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—— Abstract

A RAC graph is one admitting a RAC drawing, that is, a polyline drawing in which each crossing
occurs at a right angle. Originally motivated by psychological studies on readability of graph layouts,
RAC graphs form one of the most prominent graph classes in beyond planarity.

In this work, we study a subclass of RAC graphs, called axis-parallel RAC (or apRAC, for short),
that restricts the crossings to pairs of axis-parallel edge-segments. apRAC drawings combine the
readability of planar drawings with the clarity of (non-planar) orthogonal drawings. We consider
these graphs both with and without bends. Our contribution is as follows: (i) We study inclusion
relationships between apRAC and traditional RAC graphs. (ii) We establish bounds on the edge
density of apRAC graphs. (iii) We show that every graph with maximum degree 8 is 2-bend apRAC
and give a linear time drawing algorithm. Some of our results on apRAC graphs also improve the
state of the art for general RAC graphs. We conclude our work with a list of open questions and a
discussion of a natural generalization of the apRAC model.
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1 Introduction

Planar graphs form a fundamental graph class in algorithms and graph theory. This is due to
the fact that planar graphs have many useful properties, e.g., they are closed under minors
and have a linear number of edges. Several decision problems, which are NP-complete for
general graphs, become polynomial-time tractable, when restricted to planar inputs, e.g. [28].
As a result, the corresponding literature is tremendously large.

A recent attempt to extend this wide knowledge from planar to non-planar graphs was
made in the context of beyond-planarity, informally defined as a generalization of planarity
encompassing several graph-families that are close-to-planar in some sense (e.g., by imposing
structural restrictions on corresponding drawings). Notable examples are the classes of
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(i) k-planar graphs [31], in which each edge cannot be crossed more than k times, (ii) k-quasi-
planar graphs [1], which disallow k pairwise crossing edges, and (iii) k-gap planar graphs [9],
in which each crossing is assigned to one of the two involved edges such that each edge is
assigned at most k of its crossings. For an overview refer to the recent textbook [29].

While all of the aforementioned graph-classes are topological, meaning that the actual
geometry of the graph’s elements is not important, there is a single class proposed in the
literature that is purely geometric. The motivation for its study primarily stems from
cognitive experiments indicating that the negative effect of edge crossings in a graph drawing
tends to be eliminated when the angles formed at the edge crossings are large [30]. In
that aspect, the class of right-angle-crossing (RAC) graphs forms the optimal case in this
scenario, where all crossing angles occur at 90°. Formally, it was introduced by Didimo,
Eades and Liotta [22] a decade ago, and since then it has been a fruitful subject of intense
research [5, 17, 19, 23, 25].

Generally speaking, the research on RAC graphs has focused on two main research
directions depending on whether bends are allowed along the edges or not. Formally, in
a k-bend RAC drawing of a graph each edge is a polyline with at most k& bends and the
angle between any two crossing edge-segments is 90°. Accordingly, a k-bend RAC graph
is one admitting such a drawing. A 0-bend RAC graph (or simply RAC graph) with n
vertices has at most 4n — 10 edges [22], that is, at most n — 4 edges more than those of
a corresponding maximal planar graph. The edge-density bounds for 1- and 2-bend RAC
graphs are 5.5n — 10 [2] and 74.2n [8], respectively, while for k£ > 3 it is known that every
graph is k-bend RAC [25]. The research on RAC graphs, however, is not limited to edge-
density bounds. Several algorithmic and combinatorial results [5, 7, 6, 18, 21, 25], as well as
relationships with other graph classes [10, 13, 15, 16, 23, 14] are known; see [20] for a survey.

In this work, we continue the study of RAC graphs along a new and intriguing research line.
Inspired by several well-established models for representing graphs (including the widely-used
orthogonal model [12, 26, 27]), we introduce and study a natural subfamily of k-bend RAC
graphs, which restricts all edge segments involved in crossings to be axis-parallel. We call
this class k-bend apRAC. We expect that this restriction will further enhance the readability
of the obtained drawings, as these combine the simple nature of the planar drawings with the
clarity of the (non-planar) orthogonal drawings by allowing non axis-parallel edge segments,
only when those are crossing-free. We further expect that our restriction will lead to new
results of algorithmic nature. As a matter of fact, almost all algorithms that have been
already proposed in the literature about k-bend RAC graphs in fact yield k-bend apRAC
drawings [11, 22, 25]; e.g., every Hamiltonian degree-3 graph is 0-bend apRAC [6], while
degree-4 and degree-6 graphs are 1- and 2-bend apRAC, respectively [3, 5].

Our contribution is as follows:

In Section 2 we study preliminary properties of 0-bend apRAC graphs in order to prove
that recognizing 0-bend apRAC graphs is NP-hard (see Theorem 3).

