and each branch represents the dependencies that lead to embedding

any given resource.
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Identifying Tracking Requests. Our analysis aims to identify tracking requests as they

are often analyzed in previous works [162, 40, 83, 122, 44]. Thus, analyzing such privacy-

invasive requests allow one to put our results into perspective with other works. To

identify the requests, we profit from the popular tracking filter list EasyList [43]). If an
observed URL is on the list, we consider it a tracking request. We provide the used block

list in the supplementary material of this work (cf. Appendix A.1) and discuss limitations

in Section 3.2.4.

Comparing Request Trees. The core of our analysis is the cross-comparison of different

trees generated when visiting the same page with the defined browser profiles. Our

analysis only includes pages we crawled successfully with all five profiles. This approach

ensures that we have enough data to compare page visits reasonably. All other pages are

dropped from further analysis. This vetting results in rough dropping 34% of the pages in

our experiment. This seemingly high number of dropped pages was not caused by a single

profile but by combining all profiles. Each profile has a success rate of 89%, comparable to

related approaches.

In essence, when comparing the trees, we analyze them along two different dimensions: (1)

cross-comparing the parents of a node (‘vertical tree analysis’) and (2) analysis of siblings

(‘horizontal analysis of trees’). Starting with the latter, to understand the horizontal
similarity of a node, we begin by computing the Jaccard index at a depth of one of each

page’s trees (i.e., the elements directly loaded by the page). Hence, we cross-compare which

elements were loaded by all pages but exclude—at this stage—all objects subsequently

loaded by such elements. After comparing depth one, we start a recursive approach for

further elements. If we identified reoccurring objects in multiple trees with at least one

child, we performed a similarity measurement of the children of these nodes. We repeat

this step until we do not find any additional elements present in at least two profiles. We

perform a bottom-up approach to assess the vertical similarity, starting with the last node in

each branch. In this step, we only account for nodes at least at depth two, excluding nodes

included by the visited page that did not load additional elements. We do so because the

nodes at depth one always have the same parent, namely the visited page, and analyzing

them is not interesting. On the one hand, we analyze the entire request chain of each child

to understand deterministic of loading dependencies. To do so, we compare if two or more

branches in the trees of interest are equal. This comparison allows us to understand how

similar the additionally loaded resources of an embedded object are. On the other hand,

we cross-compare the parent of a node in a branch to understand if the same resource

always load specific content. This approach provides a context-specific perspective on

which nodes are loaded and by whom. Appendix A.2.2 provides a visual overview of our

comparison approach.

If not stated otherwise, we exclude in our analysis all nodes at depth one (i.e., the content

loaded by the visited page) that cannot dynamically load additional content (e.g., plain

text). We exclude these elements because they can only result in a “branch” with only

one node and no children. Thus, if we included them, the reported numbers would not be

sound because they would be biased. These “branches” would bias the analysis in that they
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show perfect similarity because they have no children and cannot load any. Therefore,

our analysis would report that the branches of these elements are equal, which is true

but would under-report dynamic effects on the web. Thus, removing them focuses the

analysis on content that introduces dynamics into pages.

Computing Tree Similarities. To compute the similarity, we resort to the Jaccard index,
that is used to gauge the similarity of sets and is defined as follows: 𝐽 (𝐴, 𝐵) = |𝐴∩𝐵 |

|𝐴∪𝐵 | . By
design, the index ranges from 0 to 1, while 1 denotes that the sets are equals and 0 that they

have no element in common. We chose the Jaccard index because it allows us to compare

and quantify the differences in included elements (based on their URL) on each page. To

compare five sets, we computed the pairwise similarity between all sets and used the

arithmetic mean value to state the similarity for a given page. To allow a straightforward

interpretation of the compute scores, we use the following three categories: high (≥ 0.8),

medium (0.3 ≤ sim. < 0.8), and low (< 0.3) similarity [34]. We choose not to compute

similarities of entire trees (e.g., using the Hamming distance [179]) and resort to computing

the similarity as it provides deeper insights into the changes in the relationships between

the nodes. Using set operations and the Jaccard index, we focus our analysis on specific

branches in multiple trees.

3.2.2. Results

Before detailing the results (Sections 3.2.2.1 to 3.2.2.4), we summarize the dataset in the

following.

Success of Crawling Method. In our measurements, we successfully crawled 24,857 (99%)

sites and identified 387k distinct pages on these sites. On average, we found 14.6 pages

per site (min: 0; max: 25). Overall, our crawlers made roughly 1.66M page visits; we make

the measured (raw) data openly available (see Appendix A.1). The sites our crawlers

could not reach are not meant to be visited by a human (e.g., landing pages of content

delivery networks or ad networks). On average, each profile visited 330k pages (SD: 25,263;

max: 374,897; min: 312,941). Our analysis only considers pages successfully crawled by all

five profiles, which applies to 17,851 (71%) sites, and 200,798 (55%) of the crawled pages

and ensures that we have enough data to compare page visits reasonably. This reduction of

sites and pages cannot be attributed to a single profile but is attributed to the combination

of the profiles—each profile has a failure rate of <12% (mean: 11%).

Table 3.3.: High-level overview of the measured trees.

Tree avg. SD min max

nodes 84 99 1 12k

depth 3.6 2.2 0 30

breadth 44 58 1 12k

Node(s). . .

each present in X profiles (avg) 3.6

present in all profiles 52%

present in one profile 24%

38



3.2. On the Similarity of Web Measurements Under Different Experimental Setups

0 23 46 69 92 11
5

13
8

16
1

18
4

20
7

23
0

25
3

27
6

29
9

32
2

34
5

36
8

39
1

41
9

44
7

47
2

50
2

53
5

59
2

65
0

68
6

76
5

89
1

99
8

11
82

18
59

29
30

Breadth

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30

D
ep
th

0

500

1000

1500

2000

2500

Figure 3.4.:Distribution of the observed trees’ depth/breadth. We cap the scaling at 2500 to improve

the readability.

General Structure, Size, and Differences of the Trees. The core of our analysis are the

previously described dependency trees (cf. Section 3.2.1.2). In our experiment, we cross-

compare five trees for the same page; 1.66M trees in total. Table 3.3 provides an overview

of the measured trees, and Figure 3.4 shows the distribution of the depth and breadth of

the observed trees. The high standard deviations (SD) of the trees’ characteristics indicate

that the structure of the trees varies. The distribution of the depth and breadth shows that

relatively broad trees are often not very deep, while the wideness of a tree decreases the

deeper they get. Nevertheless, more than half of the trees (56%) have a depth of less than

six and breadth of less than 21. Concerning the general appearances of nodes in a tree

that we observed in each of the five profiles (see Table 3.3), we see that each node appears

on average in 3.6 profiles (SD: 1.7; max: 5; min: 1). This finding shows that deviations in

the presence of nodes in the trees exist and are frequent. More precisely, roughly half of

the nodes appear in all profiles, while a quarter of all nodes is present in only one profile.

The results show that when one compares two different profiles 48% of the underlying

data varies. On a high level, this indicates the severe impact of the Web’s dynamic and

used crawler on measurement studies that we aim to understand better in this work.

3.2.2.1. Differences in Node Dependencies

The presented figures suggest that snapshots of the same webpage taken almost simulta-

neously (in a best-effort attempt) show severe differences when one uses different browser

configurations. In the following, we dive deeper into the differences we observed to

understand the impact of the Web’s dynamic on a practical level. Figure 3.5 shows the
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Figure 3.5.: Distribution of the similarities of all observed nodes per tree and the similarities of

parents.

overall similarity of the nodes across all trees. We find that while roughly 60% of the

nodes’ children show high similarity, the remaining share shows a substantial fluctuation

in the observed children. The similarity of the parents of a given node shows an almost

perfect similarity for most nodes (61%). However, for numerous nodes, the similarity is

low; 20% of the parents have a similarity of .3 or less. This observation shows us that while

many nodes have a similar set of parents and children, differences in their relations can

impact the measurement results’ comparability. More precisely, the Web’s dynamic makes

it challenging to argue about loading dependencies (e.g., when analyzing ecosystems or

mechanisms like cookie syncing).

Differences in Depth Levels. First, we look at the discrepancies of parties loaded on each

depth, and cross-compare the nodes observed on each level individually (see Table 3.4).

Thus, we compare depth one with depth one, depth two with depth two, and so on. Hence,

we determine similarities between the nodes’ depths and whether the nodes appear at

different depths in other trees. This analysis allows us to understand where in a tree

differences occur. Overall, we see a high similarity in the nodes’ depths. The mean Jaccard

index across all depths indicates high similarity, but we see a lower similarity if we exclude

nodes at depth one without any children. This difference is expectable because several

nodes at depth one reflect the content loaded by the visited page (e.g., texts or images),

which is alike since we use similar clients in all profiles (e.g., no differentiation between

content for mobile or desktop clients). Consequently, when we check the similarity for

the nodes that appear in all trees, we see that they all appear in the same depth. Based on

this analysis, we determine that if a node appears in all trees, it will appear in the same

depth and that nodes directly loaded by the page show high similarity. Note that we are

comparing only the depth of nodes, but not the nodes’ loading chain. Hence, we might

observe the same node at a given depth loaded by another parent. To dive deeper into

the impact on the similarity of different nodes, we compare the similarity of depths of
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Table 3.4.: Similarity of nodes at different depths.

Test Value
cat. sim. SD max min

across all depths

(all nodes)

high .80 .21 1 .09

across all depths

(only nodes with children)

med. .74 .21 1 .09

nodes in all trees high .99 .21 1 .09

first party nodes high .88 .19 1 .09

third party nodes med. .76 .21 1 .09

first- and third-party nodes. Overall, the Jaccard index shows a medium similarity for

third-party nodes and a high similarity for first-party nodes (cf. Table 3.4). On a high level,

these results indicate that third-party nodes do not occur as stable as first-party nodes

do. These figures indicate that studies focusing on third-party elements (e.g., cookies

or trackers) will find varying results based on the setup. The reported numbers show

differences based on the context but do not show their implications or the root of them.

Finally, Figure 3.6 shows at which depth different types of nodes occur in the trees. Visual

inspection shows that most nodes occur at depth one (i.e., the elements embedded by

the visited page) and that first-party objects are predominately embedded at depth one.

Furthermore, nodes not used to track users (first- or third-party) are primarily present in

the trees’ upper levels (≤ 2). In contrast, almost half of the third-party nodes and tracking

requests occur at deeper levels (> 2). Considering that the tree’s similarity decreases at

deeper levels, these numbers indicate that the comparability between experiments is not

straightforward, especially for tracking requests and third-party nodes.
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Figure 3.6.: Volume of different types of nodes in the trees. Nodes after depth six are combined

into one.
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Lessons learned �

In summary, we discovered that even when analyzing pages almost in parallel

using different profiles, the data observed in each profile differs considerably. We

observed different nodes (HTML elements) in the measured tree representations

of the same page. Finally, we showed that third-party components and nodes used

to track users occur on deeper levels in the tree, which provide more variance.

These findings indicate that a single measurement of a page will only capture a

limited snapshot of the behavior of a page. Web measurement studies must account

for this observation by understanding which elements of a page are dynamically

loaded (e.g., due to properties of the setup) and which are stable.

3.2.2.2. Node Relations Across Different Trees

We have shown that differences in the observed trees exist, which opens the questions

how they are introduced.

Cross-comparing Parents in Tree Branches. This part discusses the similarities of request

chains to provide an understanding of the differences in the loading dependencies in the

trees. We use the term dependency chains (or request chain) to describe all (grand)parents

of each node. More technically, a request chain reflects the loading dependencies that

initialized the loading of the analyzed node. For this analysis, we observe only nodes that

appear in all trees to understand how the request chain of a node changes if it appears

in another tree. We see that 75% of the nodes have the same dependency chains, which

means that the same requests in identical sequences lead to the loading of the resource. In

contrast, 18% of nodes (on average 12% per profile) have a unique request chain, which

means that we observed this loading sequence in only one profile. If we exclude nodes on

depth one, which have the visited page as a parent, we find that 57% of the nodes have the

same request chains. Thus, on a high level, the results show that overlaps between the

trees exist but that there is a considerable part that is varying.

The presented results show that loading dependencies are only sometimes stable. In the

following, we shed light on why and where the request chains are changing. Furthermore,

we aim to understand what causes such changes. We first focus on the nodes with the

same dependency chains in all trees. Note that we exclude all nodes at depth one(42%)

since their dependency chains consist of only one parent, which means they are naturally

identical. We observed a long tail distribution in the numbers of these nodes per depth.

On depth two, we found 21% of all nodes, on depth three 7%, on depth four 2%, and on

all other depths combined 1%. Thus, most (94%) of the identical request chains are short

(depth ≤ 3). These results propagate to identical chains we observed in only four or fewer

trees. While these chains are short, they do not occur deterministically in all trees.
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Table 3.5.: Effects of resource on loading dependencies.

(a) Same loading chains.

Node type Same chains

main frames 90%

web sockets 88%

XMLHttpRequest 75%

JavaScripts 65%

style sheets 54%

(b) Lowest similarity.

Node type Similarity

CSP reports .10

Image .25

Web socket .27

sytle sheets .31

web beacons .34

As dependency chains tend to be non-deterministic it is interesting to analyze which kind

of nodes—in terms of resource types—introduce variations. In the following, we test which

resource types are always loaded by the same request chain at a level deeper than one.

Table 3.5a provides an overview of the most common resource types that are always loaded

by the same dependency chains. In contrast, Table 3.5b show the resource types that show

the lowest similarity, which means that they are often loaded by varying dependency

chains. The overlap between both tables (e.g., web sockets are present in both tables) is

related to the fact that these types are often loaded by similar dependencies but that they

are loaded in various contexts (e.g., libraries included by different scripts). On a high level,

it is notable that the vast majority of first-party notes (86%) are loaded by the same request

chain; in contrast only 56% of third party nodes are loaded via not changing dependency

chains. These results replicate to nodes used to track users: only 28% of the tracking nodes

are loaded by the same parents, but 66% of all non-tracking requests are loaded this way.

The provided figures show that pages, visited with different profiles, include a considerable

number of nodes in different ways (i.e., different dependency chains). This observation

is particularly relevant for third-party nodes and nodes that are used to track users. For

measurement studies, these findings implicate that high-level results, e.g., the presence of

a specific node, can be compared, but the reasons why these results occurred (e.g., why

a node is present) can differ noteworthy. Hence, studies regarding the ecosystem of a

phenomenon can yield different results based on the used setup.

To better understand the variances in the dependency chains, we analyze which nodes

are always loaded by the same node in more detail. Here, we limit our analysis to the

nodes that appear at the same depth in all trees and to nodes that appear at least at depth

two. The approach allows us to understand the dependencies of nodes and their parents.

However, this filtering reduces the number of analyzed nodes to 7.5M (29%). Nodes can

be triggered by different or multiple parents because, for example, different resources

can load a JavaScript library. The results for this reduced dataset highlight that 61% of

the nodes are triggered by the same parent in all five profiles. Thus, almost two-thirds

of these nodes appear in all trees at the same depth loaded by the same parents, which

means that analyzing them would provide the same results across all measurement profiles.

Future work could use this finding to develop metrics that allow one to assess the expected

‘measurement fluctuations’ and to indicate the accuracy of an experiment. Furthermore,

the results show that 63% of the parents show high similarity 17% show medium similarity,

and 20% show low similarity. Our results demonstrate that the parent of a node and,

43



3. Robustness: Designing Web Measurement Studies

thereby, the reason the resource is loaded differs in almost 40% of all cases. Thus, if

one analyzes more than the presence of a resource, the results might differ based on the

experimental setup (e.g., when analyzing ecosystems).

Now, we focus on the nodes with divergent parents to better understand the differences.

More specifically, different parent nodes in other trees have triggered these requests

(i.e., the dependency chains differ). The mean similarity of these nodes’ parents is .33,

which means that several resources (e.g., JavaScript libraries) are loaded by different

parents. First-party nodes show a higher mean similarity in the sense of their parent (.54)

than third-party nodes (.32).

Comparing the Children of a Node. Previously, we analyzed the parents of a node (vertical

bottom-up approach). To understand how trees grow andwhich children and grandchildren

a node loads, we reverse our analysis to all resources a node includes (horizontal approach).

To do so, we test if (parent) nodes in the profiles load the same set of children. The results

show that each node has, on average, 0.9 (SD: 6.4; min: 0; max: 4,613) children. Each

visited page (i.e., depth zero) directly loads 31.7 nodes (SD: 36; min: 0; max: 4,613), on

average. In contrast, most nodes on deeper levels (92%) only have one or no direct children

(i.e., the nodes directly loaded by the node). The average number of children on all depths

larger than zero ranges between 0.2 and 1. This distinct drop is expectable since many

components cannot dynamically load additional objects. For example, an HTML image

tag cannot load additional content aside from the image itself. This characteristic of the

trees indicates that only some nodes are responsible for a tree’s growth.

If we only look at nodes that have at least one child, we see a long tail distribution in

the number of their children (depth 1: 3.5, depth 2: 2.7, depth 3: 2.0). Figure 3.7 displays

the distribution in the number of children for each node based on their depth. Nodes

on the upper levels of the trees have few or no children, while nodes deeper in the tree

have more children. This observation seems counterintuitive, but most nodes cannot

dynamically load additional content and, therefore, have no children. On deeper levels, the

dynamically included objects load the content they want to insert into the page (e.g., ads).

Since third-party and tracking components dominate the trees’ lower levels, this finding

indicates that such nodes could load substantially more content than their first-party

counterparts. We dive deeper into differences between first- and third-party nodes in

Section 3.2.2.3. However, outlier nodes with several children exist on all levels, which are

responsible for the trees’ growth. Thus, considerable parts of a tree are related to only a

few nodes, which means that if they change, the tree itself changes substantially.

Previously we have shown that loading dependencies (e.g., parent nodes) are not stable, but

we still need to determine if a node always loads the same set of children. To answer this

question, we compare the similarity of the children of nodes by comparing the first-level

children of nodes that appear in all trees (i.e., only directly loaded resources). Overall, we

observed a medium similarity for a node’s children (mean: .70; SD: .23; min: .09; max: 1).

We find that the node similarity decreases with its depth if we analyze nodes with at least

one child (at depth one). Overall, we observed a fluctuating but slightly decreasing trend
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Figure 3.8.: The similarity of children and parents. We combined all nodes occurring at a depth

deeper than four (“4+”) to increase readability.

in the similarities, starting to increase again in deep branches. This observation roots in

the fact that on deeper levels, only a few nodes exist (𝑛 < 100), which are loaded by a small

set of nodes. Figure 3.8 shows the decreasing similarity based on the depth, and Figure

A.3 in Appendix A.2.2.3 provides an overview of the children and parents’ similarity for

different resource types per depth. One result from this observation is that a phenomenon

of interest at deeper levels, it is possible that other measurements will not find the same.

However, if a node is present at higher levels in a tree, it is also more likely to be present in

other measurements. The Wilcoxon signed-rank test found statistical significance between

the number of children and their similarity (𝑝-value < 0.001), that is, nodes that have

many children often load different children.

Understanding Implications of Resource Types. To gain a deeper understanding of a

node’s type on the dissimilarities of a page, we examine the impact of its resource type on
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Figure 3.9.: Resource types by average parent similarity.
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Figure 3.10.: Resource types by average child similarity.

the similarity of its children and parents. Figure 3.9 provides an overview of the distribu-

tion of resource types and the average similarity of parent nodes concerning the overall

similarity of a page; specifically, it shows the share of content of pages with comparable

similarities. One can see that on webpages with low parent similarity, the node types

image, script, and subframe (e.g., iframes) show the highest relative share, which indicates

that they are mainly responsible for dissimilarities. In contrast, Figure 3.10 provides an

overview of children’s similarities. Again, images show the highest similarity for child

nodes, while JavaScript nodes have the highest share. The Kruskal-Wallis test found a

statistical significance that the resource type of node affects the similarity of children

and parents of a node. On a high level, the results indicate that specific types of nodes

(e.g., images) cause more dissimilarities than others (i.e., XMLHttpRequest). However, a

deeper analysis of the resource types shows that subframes have the most significant

impact on the similarity of the trees. Pages without any subframe show high average

similarity (parent: .86; children: .90) while pages with subframes show a medium average

similarity (parent: .72; children: .77). These results provide different challenges since

iframes (subframes) are widely used (e.g., to embed ads), and their variance introduction

in the results tampers with the comparability, reproducibility, or replicability of a Web

measurement experiment.
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Lessons learned �

This section shows that the dependencies between the nodes (i.e., loading depen-

dencies) are not stable across the measurement profiles. This finding implies that

a single measurement snapshot of a page only holds one of the many ways a page

can embed an object. Furthermore, we have shown that the node’s resource type

influences the children loaded by a specific node, as certain types (e.g., JavaScript)

tend to load a varying set of children. Hence, when designing a Web measurement

study, it is essential to understand (a priori) how a page could include the entities

of interest into a page and how the entity type could affect a study.

