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1. Introduction

With regard to the potential offered by digitalization and
Industry 4.0, many companies aim to achieve positive effects 
and benefits through the use of data-based approaches in their 
production, for example to increase equipment availability 
through condition monitoring and predictive maintenance or to 
increase performance through process optimization. A decisive 
basis for this is the extraction and provision of the data required 
for the various approaches, which comes from the control 
systems of the machines and equipment. For the applications
mentioned above, signals from the machine axes, such as motor 
current, torque, feed rate and position data, are particularly 
relevant for users. [1]

Access to the control system data depends in each case on 
the age and the associated technical generation of the machine, 

but can also vary depending on the manufacturer. For example, 
newer machines in many cases have OPC UA interfaces, which 
in some cases even include standardized Companion 
Specifications, but other machines in many cases do not have a 
standardized information interface, which makes accessing and 
assigning the data more difficult. This especially applies to 
typical brownfield productions environments, which are 
characterized by a high degree of heterogeneity in the age and 
manufacturer of the machines and equipment. [1,2]

More than 80 % of the companies state that the connection 
and data use for the described use cases is inhibited by a lack of 
personnel resources and technical knowledge. Less than 5 % of 
the companies have no concrete ideas and see no benefit for 
specific use cases. Therefore, tools are needed to facilitate the 
extraction and identification of signals such as motor currents 
and position data from machine control systems. [2]
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1.1. State of the art and preliminary work 

Signals from machine control systems as motor currents and 
position data mainly represent time series data. Approaches 
focusing on classification of time series can be distinguished in 
rule based and machine learning (ML) based. The majority of 
the existing approaches are ML based.

Recent work [3,4] analyzed data sets of time series from 
versatile application areas. They showed that the artificial 
neural networks (ANN) are particularly well suited, especially
Fully Convolutional Networks (FCN) and Residual Neural 
Networks (ResNet). Exemplary signals on a CAN bus were 
automatically classified in four signal classes of a CAN bus [5]
using automated feature selection and handcrafted feature
selection. The handcrafted feature selection tend to show 
higher accuracies. However, the ML models were not tested for 
generalizability. This is an important factor for machines, 
because the machine signals of different manufacturers often 
differ, but are similar in their characteristics and should be 
identified by a generally valid ML model.

Currently, there is no general ML approach for the 
classification of signals in the form of time series data from 
machines and equipment Industry 4.0 standards are often 
already implemented in newer machines, which means that 
Overall Equipment Effectiveness (OEE) optimizations are 
already directly applicable. However, brownfield machines are 
not equipped with them, which is why control signal
identification must be performed by external applications.

In order to support users in the extraction and identification 
of machine control signals, in preliminary work published in 
[6,7], an assistance system was conceptualized that 
automatically recognizes and provides them to the user based 
on machine learning and domain knowledge. Here, first 
approaches for ML model-based control signal identification of 
machines have already been investigated. Thereby, selected 
signals of a machine were successfully classified. Building on 
these approaches, machine control signal identification was 
extended and optimized in this paper.

Nomenclature

AKI Akima interpolation
ANN Artificial Neural Network
CBS Cubic B-Spline interpolation
EXP Exponential distribution
FCN Fully Convolutional Network
GAM Gamma distribution
LBS Linear B-Spline interpolation
LSTM Long Term-Short Memory
ML Machine Learning
OEE Overall Equipment Effectiveness
PCHIP Piecewise cubic hermite interpolating polynomial
ResNet Residual Neural Network
RF Random Forest
SBS Quadratic B-Spline interpolation

2. Own approach

Since signals are recorded in many brownfield machines, 
but it is not known which signals they are, the objective is to 
classify these signals independently of the machine in order to 
be able to use them for further applications. This signal 
recognition is to be implemented with the help of an ML model. 
For the validation of the ML model, meaningful data sets must 
be available in order to ensure not only high accuracy of the 
individual classes but also good generalizability.