We study whether k-bend apRAC graphs form a proper subclass of k-bend RAC graphs:
For k = 0, we establish a strict inclusion relationship with K minus one edge being the
smallest graph separating the two classes. Further, our edge-density result for 1-bend
apRAC graphs establishes a strict inclusion relationship for k = 1, see Corollary 5. The
case k = 2 is more challenging (due to the degrees of freedom introduced by bends) and
we leave it as an open problem. For k& > 3, the two classes coincide, as the construction
establishing that every graph is 3-bend RAC [22] can be converted to 3-bend apRAC by
a rotation of 45°.
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Figure 1 Forbidden configurations by Properties 1-4.

We establish bounds on the edge density of n-vertex k-bend apRAC graphs: For k = 0, we
prove an upper bound of 4n — v/n — 6 and give a corresponding lower bound construction
with 4n — 2|/n] — 7 edges (see Theorem 1). For k € {1,2}, we give linear upper bounds
that are tight up to small additive constants (see Theorems 4 and 6). Notably, for k = 2
our lower-bound construction is a graph with n vertices and 10n — O(1) edges. This
bound extends to general 2-bend RAC graphs and improves the previous best one of
7.83n — O(y/n) [8], answering an open question in [2].

We show that every graph with maximum degree 8 is 2-bend apRAC and give a linear
time drawing algorithm (see Theorem 8) improving the previous best known result stating
that 7-edge colorable degree-7 graphs are 2-bend (ap)RAC [3].

Inspired by the slope-number of graphs, in Section 7 we discuss a natural generaliza-
tion of apRAC drawings where each edge segment involved in a crossing is parallel or
perpendicular to a line having one out of s different slopes.

2 Preliminaries

Throughout this paper, basic graph drawing concepts are used as found in [29, 32]. Let G
be a graph and IT" be a polyline drawing of G and let e = (u,v) be an edge of G. We say
that e uses a horizontal (vertical) port at u if the edge-segment of e that is incident to w is
parallel to the z-axis (to the y-axis) in I'. If e uses neither a vertical nor a horizontal port at
u, then it uses an oblique port at u. In particular, we denote the four orthogonal ports (i.e.,
the vertical and the horizontal ports) as {N, E, S, W }-ports according to compass directions.
In a polyline drawing, vertices and bends are placed on grid-points, whereby the area of the
drawing is determined by the smallest rectangular bounding box that contains the drawing.
In the following, we recall two properties that hold for 0-bend RAC drawings.

» Property 1 (Didimo, Eades and Liotta [22]). In a 0-bend RAC drawing no edge is crossed
by two adjacent edges (see Fig. 1a).

» Property 2 (Didimo, Eades and Liotta [22]). A 0-bend RAC drawing does not contain a
triangle T formed by edges of the graph and two edges (u,v) and (u,v"), such that u lies
outside T while both v and v’ lie inside T (see Fig. 1b).

Next, we establish two properties limited to 0-bend apRAC drawings.

» Property 3. A 0-bend apRAC drawing does not contain a triangle T formed by edges of
the graph and three vertices v, vs,v3 adjacent to a verter u, such that vy, vs,vs lie outside T
and u lies inside T (see Fig. 1c).

Proof. Assuming the contrary, Property 1 implies that no two edges adjacent to u cross the
same boundary edge of T. Hence, T consists of three axis-parallel edges; a contradiction. <«
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» Property 4. Let T' be a 0-bend apRAC drawing containing a triangle T formed by edges
of the graph and two adjacent vertices u and v such that u is contained inside T while v is
outside T. Then, T’ does not contain a vertex w adjacent to u, v and all vertices of T (see
Fig. 1d).

Proof. For the sake of contradiction, assume there is a vertex w adjacent to u, v and all
vertices of T. If w is inside T in T', then (v,u) and (v, w) violate Property 2; a contradiction.
Otherwise, since (u,v) and (u,w) cross T, by Property 1, it follows that T is a right-angled
triangle whose legs are axis parallel. W.l.o.g., let (v1,v2) and (vg, v3) be the legs of T crossed
by (u,v) and (u,w), respectively, such that (vi,vs) is horizontal and (ve, vs) is vertical. It
follows that the edge (ve,vs3) of T is crossed by (u,w) and (w,v;) violating Property 1; a
contradiction. |

In Theorem 3 we leverage the following property shown in [7] of the so-called augmented
square antiprism graph. The gadget used in the NP-hardness proof of Theorem 3 is depicted
in Fig. 2a, while the vertex-colored subgraph in Fig. 2a corresponds to the augmented square
antiprism graph.

» Property 5 (Argyriou, Bekos, Symvonis [7]). Any straight-line RAC drawing of the augmented
square antiprism graph has two combinatorial embeddings.