3.2.2.3. First- and Third-Party Context

We have shown that the loading party affects the similarity of the children, and the results

indicate that third-party resources are less deterministic. This section provides a deeper

understanding of this observation.

Understanding Implications on First-party Level. We start by analyzing the nodes loaded

in the first-party context and aim to understand which changes they cause in the trees.

Overall, only 32% of nodes are loaded in a first-party context. However, first-party objects

are primarily present at depth one and two, and (only) in these levels they dominate

third-party nodes (depth 0: 99%; depth 1: 55%). To understand how consistent a first-party

node appears on a page, we test we examine the frequency of such nodes appearing in

other profiles. Our analysis shows that, on average, the nodes at depth one appear in

4.5 of 5 profiles. This observation shows that most pages load a nearly identical set of

first-party resources, regardless of the measurement setup. On deeper levels (>1), we see

a similar picture with a minimum of 3.6 of the profiles containing the same first-party

nodes (max: 4.8). Hence, comparing resources loaded in the first-party context is robust

for similarly configured crawlers (i.e., same browsers with similar interaction profiles).

While the presence of first-party nodes is comparable, assessing if they also load a stable

set of children is essential. If we look at the similarity of first-party nodes’ children, we find

a high similarity for these nodes (mean: .86; SD: .20; max: 1; min: .09). Thus, we see that,

on the one hand, pages load a very similar set of first-party nodes across different visits

and that, on the other hand, these nodes load a similar set of children. These observations

are as expected since the website providers control these resources and selectively deliver

different content based on, e.g., the used browser. Thus, measurements focusing on first-

party components are expected to be stable and produce comparable results, even if the

measurement setup changes to some extend. Note that some changes, in our case user

interaction, can have far reaching impact on the results and, therefore, tamper with the

comparability of the results. These numbers validate that our framework, measurement

approach, and analysis method are valid since they produce expected results.
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Understanding Implications on Third-party Level. While first-party nodes and their

children are quite stable in their embedding, third-party nodes show probably a different

behaviour due to their high dynamism [161]. In the following, we analyze the effects of

third-party nodes in the measure trees. In our measurement, 68% of all nodes are loaded

in a third-party context and they belong to 21,154 distinct third-party domains. Starting

at depth three, third-party nodes dominate first-party nodes (on average 95%). Thus, the

third-party nodes caused the vertical growth of the observed trees.

Similar to the analysis of first-party nodes, we analyze the appearance of third-party nodes

to understand if they occur in all profiles at similar positions. More specifically, we test if

an observed third-party node appears in all profiles and how their appearance frequency

changes. Compared to first-party nodes, third-party nodes appear less stable across the

different profiles: our analysis shows that the third-party nodes at depth one appear in 3.9

profiles, on average. However, at deeper levels (>2) we observe a sharp decrease (mean: 3.3,

SD: 1.6, max: 5, min: 1). These results show that the immediate inclusion of a third party

(i.e., at depth one) is similar across all profiles, while the subsequently loaded third parties

are less stable.

Finally, we analyze the similarity of third-party nodes’ children. The Jaccard index shows

an average medium similarity of .68 (SD: .23; max: 1; min: .09), and across all nodes we

identify that, generally speaking, third-party nodes have much more children (increase of

84%) and trigger more HTTP requests (increase of 150%) than first-party nodes. Compared

to first-party elements, our results suggest that a exhaustive experimental setup is needed if

a study focuses on a third-party phenomenon. As a result, the reproducibility, replicability,

and even repeatability of studies suffer. This finding is independent of the depth of the

nodes.

Lessons learned �

This section showed distinct differences between nodes loaded in the the third- and

first-party context. The similarity of nodes in the first-party context is high; how-

ever, we observe lower similarity values for third-party elements such as trackers

or ads. This observation primarily impacts privacy-related studies investigating

such content (cf. Sections 3.2.2.4 and 3.2.3.3). Therefore, future studies focusing on

third-party content should handle such dynamics to ensure their results’ generaliz-

ability, completeness, and comparability. One way to do so is to perform multiple

measurements—using different profiles—of the same page to capture a complete

view of its behavior.

3.2.2.4. Assessing Setup Implications

Previously, we have shown that the analyzed sites introduce notable variance in the

performed measurements. While this is challenging itself, it is essential to understand
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Table 3.6.: Implications depending on different profiles.

# Name Nodes Third party Tracker Depth Breadth

1 Old 19.62M 13.42M 3.32M 28 11 649

2 Sim1 19.41M 13.24M 3.21M 30 4562

3 Sim2 19.34M 13.19M 3.20M 29 4258

4 NoAction 14.53M 9.25M 1.91M 30 4953

5 Headless 19.39M 13.22M 3.20M 30 4562

which impact the measurement setup on the outcome of an experiment has. Table 3.6

provides a high-level overview of the observed trees for each used measurement profile.

In terms of dimension (e.g., number of nodes or depth), most of the trees are of similar

size, but some characteristics differ (e.g., the max. breadth of a tree in profile #4).

Comparing Profiles with the Same Configuration. To understand the impact of the Web’s

dynamic on the comparability of different studies we compare two profiles that use the

same configuration (#2: Sim1 and #3: Sim2; cf. Section 3.2). Overall, the trees of both

profiles have similar dimensions in terms of: (1) first-party nodes, (2) third-party nodes, (3)

depth, and (4) breadth of trees. These figures indicate that both profiles crawled the pages

of interest at a similar success rate; therefore, comparing them is valid. Concerning the

similarity of the trees, the results show that on the upper levels (≤5) the trees are highly
similar (mean: .92), but that the similarity decrease on deeper level (mean: .75).

Table 3.7 provides an overview of the observed differences between all profiles. The results

show a distinct difference in the relative number of perfectly similar nodes (i.e., nodes that

appear in the same depth in both profiles). It is important to note that even if the numbers

across all profiles are similar (expect for profile NoAction) the impact on the results are

different. It is also not the case that the same node across all measurements show a perfect

similarity (see the previous sections). The results show that first- and third-party nodes

show notable differences in the set of loaded children (i.e., they differ in 18% of the cases)

in both profiles.

Browser with an Outdated Version. To assess how comparable two measurements are

that analyze the same websites but with different browser versions, we compare the

measurement using an outdated browser (profile Old; #1) with profile Sim1 (#2). The

results are similar to the comparison to profile Sim2 (cf. Table 3.7). Thus, using an outdated

browser version has similar effects on the comparability of an experiment than using the

same setup. We expected such results because we visited the same pages, presumably

supporting the outdated version; therefore, the results are similar to the profile that uses

the same configuration.

Mimicking User Interactions. To understand the impact of simulated user interaction, we

compare profile Sim1 (#2) with the profile that does not mimick user interactions (profile #4;
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Table 3.7.: Profile differences compared to profile #2 (Sim1).
➋: Starting at depth two. ➊: For nodes with at least one child.

Sim2 Old NoAction Headless

First Party nodes’ children
perfect similarity 82% 80% 67% 82%

no similarity 4% 5% 8% 4%

Third Party nodes’ children
perfect similarity 75% 73% 64% 75%

no similarity 13% 15% 22% 13%

First Party nodes’ parent
perfect similarity 94% 93% 92% 94%

no similarity 6% 7% 7% 6%

Third Party nodes’ parent
perfect similarity 65% 63% 64% 65%

no similarity 30% 31% 31% 30%

Dependencies
parent similarity (mean)

➋
.71 .70 .70 .71

child similarity (mean)
➊

.83 .84 .74 .84

NoAction). Similar to previous works [34, 161], we find that simulating user interactions

cause much more HTTP traffic, which leads to larger trees. Comparing the number of

nodes, we see that profile Sim1 has 34% more nodes than profile NoAction. Furthermore,

we find that profile Sim1 has more third-party nodes (36%) than profile NoAction, and that

each node has less children (15%). The Mann-Whitney U test found statistical significance

of the mimicking of user interactions on the nodes’ depth level (𝑝-value < 0.001). Hence,

the profiles with user interaction have more nodes at a deeper level. Both results show

that interactions cause a vertical growth of the trees, and new nodes load fewer children

than the nodes before mimicking user interaction. More importantly, our results indicate

that mimicking user interaction changes the result when measuring a page.

Compared to all other profiles (see Table 3.7), profile NoAction show the highest variation

(i.e., fewer perfectly similar nodes and more nodes with no similarity) across metrics except

first party nodes. This observation shows that the introduction of even simple simulated

user interactions can make a measurement more stable.

Using Headless Mode. To understand the impact of utilizing the headless browsing mode,

we compared the profile that uses this mode (profile #5; Headless) with the profile Sim1.

The results (cf. Table 3.7) indicate that both profiles introduce a similar variation to the

results. Thus, we could not determine a positive or negative effect of utilizing a crawler in

headless mode. Note that the results of both profiles cannot be straightforwardly compared

as they both introduce a notable variance into a measurement; however, the magnitude of

the variance is similar. This finding aligns with previous work that found no statistically

significant impact of using the headless mode [34], in contrast to (older) works that found
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such impact [1].

Lessons learned �

The results presented in this section indicate that the outcome of a measurement

can differ significantly depending on the utilized browser configuration. Even

using the same configuration and visiting the same page simultaneously, the nodes

and dependencies of the elements on a page can differ. Thus, it is crucial to be

cautious when making conclusions based on a small sample set since a significant

part of the Web is too dynamic. To overcome this challenge, a measurement

should carefully select the used configuration(s). Finally, developing a metric to

understand a measurement’s potential error/variance is vital to gauge the precision

of a web measurement study.

3.2.2.5. Understanding Implications on DNS Level

In this section, we analyze whether different DNS resolutions affect the measured trees.

All used VMs run in the same network segment and use the same DNS server for name

resolution. Hence, mechanisms like load balancing could most likely have the highest

impact on the name resolution.

Associated IP Addresses. Previous works have shown that based on the location or due

to load balancing mechanisms, servers might deliver different content for the same page

(e.g., other HTTP headers [135]) to the client. Therefore, we analyze which IP addresses

are used by the clients when they access a webpage. We first compare the similarity of IP

addresses associated with the DNS record. More specifically, we compare the retrieved

available IP addresses from the DNS servers to access the corresponding host. For this

analysis, we only focus on the nodes that appear in all trees (52% of all nodes). Overall, we

see that 69% of all these nodes have the same DNS response (similarity = 1) in the sense of

associated IP addresses. The mean similarity of these nodes’ IP addresses is .82 (SD: .31;

min: 0; max: 1). When we test the IP addresses that are not the same for the nodes, we

see that 57% of DNS requests are resolved over CDN providers (cf. Section 3.2.1.2). Since

CDNs are known for load balancing of Internet traffic, it is expected to retrieve different IP

addresses for the same host. Yet, Roth et al. have shown that such might have a negative

impact on security mechanisms as different HTTP headers might be delivered [135].

However, it’s worth noting that we see records that contained IPv6 addresses (7% of nodes)

while it was not the case in other profiles also for CDN providers. Regarding the use of

IPv6 addresses by a client, we find that the number of such records with an IPv6 address

differs substantially across the profiles (i.e., Profile #2: 4.6M, Profile #3: 6M records). It is

also notable that we have identified 2.7M (20%) DNS responses with an IPv6 address, but at

the same time, at least one profile for the same node did not include an IPv6 address. Thus,
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our results show that the results of studies on IPv6 may differ depending on the analyzed

metric due to this dynamic. In Appendix 3.2.2.5, we discuss the IPs used by the client.

Impact of DNS over HTTPS. In this paragraph, we analyze whether DNS over HTTPS
(DoH) functionality influences the result of different measurement setups. DoH is a

relatively new technique that the Firefox browser offers to resolve domain names. Hence,

it could similarly affect the outcomes of a measurement study as ‘traditional’ domain name

resolution. In this analysis, we are only analyzing the nodes present in all trees. In general,

we see that DoH was used for 12% of the request for the profile without user interaction

(#3; Sim2), while the profile that runs the outdated browser (#1; Old) has no records for

DoH. This is because the used browser version does not support DoH in its standard

configuration. For the other profiles (#2, #4, and #5), we see that DoH was used for 24%

of the requests. Thus, we identify that simple user interaction during crawling directly

implicates the DNS level results. The results show that DoH seems to be influenced by the

profile used, which implies that different IP addresses could be used for the same page

in a measurement study. Potential effects of this have been shown by Roth et al. who

showed that websites could deliver different HTTP headers (i.e., CSPs) based on resolved

IP address [135]. These findings suggest bidirectional implications: (1) the selected profile

type can cause different DNS results, and (2) the DNS resolutions impact the results of

a measurement study. Similar to our other findings, we observed that DoH seems to be

implicated by the used profile.

Used IP Addresses by Client. In this section, we analyze the selected IP addresses from

the DNS response to understand whether the profiles accessed the same servers. In our

experiment, only 67% of the analyzed pages were accessed using the same IP address

in all profiles. We see that the mean similarity of selected IP addresses is .78 (SD: .34;

min: 0; max: 1). Compared to the described results on the similarity of the nodes per

depth, we identify that the similarity of the used IP addresses increases for deeper nodes

in the trees (e.g., depth 0: .73, depth 1: .83, depth 6: .65, depth 12: .90 , and depth 24: .99).

When we check effects’ of third party we see first party nodes show more similarity (7%

of nodes). The results also show that 75% of nodes that were accessed by at least one

profile with a different IP address belong to CDN providers. The one-way ANOVA test

found a statistical significance between the mean similarity of children and parents and the

similarity of selected IP addresses by the client (𝑝-value < 0.001). This finding implicates

that if the browsers use different IP addresses to load a resource, the similarity of the

children changes.

Figure 3.11 provides an overview of the similarities that we observed concerning the

associated and used IP addresses by the different profiles. The associated IPs are all IPs

returned by the DNS query, and used IP is the IP chosen by the client. As one can see,

on the first depth levels, the similarity is high and often almost perfect (the median is

one), while it decreases for nodes in the middle of the trees. Thus, the results suggest that

dynamically loaded (third-party) content is often loaded from different IP addresses, which

could lead to artifacts that different content is loaded.
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Lessons learned �

In summary, our results show that if multiple measurements are performed from the

same location, using the same DNS server on the system level, different resolution

results can occur, which might mean that different servers are used to visit a page

(e.g., due to load balancing or other network-level aspects). Even if this finding

does not have to mean that the loaded content is different, previous work has

shown that it can [135]. Hence, dissimilarities can occur not only due to dynamic

content on a page, but also due to dynamics on other layers. Thus, one needs to

carefully consider where and why differences may appear to circumvent them.

3.2.3. Case Studies

In the following, we present three case studies to put our results presented in the previous

section in a practical context.

3.2.3.1. Unique Nodes

When analyzing novel phenomena or emerging technologies, Web measurement studies

often need to find the ‘needle in the haystack.’ We analyze unique nodes to understand

the chances of finding ‘the needle.’ We define nodes as unique if they appear in only one

tree. More specifically, we consider a node unique if and only if it appears in only one tree,

ignoring the depth (i.e., the URL corresponding to this node is only present once in our

dataset). Overall, we see that 6M of the nodes (24%) are unique. Our observation shows

that 37% of such nodes belong to tracking requests and 90% to third parties. Thus, using

different crawlers might yield varying results, especially when analyzing new tracking

techniques.
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Figure 3.11.: Similarity of associated and used IP addresses by used profiles. To increase readability,

we combine all nodes after depth eleven (“11+”).
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On average, unique nodes appear at depth 2.7 (SD: 1.9) and 22% of these nodes are at

depth 1. All of these nodes are capable of dynamically loading content based on their

resource type: iframes (17%), JavaScript (15%), or XMLHttpRequests (13%). Regarding the

site that delivers the resources, we see that common ad networks are the top hosters of

such content (e.g., googlesyndication.com (20%)). While these eTLD+1s are pretty popular,

they host advertisements that appeared uniquely in our experiment. These results are in

line with the results regarding tracking requests. On average, 6 % of all nodes in a tree are

unique. The results show that the relative share of such nodes increases with the number

of total nodes.

3.2.3.2. Implications on Cookies

In the following, we analyze the impact of our findings on the setting of cookies. As per

RFC 6265, we uniquely identify cookies by name, path, and domain [14]. We analyzed

cookies as they are widely studied (e.g., [162, 30, 45, 24]). Overall, we observed 2.2M

cookies on the analyzed sites and each profile set 438k (SD: 39k; min: 370k; max: 459k)

cookies, on average. The profile without mimicked user interaction (#4; NoAction) has the

fewest cookies (370k), and the other profiles have a similar number of cookies (mean: 455k).

Since we want to understand if different profiles can yield different results, we test how the

appearance and similarity of the cookies differ when we visit a webpage. We see that only

32% of the cookies appear in all profiles and 42% only in one profile. To better understand

this observation, we cross-compare the similarity of the observed cookies per webpage.

The mean Jaccard index across all cookies indicates a medium similarity of .70 (SD: .27;

min: .0; max: 1;). When we compare profiles with interaction with the profile NoAction,

we see less similarity, on average .59 (SD: .44; min: .0; max: 1). The results show that for

440 (0.2%) distinct cookies, at least one of the security attributes (e.g., same site, http

only, or secure) has been set differently. Our analysis highlights that even if the same

webpage is analyzed, the observed cookies provide substantial variance, which means

that comparing measurements is not straightforward. This is surprising because these are

hard-coded cookie attributes that one would not expect to differ.

3.2.3.3. Tracking Requests

Finally, we analyze the implications of our results for tracking requests, a widespread and

often studied phenomenon on the Web. Overall, we see that 22% of the nodes are used for

tracking purposes, and we observed a mean similarity of .53 (SD: .27; min: .09; max: 1;) for

these nodes. The mean Jaccard index for the similarity of tracking nodes’ children across

the observed trees is .62 (SD: .21; min: .09; max: 1;), and for non-tracking nodes .75 (SD: .23;

min: .09; max: 1;). It is worth noting that tracking nodes have fewer children (mean: 1.7)

than non-tracking nodes (mean: 3.7). Thus, trackers are less stable in embedded children

than other nodes, making them more challenging to analyze. Testing the similarity of

parents of tracking nodes shows a lower similarity for the tracking nodes (.53; SD: .27;
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min: .09; max: 1;). This finding indicates that tracking requests are triggered by much

more different requests than non-tracking requests.

We analyzed the distribution of tracking nodes in our trees, and we see they mostly appear

in the upper parts. Of the observed tracking nodes 9% appear at depth one, 32% at depth

two, 36% at depth three, and the remaining 24% on the deeper levels. Embedded trackers

significantly impact a tree; slight changes in the upper level can cause different trees, as

they are primarily found in the upper parts and have a lower similarity. When looking

at the parents of the tracking nodes to understand who is responsible for loading such

nodes, we find that tracking requests are often triggered by other trackers (65%), which

are primarily loaded in a third-party context (82%). Overall, we see that, on average, 58%

(SD: 43; max: 100; min: 0) of the tracking requests were triggered by first-party requests

and 42% of the tracking requests were loaded by third-parties. Our analysis of the parent of

the tracking nodes shows that 46% of tracking nodes are triggered by JavaScript resources,

34% by subframes, and 15% directly by mainframes.

3.2.4. Limitations and Ethics

Our method has limitations and different ethical implications discussed in the following.

Aside from artificially mimicked user interaction, we do not interact with the visited pages.

Our approach does not observe content that is only displayed based on user action or

content only loaded in a particular use case (e.g., triggering of a payment service). Thus,

content that is only displayed based on user action (e.g., after interaction with a “consent

notice”), a specific state of the user’s browser (e.g., logged-in users), or content only loaded

in a particular use case is not observed by our approach. Wemust highlight that our crawler

does not interact with consent notices. However, since all measurements are performed

from the same location, these effects affect all profiles similarly, and comparing page visits

is still suitable. This circumstance means that our results can be seen as a lower bound but

also that they are not complete. However, it must be noted that implementing a system that

automatically generically interacts with any given page to trigger a different state is out

of the scope of this work. Our approach follows best practices and uses well-established

tools to conduct Web experiments to reduce the effect of the mentioned limitations.