3 0-bend apRAC graphs

In this section, we focus on properties of 0-bend apRAC graphs. We start with an almost
tight bound on the edge-density of 0-bend apRAC graphs - for comparison, recall that
n-vertex 0-bend RAC graphs have at most 4n — 10 edges [22].

» Theorem 1. A 0-bend apRAC graph with n vertices has at most 4n — \/n — 6 edges. Also,
there is an infinite family of graphs with 4n — 2|v/n| — 7 edges that admit 0-bend apRAC
drawings.

Proof. For the upper bound consider any 0-bend apRAC drawing I' of a graph G with n
vertices. As a (k x k)-grid has only k2 grid points, we may assume without loss of generality
that the vertices of G use at least /n different y-coordinates in I'. It follows that the
subgraph G}, of G defined by the set Ej, of all horizontal edges of I is a forest of paths with
at least \/n components; at least one for each used y-coordinate. Thus |Ep| < n — /n. As
G — E}, is crossing-free in T, it has at most 3n — 6 edges, giving the desired upper bound of
4dn — v/n — 6 edges for G.

For the lower bound, consider the construction shown in Fig. 2b. For any even k > 0,
construct a k x k grid graph Hj which contains a pair of crossing edges in every quadrangular
face. Let G be the graph obtained from Hj by adding two extremal adjacent vertices N
and S connected to 2k — 1 consecutive boundary vertices of Hj, each (refer to the blue edges
in Fig. 2b and observe that the edge between N and S can be added by moving N upwards
and to the right and S downwards and to the right of Hy). If we denote by n the number of
vertices of Gy, then n = k? + 2, k = v/n — 2 and thus m = 4n — 2|\/n] — 7. <

Since there exist n-vertex 0-bend RAC graphs with 4n — 10 edges, Corollary 2 follows
from Theorem 1. In [4], we show that K minus one edge is the smallest graph that is 0-bend
RAC but not 0-bend apRAC.

» Corollary 2. The class of 0-bend apRAC graphs is properly contained in the class of 0-bend
RAC graphs.
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Figure 2 (a) Graph used in Theorem 3. (b) Lower bound construction for 0-bend apRAC.

(c¢) Lower bound construction for 1-bend apRAC.

We conclude this section by studying the recognition problem of whether a graph is
0-bend apRAC. Due to space reasons, we only sketch the idea of the proof; the complete
proof can be found in [4].

» Theorem 3. [t is NP-hard to decide whether a given graph is 0-bend apRAC.

Sketch. We adjust the NP-hardness reduction (from 3-SAT) for the general case of RAC
graphs introduced in [7], whose main gadgets use a building block H. We determine a 0-bend
apRAC graph H as a substitute for this building block which has the same properties as H:
(i) H has a unique embedding, (ii) there are four vertices properly contained in its interior,
which can be connected to vertices in its exterior by crossing a single boundary edge, (i)
no edge can (completely) pass through H without forming a fan crossing, and (iv) H can be
extended horizontally or vertically maintaining properties (i) — (éi¢). The graph shown in
Fig. 2a satisfies all these criteria and can therefore be used for the reduction. |

4 1-bend apRAC graphs

In this section, we will establish an upper bound and an almost matching lower bound for
the class of 1-bend apRAC graphs. Recall that n-vertex 1-bend RAC graphs have at most
5.5n — 10 edges [2].

» Theorem 4. A 1-bend apRAC graph with n vertices has at most 5n — 8 edges. Also, there
is an infinite family of graphs with 5n — 16 edges that admit 1-bend apRAC drawings.

Proof. For the upper bound, consider a 1-bend apRAC drawing I' of an n-vertex graph G.

Each edge segment in T is either horizontal (h), vertical (v) or oblique (o). For z,y € {h,v,0},
let £, be the edges of G with two edge segments of type « and y. Then, Ep,, Eho, Eyo and
E,, form a partition of the edge-set of G, assuming that edges that consist of only one h-,
v- or o-segment are counted towards Fp,, F,, and E,,, respectively. By construction, any
crossing involves exactly one vertical and one horizontal segment. Hence, the subgraph of G
induced by Ep, U E,, is planar and contains at most 3n — 6 edges. Further, as every segment
is incident to a vertex and since any vertex is incident to at most two vertical segments, we
have |E,o U Epy| < 2n. We can assume that the topmost vertex v; is incident to at most one
vertical edge-segment, since the edge segment incident to v; that points upwards cannot be
involved in a crossing with a horizontal edge-segment. Otherwise, the endpoint incident to
this edge segment would contradict the fact that v; is topmost in I'. Hence, it can be replaced
by a steep oblique edge-segment without introducing new crossings. Analogous observations
can be made for the bottommost vertex in I, which implies that |Ey, U Epy| < 2n — 2. Thus,
|E| = |Enol + | Evol + | Env| + | Eoo| < 5n — 8.
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Our lower bound construction is as follows; see Fig. 2c. For n > 7, we arrange n — 4
vertices forming a cycle along the two legs of an isosceles triangle with a horizontal base (outer
black edges), such that the left leg has | 5% | vertices while the right one has [25%]. These
n —4 vertices are further joined by a y-monotone path of n —7 edges (inner black edges). Two
extremal vertices IV and S above and below the triangle are connected to all n — 4 vertices
(orange edges). Similarly, two extremal vertices W and E to the left and right of the triangle
are connected to all vertices of the left and right legs of the triangle respectively (blue edges);
the topmost vertex of the right leg is also connected to W. Finally, we add six edges between
the extremal vertices, which gives n —4+n — 6 + 3(n —4) + 6 = 5n — 16 edges. <