Furthermore, our method of combining requests from the same origin, based on their

path, can lead to merging branches that do not originally belong to each other. However,

using all URLs observed in the trees will (unrealistically) increase the observed differences

due to, e.g., session identifiers in the URL. Furthermore, our approach has the limitation

that different URLs might look the same after purging the parameter, even if they load

different content. Accordingly, when we build the trees using these URLs, branches might

be collapsed into one because the identifier (parent node) might no longer be clear. Overall,

our approach will lead to smaller trees and will more likely underreport the scale of the

problem (lower bound) than overreport it.

Our analysis uses the popular tracking filter list EasyList. The list is a crowd-sourced

attempt to identify web tracking, among other things.and, therefore, might be incomplete
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or, to some extent, wrong. However, we assume that such errors only have a marginal

impact on our results. Finally, EasyList is only one of many blocking lists. Combining

multiple lists could increase the comprehensiveness of detecting trackers, which we assume

would not significantly change our findings or takeaways. Adding blocklists could also

result in a more distorted measurement because lists like EasyPrivacy do not focus on

tracker blocking [32].

In the following, we discuss the limitations of this study. Our study does not include or

directly affect any human subjects. However, our large-scale measurement has ethical

implications that must be discussed. Our experiment artificially generates website traffic

that would not emerge without our experiment. This traffic will use resources (e.g., energy

or bandwidth) that would otherwise be unused and could result in additional costs for the

service providers. Since our traffic is distributed over several thousands of sites and the

traffic towards individual sites is limited to the loading of up to 25 pages, we argue that

the traffic generation is reasonable for our experiment. Another aspect to discuss is that if

websites serve ads to our crawler, this could burn the ad budgets of advertisers. However,

due to the finite number of measurement runs, we argue that these costs are negligible.

These discusses aspects apply to all Web measurement studies and our used practices are

considered state-of-the-art and are accepted by our research community [34, 87, 25, 135,

180, 107, 161].

3.2.5. Related Work

Recently, several works focused on how to build sound, complete, and robust web mea-

surement studies. In 2020 Ahmad et al. observed that using a specific crawling technology

significantly impacts the outcome of an experiment [4]. Furthermore, Demir et al. ana-

lyze the state of the art of how the web security and privacy community performs and

documents their experiments [34]. They show that studies are often not reproducible or

replicable—our work is a step towards solving this challenge. They provide guidelines

that help design experiments free of such limitations. Jueckstock et al. show how different

measurement tools and network access methods impact security and privacy measure-

ments [87]. Their experiments show that the investigated parameters heavily impact,

for example, “request/traffic volumes” or loaded JavaScript libraries. Cassel et al. analyze

differences in observed tracking requests when using mobile or desktop browsers [25].

Yang and Yue develop WTPatrol and find in a comparative measurement study of web

tracking on 23,310 websites with mobile version and desktop version webpages that mobile

web tracking has unique characteristics. It became increasingly as prevalent as desktop

web tracking in terms of the overall volume of trackers [179]. Vastel et al. find that 291

websites of the Alexa top 10k block crawlers effectively use fingerprinting [169]. Most

recently, Calzavara et al. show that archive-based measurements might pose a reproducible

solution to the reproducibility problem, and they develop best practices for future measure-

ments [64]. Roth et al. find that seemingly static values like HTTP headers can differ based

on the crawling location [135]. Finally, several other works discussed that small changes

in a measurement setup could significantly affect the outcome (e.g., visiting subsites) [180,
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107, 161, 4, 179, 8]. This work extends the existing body of research by providing an

in-depth analysis of the effects of different measurement setups to understand their impact

on websites’ loading and content inclusion behavior.

3.3. Conclusion

In the following, we conclude our analysis of the results from Section 3.1 and Section 3.2

and discuss how our findings bolster the robustness of Web measurement studies.

Designing Web Measurement Studies. We have developed a set of best practices and

18 criteria for designing and conducting Web measurement studies to enhance their

reproducibility and replicability, consequently increasing their robustness. In a large-scale

measurement with multiple crawling profiles, we demonstrate that minor adjustments to

the crawling technology (e.g., browser type or mimicking user interaction) may lead to

significant differences in the results. We show that inadvertently documented experiments

reduce the chances that researchers can reliably reproduce the results. More importantly,

replicability and comparability of individual works cannot be universally assumed. A

takeaway from this is that we as a community need to find ways to perform more robust

Web measurements to draw reproducible and replicable conclusions from the conducted

experiments.

Similarity of Web Measurements. In Section 3.2, we performed a large-scale web mea-

surement study to understand the effects of different experimental setups commonly used

to conduct such experiments. The results suggest that embedded first-party components

show an almost perfect similarity, while third-party components and other consecutively

loaded elements show much lower similarity values. Especially when we look at the

loading dependencies, we see a substantial deviation between the profiles, indicating

that the web’s dynamic is an important factor one must consider when conducting and

comparing web measurement studies. Furthermore, our results show that differences in

the resulting dependencies exist—even if the same setup is used. From the perspective

of privacy-related Web measurements, the differences in this context are critical because

such studies often analyze phenomena primarily occurring in a third-party context.

In general, our findings highlight that we, as a community, must invest more efforts in

researching and developing robust measurement setups to ensure the correctness of our

experiments. Essential takeaways from our study in this direction are that:

(1) future work should investigate how to assess “measurement variances” in web experi-

ments, which is standard in other disciplines;

(2) drawing conclusions based on loading dependencies is error-prone since they are often

fluctuating;
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(3) an understanding of if the phenomenon of interest is present in the dynamic (e.g., ads)

or static (e.g., HTTP headers) content of a page is vital to plan the experiments; and

(4) our approach confirms that researchers should use different profiles and execute

multiple measurements to assess the potential of ‘randomized’ findings.
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Chapter 4

Security: Understanding Update
Behavior of Websites and Its Impact on
Security

In the previous Chapter, we discussed how to enhance the robustness of large-scale Web

measurements and examined the reasons for the discrepancies in these measurements.

We provided guidelines and insights for researchers to improve the robustness of their

studies. Unlike other studies presented in this thesis, the measurement in this Chapter

uses open-source data, demonstrating that utilizing such data sources is a perfect way to

completely reproduce and replicate a Web measurement.

The measurement in this Chapter aims to understand the update behavior of software

components on the Web and the potential implications of using outdated software. Based

on the findings obtained in Chapter 3, this Chapter presents a Web security measurement

as a case study. The results are based on 18 measurement points. Researchers, developers,

and end users are given an overview of security-relevant trends on the Web and the

significant impact of processing updates on Web security. It begins with an introduction

in Section 4.1, followed by a presentation of the methodology used to identify software

on webpages and measure their vulnerability in Section 4.2. Section 4.3 discusses the

update behavior of software components in webpages and the impacts of utilizing outdated

software on the websites’ vulnerability. Based on our findings, we provide actionable

recommendations in Section 4.4 for researchers, developers, and end users.
1

4.1. Introduction

Nowadays, we use the Web for various tasks and services (e.g., talking to our friends,

sharing ideas, to be entertained, or to work). Naturally, these services process a lot of

personal and valuable data, which needs to be protected. Therefore, web services need

to be hardened against adversaries, for example, due to imperfections of software. An

1
The remainder of this Chapter is mainly based on the paper “Our (in)Secure Web: Understanding Update

Behavior of Websites and Its Impact on Security”, which was presented in the proceedings of the 22nd

Passive and Active Network Measurement Conference 2021 (PAM) and co-authored by Tobias Urban,

Kevin Wittek, and Norbert Pohlmann [39].
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essential role in every application’s security concept is the updating process of the used

components [95]. Not updating software might have severe security implications. For

example, the infamous Equifax data breach that affected 143 million people was possible

because the company used software with a known vulnerability that has already been

fixed in a newer version [181].

However, keeping software up to date is not always easy and, from the security perspective,

not always necessary (i.e., not every update fixes a security issue). Modern applications

require a variety of different technologies (e.g., libraries, web servers, databases, etc.)

to operate. Updating one of these technologies might have unforeseeable effects and,

therefore, updates might create potentially high overhead (e.g., if an update removes

support of a used feature). More specifically, service providers might object to install

an update because they do not directly profit from the new features (e.g., changes in an

unused module). Hence, it is reasonable not always to install every available update (e.g., to

ensure stability).

In this Chapter, we show that this challenge can have grave implications. To understand

how up to date the utilized software on the Web is and to understand its possible security

implications, we conduct a large-scale measurement. Previous work also analyzed update

behavior on theWeb (e.g., [155, 168]) but – to the best of our knowledge – our measurement

is more comprehensive than the previous studies. While we analyze over 5.6M sites and

nearly 250 software (SW) products, other work in this field often only analyzed one

specific type of software or a small subset. Therefore, our results are more generalizable

and provide a better overview of the scale of the problem.

To summarize, we make the following contributions:

■ Large-scale Web measurement. We conduct a large-scale measurement that

evaluates 246 software products used on 5.6M websites over a period of 18 months,

to determine update behavior and security impact of not updating.

■ Understanding update behavior. We show that 96% of the analyzed websites run

outdated software, which is often more than four years old and is getting even older

since no update is applied.

■ Understanding vulnerability of sites. We show that a vast majority of the ana-

lyzed websites (95%) use software for which vulnerabilities have been reported, and

the number of vulnerable websites is increasing over time.

4.2. Method

In this work, we want to assess the update behavior of web applications, measure if they

use outdated software, and test the security implications of using the vulnerable software.

To accomplish that, we collect the used modules (software and version) of the websites

present in the HTTPArchive [67] over a period of 18 month, extract known vulnerabilities
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from theNational Vulnerability Database database, and map them against the used software

versions of the analyzed sites.

4.2.1. Identifying Used Software

To assess the update behavior of websites, we need to identify the software versions of the

software in use. To do so, we utilized data provided by HTTPArchive [69], which includes

all identified technologies used by a website. HTTPArchive crawls the landing page of

millions of popular origins (mobile and desktop) based on the Chrome User Experience
Report (CrUX) [60] every month, since January 2019. In CrUX, Google provides publicly

metrics like load, interaction, layout stability of the websites that are visited by the Chrome

web browser users on a monthly basis. This real-world dataset includes popular and

unpopular websites [68]. In our study, we analyze all websites provided in HTTPArchive.

Hence, we can use 18 data points in our measurement (M#1 – M#18). The data provided

by HTTPArchive includes, among other data: (1) the date of the crawl, (2) the visited

origins, and (3) identified technologies (software including its version). HTTPArchive

uses Wappalyzer [171] to identify the used software, which uses different information

provided by a site to infer the user version and technology stack. In order to make

version changes comparable, we converted the provided data to the semantic versioning
(SemVer) standard (i.e., MAJOR.MINOR.PATCH) [127] and validate also the version information

from HTTPArchive as well as from NVD and check if provided versions are in a valid

SemVer format. This unification allows us to map the observed versions of the known

vulnerabilities. If we find an incomplete SemVer string, we extended it with “.0” until it

fits the format.

4.2.2. Identifying Vulnerable Software

To better understand the security impact of updates, we map the software used by an

origin to publicly known vulnerabilities. We collect the vulnerabilities from the National
Vulnerability Database (NVD) 2. Each entry in the NVD holds various information, but

only three are essential to our study: (1) the date on which it was published, (2) a list of

systems that are affected by it, and (3) the impact metrics how it can be exploited and its

severity. In this work, we only focus on vectors that can be exploited by a remote network

adversary.

4.2.3. Dataset Preparation and Enrichment

Here, we describe the steps taken to enrich our dataset to make it more reliable.

2
We used the database published on 04/07/20.
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4.2.3.1. Release History

To get a firm understanding of the update behaviour of websites, it is inevitable to know

the dates on which different versions of a software were released (“release history”). To

construct the list of release dates of each software product, we used GitHub-API for the
official repositories, on GitHub, of the products and extracted the date on which a new

version was pushed to it and store the corresponding SemVer. If a product did not provide

an open repository on GitHub, we manually collected the official release dates from the

product’s official project webpages, if it’s published.

4.2.3.2. Dataset Preparation

Since theWeb is constantly evolving andWebmeasurements tend to be (strongly) impacted

by noise, we only analyzed software products on a site for which we found version numbers

in at least four consecutive measurements. Furthermore, we dropped all records with

polluted data (e.g., blank, invalid versions, duplicates, dummy data) from our dataset.

Finally, in order to make a valid match between CVE entries and software in our dataset,

we manually assigned each software in our dataset their CPE (naming scheme) using the

CPE Dictionary [115] provided by NVD.

4.2.4. Analyzing Updating Behavior & Security Implications

In this section, we describe how we measure update behavior and identify vulnerable

websites.

4.2.4.1. Updating Behavior

To understand update behavior in our dataset, one needs to measure the deployed soft-

ware’s version changes over time. Utilizing the release dates of each software product, we

know, at each measurement point in our dataset, whether a site/origin deploys the latest

software version of a product or if it should be updated. If we found that an outdated

product is used, we check if it was updated in the subsequent measurements (i.e., if the

SemVer increases). This approach allows us to test if a product is updated after all and

to check how long this process took. In our analysis, we call an increasing SemVer an

update and decreasing version number a downgrade. In this analysis, we compare the

MINOR and PATCH part of a product’s SemVer, utilizing the release dates of each version,

and not the MAJOR section because service providers might not use the latest major release

due to significant migration overhead. For example, we would consider that an origin is

“up to date” if it runs version 1.1.0 of a product even if version 2.1.0 (major release change)

is available. However, if version 1.1.1 would be available, we consider it “out of date”.
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4.2.4.2. Identifying Vulnerable Websites

One way to measure the impact of an update on the security of a site is to test if more

or less vulnerabilities exists for the new version, in contrast to the old version. To iden-

tify vulnerable software on a website, we retrieve the relevant CVEs for the identified

software and then check if it is defined in these CVE entries – with consideration of

versionStart[Excluding/Including] and versionEnd[Excluding/Including] settings. We map a

vulnerability to a crawled origin if and only if (1) it uses a software for which a vulnerability

exists and (2) if it was published before the crawl was conducted. Utilizing the Common
Vulnerability Scoring System (CVSS) of each vulnerability, we can also assess the theoretical

gain in security.

4.3. Results

After describing our approach to analyze the update behavior of websites and its possible

security impact on websites, this section introduces the large-scale measurement results.

Overall, we observed 8.315.260 origins on 5.655.939 distinct domains using 342 distinct

software products. After filtering, we were left with 8.205.923 origins (99 %) on 5.604.657

domains (99 %) using 246 (72 %) software products. We collected 31.909 releases for 246

software products. Furthermore, we collected 147.312 vulnerabilities of which 2.793 (2 %)

match to at least one identified product. Overall, we found an exploitable vulnerability

for 148 (60 %) of the analyzed software products. Note that products with no public

release history are excluded from analyzing update behavior and security analysis if they

don’t have a known vulnerability. Note also we have full access to all the segments of

the MAJOR.MINOR.PATCH for 98.5% of our data. In total, we identified 12.062.618 software

updates across all measurements. Table 4.1 provides an overview of all evaluated records

of each measurement run.

4.3.1. Update Behavior on the Web

In the following, we analyze the impact of adoption of releases on the Web on website

level and from software perspective.

4.3.1.1. Update Behavior of Websites

The first step to understand the update behavior of websites is to analyze the fraction of

used software products that are fully patched, according to our definitions. Remember

that we assume that a software product should be updated if a newer minor version or

patch is available (i.e., we exclude the major version (see Section 4.2.4)). In our dataset,

we identified a median of 3 (min: 1, max: 17, avg: 3.37) evaluable software products for

each website. Overall, we identified that across all measurement points, on average, 94 %
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Table 4.1.: Overview of all measurement points.

M. Date #Sites #Origins #Products #dist. Ver. #Updates #Vuln.

M#1 01/19 2.5M 3.4M 208 15,436 — 2,201

M#2 02/19 2.3M 3.1M 204 15,178 0.4M 2,224

M#3 03/19 2.3M 3.1M 205 15,390 0.5M 2,235

M#4 04/19 2.7M 3.5M 205 16,145 0.6M 2,291

M#5 05/19 2.8M 3.6M 216 16,741 0.4M 2,298

M#6 06/19 2.8M 3.6M 217 17,013 0.7M 2,310

M#7 07/19 3.0M 3.9M 215 17,438 0.6M 2,286

M#8 08/19 3.0M 3.9M 215 17,474 0.5M 2,316

M#9 09/19 3.0M 3.9M 215 17,682 1.0M 2,390

M#10 10/19 3.0M 3.8M 217 17,873 0.8M 2,424

M#11 11/19 3.0M 3.8M 217 17,958 1.0M 2,468

M#12 12/19 3.0M 3.8M 216 18,122 1.0M 2,478

M#13 01/20 2.9M 3.8M 217 18,173 0.8M 2,502

M#14 02/20 2.7M 3.4M 211 17,558 0.4M 2,526

M#15 03/20 3.1M 3.9M 217 18,558 0.4M 2,412

M#16 04/20 3.3M 4.2M 217 19,321 0.6M 2,467

M#17 05/20 3.1M 4.0M 220 19,353 0.8M 2,460

M#18 06/20 3.4M 4.4M 218 20,118 0.6M 2,475

of all observed websites were not fully updated (i.e., at least for one software product

exists a newer version). Only 6% of the observed sites used only up to date software

while 47 % entirely relied on outdated software types. The mean fraction of out of date

software products is 74 % for each observed website across our measurement points. These

numbers show that websites often utilize outdated software. While at domain granularity,

almost all analyzed sites use outdated software, it is interesting to analyze if subdomains

show different update behavior. Figure 4.1 compares the fraction of up to date software

utilized on subdomains (e.g., bar.foo.com) against the root domains (e.g., foo.com), along our

measurement points. In the figure, zero means that all software is up to date and one means

that all software is outdated. Our data shows that most software products are not updated

to the newest release, but it is still interesting to analyze the update cycles websites use

in the field. On average, we observed 0.7M version changes between two measurement

runs. 97 % of them were upgrades (i.e., the SemVer increased) and consequently 3 % were

downgrades.

4.3.1.2. Update Behavior from a Software Perspective

Previously, we have shown that websites tend to use outdated software. In the following,

we take a closer look at the used software to get a better understanding if the type of used

software has an impact on its update frequency. Across all measurements, the software

used on the live systems is 44 months old (M#1: 40, M#18: 48), and the trend during the

measurement is that it gets even older (18 days each month on average). To determine
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Figure 4.1.: Fractions of utilized outdated software products on the analyzed domains in comparison

to their subdomains (1 = no product is up-to-date).

how the average age changes by software types, we measured the average age of the

top ten used software types for all measurement points. These top ten account for 65 %

of all analyzed software types. In Figure 4.2 we show the corresponding results. Our

finding clarifies that client-side software (e.g., JavaScript Libraries) is older than server-

side software (e.g., Web Servers). A closer observation of the releases SW shows that the

server-side software has shorter release cycles than client-side software in the measured

period (e.g., nginx has 18 and jQuery only has 6 releases). While the age of the software

itself is not necessarily a problem per se, it is notable that the average number of months

a utilized software is behind the latest patch is 48. The ANOVA test (𝛼 = 0.05) showed

no statistical evidence that the popularity of a website, according to the Tranco list [100],
has an impact on the age of the used software (i.e., popular and less popular websites

use outdated software alike). Using software that is four years old might be troubling,

given that on average 41 newer version exists, because the software might have severe

security issues. We have shown that overall mostly outdated software is used. However,

it is interesting to understand if this applies to all types of software alike or if specific

products are updated more frequently.
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Figure 4.2.: Average age (in month) of top utilized 10 software types for all measurement points.

4.3.1.3. Adoption of Software Releases

To get a better understanding of the update behavior of websites, we observe the adoption

of releases. We find that every month, on average, 67 % of the software used has a new

release. However, our observations show that only a few service providers install the

release promptly. We record that on average, only 7 % of available updates are processed

(min: 4 %, max: 11 %). The mean time between two updates for any of the used software

on one website is 3.5 months (SD: 5.4). To get a more in-depth understanding of the

adoption of software releases, we measure it in a time span of 30 days after the release.

Figure 4.3 shows the fraction of processed updates by websites in that time span for the

top eight software types. The top eight types account for 60 % of all used software. In

general, we see that PATCH level releases are processed most frequently. Furthermore, we

observe that the adoption of release types differ based on the software types. E-Commerce

software process PATCH releases most frequently and search engine optimization software

(SEO) MAJOR releases respectively. We assume that integrated automatic background

updates play an important role why specific software types are updated. For example

WordPress and Shopware, two popular content management systems, provide an auto

update functionality [177, 143].

Summary Based on our dataset, we have shown that the used software on the Web

is often very old and not updated frequently. While differences in the update behavior
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Figure 4.3.: Fraction of processing a new release for top used eight software types.

between different types of software exist, the majority of all times is still not updated.

However, the impact of this not-updating is not clear and needs more investigation.

4.3.2. Security Impact of Not Updating

Experts agree that updating is one of the most critical tasks one should do to harden a

system or to avoid data leaks [130]. Therefore, we are interested in the security impact of

the identified tend to use outdated software.

4.3.2.1. Vulnerability of Websites

Towards understanding the threats that result from the usage of outdated software, we first

analyze the scope of affected websites. On average, 94 % of the analyzed websites contain

at least one potential vulnerable software, which was slightly increasing over the course of

our measurements (M#1: 92 % to M#18: 95 %). We also record that each analyzed software

has on average 8 vulnerabilities and that websites are affected, on average, by 29 (min: 0,

max: 963). Our data shows that the number of exploitable vulnerabilities is decreasing

over time for both per software (0.4 per month) and per websites (0.14 per month). Hence,

overall the number of websites that have at least one vulnerability increases but the amount

of vulnerabilities per site decreases.

Each vulnerability has a different security impact on a website, and, therefore, the number

of identified vulnerabilities does not directly imply the severeness of them. The NVD

assigns a score to each vulnerability to highlight its severeness (i.e., the CVSS score). Figure

4.4 shows the mean CVSS scores for the analyzes websites their rank. By inspecting the

figure, one can see that less popular sites (the rank is higher) are affected by more severe
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Figure 4.4.: AVG CVSS by popularity of websites. Vulnerability severity is significantly lower for

high-ranked websites.

vulnerabilities. The Spearman test (𝛼 = 0.05) showed a statistical significant correlation

between the rank and the mean CVSS score of the identified vulnerabilities (𝑝-value

< 0.007). Table A.2, in Appendix A.3.1 lists the most common vulnerabilities in our

last measurement point (M#18). A stunning majority of websites (92 %) is theoretically

vulnerable to Cross-site Scripting (XSS) attacks. In our dataset, jQuery is the software that

is most often affected by a CVE (92%). A list of the most prominent CVEs is given in

Appendix A.3.3. Given the wide occurrence of vulnerabilities in our dataset, the question

arises which threats websites and users actually face.

4.3.2.2. Analysis of Available Vulnerabilities

Figure 4.5, shows the distribution of severity of identified vulnerabilities on websites based

on the Common Vulnerability Scoring System (CVSS). Our results show that the number of

websites with the most severe vulnerability (CVSS: 10) steadily decreases. The average

number of vulnerable websites with a severity “HIGH” (CVSS: 7–10) is decreasing (M#1:

43 %, M#18: 39 %), while the number of vulnerable websites with “MEDIUM” (CVSS: 4–7)

remains almost constant (M#1: 47 %, M#18: 49 %). For this analysis, we only used the most

severe vulnerability for each website.

Given the result that the average age of used software depends on its type (see 4.2), we find

that older software has more dangerous vulnerabilities. For example, the average CVSS/age

of JavaScript-Frameworks was 4/50 in M#1 and 6/62 in M#18, while the score and age

for programming languages go from 9/34 to 8/33. This confirms that older software does
have more vulnerabilities and highlights the need for better update processes of websites.

Furthermore, our analysis shows that performing updates has a significant impact on
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Figure 4.5.: Fraction of CVSS score distribution on websites for all measurement points (10 =

Critical, 0=No Vulnerability).

the security of software. The average value of CVSS for software for which an update is

available is 6.4 (“MEDIUM”). However, after applying the update(s), the CVSS is lowered

to 2.4 (“LOW”).

4.4. Recommendations

In this Section, we provide actionable recommendations for researchers, developers, and

end users based on our results.
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4.4.1. Recommendations for Researchers

Researchers should consider using open-source data in their studies to enhance repro-

ducibility and replicability, provided it aligns with their research objectives. Open-source

data is publicly accessible, which makes it easier for other researchers to validate the

findings and conduct follow-up studies. However, researchers should be aware of the

limitations of open-source data by studying methodologies of open-source data.

Recommendation #1: ¥

Researchers should leverage open-source data for increased study reproducibility

and replicability, while being aware of its limitations and potential impacts.

We have observed that websites often employ varying versions of software, many of which

are outdated, significantly impacting the website’s vulnerability and overall security. In

light of these findings, researchers should be mindful of the potential effects of differing

software versions on their results. It is important to investigate further whether these

variations influence the measured metrics, as this could affect the accuracy of the research

outcomes.

Recommendation #2: ¥

When conducting web measurements, researchers should consider how different

software versions on webpages impact the measured metrics.

4.4.2. Recommendations for Developers

Developers should enable auto-updates for the software components in their Web envi-

ronment. By automating the update process, developers can ensure that their applications

are always running the latest versions of software components with the most recent

security patches and bug fixes. This reduces the risk of exploitation by malicious actors

and enhances the overall security and performance of the Web environment. Additionally,

it minimizes the manual effort required to maintain and update the software.

Recommendation #3: ¥

Developers should enable auto-updates to ensure their web applications run the

latest software versions, and minimizing manual maintenance effort.

Developers should adopt Semantic Versioning (SemVer) for their software. SemVer.By
adopting SemVer, developers can more easily match software versions across different

contexts by comparing third-party software versions with locally used ones or matching a

version in a CVE entry with the utilized software. In addition, it facilitates subscribing to
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security advisories and vulnerability databases, which is vital for staying informed about

potential security risks. This can enhance the compatibility and security management of

software components.

Recommendation #4: ¥

Developers should adopt Semantic Versioning (SemVer) to easily match software

versions across contexts and enhance compatibility and security management.

Developers should implement auto-update mechanisms for their web applications to

streamline the update process. By automating updates, developers can ensure that their

users
3
always have access to security enhancements without requiring manual inter-

vention. Auto-update mechanisms can be implemented using various technologies and

approaches, such as web service workers or application update APIs. Implementing auto-

updates simplifies the user experience, reduces friction, and enhances the application’s

overall security.

Recommendation #5: ¥

Developers should implement auto-update mechanisms in software to ensure users

always receive security updates, simplifying the user experience and boosting

overall security.

When releasing updates, developers should consider backward compatibility to prevent

disruptions. Ensuring new software versions are compatible with previous versions

helps transition smoothly without encountering issues. Developers should avoid making

breaking changes that would require to make significant adjustments or modifications to

their existing workflows. By prioritizing backward compatibility, developers can provide

an enhanced experience and maintain trust during the update process, enhancing overall

security.

Recommendation #6: ¥

Developers should prioritize backward compatibility in software updates to ensure

smooth transitions, prevent disruptions, and enhancing overall security.

4.4.3. Recommendations for Users

Users
4
should be aware that almost all websites on the Web have vulnerable software

components (cf. Section 4.3.2), which may expose them to various risks such as data

3
In this section, ’Users’ refers to users of software components, and not visitors of webpages.

4
In this section, ’Users’ refers to visitors of webpages.
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breaches, malware, or phishing attacks. Users should exercise caution when providing

personal or sensitive information on websites. By staying informed about the potential

vulnerabilities of websites, users can better protect themselves and their data from potential

threats. Additionally, users need to educate themselves on recognizing signs of secure

websites, such as HTTPS in the URL, valid security certificates, checking the modernity of

websites, and trusted website seals that inform users about the website’s vulnerability.

Recommendation #7: ¥

Users should be aware that most websites have vulnerable software and exercise

caution when sharing personal information, checking for signs of website security.

Using modern web browsers is crucial for ensuring a safe browsing experience. Modern

browsers are equipped with built-in security features that protect users from malicious

websites, phishing attempts, and other threats. They also receive regular updates that

address security vulnerabilities, improve performance, and add new features to enhance

the user experience.

Recommendation #8: ¥

Users can benefit from enhanced security measures that protect their personal

information and online activities by choosing to use up-to-date web browsers.

Popular websites often have more resources to invest in their infrastructure, resulting in

better performance, security, and user experience. Moreover, well-known websites are

more likely to be scrutinized by the security community and the public, encouraging them

to prioritize the safety of their users. In contrast, less-popular sites may have a different

level of resources to maintain a secure and optimized web environment, making them

more susceptible to threats which our results also show. Users can generally expect a more

reliable and secure browsing experience by opting for popular sites.

Recommendation #9: ¥

Users should opt for popular websites, as they often offer better security and

performance due to higher scrutiny and resource availability.

4.5. Limitations and Ethics

Although we have put a great effort while preparing our dataset, our study is impacted

by certain limitations. Our approach comes with the limitation that, on the one hand,

HTTPArchive only crawls landing pages and does not interact with thewebsite, whichmight

hide the complexity of an origin [161], and, on the other hand,Wappalyzer might not detect
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all used software for the website. Although NVD is one of the most popular vulnerability

databases, there are some discussions around the accuracy of the data provided by NVD

e.g., [116, 142]. In our study, we assume that software utilized by a website is vulnerable if

the NVD provides a CVE entry for it. For ethical reasons, we did not validate if successful

exploitation of the CVE requires any interaction or enabled functions. We also do not

examine any mechanism for the validity of CVE entries.

4.6. Related Work

To the best of our knowledge, our study is the first one that measures update behavior

and security implications by evaluating all utilized server and client-side software on a

website and by conducting multiple measurements. In the following, we discuss studies

related to our research.

Update Behavior The software update behavior has been previously studied. Tajal-

izadehkhoob et al. [155] measure the security state of software provided by hosting

providers to understand the role of hosting providers for securing websites. Vaniea

et al. [168] conduct a survey to understand the update behaviour of software. They ask

307 survey respondents to provide software update stories and analyze these stories to

determine the possible motivations for software updates. Stock et al. [152] examine the

top 500 websites per year between 1997 and 2016 utilizing archive.org dataset. In their

measurement, they mainly evaluate security headers and analyse usage of outdated jQuery
libraries.

Security Implications Prior literature has proposed various techniques to measure web-

sites’ security in terms of different metrics. Lauinger et al. [99] study widely used 72

client-side JavaScript libraries usage and measure security across Alexa Top 75k. Van

Goethem et al. [57] report the state of security for 22,000 websites that originate in 28

European countries. Their analysis is based on different metrics (e.g., security headers,

information leakage, outdated software). However, they use only a few popular software

products for their measurement. Huang et al. [73] measure the security mechanisms of

57,112 chinese websites based on vulnerabilities published on Chinese bug bounty plat-

forms between 2012 and 2015. Van Acker et al. [165] scrutinize the security state of login

webpages by attacking login pages of websites in the Alexa top 100k.

4.7. Discussion and Conclusion

In this work, we measured the update behavior and possible security implications of

software products utilized on more than 5.6M websites. Our measurement highlights the

current state of the Web and shows the update behavior of websites over the course of
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18 month. We show that most of the Web’s utilized software is outdated, often by more

than four years. Running outdated software is not a security problem per se because the

old software might not be vulnerable. However, we found several sites that use software

products for which vulnerabilities have been reported. Furthermore, we show that the

number of vulnerable websites increases over time while the average severity of identified

vulnerabilities decreases. For instance, we record that 95 % of websites potentially contain

at least one vulnerable software. It has to be noted that the identified vulnerabilities in our

work must be seen as an upper bound because utilizing a product for which vulnerabilities

exist does not automatically mean that it can be exploited (e.g., the vulnerable module of

the product is deactivated or not used). Our results still highlight that website providers

need to take more care about their update processes, even if this comes with a potential

overhead, to protect their users and services.
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Chapter 5

Privacy: A Large-Scale Study of Cookie
Banner Interaction Tools and Their
Impact on Users’ Privacy

In the previous Chapter, we performed a case study on Web security, based on the findings

from Chapter 3 and explored the update practices of providers and their impact on website

security. In this Chapter, we conduct another large-scale Web measurement. Once again,

we apply the findings from Chapter 3 to enhance the robustness of this study.

We investigate the efficiency of various Web privacy tools and potential side effects that

could adversely affect end user privacy instead of enhancing it. We offer actionable

recommendations for end users, developers, and researchers based on our results. We

begin with an introduction in Section 5.1 and present our methodology for this study

in Section 5.2. We then present our findings in Section 5.3. Subsequently, we offer

recommendations in Section 5.4 for researchers, developers, and end users.
1

5.1. Introduction

Websites make rich use of HTTP cookies for various means (e.g., user tracking). To provide

(European) Internet users more control over the usage of cookies, many website providers

embed so-called “cookie banners” on their webpages [52, 33, 66]. Some banners allow

fine-grained control over the type of cookies to be used (e.g., rejecting advertising cookies),

while others only inform users about their usage [163]. Cookie banners are meant to

help users but are often designed in a way that nudges the user to accept all types of

cookies rather than to reject them (“Dark Patterns” [63, 93]), and their the omnipresence

has started to annoy users [96].

Different tools help users cope with cookie banners by automatizing the interaction

process [18, 119, 118, 154, 89]. These tools are usually implemented as a browser extension

and often use rule-based approaches to identify and interact with banners. More specifically,

1
The remainder of this Chapter is mainly based on the paper “A Large-Scale Study of Cookie Banner

Interaction Tools and Their Impact on Users’ Privacy”, which stands to be presented in the proceedings of

the 23rd Privacy Enhancing Technologies Symposium 2024 (PETS) and is co-authored by Tobias Urban,

Norbert Pohlmann, and Christian Wressnegger [38].
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the tools identify the banners and corresponding buttons on predefined patterns, similar to

ad blockers that block URLs based on filter lists. Some tools offer the option to choose the

cookie type the user consents to be set (e.g., “functional cookies” only). Users hence need

to configure these tools according to their own privacy needs. However, the impact of

these tools on the user’s privacy still needs to be better understood. One challenge is that

the interaction with these banners is neither standardized nor is it (legally) defined what

the purpose of a cookie is or how it can be determined. Thus, while users rely on these

tools for convenience and to implement their choice, it is still being determined if these

tools even meet these expectations and which impact the tools have on users’ privacy.

In this work, we perform a measurement study to understand the effects of six extensions

for “cookie banner interaction.“ We analyze five tools used in the field and one custom

extension developed for this study. In our experiments, we investigate (1) which and how

many cookies a website sets, (2) the purpose of the used cookies, and (3) various deferred

effects, such as the impact on tracking requests. With this study, we aim to understand

the impact and potential benefits of the different tools for users’ privacy. To do so, we

visit 298k distinct pages on 30k websites once with each tool and uncover statistically

significant differences in the analyzed extensions’ effectiveness. We show that the number

of cookies, category of used cookies, and individual cookies in terms of their key names

differ based on the used extension.

Previous studies have either analyzed the design of different banners [163, 33, 159, 63] or

have built new tools to interact with banners in a meaningful way [18, 119]. While we build

upon prior work by utilizing some of the presented tools in this work, we investigate an

entirely different problem: The effectiveness of different tools that automatically interact

with cookie banners. To the best of our knowledge, this is the first work comparing the

impact of “cookie banner interaction” tools on the user’s privacy at a large scale.

In summary, the main contributions of this work are:

■ Large-scale measurement study. We compare the effectiveness of six different

tools that assist users in the interaction with cookie banners and show that the tools

can impact the usage of the setting of specific types of cookies by up to 640%.

■ Tool effectiveness varies largely. The results show that although some tools claim

to have similar capabilities (e.g., accepting functional cookies), several differences

exist in the number and type of observed cookies.

■ Effects of interacting with cookie banners. We find that statistically significant

effects of the interaction with cookie banners exist. For example, the number of

tracking requests increases by up to 60% if an extension allows the usage of all cookies.

5.2. Method

The measurement framework provided by [34] is the basis for our setup, which allows

orchestrating quasi-parallel web measurements using different browser setups. The frame-
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work consists of a master machine that starts multiple virtual machines (VM), each running

a separate crawler with a distinct configuration. We use the individual configurations to

implement nine different crawling profiles (cf. Section 5.2.4) for our experiments.

The Google Cloud Platform hosts our VMs, and all but one use an IP address associated

with a European server (Frankfurt am Main; DEU). Each profile is based on OpenWPM [44]

(v0.20.0), uses the Firefox browser (v100.0 with the default user agent
2
and a screen

resolution of 1920x1080), and each profile uses a different browser extension that interacts

with a cookie banner (cf. Section 5.2.2). We configure OpenWPM to log the entire HTTP(s)

traffic, all cookie interactions (e.g., creation or deletion), and data stored in the local storage

of the browser [109]. Since OpenWPM natively does not support the extraction of this

storage, we implemented a custom function that extracts the values from this storage. We

make our crawling setup publicly available (cf. Appendix A.1).

A crawl of the Web can either be stateless or stateful. Stateful crawlers keep the state of

the browser between page visits (like the browser of a real user would), while in stateless

crawls, the browser is reset between two page visits. In our experiment, we perform a

stateful crawl for each visited site, meaning we keep the browser’s state when visiting a

site’s pages. The state is reset when a new site is analyzed. This design choice has major

implications for our experiment because after interaction with the cookie banner on the

first page (typically the landing page of a site), the banner might not show on other pages

and, therefore, we can record the behavior of a site after the user made a choice. However,

the order of visiting sites might impact the resulting cookie jar.

To allow fair comparability of the different profiles, we only include sites in our analysis if

at least eight profiles successfully crawled all site pages in our dataset. More specifically, if

at least two profiles did not crawl a given page, the entire site is dropped from our analysis.

This filtering applies to 10 888 (36%) of the sites in our dataset that we excluded from our

analysis. Since we visit the sites in parallel, this approach allows us to keep the data we

compare consistent. More precisely, we only compare sites if the underlying data was

collected from the same pages. We elaborate on this seemingly high exclusion rate in

Appendix A.4.2.

5.2.1. Dataset

To build the set of pages to visit, we resort to the widely used quasi-standard Tranco

list [100] generated on 29/08/2022
3
. From the list, we randomly sampled a subset of sites

to analyze based on their ranking. We divided the list into buckets and randomly drew

sites from each bucket. We used the top 5,000 sites from the list and randomly selected

5,000 sites from each of the following rank ‘buckets’: 5,001–10k, 10,001–50k, 50,001–250k,

250,001–500k, and 500,001–1M. Thus, in total, we used 30,000 sites for our experiment. We

2 Mozilla/5.0 (X11; Linux x86_64; rv:100.0) Gecko/20100101 Firefox/100.0
3 https://tranco-list.eu/download/X568N/1000000
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Table 5.1.: Overview of the used extensions that claim to interact with

cookie banners automatically. The date indicates the last update of the

extension. User numbers as of 02/23.

# Name Date
Firefox
Users

Chrome
Users

Num.
Configs

I I don’t care about cookies 02/23 317 000 + 900 000 + 1

II Consent-O-Matic 02/23 21 000 + 60 000 + 7

III Ninja Cookie 04/21 6000 + 40 000 + 1

IV SuperAgent 06/22 3000 + 20 000 + 5

V CookieBlock 08/22 2000 + 5000 + 4

use this sampling to understand if there are differences in the efficiency of the analyzed

tools based on a site’s popularity (rank).

Previous work has shown that subpages behave differently than the respective landing

page [161, 34, 8]. Therefore, to build the final set of pages to visit, we visit each randomly

selected site’s landing page and collect 15 subpages (i.e., first-party links on the page) for

each. We repeated the process recursively if the landing page did not hold enough links.

We chose to use 15 pages since previous work showed that this number is a fair trade-off

between crawling time and still capturing the behavior of a site. Overall, we visit 298k

pages on the 30 000 sites utilizing the nine measurement profiles (on average 288k per

profile). We provide a list of all analyzed pages and sites in the supplementary material of

this paper (cf. Appendix A.1).

5.2.2. Cookie Banner Interaction Tools

To understand the impact of different tools that assist users in interacting with cookie

banners, we perform a measurement study and compare the effects of other tools. Table 5.1

lists the extensions we analyze in this study. All analyzed extensions are supported by the

most common browsers (e.g., Firefox, Chrome, or Safari). We chose these extensions since

they are either popular (e.g., I don’t care about cookies and Ninja Cookie) or were recently
proposed by academic works as solutions to interact with cookie banners (e.g., Consent-
O-Matic [120] and CookieBlock [18]). In our measurement, we install each extension in a

separate OpenWPM instance, allowing us to compare each tool’s effects individually. It

should be noted that there is no specification (or understanding) of how cookie banners

should work and not even a (legal) definition of how to define the type or purpose of a

cookie. Yet, the extensions claim that they provide privacy or let users take control of their

privacy and eliminate the need to interact with cookie banners. Therefore, it is interesting

to understand their impact on users’ privacy.