Since there exists 1-bend RAC graphs with 5.5n — 72 edges [2], the following corollary is
immediate.

» Corollary 5. The class of 1-bend apRAC graphs is a proper subclass of the one of 1-bend
RAC graphs.

5 2-bend apRAC graphs

In Theorem 6, we provide an upper-bound for the edge density of 2-bend apRAC graphs
together with a lower-bound construction which is tight up to an additive constant. Our
result provides a stark contrast to the one for 2-bend RAC graphs, where the current best
upper-bound on the number of edges of n-vertex graphs is 74.2n [8], while the previous best
lower bound-construction contained only 7.83n — O(y/n) [8] edges.

» Theorem 6. A 2-bend apRAC graph with n vertices has at most 10n — 12 edges. Also,
there is an infinite family of graphs with 10n — 46 edges that admit 2-bend apRAC drawings.

Proof. Consider a 2-bend apRAC drawing I" of an n-vertex graph G. Each edge segment
in T is either horizontal (h), vertical (v) or oblique (0). Denote by S the set of edges that
contain at least one segment in {h, v} incident to a vertex. Since any vertex is incident to
at most two vertical and at most two horizontal segments, it follows that |S| < 4n. Let
E;, E, and E, be the set of edges of E'\ S whose middle part is h, v and o, respectively.
Assuming that an edge of F \ S consisting of less than three segments belongs to E,,
it follows that Ej, E, and E, form a partition of F \ S. Observe that the edges of
FE, cannot be involved in any crossing in I', as all of its segments are oblique. Further,
no two edges of Ej or of F, can cross. Hence, the subgraphs induced by E; U E, and
E, U E, are planar and contain at most 3n — 6 edges each. Recall that |S| < 4n and thus
|E| <|S|+ |Ex| + |Ey| +2|Es] <4n+3n—6+3n—6 = 10n — 12.

Refer to Fig. 3a for a schematization of the upcoming lower-bound construction and to
Fig. 4 for a concrete example. Fix an integer k > 6 and consider a set P of k2 points of a
k x k square grid in the plane but rotated very slightly, say counterclockwise, so that the
points in each column have consecutive z-coordinates (consequently the points in each row
have consecutive y-coordinates). For two points p, ¢ € P let their z-distance dist,(p, q) be
the number of points in P having their z-coordinate between p and ¢. Similarly define the
y-distance disty(p, ¢). The crucial property of point set P is the following.

For any p # q € P we have dist,(p, ¢) + dist,(p,q) > k—1 > 5. (1)

Between any pair p,q € P with consecutive z-coordinates, i.e., dist,(p, q) = 0, we add a
2-bend edge with vertical middle segment by starting and ending with a very short oblique
segment at p respectively ¢. Similarly, we add a 2-bend edge with horizontal middle segment
when dist, (p, ¢) = 0. Note that these are in total 2k* — 2 edges, no two of which connect the
same pair of points, due to (1).
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Figure 3 (a) Illustration of the construction in Theorem 6 with k = 6. Edges with two oblique
segments are indicated in orange for vertical middle segments and in blue for horizontal middle
segments. Edges using the horizontal or vertical ports are omitted for readability. (b) Edge routing
in the 8 X 8 box B(u) of a vertex u. Blue ports are exclusively used by edges of F; and F3 and
orange ports by F» and Fy. Note that the ports illustrated by bold lines are reserved for oblique-2
edges. Bends on the border of the box are emphasized by a cross.

Next we add four additional points N, E, S, W to the top, right, bottom, and left of
all points in P, respectively. For every point p we add a 2-bend edge with vertical middle
segment between p and N starting with a very short oblique segment at p and ending with
an almost horizontal (but still oblique) segment at N. Similarly, we add a 2-bend edge with
vertical middle segment between p and S, as well as one with horizontal middle segment to
each of E, . Note that these are in total 4k% edges, and that all oblique segments can be
chosen such that all crossings involve middle segments only.