I don’t care about cookies. The extension is by far the most popular browser extension in

our measurement. The authors of the extension claim that it “removes cookie warnings from
almost all websites” [89]. The tool’s main intention is to be not to protect users’ privacy but
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Table 5.2.: Overview of the measurement profiles. Profiles #3 and #7 are custom extensions as

described in Section 5.2.4. The last column marks tools that can process all banner types (and do

not state any limitations of banner interaction) with a ✓.

# Ext. Ver. Loc. Method Cookie Policy All Banners

1 I don’t care about cookies 3.4.2 DE rule-based Hides banners,

accepts/rejects

✓

2 Consent-O-Matic 1.0.8 DE rule-based Reject all Only CMPs

3 Consent-O-Matic (custom) 1.0.8 DE rule-based Allow all Only CMPs

4 Ninja Cookie 0.2.7 DE rule-based Reject all ✓

5 CookieBlock 1.1.0 DE ML-based Accepts func-

tional

✓

6 SuperAgent 2.6.0 DE rule-based Accepts func-

tional, perf.

✓

7 “Accept all” Ext. (custom) — DE rule-based Accepts all ✓

8 None — DE — No interaction —

9 None — US — No interaction —

to eliminate the hassle of interacting with the banner. For example, the extension hides the

HTML element(s) that compose the cookie banner. If that is not possible, the extension will

interact with the banner by accepting all, some, or no cookies. The extension’s description

does not elaborate on how it determines its action. However, manual inspection and

consultation with the developer showed that the extension usually accepts all cookies.

Consent-O-Matic. This extension was developed as part of a research project [120].

Consent-O-Matic was developed to interact with banners provided by different Consent

Management Providers (CMPs) and aims to choose the most privacy-friendly setting by

default. The extension works for a fixed set of CMPs and uses rules to interact with

each banner. While, by default, the extension only accepts “necessary” cookies, it can

also be configured to accept other types of cookies. We use this option to compare

two extension configurations (cf. Section 5.2.4). When conducting our experiments, the

extension supports 36 CMPs, which means if a website uses a banner not provided by any

of those CMPs, the extension will not do anything. Previous work has shown that only

roughly 11% of all websites use a cookie banner provided by a CMP [172, 18, 20].

Ninja Cookie. By default, this extension will interact with cookie banners and only

allow the setting of essential cookies [118]. No public documentation exists on how Ninja
Cookie identifies the cookie banners. However, by manually inspecting the source code,

we found that it works on a heuristic, ruled-based approach to identify and interact with

a banner. According to the documentation, the tool also works for major CMPs and

other banners. Ninja Cookie is the only extension that offers a premium subscription that

provides additional features such as whitelisting. In our experiment, we use the basic

subscription, which is free.
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CookieBlock. This extension was also developed as part of a research project [18]. Since

the work was published in 2022, the extension only comes with low installation numbers.

We still integrated the extension into our experiment because it is the only tool not relying

on a rule-based approach but using machine learning. Furthermore, the extension does

not aim to interact with cookie banners but automatically deletes cookies that the user

does not desire. By default, the extension allows setting “functional” cookies. In our

experiments, we use this default configuration of CookieBlock.

Super Agent. The last extension in our corpus is Super Agent [154]. Like most solutions,

this extension uses a rule-based approach to identify and interact with cookie banners. The

extension’s default settings allow the setting of “functional” and “performance” cookies.

In our experiment, we use these default settings.

5.2.3. Manual Extension Verification

We begin by testing the functionality of the extensions to understand whether they interact

with cookie banners and thus work as intended. To this end, we randomly sample 19 sites

from each of the used buckets that show a cookie banner and one that does not show a

banner. In the latter, we include testing if the extensions might break a page’s function.

First, we manually visited each of the selected sites and tested if they showed or did not

show a cookie banner using a vanilla Firefox browser and a European IP address associated

with a German university (redacted; DEU) to gather ground truth. Then, we use the same

setup (vanilla Firefox browser and a German IP address) and (1) manually install each

extension separately, (2) visit the landing page of each site, and (3) check if the extension

interacts with the banner.

Overall, we find that each of the identified extensions interacts, on average, with 12 (65%)

(SD: 21%; max: 95% min: 48%) of all banners. Appendix A.4.1 presents a more detailed

overview of the manual verification of each extension. Since all extensions can interact

with some cookie banners, we include all of them in our subsequent experiments.

5.2.4. Profiles Used in the Measurement

In our experiment, we use nine profiles to analyze the effects of tools that assist users

in interacting with cookie banners. For each of the previously introduced tools (cf. Sec-

tion 5.2.2), we create an individual measurement profile, that is, a distinct OpenWPM
instance that installs one of the extensions to the Firefox browser. In all but one profile,

we use the default configuration for all extensions. In the only exception, we config-

ure Consent-O-Matic to accept all cookies, which rejects all non-necessary cookies by

default.

In addition to the named browser extensions, we used three additional browser profiles in

our measurement. The first two profiles are plain OpenWPM installations that we use as

reference values. These baselines allow us to compare how each website behaves if no

80



5.2. Method

extension is used, allowing us to understand the magnitude of the effect of the analyzed

extensions. It is important to note that these baselines are not supposed to serve as a lower

or upper bound but only as a reference to understand how a website utilizes cookies if we

do not interact with a cookie banner. Like all other profiles, one is run from a German

IP address (Frankfurt am Main; DEU), and the other is run from a US IP address (Council

Bluffs, IA; USA). For the third profile, we use a custom rule set and a heuristic approach to

‘click’ the “accept all cookies” button. We provide details on this implementation in the

following paragraph. This profile is supposed to provide an upper bound on the cookies

set if users accept all of them. Table 5.2 shows an overview of all used profiles.

Custom “Accept All” Extension. To understand an upper bound of used cookies, we

implemented a tool that aims to automatically “accept all” cookies of a page by triggering

the respective button on a cookie banner. In the following, we briefly describe our approach.

We implemented a custom command for OpenWPM that uses a two-step process to identify

“accept all” buttons, following a heuristic signature-based approach: (1) Identify an accept-

all button and (2) check if the button is used in a privacy-related context.

First, we analyzed the top 1,000 sites from the Tranco list to generate a signature list to

identify accept-all buttons. We manually identified 483 sites that use a consent banner and

collected 97 distinct accept-all button labels. While these numbers seem low at first sight,

they are in line (and even exceed) findings on the average number of sites that use cookie

banners [172]. Second, to determine if a button we identified in step one is used to manage

consent, we profit from privacy-related words presented by [33]. After a page finishes

loading, our extension tries to find the ‘accept all’ button in the DOM object using the

created signature list. Afterward, we test if the parent elements of the identified buttons

contain privacy-related keywords (Step 2). While this approach has several limitations, we

still think it is viable to serve as an upper bound for our experiment. In our experiment,

we could interact with cookie banners on 17% (5173) of the sites using this approach
4
. Our

extension is publicly available (cf. Appendix A.1).

5.2.5. Identifying the Purposes of Cookies

This work investigates the effectiveness of browser extensions that interact with cookie

banners. To better understand what kind of cookies are set in the different profiles,

we classify them according to their purpose. In this work, we use four types of cookie

categories proposed by the International Chamber of Commerce UK [77], which have

been used by prior work [161, 18]. These categories are: (1) “Strictly Necessary Cookies”

needed to provide the basic functionality of a website, (2) “Performance Cookies” aggregate

(anonymously) the user’s usage of the website, (3) “Functionality Cookies” personalize the

website’s usage, and (4) “Targeting/Advertising Cookies” used to track users or to display

personalized ads.

4
These number relates to all sites and not only those that use a cookie banner.
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To identify the categories, we profit from Cookiepedia [28], a pre-categorized cookies

database. Cookiepedia is run by OneTrust, a privacy management software company that

also provides a CMP. The database provides for a given cookie name (i.e., the key) with

additional data on the cookie. For example, for the cookie “__cf_gads,” the database

provides that it is used for “Targeting/Advertising” by DoubleClick. In our experiment, we

query the database for additional data on each identified cookie. This process might be

error-prone as cookie classes are assigned by hand but are—from our point of view—the

best approximation of cookie usage today. We have been able to classify 57% of all observed

cookies. Appendix A.4.7 provides an overview of the cookies that could not be classified.

In our experiment, we only focus on cookies in the cookie jar after crawling the last page

for a given site; note our stateful crawling approach. We do this because some extensions

(e.g., CookieBlock) might delete cookies from a category that the users opted out to. Hence,

some cookies might be set by a page and deleted by an extension. In these cases, we

assume the extension works as intended since undesired cookies are not persistent on the

client. We evaluate the final set of cookies present by comprehending the actions logged

by OpenWPM (i.e., creation, updating, and deletion).

We use EasyList to understand the effects of the analyzed extensions on user tracking.

The list is a crowd-sourced effort to identify web tracking and might be incomplete or

inaccurate to some extent. However, we expect that this limitation has only a marginal

impact on our results and does not endanger our experiment’s correctness.

5.2.6. Statistical Comparison of Profiles

We use the Jaccard index to compare cookies on a page or site. The index is used to gauge

the similarity of sets and is defined as follows: 𝐽 (𝐴, 𝐵) = |𝐴∩𝐵 |
|𝐴∪𝐵 | . By design, the index ranges

from 0 to 1, where 1 denotes that the sets are equals and 0 that they have no element in

common. Using the index, we can compare the similarity of the cookies set by a page and

the impact of the used extension.

In our analysis, we use statistical tests to determine if an extension significantly impacts

the usage of cookies. In particular, we use the non-parametric permutational multivariate
analysis of variance (PERMANOVA) [7] with 𝛼 = .05 to find statistically significant

differences between the measures of independent groups. In our case, these groups are,

for instance, the used profiles. Furthermore, we utilize the permutation test [175] (10,000

random permutations) to understand if there is or is not a difference between treatment

groups (i.e., the extensions). Finally, we use the Kruskal-Wallis test (𝛼 = .05) to assess if

samples originate from the same distribution. Due to their non-parametric nature and

flexibility, these three tests allow us to robustly verify our hypothesis without relying on

specific distributional assumptions.
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5.3. Results

This section provides an overview of the measurement results. First, we provide a general

overview of our measurement (Section 5.3.1), then we analyze the effect of the used exten-

sions in terms of the number of cookies (Section 5.3.2), type of used cookies (Section 5.3.3),

changes in the usage patterns of cookies (Section 5.3.4), and impact of the rank of a site

(Section 5.3.5). Finally, we investigate the impact of the extensions on objects in the HTML
Web Storage (Section 5.3.6) and analyze potential subsequent effects of the extensions

(Section 5.3.7).

5.3.1. General Measurement Overview

In our measurement, we successfully crawled 29,660 (99%) sites, and 2.6M pages. On

average, each crawler successfully visited 288k (SD: 5,180; min: 281k; max: 297k) webpages.

We successfully crawled 12 (SD: 7; min: 1; max: 16) pages per site, on average (the landing

page plus at most 15 subpages). The sites our crawlers could not reach are not meant to

be visited by a human (e.g., link shorteners or content delivery networks). As already

described, we include only sites in the evaluation successfully crawled by at least eight

profiles (cf. Section 5.2). In our measurement, that filtering corresponds to 18,445 (62%)

of the sites. The timing difference between two page visits across all profiles is 8 seconds

(SD: 231; min: 1; max: 843), on average. The resulting (raw) data has a size of roughly

1.5 TB, which we make openly available (cf. Appendix A.1).

Overall, we record 415k (SD: 153k; min: 181k; max: 770k) cookies per profile on average.

Using Cookiepedia, we could classify 57% of all cookies and 38% of all distinct cookies in

our dataset (cf. Section 5.2.5). Figure 5.1 presents a general overview of the number of

cookies set per page of each profile in our measurement setup. By visual inspection, one

can see that some of the analyzed extensions substantially impact the setting of cookies in

each profile. Thus, each extension impacts users’ privacy differently. The permutation test

found a statistically significant (𝑝-value < 0.001) impact of the profile on the number of

cookies. However, the same impact was not observed when comparing profiles #2, #4, and

#8 concerning the number of cookies per page. Profile #8 does not use any extensions but

a plain, unmodified browser and hence does not interact with any cookie banner. Hence,

we use it as our baseline (reference) for our study, run from the same location (the EU) as

the profiles that use the extensions. Note that we do not assume that sites in the baseline

profile use less (or more) cookies than sites in other profiles but that we can use the profile

to understand how websites use cookies if the user does not interact with the cookie

banner.

5.3.2. Effects of the Analyzed Extensions

Table 5.3 provides a high-level overview of the results measured with each profile. Overall,

the results hint that the used extensions impact the presented metrics at different magni-
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Figure 5.1.: Cookies observed per page with different profiles.

tudes. For example, we record that some essential metrics in terms of privacy (third-party

cookies and targeting cookies) vary up to 640%. The average impact on the number of

cookies is 83% (SD: 6; min: 0; max: 640). The permutation test found statistically significant

(𝑝-value < 0.001) impact of the profile (i.e., extension) on the number of total cookies,

first-party cookies, third-party cookies, targeting and advertising cookies, usage of the

local storage, tracking requests on page level (𝑝-value < 0.001 for all named metrics).

However, for the following metrics, we found no statistical impact for “strictly necessary”

and “functional” cookies. The results indicate that the impact of the analyzed extensions in

our measurement differs notably, which means that depending on the users’ requirements,

different extensions need to be evaluated. Furthermore, the findings indicate that while all

extension aim to fulfill a similar goal (i.e., blocking cookies for users), the rich landscape

of different cookie banner implementations makes this an arguably hard and error-prone

task. Similar to findings of previous work [161, 34], the measurement performed from

the US shows considerably higher values in terms of cookies and tracking requests than

the measurements performed from Europe. Furthermore, in the EU baseline profile (#8),

the pages used fewer cookies than the profiles in which the extensions accepted (some)

cookies and more than those that rejected most cookies. These observations indicate

that our measurement approach works as intended, meaning extensions work on some

sites and pages). Furthermore, we observe some expected behavior—which also shows

that our method works as intended—like increasing tracking requests if we accept all

cookies or fewer targeting cookies if we refuse to use them. Based on the observed results,

CookieBlock is the most effective tool for blocked cookies.

In the following, we analyze the profiles based on the expected functionality of the

installed extension (column “group” in Table 5.3) and investigate the effects of these groups

separately.
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5.3.2.1. Accepting All Cookies

In our setup, we use three profiles (#1, #3, and #7; AccepAll in Table 5.3) configured to

accept all cookies on a page. Note that for the extension I don’t care about cookies (#1), it is
unclear on which sites and pages it accepts or rejects cookies. Since the extension lists

in its description that it primarily accepts cookies—when interacting at all—we include

it in the “accept all” group. At first glance, grouping the extension “I don’t care about

cookies ” (#1) might seem counterintuitive since it is not documented how the extension

interacts with the banners. However, after manually inspecting the plugin’s source code,

we have classified it as “Accept all” because the used signatures overwhelmingly accept all

cookies if the tool cannot hide the consent banners. To verify this evaluation, we contacted

the developer of the extension, who confirmed our observation. As one would expect,

the three profiles show an overall average increase of 10% in terms of cookies used by

a page. The results show that, on average, a page in profile #1 uses 7 (SD: 11; min: 1;

max: 433) cookies, 7.5 (SD: 12; min: 1; max: 433) cookies in profile #3, and 7.9 (SD: 13;

min: 1; max: 433) cookies in profile #7. In comparison, in profile #8 (the EU baseline) a

page uses 6.8 (SD: 11; min: 1; max: 848) cookies. Overall, the results show that the profiles

in this group increase the number of first-party cookies by 4% and third-party cookies by

11% (1#: 4%; 3#: 11%; 7#: 19%;), on average. Hence, the extensions in this group primarily

impact third-party cookies.

Based on the numbers, the effect of the extensions seem to be similar. To better understand

their impact on the used cookies, we compare the similarity of the cookies set by a page.

Overall, a comparison of all profiles in this group with the baseline profile #8, using the

Jaccard index (cf. Section 5.2.5), shows a medium similarity of .45 (SD: .46; min: 0; max: 1),

on average. The same comparison, when excluding the baseline profile, shows a higher

average similarity of .53 (SD: .46; min: 0; max: 1). We get the highest similarity when we

test the similarity of #3 and #7 with an average of .64 (SD: .44; min: 0; max: 1). Thus, our

analysis shows that even if all three extensions claim to allow similar types of cookies,

there are differences in the cookies present in the cookie jar. Therefore, the extensions

interact differently with the banners or at least with different success. From a privacy

perspective, this finding is concerning since it might be hard for users to evaluate the

effect of an extension since sites set a similar amount of cookies, but the used cookies

seem different. Counting the occurrence of potentially privacy-harming elements is a

metric that ad blockers often use (i.e., blocked trackers) to evaluate effectiveness. Still,

there might be better measures for cookie banner tools.

5.3.2.2. Accepting Functionality Cookies

In this section, we analyze the impact of the profiles that accept functional cookies (#5

and #6; AcceptFunc in Table 5.3). The two extensions impact the number of cookies a page

uses differently. Compared to our baseline, profile #5 reduces the number of cookies per

webpage by 40% but the extension used in profile #6 increases the number of cookies per

webpage by 8%. On average, pages in profile #5 use 4 (SD: 6; min: 1; max: 433) cookies

86



5.3. Results

and pages in profile #6 use 7.2 (SD: 12; min: 1; max: 433) cookies. The notable difference

in the effect of the compared tools can be attributed to how they work (cf. Section 5.2.2).

CookieBlock (#5) uses an ML-approach and SuperAgent uses a rule-based approach. The

results show that profile #6 increases the number of first-party cookies per page, on

average, by 2% and third-party cookies by 7%. In contrast, profile #5 decreases the number

of first-party cookies per page by 26% and of third-party cookies per page by 48%, on

average. Note that #5 is the only profile showing a notable decrease in first-party and

third-party cookies per page.

The distinctive differences between both profiles are also discernible in the similarity of

the cookies set by the pages. The Jaccard index shows an average similarity of .48 (SD: .45;

min: 0; max: 1) per page. Thus, only roughly half of the set cookies are present in both

profiles. Comparing the two profiles with the baseline, the similarity test of the profiles

#5, #6, and #8 shows a lower average similarity (mean: .39 (SD: .43; min: 0; max: 1)), which

indicates that the extensions affect the used cookies. The results show that some websites

seem to wait until a user interacts with a cookie banner before setting specific cookies.

Still, approaches that actively delete cookies seem more effective than ‘trusting’ the page

itself.

5.3.2.3. Rejecting All Cookies

Here, we inspect the impact of the extensions that assist users in rejecting all types of

cookies (profiles #2 and #4; RejectAll in Table 5.3). The results show that, on average, the

number of cookies per webpage is affected similarly by both extensions. Compared to the

baseline, the number of cookies in profile #2 (6.8 cookies) and profile #4 (6.7 cookies) stays

reasonably stable. Within the first- and third-party context, both profiles use a similar

number of cookies. The permutation test found no statistically significant (𝑝-value > 0.44)

impact by the used extension on the average number of first-party and third-party cookies

per page. Furthermore, the bootstrap confidence intervals for profile #2 and #4 are closely

aligned, e.g., for third-party cookies we yield [21.1, 22.17] and [21.1, 22.13] for profile

#2 and #4, respectively. This observation means that both extensions block the usage of

cookies equally , which is expected as they deny a site to set any cookie.

Finally, we test the similarity of the cookies present in both profiles. Overall, we see a

similarity of .70 (SD: .43; min: 0; max: 1), on average. The comparison of both profiles with

the baseline profile shows a similarity of, on average, .58 (SD: .46; min: 0; max: 1). Thus,

even though the number of cookies in the store is similar, the set of used cookies differs.

While we also see no high similarity in terms of used cookies for extensions that reject all

cookies, we find that this type of extension leads to an overall decrease in used cookies

and is similar to our baseline. This finding also highlights that statistically speaking, sites

wait until a user chooses how cookies shall be used (the number of cookies remains similar

to the baseline).
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Figure 5.2.: Number of cookies in the different profiles by cookie usage category. To increase

readability, the y-axis is cut at 100. The upper whisker of the category “Unknown” in profile #9 is

around 150.

Lessons learned �

Our observations show that some extensions can limit tracking and data collection

by blocking cookies. In contrast, others may increase the number of cookies set

by websites, including first-party and third-party cookies. This finding could

result in more data collection and potentially negatively impact their privacy. Our

findings revealed that the extension CookieBlock, in the category of “Accepting

Functional Cookies”, reduces the number of cookies drastically, while extensions

in the “Rejecting All Cookies” category do not have any meaningful effect on the

number of cookies. For users who utilize such tools to increase their privacy online,

these findings mean that they should rely on a combination of tools (e.g., ad or

tracking blockers) rather than only using a cookie banner tool.

5.3.3. Types of Used Cookies

In the previous section, we have shown that the analyzed extensions impact the cookie

usage behavior of the investigated sites and pages. In this section, we dive deeper into

the observed differences of used cookies to better understand the effectiveness of the

extensions. Specifically, we analyze how each profile in our setup affects the cookies based

on the cookie’s purpose (cf. Section 5.2.5).

5.3.3.1. General Overview of Used Cookie Categories

Previously, we have analyzed in which context the pages set cookies and the impact of

the analyzed extensions on them. In the following, we investigate for which purpose

cookies are set and the effectiveness of the extensions to block specific types of cookies.

Figure 5.2 shows the distribution in the categories of used cookies across the nine profiles.

Figure A.5 in Appendix A.4.3 shows this distribution for each analyzed extension. A visual

inspection of the figure shows that the extensions impact the used cookies differently.

Indeed, the permutation test shows statistical significance (𝑝-value < 0.001) in the used

profile and the number of cookies in the categories. Compared to the baseline profile (#8),
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the results show in all profiles, except #5, that the number of cookies in a category per

page increases (Targeting/Advertising: 14%; Performance: 5%; Functionality: 3%; Strictly
Necessary: 5%). These observations apply to the first- and third-party contexts, but the

increases we record are mainly in the third-party context. For instance, our analysis shows

an increase of 2% for Targeting/Advertising cookies in the first-party context, while these

cookies increase, on average, by 17% per page in third-party context. Notably, profile #7

increases the presents of third-party Targeting/Advertising cookies, on average by 45%. The

results indicate that our method and the analyzed extensions work as intended because

the number of cookies in different categories increases in specific profiles only (compared

to the baselines).

We record small changes between the profiles regarding Functionality and Strictly Necessary
cookies. However, the permutation test reveals that the number of Performance and

Targeting/Advertising cookies differ statistically significantly (𝑝-value < 0.001) depending

on the profile. In the baseline profile, we recorded, on average, 9.2 (SD: 11; min: 1; max: 102)

tracking cookies per page. In profile #7, we measured an average increase of 28% in the

usage of such cookies, and in profile #5, an decrease of 18% per page, on average. Our

observation on Unknown cookies shows that the extensions have the same effect on these

cookies as on targeting cookies. Thus, the results indicate that each extension impacts the

number of cookies in each category differently. Extensions seem to have less impact on

cookies that have potentially less impact on the users’ privacy (e.g., Functionality), which
is a positive signal for users who aim to protect themselves against online tracking for

different means.

Accepting All Cookies For the extensions that accept all cookies (#1, #3, and #7), we see

that the number of Targeting/Advertising cookies increases significantly (cf. Section 5.3.1)

by 8% on average while the number in the other categories stayed stable (mean increase

of 2%), compared to the baseline. Note that the increment mainly occurs in the third-party

context. Overall, first- and third-party cookies increase by 4% and 11%, respectively. This

(expected) increase in tracking cookies could negatively impact users’ privacy as third

parties collect and analyze more data about them. To a lesser extent, this increase may

result in increased loading times and data usage of pages [124]. Thus, users should weigh

the benefits and drawbacks and decide based on their needs.

Accepting Functional Cookies Overall, profile #5 reduces the number of observed cookies

in all categories. On average, Functionality cookies go down by (9%), Performance cookies
by (38%), Targeting/Advertising cookies by (36%), and the number of Strictly Necessary
cookies stays stable (0%). The same analysis for profile #6 shows that the number of

cookies per webpage stays almost similar. We record an average increases for Performance
and Strictly Necessary cookies by (1%), for Targeting/Advertising cookies by (5%), and

Functionality cookies stays stable (0%). The permutation test reveals a significant difference

in the impact of all cookie types, except Strictly Necessary, between profiles #5 and #6.

The results highlight the importance of carefully considering the privacy implications of

different ‘cookie banner interaction’ extensions, even when they claim to provide similar
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functionalities. Therefore, it can be challenging for end users to select the extension that

meets their privacy needs, as extensions with similar goals and functionalities can have a

considerably different impact on users’ privacy.

Rejecting All Cookies The profiles that reject all cookies (#2 and #4) have little impact

on the number of cookies in each category. Compared to the baseline profile (#8), we

observed an increase in Functionality and Strictly Necessary cookies by 1% and a decrease for

Targeting/Advertising cookies by 1%. This finding indicates that the extensions have almost

no effect on the users’ privacy, but they eliminate the need to interact with (annoying)

cookie banners). Furthermore, the results indicate that most sites wait until a user chooses

before setting cookies.

5.3.3.2. Similarity of Observed Cookies and their Type

In the previous Section, we compared the number of cookies in each category in the

different profiles. In the following, we compare, using the Jaccard index, the cookies set

by different sites to understand which cookies are kept or removed by the extensions. To

allow comparability, we compute the similarity of observed cookies within a functionality

group of an extension (cf. Table 5.2). Hence, we only compare profiles where the pages

can set the same types of cookies. Figure 5.3 provides an overview of the similarity of

the observed cookies in the different categories across the profile groups. “Functional”

cookies have high similarity in all groups, including the one that should reject the usage

of all cookies. The results of all other types of cookies show differences in the similarity of

observed cookies and/or the effect of the different profile groups. Interestingly this also

applies to “strictly necessary” cookies, which should be similar across all profiles.

On average, we find a high similarity of .75 across the groups that accept all cookies. How-

ever, within the group that only accepts functional cookies, we see an average similarity

of .70. The group of “RejectAll” profiles shows an average similarity of .81. Hence, the

extensions affect different cookies in these profiles, meaning other cookies are set and

used on the analyzed pages. The observed discrepancy in similarity among the extension

groups can likely be attributed to their different handling of cookies. On the one hand,

the extensions within the “AcceptFunc” group use different approaches to accept cookies

with varying success, which is evident by the number of cookies set between profiles #5

and #6. On the other hand, extensions within the “AcceptAll” group tend to trigger more

third-party cookies, contributing to a lower similarity.

Targeting/Advertising Cookies Figure 5.3 shows that the installed extensions affect tar-

geting and advertising cookies quite differently. While we see a very high similarity

(.83, on average) for extensions that reject all cookies, the similarity of other extension

groups decreases. Notably, extensions that allow a more fine-grained control (e.g., group

“AcceptFunc”) of cookies show a wide range in the similarity of cookies present on a page:

.70 (SD: .44; min: 0; max: 1). Hence, the numbers support the claim that the usage of each
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extension seems to lead to a different set of cookies present in the browser, which makes

it harder for users to assess their ability to help them to protect their privacy.

Strictly Necessary Cookies The group of cookies without whom a page would not work

correctly shows the most significant deviation (𝑝-value < 0.001) in the similarity of all

cookies based on the permutation test. The boxes range from low similarity (≤ .2) to

perfect similarity (1) for all extension groups. On average, the results show a similarity

of .64 for extensions that reject all cookies, .49 for extensions that accept all cookies, and

.43 for extensions that only allow functional cookies. The results suggest that extensions

have a more noteworthy impact on the similarity of strictly necessary cookies than

targeting/advertising cookies. Thus, this disparity highlights the impact that extensions

may have on a page’s functionality and suggests that there is a need for further investigation

of the interaction between the extensions, the (real) purpose of necessary cookies, and the

page’s functionality.

Lessons learned �

Our analysis shows that different extensions for blocking cookies have varying

effects on the types of cookies used by the analyzed websites. For example, exten-

sions that accept all cookies tend to increase the number of ‘Targeting/Advertising’

cookies, while extensions that only accept functional cookies show different results.

However, extensions that aim to reject all cookies have a minimal impact on the

used cookies and, to some extent, on users’ privacy. This finding highlights the

challenges users face if they seek to enhance their privacy while browsing the web,

as it may take more work to determine the most suitable cookie interaction exten-

sion solely based on its stated purpose or description. The results of the similarity

measurements suggest that users must carefully consider the functionality and

implications of the extensions they choose to install and use them accordingly to

balance the trade-off between privacy and functionality.

5.3.4. Observed Cookie Usage Patterns

In this section, we provide an overview of the usage of cookies (e.g., setting or changing a

cookie). Our method allows us to distinguish between three operations (1) added if a new

cookie is set, (2) changed if an existing cookie value is changed, and (3) deleted if a cookie

has been deleted. Figure 5.4 provides an overview of the different cookie access patterns

resulting from using the different browser extensions over time. The figure shows the first

and third-party cookie “usage patterns” over time after visiting a page. By “usage pattern,”

we mean how a page uses cookies. For example, when does a page usually set first-party

cookies or delete third-party cookies. The different extensions seem not to impact the

usage pattern but affect the number of added, changed, or deleted cookies. Thus, in general,
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Figure 5.3.: Similarity of the observed cookies for each cookie type by extension group.
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Figure 5.4.: Cookie usage patterns of the analyzed webpages for the different profiles over time.

the users’ choice of which cookies might be used does not lead to different strategies for

how pages utilize cookies.

Across all profiles, the number of added and changed cookies rises after the first few

seconds after the browser visits the website. Thus, websites wait before setting cookies but

use them whether users choose to accept cookies or not. However, by visual inspection,

one can observe different cookie access patterns. For example, the number of added and

changed cookies drops after their initial setting. After accessing a page, the peak is reached

after 13 seconds (SD: 7; min: 0; max: 30) for first-party cookies, and after 15 seconds

(SD: 6; min: 0; max: 30) for third-party cookies, on average. On average, operations on

third-party cookies are processed 2 seconds later than first-party cookies for each profile.

This difference indicates that the analyzed extensions actively lead to more operations on

third-party cookies, especially during longer page visits. In profiles #5 (CookieBlock) and #9
(US profile), we see a notable increase in deletion operations, in contrast to other profiles.
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Figure 5.5.: Number of cookies observed in each profile based on the popularity of a site and the

type of a cookie.

Lessons learned �

Our results indicate that the different extensions impact the access patterns of

websites to some extent. However, we did not observe notable differences, meaning

that websites do not change their inner workings based on the users’ choice to use

cookies. Nevertheless, the extensions impact the number of cookies used by each

site.

5.3.5. Impact of a Site’s Rank

Next, we discuss the impact of a site’s rank on the effectiveness of the analyzed tools. More

precisely, we analyze if the tools work better on popular (e.g., because they tend to use more

CMPs) websites than on less popular sites. Figure 5.5 provides an overview of the relation

between the purpose of a cookie and the visited sites’ rank for the analyzed extensions.

Overall, we see that popular websites use more cookies, which aligns with previous work,

but also that the analyzed tools are more effective on these websites. Furthermore, the

differences in the effectiveness of the analyzed extensions are more considerable for top

sites. Thus, less popular sites seem to have a more diverse set of cookie banners, making it

more challenging for extensions to interact with them than popular sites. The extension

CookieBlock (profile #5) outperforms all other extensions across all cookie categories and

ranks of sites. For all cookie types, we see a steady decrease in the number of used cookies,

and the results show that the delta between the most effective extension (in terms of

cookies) and the least effective extension also shrinks. For example, for targeting cookies

on popular websites (rank 1–5k), the absolute difference in the number of set cookies is

4 (SD: 1.4; min: 11; max: 15), but for the least popular sites (rank 500,001–1M) the delta

is only .8 cookies (SD: .28; min: 5.6; max: 6.4). These figures exclude profile #5 due to its

meaningfully better performance.
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Lessons learned �

Our results indicate that the performance of cookie-blocking extensions may vary

depending on the popularity of the visited website. Popular websites tend to use

more cookies, and the differences in the effectiveness of the analyzed extensions

are more pronounced for these sites. The best-performing extension in terms of

blocking cookies, CookieBlock, demonstrates a clear advantage across all cookie

categories and website ranks. However, it should be noted that the difference in the

number of cookies set between the best and least effective extensions decreases for

less popular websites. This observation suggests that users may experience varying

levels of cookie blocking depending on the websites they visit, with potentially

more diverse effects on popular websites.

5.3.6. Cookies in the Local Storage

The HTML Web Storage API (“local storage”) is a way to store data on the client. Compared

to classic HTTP cookies, the storage can hold large amounts of data without negatively

impacting a page’s performance. It works similarly to HTTP cookies as objects in the local

storage are key-value pairs that can be accessed via JavaScript [109]. In the following, we

use the term object rather than cookie for objects stored in the local storage to make it

easier to distinguish between HTTP cookies and data in the local storage. On average, we

identified 122k objects in the local storage of the profiles. A site uses 12 (SD: 31; min: 1;

max: 2,720) keys on average, which is 60% less than the average number of cookies.

Here, we analyze the differences the profiles cause in the elements stored in the local

storage. Again, we use profile #8 as our baseline. On average, a site in profile #8 uses 11.6

objects in the local storage (cookies). The permutation test shows significant (𝑝-value

< 0.001) differences between the profiles that accept all cookies (#3 and #7) and the baseline.

All other profiles do not significantly impact the number of local storage objects per site

(𝑝-value ≥ 0.62). We record that the profiles #3 and #7 increase the number of keys per site

by 13% (1.5 keys), on average. The increase could be because some sites may use the local

storage to store more data than they could store in HTTP cookies, as the local storage

allows for larger amounts of data. Furthermore, websites may use the local storage in

combination with HTTP cookies to store data more persistently, as the data stored in local

storage has a longer lifespan than cookies.

Profile #6 is the only profile in which fewer objects are present in the local storage (21%).

We tried to use the classifications provided by Cookiepedia to classify the usage purpose

of objects in the local storage. However, only 6% of the keys could be classified. Due to

this low success rate and the low impact of extensions on this type of storage, we decided

against a deeper analysis.
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Lessons learned �

The results show that the use of local storage objects, or key-value pairs stored

on the client, is not significantly impacted by the extensions, except for profiles

that accept all cookies. These profiles increased the number of objects stored in

the local storage.

5.3.7. Potential Subsequent Effect

This section analyzes the potential impact of different extensions on tracking mechanisms.

Overall, on average, interacting with consent banners increases the number of HTTP

requests per page by 5%. The baseline profile (#8) has, on average, 89 (SD: 113; min: 1;

max: 18,208) HTTP requests and 15.5 (SD: 57; min: 1; max: 18,154) tracking requests

per page. Here, we dive deeper and test each extension group’s impact separately to

understand their effects.

Accepting All Cookies Overall, the results show that profiles #3 and #7 notably increase the

number of tracking requests. In profile #3, we see an average increase of tracking requests

per page by 12%, for profile #7 by 8%, and for profile #1 by only 3%. The permutation

test found a statistical significance (𝑝-value < 0.001) impact of these extensions on the

number of tracking requests (cf. Section 5.2.5). Let’s only look at profile #7, for which

we can measure the success rate of interaction with cookie banners. We find that the

average number of tracking requests per page increases by (60%) (from 16.6 to 26) after

interacting with the cookie banner, and the bootstrap confidence intervals for both profiles

differ: we yield [17.12, 17.39] and [15.29, 15.90] for profile #7 and #8, respectively. The

results demonstrate that accepting cookies leads to increased use of cookies and other

privacy-harming techniques—in this case, user tracking. Thus, the used extensions can

have a far-reaching impact on users’ privacy than ‘just’ blocking cookies.

Accepting Functionality Cookies The observations of the groupAcceptFunc show different

results for both profiles. We see that profile #5 increases the average number of tracking

requests per page by 8%, while we record a minimal increase of 3% for profile #6. The

bootstrap confidence intervals for the profiles differ with [16.69, 16.96] and [15.86, 16.10]

for profile #5 and #6, respectively. Note that profile #5 (CookieBlock) deletes cookies rather
than telling websites not to use them. Thus, these finding indicates that extensions with

the same purpose can have vastly different impacts on the users’ privacy, as different

handling of cookies can lead to unexpected results, such as an increase in tracking requests.

This result challenges the assumption that blocking cookies (especially targeting ones) will

always lead to fewer tracking requests and highlights the need for further investigation of

this phenomenon.
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Figure 5.6.: Distribution of number of records for tracking requests and different cookie categories

grouped by different configurations (allowed cookie types) of Consent-O-Matic.

Rejecting All Cookies We turn our analysis into the effects of the group RejectAll. Overall,
we see that the profiles in this group do not affect the tracking requests on the pages, and

the number of tracking requests per page stays relatively stable (mean of the profile #2:

15.4; #4: 15.5) in the observed profiles. The bootstrap confidence intervals for both profiles

stay similar and yield [15.25, 15.50] and [15.29, 15.70] for profile #2 and #4, respectively.

In this case, extensions that reject all cookies do not negatively impact the number of

tracking requests, making them a suitable option for end users interested in reducing

tracking on their devices.

Lessons learned �

It is important to note that each extension may affect privacy, functionality, and

performance differently. For example, profile #5 substantially decreases the number

of targeting cookies but increases the number of tracking requests per page. This

finding highlights the challenge of balancing privacy and functionality for users.

Additionally, the results show that different extensions, even with similar goals

and functionalities, can have noteworthy differences in their impact on tracking

mechanisms. For instance, profiles #5 and #6, in the AcceptFunc group, have

different effects on the number of tracking requests per page, despite being designed

to accept only functionality cookies. To conclude, the results demonstrate the

complexities of balancing privacy and functionality for users and the potential

consequences of using such extensions.

5.3.8. Different Extension Configurations

Some of the examined extensions offer different configuration options of which types of

cookies the extension should allow or deny if the visited site provides a choice (cf. Table 5.2).

To understand the effect on users’ privacy of these options, we measure the effectiveness

of the different configurations of the most popular extension in our corpus that offers

multiple configuration options: Consent-O-Matic. In particular, we performed separate

measurements using eight different extension configurations. Note that we measure each

available option individually but in combination with other options and only analyze the
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top 7,000 sites from our dataset (cf. Section 5.2.1). Appendix A.4.4 describes the used setup

in more detail.

Figure 5.6 provides an overview of the results of the comparison between the different

options (grayscale bars) and a profile with no extension installed (red bar). While the

extension offers many different configuration options, each configuration’s outcome (effect)

is similar. Note that the default configuration rejects all cookies. Within each cookie

category, the results are comparable with the most variations for ‘Tracking/Advertising’
cookies. Note that the extension always accepts ‘Functionality’ cookies no matter which

configuration is used, which explains this category’s almost identical effect size. Table A.5

further provides an overview of the cross-comparison between the configurations. The

experiment’s results show that the different configuration options have similar effects on

the tracking requests and number of cookie types, with minor variations. This finding

suggests that the granular configuration options do not considerably enhance their privacy

control in the current state of the extension. It is important to note that the analyzed

extension is specialized in interacting with CMPs and, therefore, only has a limited effect

on sites that do not use them. However, our findings indicate that due to missing standards

on how to interact with cookie banners and banners that do not offer fine-grained options

to limit the usage of cookies, offering multiple options to users does not help them, at least

in our experiment. However, this might change in the future if consent mechanisms get

more elaborate and automatically interacting with them gets easier.

5.3.9. Repeated Experiments

Measuring theWeb is challenging due to its dynamic nature. Previous work has shown that

repeated measurements are essential to assess the dynamic effects of a measurement [34]

and that the vantage point [87] of a measurement can considerably affect an experiment’s

outcome. To verify the correctness of our results, we performed three temporally close

measurements from different vantage points from within the EU (cf. Appendix A.4.6)

using Amazon Web Services. We use the same profiles as in our primary measurement

(cf. Section 5.2.2) in all three measurements. However, we reduce the scale of each

measurement for simplicity. On average, we visit 612,000 pages on 7,000 sites for each

profile. We choose the top 7,000 sites from the used Tranco list and randomly sample 15

pages from each of the used buckets (cf. Section 5.2.1).

For this experiment, we resort to the volume and type of observed cookies and tracking

requests measured in each profile and compare the three measurements based on these

fundamental data points. The rationale is that if we find statistically significant overlaps in

these numbers across the measurements, one can assume that our overall results are correct.

We find that the analyzed pages set a similar amount of cookies in the used profiles across

the three measurements: on average, we observe a delta of 2.2 (SD: 11; min: 767; max: 324)

cookies on the analyzed pages. The PERMANOVA test found no statistical significance (𝑝-

value> 0.87) neither between themeasurement runs (i.e., country and time) nor the number

of cookies set on each page in each profile. However, the Kruskal-Wallis test shows varying

results for some combinations of profiles on specific metrics, such as tracking requests
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and types of cookies. For instance, five profiles show significant differences in targeting

cookies (𝑝-value <0.001). Given these varying results, we investigate themagnitude of these

differences by measuring the effect size. The effect size provides additional information

beyond statistical significance, measuring the degree of difference. In this study, we use

the Eta-squared (𝜂2) measure to assess the effect size, reflecting the proportion of total

variance attributable to an effect. Our results show that all computed 𝜂2 values are less

than 0.01 (SD:.0003; min: .00001; max:.001), suggesting that while some differences are

statistically significant, their practical impact is minimal. We attribute these findings to

the Web’s dynamic nature and argue that while some differences between measurement

runs exist, they do not tamper with the reliability or correctness of the results.