Next we add for (almost) each point p € P four more 2-bend edges. First, consider for p
the point ¢ € P to the right of p with dist,(p,q) = 1, unless p is one of the two rightmost
points in P. We draw a 2-bend edge from p to ¢ by starting with a horizontal segment at p to
almost the z-coordinate of ¢, continuing with a vertical segment to almost the y-coordinate
of ¢, and ending with a very short oblique segment at ¢. Similarly, we use the left horizontal
port at p for an edge to the point ¢ left of p with dist,(p,q) = 2. (We take a-distance 2
instead of 1 to avoid introducing a parallel edge.) Symmetrically, we draw two edges using
the vertical ports at p. Note that these are in total 4k? — 10 edges, and that all crossings
involve horizontal and vertical segments only.

Finally, we add easily add six edges to create a K, on vertices N, E, .S, W. To conclude,
we have constructed a 2-bend apRAC graph with n = k? + 4 vertices and (2k% — 2) + 4k? +
(4k* — 10) + 6 = 10k? — 6 = 10n — 46 edges. <

6 Every graph with maximum degree 8 is 2-bend apRAC

In the following, we prove that graphs with maximum degree 8 admit 2-bend apRAC drawings
of quadratic area which can be computed in linear time. We leverage the following result in
order to decompose the input graph.

» Lemma 7 (Eades, Symvonis, Whitesides [24]). Let G = (V, E) be an n-vertex undirected
graph of degree A and let d = [A/2]. Then, there exists a directed multigraph G' = (V, E")
with the following properties:

9:7

ESA 2023



9:8

Axis-Parallel Right Angle Crossing Graphs

1. each vertex of G' has indegree d and outdegree d;

2. G is a subgraph of the underlying undirected graph of G'; and

3. the edges of G’ can be partitioned into d edge-disjoint directed 2-factors (where a 2-factor
is a spanning subgraph of G' consisting of vertex disjoint cycles, called cycle cover in [24]).

The directed graph G' and the d 2-factors can be computed in O(A2n) time.

Now, we are ready to state the main result.

» Theorem 8. Given a graph G with mazimum degree 8 and n vertices, it is possible to
compute in O(n) time a 2-bend apRAC drawing of G with O(n?) area.

Proof. Let G be a simple graph with maximum degree 8 and n vertices. We apply Lemma 7
to augment G to a directed 8-regular multigraph having four edge-disjoint 2-factors Fi,
Fy,, F3 and F,. Before we present our algorithm in full detail, we sketch an outline of the
necessary steps. We want to stress that in the following, the direction of an edge (u,v) plays
an important role and hence we consider it as a directed edge with source v and target v.

N
(o]

[ —_— —

==

O
S

Figure 4 Illustration of the construction in Theorem 6 with k = 6. The K4 on the vertices
N, E,S, W is omitted due to space reasons.
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6.1 Outline of the algorithm

In the first step, we will construct two total orders <, and <, of the vertices of G which
will determine the z- and y-coordinates of the vertices in the final drawing. In particular, if
vertex u of G has the i-th position in <, and the j-th position in <, then u will be placed
at point (8¢, 85) in the final drawing. We will construct these two orders independently such
that <, is defined by Fy U F3 and <, is defined by F> U Fy. After the computation of <,
and <., which finalizes the position of the vertices in our resulting drawing I', it remains to
draw the edges which are fully characterized by the placement of the respective bend-points.
Every edge will be drawn with exactly three segments, which are either horizontal, vertical or
oblique. To ensure that all crossings in I occur between horizontal and vertical segments, we
will restrict oblique segments to be “short” (a precise definition follows below) and require
that they are incident to a vertex. To this end, we will define, for each vertex u of G, a
closed box B(u) centered at u of size 8 x 8, such that the oblique segments incident to u
are fully contained inside B(u). Note that by construction, the interior of two boxes do not
overlap (they may touch at a corner). Since the z-coordinate of two consecutive vertices u
and v of <, differs by exactly 8, there is a vertical line that is (partially) contained inside
both B(u) and B(v) (analogous for a horizontal line and consecutive vertices in <,). This
allows us to join v and v by an edge that consists of two oblique segments, which is called an
oblique-2 edge. If the unique orthogonal segment of an oblique-2 edge is vertical (horizontal),
we will refer to it as a vertical (horizontal) oblique-2 edge. An edge that contains exactly
one oblique segment will analogously be called an oblique-1 edge.

In the second step, we will classify every edge of G as either an oblique-1 or an oblique-2
edge - again this classification is done independently for F} U F5 and Fy U Fy; we focus on
the description of Fy U Fj, the other one is symmetric. Let e = (u,v) be an edge of F; U Fj.
If w and v are consecutive in <, then e is classified as a vertical oblique-2 edge. Otherwise,
e is classified as an oblique-1 edge such that the (unique) oblique segment is incident to the
target v, while the orthogonal segment at u uses the E-port at u if u <, v, otherwise it uses
the W-port.