5.4. Recommendations

Based on the results, we provide actionable recommendations for researchers, developers,

and users of “cookie banner interaction” tools.

5.4.1. Recommendations for Researchers

Among many other things, researchers might want to utilize “cookie banner interaction”

tools if they are interested in how websites use cookies or to simulate a more ‘realistic

behavior’ of a site in a Web measurement. However, our results suggest that the usage of

such tools creates another, to some extent uncontrollable, bias as the effectiveness of the

tools varies, and it is (without manual analysis) not possible to assess on which pages the

tools could interact with a banner and on which they could not. Therefore, researchers

must carefully consider whether (or to what extent) such a tool is tenable.

Recommendation #1: ¥

When planning a study, researchers should evaluate on which pages the utilized

tools work (e.g., by instrumenting them) to assess the impact on the outcome of

the study.

Finally, researchers use the tools to reduce limitations affecting Web measurements (con-

ducted from the EU). However, our results show that the tools would impact a study’s

outcome differently, even if configured to accept the same categories of cookies, which

hinders the comparability of different studies. Thus, it is inevitable to contemplate the

effect a tool might have on a study.
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Recommendation #2: ¥

Researchers need to identify new limitations and challenges that arise when utiliz-

ing a cookie banner tool and should rigorously weigh the benefits and drawbacks

for the study.

5.4.2. Recommendations for Developers

Developers develop the extensions to (1) maximize the coverage of the tool (i.e., number

of banners and websites to interact with) and (2) to implement the user’s choice as well

as possible. To maximize their coverage, extensions should not only resort to interacting

with popular CMPs but extend their scope. It is challenging for developers to keep up with

the numerous implementations of different cookie banners. Similar to detecting trackers

and ads, a community-driven approach to identify banners and choices within them could

help handle this scaling issue. A promising attempt in this direction is the EasyList Cookie
List [41], which can be used as a starting point to identify banners. Furthermore, our

results suggest that the analyzed extensions perform notably worse on less popular sites,

which means that such sites should be included when testing an extension.

Recommendation #3: ¥

Developers can include community-driven projects helping identify banners to

maximize the coverage of the tool. Also, the testing of applications should incor-

porate less popular sites.

According to the results, the only tool that actively checked for a cookie’s purpose (Cook-
ieBlock) showed the best performance regarding the number of present cookies. However,

such classification of cookies is challenging. Again, community-driven projects like the

named EasyList Cookie List can assist developers in this regard.

Recommendation #4: ¥

Developers may consider actively checking for (and deleting) cookies that contra-

dict the user’s privacy configuration to increase a tool’s effectiveness and, to some

extent, its coverage.

5.4.3. Recommendations for Users

Users might install “cookie banner interaction tools” for two reasons: (1) they do not want

to be bothered by cookie banners, or (2) they want to automate the process to communicate

their cookie preferences. Users that use the extensions to improve their privacy online
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should choose an extension that limits the usage of cookies that may impact their privacy

(e.g., “tracking cookies”) and should not use an extension or configuration that accepts

all cookies. At the time of writing this thesis, the extension CookieBlock showed the best

performance regarding blocking (deleting) unwanted cookies. Finally, the results suggest

that other tracking activities may increase if cookie usage is limited. Thus, privacy-aware

users need to consider using additional tools (e.g., Privacy Badger [156], Ghostery [54], or

uBlock Origin [65]) that help them to limit other forms of Web tracking.

Recommendation #5: ¥

Users of cookie banner interaction tools should additionally use ad or tracking

blockers to protect their privacy and should not use configurations that accept all

cookies.

Additionally, users must be cautious when choosing a tool regarding its coverage. When

choosing a tool, users should generally understand how a tool works and which limitations

come from specific design choices. For example, our analysis shows that popular tools

focus on interacting with popular CMPs, meaning such tools will only work on sites

that utilize these CMPs. Other tools aim to hide banners, which might tamper with a

site’s functionality as users cannot allow specific cookies; thus, some functions might not

work correctly. Nevertheless, in our experiment, none of the analyzed extensions broke a

considerable number of sites.

Recommendation #6: ¥

Depending on their goals, users should check how an extension works (i.e., hid-

ing a banner vs. interacting with them) and if the handling method meets their

expectations.

5.5. Limitations and Ethics

Our study comes with several limitations. The main limitation of our work is that we

cannot measure that the analyzed extensions work as they claim they do. More specifically,

we cannot measure if a website ignores a user’s choice (or an extension’s choice on the

user’s behalf) or if an extension is not working correctly. Our experiment can only report

different tools’ effects on the cookies in the browser’s cookie jar. However, our study

aims to understand the effect of these extensions on users’ privacy, which means that the

execution of the user’s choice is out of the scope of this work and should be explored in

future work. Furthermore, our computation of the similarity of set cookies only compares

the presents of cookies based on their keys and not their functionality. A page could set a

user-specific key, but this key could be used for the same purpose across all users. Finally,

since our crawler does not interact with the pages as a regular user would, we only observe
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an excerpt of a page’s functionality. Therefore, our results can only be seen as a lower

bound and incomplete. However, implementing a system that automatically generically

interacts with any given page to trigger a different state is probably impossible and is out

of the scope of this work. Our approach follows best practices and uses well-established

tools to reduce the effect of the named limitations.

Our study uses OpenWPM to visit the sites and pages in our dataset. However, the way the

framework instruments the browser is detectable by a website so that the website might

serve different content if and when OpenWPM is detected [94]. We have not performed any

means to circumvent such detection mechanisms as this might be ethically questionable.

Furthermore, a site might detect that we use the Google Cloud Platform and Amazon Web
Services for visiting the pages and serves different or no content [78]. We filter out sites and

pages that we cannot reasonably compare to contain the effects of such crawling detection

mechanisms. Our filter policy excludes a site if it does not serve a page for at least one

crawler, meaning the crawler has been detected. If the site detects all our crawlers but

acts consistently across all crawlers (e.g., showing a blank page), our filter does not take

effect. Note that this does not change the overall findings of our work notably: When a

blank site is served, no cookie banners are present, and no cookies are used. In this case,

all extensions have the same effect.

Since our study excludes human subjects, it was exempt from the Institutional Review

Board’s review. However, like all web measurement studies [34, 87, 161, 162], our study

has some inevitable ethical considerations. By automatically visiting several pages, we

create traffic and use up resources. We limit the effects by only visiting up to 15 website

pages. Also, our crawlers may get served ads, increasing the difference in served and

viewable impressions and thus potentially decreasing the revenue of the advertiser.

5.6. Related Work

The area of cookie banners or cookie notices and their impact on users’ privacy has been

widely researched in recent years. Several works look at the structure and usability of

such tools and investigate the impact of various factors, such as position, choice type, and

content framing, on users’ interactions with cookie consent (e.g., [163, 33]). In contrast

other studies [e.g., 66] aim to understand the impact of privacy laws by mapping the

formation of the consent management provider ecosystem and measuring its adoption.

Studies like [52] investigate the legal compliance of the consent banners, while further

works study the use of dark patterns when designing them [159, 63]. Our work distin-

guishes from these research streams as we investigate the effect of browser extensions

that interact with cookie banners automatically or, more specifically, the impact these

extensions have on users’ privacy.

Related to our research are works that look at the functionality of such banners on a

technical level. [108] analyzed legal aspects in the storage of consent through cookie

banners by crawling websites, and they found potential legal violations in the storage of
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user consent. [138] manually analyzed the effect of cookie notices and found that such

banners often did not work as intended. Different works look at compliance issues with

existing consent management tools [123, 92, 18] and find that websites often do not honor

the users’ choices.

Other works focus on assisting users by automatically interacting with cookie banners.

[119] present Consent-O-Matic, a tool that can interact with different cookie banners.

Most recently, [18] present a machine-learning-based approach to classify cookies and to

delete cookies of specific categories that the user can select. [71] also introduce a machine

learning-based approach to classifying the purpose of a cookie. [91] conduct a large-scale

crawl to explore the security impact of consenting to a cookie banner and find that users

who consent to Web tracking are exposed to more security-sensitive data flows and are

vulnerable to more client-side cross-site scripting (XSS) vulnerabilities. [84] present a

measurement focusing on popular websites in Europe and the US to study the impact of

privacy banners on the web. The authors developed a Web crawler, which can accept

privacy policies, and compared the changes in websites before and after accepting the

policies.

In contrast to the named works, this work aims to understand the effect of different “cookie

banner interaction” browser extensions on users’ privacy. By analyzing the functionalities

of these extensions, we aim to provide insights into the effectiveness and impact of these

tools in protecting users’ privacy.

5.7. Discussion and Conclusion

This study compares six different tools that assist users in interacting with cookie banners

in a large-scale web measurement study. We configured the extensions to communicate

different types of cookies that the users are willing to accept or reject. The results show

that the effectiveness of the different tools, in terms of cookies set by a visited page, varies

significantly. We find differences in the number of used cookies, type of used cookies, and

set cookies (i.e., different keys), even for similar configured tools. Our findings reveal that

if users find consent banners disruptive while browsing, they can use the extensions tested

in this study to eliminate them with varying degrees of success. However, it is essential

to note that extensions with similar purposes lead to different sets of cookies present on

a page. For example, Consent-O-Matic (#2 and #3) only works with so-called “Consent

Management Platforms” (CMPs) and may not help block other types of consent banners.

Furthermore, the results suggest that blocking targeting cookies does not necessarily

result in improving user privacy, as it can lead to an increase in tracking requests. This

observation could tamper with the intention of the users to counter Web tracking attempts

by sites. Therefore, end users seeking to protect their privacy—through cookie banner

blocking extensions—should consider the trade-offs between functionality and privacy

and select the tool that best fits their needs. However, further research must clarify the

correlation between tracking requests and blocking tracking cookies.
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In summary, the analyzed extensions aim to provide a user-friendly way to control the

cookies users want to accept or reject. However, this study shows that the effectiveness

of the extensions varies and that it can be challenging for users to assess or compare the

extensions’ impact on their privacy. Our findings show that, while these tools grow in

popularity, they can be helpful for users to give or withdraw consent for the usage of

different cookie types.
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Chapter 6

Conclusion and Outlook

In this final Chapter, we summarize the outcomes of our investigation of the robustness

of Web measurements (RQ1), their application to Web security (RQ2), and Web privacy

(RQ3) in Section 6.1. We then explore potential future research directions in Section 6.2,

and finally provide an overall conclusion of this thesis in Section 6.3.

6.1. Research Outcomes

The approach of this thesis consists of three parts: Exploring the robustness of Web

measurements, identifying the challenges and possible solutions (RQ1), and ways to

enhance the robustness of Web security (RQ2) and Web privacy (RQ3) measurements

based on these insights. The findings obtained with respect to the questions formulated

are summarized below.

RQ1 Robustness ?

How can we ensure the robustness of Web measurement studies, and which factors

lead to variances in security- and privacy-related Web measurements?

In Chapter 3, we investigated the impact of the measurement environment on the results.

We conducted several measurements in different environments (see Section 3.1.2) and

analyzed the effects in detail. We demonstrated how even minimal design decisions

(e.g., browser type, location, or interaction on the website) can significantly influence

the results and how they affect the robustness of studies. We published an open-source

Framework MultiCrawl1 to conduct comprehensive Web measurements. To enhance the

robustness of Web measurements, we developed a criteria catalog (see Table 3.1) for

different study phases and provided researchers with guidelines.

To better understand the complexity of the Web, we analyzed the factors that affect Web

measurements. To this end, we represented websites as trees that model all resources and

their dependencies in another comprehensive measurement (see Section 3.2). We compared

the trees of the websites based on different profiles and precisely identified factors that lead

to variances in Web measurements. We specifically highlighted that the type of resource

1 https://github.com/nrllh/multicrawl
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in a webpage (e.g., iframes or images) and the context in which it loads (e.g., first-party or

third-party) play crucial roles in causing variations between Web measurements. In both

studies, we show how minimal design choices can lead to incomparable results.

RQ2 Security ?

Having the findings from RQ1, how can we conduct Web security measurements,

as a case study to understand the update behavior and vulnerability of websites?

In Chapter 4, we demonstrated in a case study how our findings from RQ1 can be applied to

enhance Web security. We conducted an analysis of an open-source dataset (HTTPArchive)
to understand how website operators keep their Web environments up-to-date and the

potential implications of using outdated software on the security of these environments.

We found that 96% of the components used in the global Web are outdated, most of

which are over four years old on the average. We also identified that 95% of all analyzed

websites use at least one software product for which vulnerabilities have been publicly

reported. Based on our findings, we provide actionable recommendations for researchers

(e.g., utilizing open-source dataset), developers (e.g., enabling auto-updates and adopting

Semantic Versioning), and end users (e.g., being aware of website vulnerabilities and using

modern web browsers). In this study, we found that using an open-source dataset for

large-scale measurements is the only way to ensure the complete reproducibility of a study

(taking into account our criteria catalog).

RQ3 Privacy ?

Having the findings from RQ1, how can we conduct Web privacy measurements,

as a case study to understand the effectiveness and impact of privacy tools?

In Chapter 5, we demonstrated how our findings from RQ1 can be applied to enhance Web

privacy study. We analyzed six privacy tools interacting with website consent banners.

We showed that these tools have significantly different effects, even those offering the

same functions. We also demonstrated that such tools can lead to unexpected impacts,

such as increased tracking requests. We finally provided actionable recommendations for

researchers (e.g., evaluate the effectiveness and the impact of tools), developers (e.g., in-

corporate community-driven projects, maximize the coverage of tools), and end users

(e.g., use ad blockers, consider the trade-offs between functionality and privacy).

Our measurement data, code, evaluation, and additional artifacts for all studies of this

thesis are publicly available in Appendix A.1.
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6.2. Future Work

In this thesis, we analyzed the robustness of Web measurements and explored how their

robustness can be enhanced. We also examined how our findings can be applied to Web

security and privacy studies. The following sections will discuss the future works in

different domains.

6.2.1. Robustness of Web Measurements

Our results indicate that ensuring complete reproducibility or replicability inWeb measure-

ments is a challenging task influenced by various factors. We conducted measurements

with 74 different profiles and found that complete reproducibility and replicability can

be achieved by utilizing open-source databases (e.g., HTTPArchive) while considering

our criteria catalog (Table 3.1). For instance, we showed that even crawling a webpage

simultaneously with two identical measurement profiles yields different results. These

findings suggest that, as a community, we need metrics (e.g., error rate or variance of the

measurement) to enhance the robustness of Web measurements. While such metrics are

standard in other disciplines, they have not yet been introduced in Web measurements to

the best of our knowledge.

Our observations also show that compared to other disciplines, such as medicine or psy-

chology, more research intoMetascience is needed computer science. The computer science

community currently attempts to increase studies’ reproducibility and replicability by

introducing badges and artifact committees. However, we should invest more resources in

critically examining processes during the research cycles and develop strategies, frame-

works, and additional guidelines to achieve more robust study results, as demonstrated in

Chapter 3 and “Guidelines for Performing Safe Measurement on the Internet” [101].

The following potential questions arise for future work:

■ Which metrics can be developed to assess the error rate and variance of observed

parameters in Web measurements?

■ How can interest in and use of Metascience be fostered to critically examine research

in the field of computer science?

6.2.2. Web Security

Our case study shows that almost all websites (95%) use at least one software component for

which vulnerabilities have been reported and often utilize very old software components.

We also showed that the update process usually is not automated and website operators

do not consistently process updates. While there may be justifiable reasons for not

immediately processing updates (e.g., compatibility issues or end-of-life software), the

consequences remain significant (e.g., increased vulnerability). While standards like
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ISO/IEC 27002 [149] are often very organizational, there are currently no standards that

systematically address the issue of software updates and offer solutions, specially for

developers to the best of our knowledge.

In recent years, there have been some developments at the political level. The European
Union’s Ecodesign for Sustainable Products Regulation [48] aims to reduce electronic waste

and obligate manufacturers to more efficiently provide security updates for software

components for more extended periods. However, a significant part of the software

components on the Web is open-source, and such regulations and standards have little

impact on these components, making their practical impact on Web components very

inefficient. There is a need to develop approaches tailored to Web software components

to increase the efficiency of the update process for these components. More specifically,

we see a need for approaches that differ e.g., for JavaScript components and content

management systems due to these components’ static and dynamic nature. In this way,

factors like compatibility issues can also be addressed.

The following potential question arises for future work:

■ Which open-source approaches can be developed to increase the efficiency of update

processing for software components on the Web?

6.2.3. Web Privacy

Our case study on Web privacy has shown that tools intended to enhance user privacy

exhibit significant variations and can have unintended side effects that may compromise

user privacy. We further observed varied outcomes for tools with identical functions, such

as rejecting all cookies. Moreover, we found that users often need to be aware of these

discrepancies. Our contact with developers of these tools revealed that even they were

unaware of these side effects. For this study, we provided actionable recommendations for

the relevant stakeholders. However, various domains still need to be addressed.

Our findings have raised new challenges and questions that concern researchers, develop-

ers, and end users and should be addressed. From our point of view, developers of such

tools bear significant responsibility. They should not only increase the efficiency of these

tools and protect user privacy but also examine the side effects of these tools. Users of

these tools (e.g., end users and researchers) also need more reliable information on the

efficiency and side effects of these tools to make informed decisions.

The following potential question arises for future work:

■ How can the efficiency of privacy tools be enhanced and their side effects addressed

during the development phase?
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6.3. Concluding Thoughts

Technological advancements are accelerating and becoming more complex, increasing the

methodological complexity of our studies. Therefore, the robustness of studies, especially

on the Web, remains of utmost importance. Our exploration of Web security and privacy

studies has revealed the significance of maintaining rigorous and reliable experimental

setups and measurements. As the landscape of the Web is evolving continuously, so do

the challenges and considerations associated with measuring its various facets.

The three research questions that drove this thesis provided a holistic view of the current

state of Web measurement studies’ robustness while shedding light on the intricacies of

Web security and privacy aspects. The implications of our findings reach beyond academia

and touch on broader societal concerns through actionable recommendations.

From understanding the factors influencing Web measurements to Web security and

privacy, our journey paints a comprehensive picture of the current state of affairs. Yet, as

all rigorous scientific inquiries reveal, every answered question uncovers further questions.

The need for continued research, innovation, and, most importantly, collaboration across

disciplines (e.g., Metascience) becomes evident.

Beyond the technical facets and analytical perspectives, a powerful message is obtained:

The quest for a more secure and private Web experience is inextricably linked to the

robustness of our measurements. Without robust measurements, our understanding

remains fragmented, and our interventions are potentially misguided.

As we are advancing, it is essential to continually reassess our methodologies, champion

open and collaborative research, and prioritize the broader ethical and societal implications

of our work. This thesis, we hope, will not only serve as a culmination of our endeavors

but also as a beacon to guide future explorations in the domains of Web measurements,

security, privacy, and beyond — for a reliable, safer, and better tomorrow for all of us.
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Appendix A

Supplementary Information

A.1. Availability of Data & Code Artifacts

To foster future research, we release our code, measurement data, evaluation, and other

supplementary information for all studies presented in the thesis openly online:

Reproducibility and Replicability Study (Section 3.1) Ð

https://doi.org/10.5445/IR/1000142435

Similarity Study (Section 3.2) Ð

https://doi.org/10.35097/1719

Web Security Study (Chapter 4) Ð

https://doi.org/10.5445/IR/1000142476

Web Privacy Study (Chapter 5) Ð

https://doi.org/10.35097/1708

A.2. Appendix for Chapter 3

In this Appendix we provide additional information (e.g., experimental setup, additional

results and discussions) for Chapter 3.

A.2.1. Experimental Setup

To measure the impact of different experimental setups, we built a pipeline that enables us

to compare measurement results based on different setups. To allow comparability, parallel
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Figure A.1.: Number of identified trackers for each profile and their resource type.

page visits across all defined profiles are essential. Our measurement setup consists of

different virtual machines (VMs) orchestrated by a “commander” to organize parallel page

visits. For all VMs, we use Ubuntu 20.04 as operating system and do not pass the GPU to

them, which can impact fingerprinting scripts [1]. Each of the worker VMs conducts the

measurement according to a specific profile (see C5–C10 below).

As an initial step, the commander assembles the set of URLs that should be visited during the

experiment based on the heuristic described in C1 and C2 (see below). For our experiment,

this had happened on 06/24/2021, three days before we started the measurement. At the

beginning of the measurement, the commander starts one VM for each of the 24 browser

profiles. The VMs will query the commander for batches of sites (𝑛 = 10) to analyze. All

VMs receive an identical list of sites and pages, such that all VMS conduct measurements

in the same order, starting with the site’s landing page. Once all managed VMs are ready

to start their measurements, the commander issues a signal to start the experiment as

stateless coordinated crawls of the provided URLs. Each VM starts 10 browsers (one for

each site) in parallel using the defined profile. Once the analysis of a page is finished, the

same browser instance is moving to the next page of the site. Once the results have been

stored, the VM will query for the next batch of URLs and wait until the commander tells

all VMs to start the analysis. To conduct this large-scale measurement and to host the

virtual machines with the necessary resources, we use a server which is equipped with

256GB RAM, a AMD 7542, 2.90GHz CPU with 32 cores, and a 10 Gbps network interface.
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We supplied each VM with 10GB RAM, five CPUs, and 40GB of hard disc space to cache

the results before sending them to the commander.

A.2.1.1. Dataset

C1 In our analysis, we use the Tranco list generated on 06/23/2021, which is available at

https://tranco-list.eu/list/ZGPG/15000 [100]. We use the top 10k sites to build our

website dataset.

C2 Tranco lists only contain sites (eTLD+1). Therefore, we used the following heuris-

tic to identify the landing page by defining a protocol to use. We used four prefixes

(http[s]://[www.], starting with the https variants) and test if the resulting URL is reach-

able. If so, we added the first identified site to our corpus. Once we determined the seed

URLs for our crawl, we visited each of them and randomly chose up to 25 first-party links

(recursively if necessary), which we used for our measurement run. Selecting subsites is

essential since they often show a different behavior compared to the landing pages [161, 8].

To avoid incorporating duplicated URLs, we always ignore each identified link’s anchor

part and omit links that could result in redirects (e.g., links including http:// in the path).

C3 We make the list of pages and sites openly available (see App. A.1).

C4 For our continuous measurement, we visit the top 1k sites from our website corpus

(18,377 distinct pages) daily (starting at midnight) throughout our experiment (from

07/08/2021 to 07/19/2021).

A.2.1.2. Experimental Design

C5 We use four different browser types (Chrome, Chrome headless, Firefox, Firefox

headless) in our study. We use the popular OpenWPM Framework [44] (v0.15.0 – Firefox

version 88) to perform the Firefox-based measurements and Chromium [61] to perform

the Chrome-based measurements, respectively.

C6 Regarding adjustments to OpenWPM, we built a wrapper that feeds the pages to visit

and which extracts the measurement results. Hence, the wrapper does not affect the

functionality of the framework. Regarding changes to OpenWPM, we use two custom

commands provided by the framework (1) for logging visits and (2) to simulate “user

interaction” (see C10). Regarding flexible options of the framework, we used the native

display mode, which enables the GUI browser and disable it for the the headless mode.

Otherwise, we used the standard configuration of the platform. For our Chrome setup,

we aim to use setups similar to other studies [4]. Hence, we utilize Selenium [147] to

build our Chrome-based crawler (version: 91). When implementing the crawler and page

visiting strategy, we oriented at the parameters used in OpenWPM to allow more realistic

comparison (e.g., each page visit is done in a new tab or waiting for resources to be loaded).

To conduct the headless crawl, we pass the headless argument to Selenium.

C7 Aside the named adjustments, we did not extend the browsers.
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C8 To disguise our crawler, we modified the standard Selenium parameters based on the

findings of Jonker et al. , who empirically studied which techniques are used in practice

to detect such crawlers [86] (e.g., changing the user agent). Otherwise, we implemented

simulated user interaction (see C10).

C9 We make the used framework publicly available (see App. A.1).

C10 We use two approaches to simulate user interaction: (1) no interaction (“none”) and

(2) mimicking artificial user interaction (“user interaction”). Thus, for (1) we do not interact

with the website at all. In profile (2), once the browser loads the page, we wait for 30

seconds or until the page finished loading and then simulate three page down keystrokes

followed by three Tab keystrokes, and finally an end keystroke with minimal periods of

delay in between.

C11 When visiting a page, we wait until a page has finished loading, close the browser,

and move on to the next page. We use a timeout of 30 seconds for each page visit (standard

configuration of OpenWPM), after which the visit will be terminated (e.g., to avoid slow

websites).

C12 We choose three geolocations for our measurement: (1) Germany (EU), (2) Japan

(AS), and (3) the United States (NA). We choose these continents since the majority of the

analyzed papers focuses on them. To simulate the geolocations, we used ProtonVPN [129].

C13 We altered browsers resolution to 1366x768 and the user agents to Mozilla/5.0 (X11;

Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/ 91.0.4472.77 Safari/537.36 for

Chrome and Mozilla/5.0 (X11; Linux x86_64; rv:88.0) Gecko/20100101 Firefox/88.0 for Firefox.

C14 For OpenWPM, after crawling a site, our wrapper (described in C6) extracts the HTTP

traffic from the database provided by OpenWPM. The Chrome-based crawlers collect the

HTTP traffic with the help of selenium-wire [139]. The results of the measurements are

pushed into a Google BigQuery database [59].

A.2.1.3. Evaluation

C15 Our (raw) results are publicly available (see App. A.1).

C16 We elaborate on our findings in Sec. 3.1.2.2.

C17 & C18 We discuss limitations and ethics in Sec. 3.1.3.

A.2.2. Experimental Design and Additional Results for Similarity Study

We develop our measurement framework along with recent findings on how to run robust

Web measurements [34, 87]. Our measurement setup is based on the openly available

framework of Demir et al. that implements a best-effort approach to conduct parallel

Web measurements [34]. In a nutshell, the framework consists of a commander machine

administering the experiments and several clients (i.e., virtual machines) that run a distinct
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browser profile. The commander orchestrates the entire measurement process by supplying

the URLs to visit to all clients at once. To achieve parallelism, the commander waits until

each client visited all pages before providing a new set of pages. Hence, not all page

visits are parallel, but the site visits are started simultaneously. Note that the deviation in

the visits in our measurement is acceptable (avg: 46 seconds, SD: 111 seconds). The large

standard deviation is caused by pages that timeout (e.g., by a slowly loading ad) in one

profile but not in another. While the measured deviation could impact the content of a

webpage (e.g., a blog publishes a post with in that time), we assume that our approach is

a suitable compromise between scalability and parallelism. This design choice reduces

the crawling time as, for example, timeouts might be smoothed. It is worth noting that

each virtual machine must run the technology used to visit the pages (i.e., the tools to

analyze the page visits). Thus, the framework provides the flexibility to compare different

measurement setups. Out-of-the-box, the framework consolidates the results from each

VM and stores them in a BigQuery [59] database.

A.2.2.1. General Measurement Configuration

To increase the repeatability and reproducibility of our result, we elaborate in the following

on the general configuration options we used in our experiments. We conducted all

measurements from the same public IP address associated with an university network,

which might introduce some bias into our results. Furthermore, each VM runs 15 browser

instances in parallel. We configured a timeout for each page visit of 30 seconds (similar to

previous works [34, 161, 162]). Other works used a longer time out (e.g., [87, 45]) but the

effects of different timeouts have not been studied in detail yet and could be addressed in

future work. To allow fair scalability of our experiment, in which we visit over 1.7M pages,

we choose to resort to a shorter timeout. We do not perform any consequent experiments

to understand a timely impact on the results because previous work already highlighted

such effects [34], and we assume this will propagate to our results. Web measurements

can be performed stateless, which means that the state of the browser is reset after each

page visit (e.g., cookies set) or stateful (the state of the browser is preserved between

page visits). Both options come with different up- and downsides. We choose to use a

stateless approach, which means that the order of the site visits does not impact the results.

Furthermore, this means that our study will provide a lower-bound of the problem.

A.2.2.2. Visualization of the Comparison Approach

Figure A.2 provides an overview of our comparison approach. The red boxes illustrate the

recursive and the blue boxes illustrate the vertical approach.

Vertical: (1) across all trees, we compare the entire loading dependencies of the node e

(dashed blue squares), which is not present in tree #3; (2) we cross-compare the direct

partners of each node in a branch (dotted blue squares). Horizontal: we analyze the nodes
on depth one (dashed red square) and recursively the children of nodes that appear in
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Table A.1.: Observed size of the trees and similarities of children and parents across the buckets.

# Bucket mean nodes child sim parent sim

1 1-5k 448 .71 .72

2 5,001–10k 434 .71 .71

3 10,001–50k 427 .71 .72

4 50,001–250k 417 .69 .66

5 250,001–500k 369 .70 .67

more than one tree (dotted red squares—the figure shows only one example to increase

readability).

Tree #1 Tree #3
F

a cb

d

e

x y

F

a c

d

e

x y

F

a cb

d y

Tree #2

Figure A.2.: Depiction of our vertical (blue) and horizontal (red) comparison approach.

A.2.2.3. Additional results

In the following we provide additional results regarding our study Section 3.2.

Understanding Implications of Site Popularity. Previous work has shown that a

website’s popularity impacts different phenomena [18, 161]. In the following, we analyze

if and how the popularity of websites, in terms of their rank on the Tranco list, affects the

changes in a tree. This analysis aims to understand if popular sites act differently regarding

the complexity and similarity of the observed trees. Table A.1 provides an overview of the

sizes of the trees in the different buckets and shows the similarities in the parent and child

nodes across each bucket. Given the plain numbers, the trees of popular sites have more

nodes, but the similarity values are nearly identical. These figures show that popular sites

produce larger trees, but there is no difference in the resulting similarities of the trees.

However, the ANOVA test found statistical significance between the total number of nodes

and the sites’ rank and between the rank and the observed children and parent similarities

(𝑝-value < 0.001). Nevertheless, the effect size is marginal (𝜂2 = .0004), meaning there is a

statistical significance effect, but it is practically negligible. Thus, a site’s rank does not

impact the similarity when measuring it multiple times.

Similarity of Different Resource Types. In Section 3.2.2.2 we show that the resource

type can significantly affect the similarity of the observed trees. Figure A.3 provides an
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Figure A.3.: Average similarity of children and parent nodes for different resource types based on

their tree depth.

overview of the average similarity of children and parent nodes of all resource types

based on their depth in the trees. One can observe how the similarity of nodes’ children

and parents differs based on the content type and the depth. Overall, we record that the

similarity for specific content types stays stable (e.g., web socket); at the same time, we

see that the similarity for some content types (e.g., script) changes drastically based on the

observed depth.

A.3. Appendix for Chapter 4

In this Appendix, we provide additional results for Chapter 4.

A.3.1. Overview of the Top Identified CWEs

In this appendix, we show our findings related to identified CWEs. Table A.2 lists the

most common CWEs on websites that we identified in the last measurement run (June

2020). While the vulnerability Cross-site Scripting (XSS) occurs in almost all websites, a

closer analysis of the same measurement point (M#18) shows that only 28% of software is

vulnerable to this vulnerability.

A.3.2. Average Age of the Top 20 Software Used in Website Ranking

Figure A.4 shows the most popular software types, their average age (in month), and the

rank of the websites on which they are used. We record that most of the widely used

software on the web is often very old. We also found that the average age of utilized

software on a website is unrelated to its popularity, according to the Tranco list [100].
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Table A.2.: Top 10 vulnerabilities in our last measurement point (M#18) by relative frequency on

websites.

Vulnerability Type (CWE) Relative Frequency

CWE-79 Improper Neutralization of Input During Web Page Generation (‘Cross-site Scripting’) 0.92

CWE-20 Improper Input Validation 0.32

CWE-400 Uncontrolled Resource Consumption 0.27

CWE-200 Exposure of Sensitive Information to an Unauthorized Actor 0.24

CWE-476 NULL Pointer Dereference 0.24

CWE-601 URL Redirection to Untrusted Site (‘Open Redirect’) 0.22

CWE-125 Out-of-bounds Read 0.22

CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer 0.20

CWE-787 Out-of-bounds Write 0.19

CWE-190 Integer Overflow or Wraparound 0.17

CWE-284 Improper Access Control 0.17

Table A.3.: Some examples of vulnerabilities identified on analyzed websites that run outdated

software.

Software CVE CVE Publication CWE CVSS Public exploit Vuln. Websites Total usage

jQuery CVE-2020-11023 04.2020 XSS 4.3 ✗ 3.98M 4M

Apache CVE-2017-7679 06.2017 Buffer Over-read 7.5 ✓ 0.26M 0.46M

PHP CVE-2015-8880 05.2016 Double free 10 ✓ 0.45M 0.46M

PHP CVE-2016-2554 03.2016 Buffer Over-read 10 ✓ 0.23M 0.46M

WordPress CVE-2018-20148 12.2018 Deserialization of Untrusted Data 7.3 ✓ 0.18M 0.46M

WordPress CVE-2019-20041 12.2019 Improper Input Validation 7.3 ✗ 0.31M 0.46M

A.3.3. Case Studies

Table A.3 illustrates the most common CVE entries identified in our study. CVE-2020-
11023 is the most common vulnerability with the severity “MEDIUM” – based on our last

measurement. Some of the vulnerabilities require certain functions or enabled functions

(e.g., CVE-2017-7679 for Apache requires mod_mime and CVE-2016-2554 for PHP requires

file uploading functionality) In some cases, the running software requires interaction

between more than one component to abuse an exploit. The listed vulnerabilities for

WordPress and vulnerability CVE-2015-8880 for PHP do not require any interaction or

enabled features and can be exploited directly.

A.4. Appendix for Chapter 5

In this Appendix, we provide additional results for Chapter 5.

A.4.1. Success Rates of the analyzed Extension in the Manual Test

Table A.4 provides an overview of the respective success rates of the analyzed extensions.

We assume that the ‘interaction’ was successful if a prompted cookie banner disappears au-

tomatically (or is not present) when we visit a page with an installed extension. Otherwise,
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Figure A.4.: Average age (in month) of the top 20 used software by website ranking. The share of

software in our dataset is shown in brackets – Blank cells: no website identified in the corresponding

ranking.

we assume that the extension does not work on the visited page. Note that the extension

CookieBlock does not interact with cookie banners but actively deletes cookies of specific

categories. Overall, we see that the analyzed extension have different success rates in

interaction with the banner, but no extension broke a page in our manual experiment.
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Table A.4.: Overview of the success rates of the extension to interact with

the 19 cookie banners in our manual test.

Name Successful
interaction

Unsuccessful
interaction

I don’t care about cookies 18 95% 1 5%

Consent-O-Matic 10 53% 9 47%

Ninja Cookie 12 63% 2 37%

SuperAgent 9 47% 10 53%

CookieBlock — — — —

A.4.2. Failure Rates of the Crawler

We only include sites in our experiment if at least eight profiles successfully crawled them

to ensure a fair and meaningful comparison of all tools. This filtering resulted in the

exclusion of 36% of all sites. It is worth noting that this (high) rate is solely attributed to

the combination of the profiles—each profile has a failure rate of <15%. More precisely,

profile #9 has the highest (15%) and profile #6 the lowest (13%) failure rate; the mean failure

rate is 14%. These numbers are typical for large-scale Web measurements [34, 24].

A.4.3. Cookies in the Different Profiles

Figure A.5 shows the number of cookies present in each profile. It is evident from the

figure that each profile has a distinct distribution of cookies, with profile #5 having the

lowest number of cookies and profile #9 having the highest. These results highlight that

the different browser extensions can have a considerable effect on the type and quantity

of cookies set by a website.
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Figure A.5.: Number of cookies in the different profiles by cookie usage category. To increase

readability, the y-axis is cut at 100. The upper whisker of the category “Unknown” in profile #9 is

around 150.

A.4.4. Configurations of Consent-O-Matic

TheConsent-O-Matic extension offers, in addition to the standard configuration, six configu-
ration options to allow or deny different types of cookies: (1) Preferences and Functionality;
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(2) Performance and Analytics; (3) Information Storage and Access; (4) Content selection,

delivery, and reporting; (5) Ad selection, delivery, and reporting; and (6) Other purposes.

Thus, we analyzed seven different configurations of the extension. One should note that

the default configuration of Consent-O-Matic aims to reject all cookies that are not nec-

essary for the page to work. To experiment with a reasonable time frame, we analyzed

each option individually and not a combination of them, which would result in analyzing

63 configurations (

(
6

6

)
+
(
6

5

)
+
(
6

4

)
+
(
6

3

)
+
(
6

2

)
+
(
6

1

)
= 63). Furthermore, we choose the top

7,000 sites from the utilized Tranco list and randomly sampled 15 pages (cf. Section 5.2.1),

visited them with our measurement framework and filtered the pages to analyze according

to our filtering rules (cf. Section 5.2). We conducted the experiments between 05/08/2023

and 05/12/2023 from a European IP address (Germany) using Amazon Web Services AWS.

A.4.5. Statistical Effects of Different Consent-O-Matic Configurations

Table A.5 shows the 𝑝-values when computing the statistical significance, using the

Kruskal-Wallis test, of the different Consent-O-Matic profiles regarding the presence of

tracking requests and different cookie types. The lighter-gray fields highlight the profile

combinations for which we found statistical significance. Especially the profile that

limits the use of “Performance” cookies (Perfm.) shows a notably different behavior

than most other profiles. For the configurations that allow functional cookies (Func.)

and “Information Storage and Access” cookies (Infor.), we get mixed results meaning

that they show statistical difference to roughly half of the configurations. Most profiles

(i.e., the baseline, the default configuration, reports, ads, and other) show a very similar

(i.e., almost no statistical significance) behavior compared to the other configurations.

These comparisons concerning the statistically significant impact on the metrics of interest

show that most configuration options have little impact on them.

Table A.5.:Kruskal-Wallis test results for tracking request numbers and cookie types across different

Consent-O-Matic configurations.

Baseline Default Func. Perfm. Infor. Report Ads Other

Baseline — 1.00 0.06 0.00 1.00 1.00 1.00 1.00

Default 1.00 — 0.02 0.00 1.00 1.00 1.00 1.00

Func. 0.06 0.02 — 1.00 0.04 0.46 0.00 0.01

Perfm. 0.00 0.00 1.00 — 0.00 0.05 0.00 0.00

Infor. 1.00 1.00 0.04 0.00 — 1.00 1.00 1.00

Report 1.00 1.00 0.46 0.05 1.00 — 1.00 1.00

Ads 1.00 1.00 0.00 0.00 1.00 1.00 — 1.00

Other 1.00 1.00 0.01 0.00 1.00 1.00 1.00 —
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A.4.6. Locations of the Repeated Measurements

Table A.6 shows the three locations that we used for our repeated control experiments.

We performed all experiments successive using different Amazon Web Services instances
during April 2023.

Table A.6.: Locations and times of the repeated measurements.

# City Country Start Date End Date

1 Frankfurt DEU 04/21/23 04/24/23

2 Paris FRA 04/24/23 04/28/23

3 Stockholm SWE 04/28/23 05/01/23

A.4.7. Analysis on Cookies that Could Not be Classified

In the following, we analyze the cookies that could not be identified by Cookeipedia [28],
and test their possible impacts on our analysis. Overall, we could not classify 43% of the

cookies, which means that Cookeipedia could not identify their purpose (cf. Section 5.2.5).

To better understand if a manual classification of some of the observed unclassified cookies

is feasible and would notably enhance our analysis, we analyze their distribution, overall

occurrence, and further properties. We first test the characteristics of these cookies and

find that 65% of the unclassified cookies are third-party cookies and 86% of them are

session cookies. A deeper analysis of these cookies shows that almost a third (37%) of

the unclassified cookies have unique names. Table A.7 provides an overview of the most

common unclassified cookies. Overall, a manual classification of the top 5 cookies would

increase the number of classified cookies by 2,7%, and a manual classification of the top 10

cookies would increase the number by 4%, and a classification of the top 100 cookies would

increase the number by 15%. It is worth noting that 2 of the top 5 cookies are probably

“functional” cookies, meaning all extensions would accept them. Therefore, we did not

conduct any manual classification on these cookies as it would have a minimal effect on

the overall results.

Table A.7.: Overview of the top unclassified cookies, their overall occur-

rence in our dataset, an example value, and their expected functionality

based on an Internet search.

Name Occurrence Ex. value Functionality

__cf_bm 1.08% fwhRuDEX7J... Functional cookie to de-

tect bots.

c 0.59% 1662508350 Timestamp of unknown

propose

CMTS 0.36% 1150 Unknown

A3 0.35% d=AQABBIsK... Unknown

li_gc 0.32% MTswOzE2Nj... Functional cookie to store

consent preferences.
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