In the final step, we will specify the exact coordinates of the bend-points. At a high level,
oblique segments (which are by construction all incident to vertices) will end at the boundary
of the corresponding box, see Fig. 3b. The bend-points between vertical and horizontal
segments are then naturally defined by the intersections of their corresponding lines.

The final drawing I' will then satisfy the following two properties.

(i) No bend-point of an edge lies on another edge and

(ii) the edges are drawn with two bends each so that only the edge segments that are
incident to u are contained in the interior of B(u), while all the other edge segments
are either vertical or horizontal.

This will guarantee that the resulting drawing is 2-bend RAC; for an example see Fig. 5.

Note that (i) guarantees that no two segments have a non-degenerate overlap.

6.2 Computing <, and <,

We will now describe how to construct <, and <, explicitly. We focus on the construction
of <, which is based on F; and F3, the order <, can be constructed analogously. Let
C1,C5,...,Cf be an arbitrary ordering of the components of F}. Recall that by definition,
each such Cj is a directed cycle. Let S be a set of vertices that contains exactly one arbitrary
vertex from each cycle in F} and let Py, Ps, ..., P be the resulting directed paths obtained by
restricting the cycles to V' \ S. Note that this may yield paths that are empty, i.e., when the
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corresponding cycle consists of a single vertex. We construct <, (limited to V' \ S) such that

the vertices of each path appear consecutively defined by the unique directed walk from one

endpoint of the path to the other. The relative order between paths is Py <, Py <5 -+ <4 Pg.

Hence it remains to insert the vertices of S into <,. Throughout the algorithm, we will

maintain the following invariant which will ensure the correctness of our approach.

I.1 Let u € S be a vertex of cycle C;. If |C;| > 1, then w is placed next to at least one vertex
of P;. Otherwise, u is placed directly after the last vertex of C;_; (or as first vertex if
i=1) in <.

If I.1 is maintained, we can guarantee the following observation.

» Observation 1. Let u € C; and v € C; be two vertices of G with i # j. Then, the relative
order of u and v in <, is known.

Assume that each vertex in S that belongs to C1,...,C;_1 has been inserted in <,. Let

u € S be the vertex that belongs to C; \ P;. If |C;| < 2, then we place u immediately after

the last vertex of C;_1 in <, if i > 1, otherwise u is the first vertex of <, which maintains

I.1. Hence, in the remainder we can assume that C; consists of at least three vertices. Let

a, b and ¢ be the vertices of G such that (u,a), (b,u) € F; and (u,c) € F3. Even though

G is a multigraph, we have that a # b since C; contains at least three vertices. Hence, by

construction we have a <, b - in particular, a is the first vertex of P; in <, while b is the

last one. Let C; (possibly j = ¢) be the cycle that contains c. Note that it is possible that

c € S, ie., cisnot part of <, initially. However, as this can only happen if i # j, we know

the relative position of u and ¢ by Observation 1. We distinguish between the following cases

based on the relative order of cycle C; (which contains «) and cycle C; (which contains c)

in <.

1. j <i. We insert v immediately before a in <, such that it is the first vertex of C;, see
Fig. 6a. Clearly, this maintains I.1.

2. i < j. This case is symmetric to the previous one - we insert v immediately after b in
<, such that it is the last vertex of C;, see Fig. 6b, which again maintains I.1.

3. i = j. In this case, we have that ¢ also belongs to C; (in particular, ¢ belongs to P;
and thus is already part of <.). If ¢ = a or ¢ = b, we simply omit the edge (u,c) and
proceed as in the first case, i.e., we place u as the first vertex of C;. Otherwise, we insert
u directly before or directly after ¢ in <, based on the edge (¢,d) € F3. The relative
order of ¢ and d in <, is known by Observation 1 unless d € C;. If d € P;, the relative
order between ¢ and d is also known (as both are already present in <,). If d ¢ P;, then
d = u and we can omit the edge (u,c) € F3 (because it is a copy of (¢,d) € F3), in which
case we can again proceed as in the first case. Hence, d # u holds. If ¢ <, d, we insert u
directly before ¢ in <., see see Fig. 6¢, otherwise we insert u directly after ¢ in <. In
both cases, we maintain I.1.

This concludes our construction of <.

6.3 Classification of the edges and port assignment

We focus on the classification of the edges of F} U F3 and their port assignment, the

classification of the edges of Fy U Fj is analogous. Our classification will maintain the

following invariants.

.2 The endpoints of each vertical oblique-2 edge are consecutive in <.

1.3 Each oblique-1 edge (u,v) € Fy U F3 is assigned the W-port at its source vertex u, if
v < u; otherwise, if u <, v, it is assigned the F-port at u.

.4 Every horizontal port is assigned at most once.
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Figure 5 A 2-bend apRAC drawing of Ky; F} and F3 are blue; F> and Fy are orange. Below the
drawing of Ko there is a illustration of the cycles in Fi and the relevant edges in F3 for positioning
v1 € S according to Case 3 in the construction of <,. Similarly, a visualization of the cycles in F5
and the relevant edges in Fj is displayed to the left.

C;j

Cj o C; Ci
e - he e r - seeu d
S ... .. NS
c u a b a b u c (w
(a) (b) (c)

Figure 6 Illustration of the construction of <., Case 1 is shown in (a), Case 2 in (b) and Case 3
in (c). Blue edges belong to Fi, while dashed orange edges belong to Fs.

Let us consider an edge e € F; U F3 between vertices u and v. If u and v are consecutive
in <., then we classify e as a vertical oblique-2 edge. If v and v are not consecutive in <,
we will classify e as an oblique-1 edge, which therefore guarantees 1.2. For any oblique-1
edge, we will, in an initial phase, assign the ports precisely as stated in 1.3. In a subsequent
step, we will create a unique assignment of the horizontal ports by reorienting some edges of
Fy U F3 in order to guarantee 1.4. Suppose that after the initial assignment, there exists a
vertex u such that one of its orthogonal ports is assigned to two oblique-1 edges. Assume first
the W-port of u is assigned to edges (u,a) and (u,b). By construction, v has exactly one
outgoing edge in Fi, say (u,a), and exactly one outgoing edge in F3, say (u,b). Let C; be the
cycle of Fy that contains both u and a (which implies that |C;| > 1, as we omit self-loops)
and let C; be the cycle that contains b (possibly ¢ = j). Recall that by construction, the
vertices of P; appear consecutively in <, before the insertion of the vertex v € C; \ P;. Since
(u,a) is an oblique-1 edge, we have that u and a are not consecutive in <. If |C;| = 2, one
of u or a coincides with v, but then u and a are consecutive in <, and thus the edge (u,a) is
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an oblique-2 edge. Hence, |C;| > 2 holds and we either have u = v, a = v or v was inserted
directly in between a and u. In the following, we will refer to Cases 1 - 3 of Section 6.2,
where we computed the total order <.

1. v = v. Assume first that C; # C;. Then, since (u,b) is assigned the W-port at u, we
have b <, u by 1.3 which implies j < ¢ and hence we placed u according to Case 1, i.e.,
as the first vertex of C; in <,. But since a € C;, we then have u <, a and thus (u,a)
would use the E-port at u, a contradiction.

Hence assume that C; = Cj, i.e., b € C;. Then we are in Case 3. In particular, we placed
u such that u and b are consecutive, thus (u,b) is classified as an oblique-2 edge, again
we obtain a contradiction.

2. a =wv. Since (u,a) uses the W-port at u by assumption, we have that a <, v by 1.3 and
thus a cannot be the last vertex of C; in <., and so we are in Case 1 or 3. In Case 1, a
is placed as the first vertex of C; since there exists a vertex a’ with a’ <, a such that
(a,a’) € F5. Further, a is placed next to vertex v’ (i.e., the first vertex of P; in <) with
(a,v") € Fy by construction. Then, we can redirect the edge (u,a) € Fy such that we
can assign (a,u) the E-port at a which solves the conflict at u and does not introduce a
conflict at @ which guarantees I.4. In Case 3, a was placed consecutive to vertex o’ € P;
with (a,a’) € F5. As (u,a) uses the W-port at u, u is necessarily the last vertex of C; in
<z. Since the other neighbor of a in F) different from w is the first vertex of C; in <,
i.e., it precedes a in <,, we can again reorient the edge (u,a) and assign the edge (a,u)
to the free E-port of a, solving the conflict at u which guarantees 1.4.

3. v was inserted directly in between a and u. In this case, we have that both a and u
belong to P;. Since we assume that (u,a) uses the W-port at u, it follows that a <, u
holds. But then by construction, the edge of F} that joins a und w is directed from a to
u and we obtain a contradiction.

The case where the E-port of u is assigned to two edges can be solved in a similar way;
refer to [4] for details.
Observe that if an edge (u,v) was redirected, then both u and v belong to the same cycle C;
of F} and since this operation has to be performed at most once per cycle, it follows that they
can be considered independently. So far, we have computed <, and classified every edge of
Fy U F3 guaranteeing Invariants 1-1.4. Symmetrically, we can compute <, and classify every
edge of Fy U Fy guaranteeing corresponding versions of Invariants 1-1.4; see [4] for details.

6.4 Bend placement

We begin by describing how to place the bends of the edges on each side of the box B(u) of
an arbitrary vertex u based on the type of the edge that is incident to u, refer to Fig. 3b.
Let (24, Yy.) be the coordinates of w in I' that are defined by <, and <,. Recall that the
box B(u) has size 8 x 8. Let e be an edge incident to u. We focus on the case in which
e € F1 U F3, the other case in which e belongs to F» U Fy is handled symmetrically by simply
exchanging z with y, “top/bottom” with “right/left” and “vertical” with “horizontal” from
the following description. By definition, e is either an oblique-1 edge or a vertical oblique-2
edge. Suppose first that e is an oblique-1 edge. If e = (u,v), i.e., e is an outgoing edge of u
in Fy U F3, then by Invariant 1.3 edge e uses either the W- or E-port at u. In the former
case, the segment of e incident to u passes through point (y,,, y, —4), while in the latter case
it passes through point (y.,y, + 4). For an example, refer to the outgoing edge (vs,vg) of vs
in Fig. 5. If e = (v, u), i.e., e is an incoming edge of u in F} U F3, then by Invariant 1.3 e uses
a horizontal port at v and by the fact that every edge consists of exactly three segments, the
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vertical segment of e ends at the top or the bottom side of B(u). Since any vertex has at
most three incoming edges in F; U F3 by construction, we can place the respective bends
at z-coordinate x, + ¢ with ¢ € {—2,—1,1,2} and y-coordinate y, + 4 (y, — 4) for the top
(bottom) side such that the assigned i-value is unique, refer to the incoming edge (v4,v9)
of vg in Fig. 5, where ¢ = —1. Finally, the other bend-point of e is uniquely defined as
(x4 +1,yy), since it connects a vertical with a horizontal segment by construction.

Suppose now that e is a vertical oblique-2 edge. By 1.2, u and v are consecutive in <. If
v <, u the xz-coordinate of the bend point is z,, — 4, otherwise it is =, + 4; e.g., refer to the
edges (v2,v3) and (vs,v4) of vg in Fig. 5, respectively. In order to define the y-coordinate of
the bend point, we have to consider the relative position of v and v in <,. If v <, u the
y-coordinate of the bend point of e is y,, — 3 and otherwise it is y, + 3. 1.2 implies that any
vertex has at most two vertical oblique-2 edges since no vertex has more than two direct
neighbors in <. From the description of the bend-points, the observation follows:

» Observation 2. Let b be a bend-point that delimits an oblique segment s which belongs to
an edge e. If s is incident to u, then b does not lie on any other edge incident to u.

6.5 Proof of correctness

The fact that the obtained drawing is 2-bend apRAC is proved in [4]. To complete the proof
of Theorem 8, we discuss the time complexity and the required area. We apply Lemma 7 to
G to obtain Fy, F, F3 and Fy in O(n) time. For each cycle of F; and F5, an appropriate
ordering of its internal vertices, the classification of the incident edges and the assignment
of the orthogonal ports can be computed in time linear in the size of the cycle. Clearly,
computing the bend-points can be done in linear time as well. Hence we can conclude that
the drawing can be computed in @(n) time. For the area, we can observe that the size of
the grid defined by the boxes is 8n x 8n and by construction, any vertex and any bend point
is placed on a distinct point on the grid. <

7 Conclusion and Open Problems

In this paper, we introduced the class of k-bend apRAC graphs, gave edge-density bounds,
studied inclusion relationships with the general k-bend RAC graphs, and concluded with
an algorithmic result for graphs with maximum degree 8. A natural extension is to allow
drawings where each crossing edge-segment is parallel or perpendicular to a line having one
out of s different slopes. We denote the class of graphs which admit such a drawing as k-bend
s-apRAC, and w.l.o.g. we assume that the horizontal slope is among the s ones. Observe
that for s = 1, the derived class coincides with the class of k-bend apRAC graphs. By joining
several copies of the graph supporting Property 5 that all share a common vertex, we show
that 0-bend s-apRAC graphs form a proper subclass of 0-bend RAC graphs for any s € o(n);
see [4] for details. We also adjust the proof of Theorem 6 to derive an upper bound on the
edge density of 2-bend s-apRAC graphs, which is better than the one of [8] that holds for
general 2-bend RAC graphs for values of s up to 17. We conclude with the following open
problems.
Are there 2-bend RAC graphs that are not 2-bend apRAC?

For k € {1,2}, our edge-density bounds do not relate to the simplicity of the drawings.

Are bounds different for simple drawings, as in the general 1-bend RAC case [2]?
For k € {1,2}, does the class of k-bend s-apRAC graphs on n vertices coincide with the
corresponding class of k-bend RAC graphs, when s € o(n)?
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