Therefore, in order to achieve an information-rich data set, 
an approach for machine reference runs was developed in [8], 
which is explained in more detail in the following chapter and
provides a basis with very high information content. 
Subsequently, the recorded reference runs were used to train 
different ML models. It was investigated at which parameter 
settings signals can be identified best and which signals can be 
separated particularly well. In addition, different feature groups 
were created. In order to not only check the accuracy of the 
reference runs of one machine, validations were carried out 
with test runs of another machine. This should also make it 
possible to evaluate the generalization capability of the ML 
models to other machines.

3. Unique trajectories for datasets with high variability

The runs for the dataset were created with the algorithm 
described in [8] paragraph 3, which has been expanded 
regarding the probability distribution and the types of 
interpolation. To ensure versatile datasets and thus represent as 
many cases as possible, an ID system is used which ensures the
uniqueness of the generated. Therefore, the ID system assigns
unique bit sequences to each axis of the machines, which 
represents the direction of two subsequent support points of a
spline interpolation. For this purpose, an ID pool is generated 
from all possible binary sequences. Based on this ID pool, an 
assignment takes place according to predefined rules. If the 
pool contains 100 or fewer free IDs, all of them are considered 
for the assignment, if more than 100 IDs can be assigned, a 
random subset of 100 IDs is generated. The ID from the subset 
with the maximum Hemming distance to all used IDs is 
assigned to the axis. If more than half of all possible IDs have 
been assigned, all new IDs are assigned randomly.

Fig. 1. Density function of the gamma (orange) and the exponential (blue) 
distribution used to generate the consecutive support points (unitless).



Philipp Gönnheimer  et al. / Procedia CIRP 118 (2023) 145–150 147

As in [8], IDs with a length of 12 bits were used in this paper. 
If an ID has been assigned, it is used to determine the support
points for the interpolation of the trajectory. Therefore, the ID 
indicates the relative position of the consecutive support points.
With the next support point represents a higher value and with 
0 a smaller value than the previous one. To generate different 
movements even with the same predefined direction and thus 
to maximize the variability of the training data the allocation of 
support points is based on probability distributions.  Starting
from the direction specified by the ID, the relative position of 
the support points is generated using a gamma (GAM) or an
exponential (EXP) distribution. For this purpose, the 
surrounding range of the previous support point is divided into 
three areas, whereby in both cases no support point is placed in 
the left area to ensure a minimum distance. As can be seen in 
Fig. 1, there is a sudden increase in the probability density in 
the case of EXP during the transition from the left to the middle
area. Starting from this, the density function drops sharply 
towards the right area. As a result, support points tend to be 
similarly spaced. GAM, on the other hand, leads to a smooth 
transition and a high probability for support points in the center
of the middle area as well as a slow decrease towards the right 
area. 

Since splines are particularly suitable for generating 
complex trajectories from a limited number of support points, 
spline interpolations are used to interpolate the movement path.
For this purpose, linear (LBS), square (SBS) and cubic B-
splines (CBS) as well as piecewise cubic hermite interpolating 
polynomials (PCHIP) and Akima interpolations (AKI) should 
be used for the creation of the training datasets. As can be seen 
in Fig. 2, the interpolations differ in the continuity of their
derivatives, which leads to different signal curves. Thus, it
should be facilitated to classify signals with a high similarity
such as current and torque.

Fig. 2. Example of generated trajectories for an x-axis with the times of the 
predefined support points in the upper plot (vertical lines). In the bottom plot, 

the different accelerations due to the interpolation types can be seen.

To define as few changes as possible in the spindle 
movement and thus to minimize the time domain based 
distortion of the trajectory, a piece-wise constant spindle
movement is used. In addition, the movements of all axes and 
the spindle are synchronized to generate training datasets with 
the highest possible information content. Finally, all
movements are converted to a predefined range of values. For 
the experimental machine, analogous to [8], 10 mm for 
translatory axes, 2 ° for rotary axes and 200 rpm for the spindle 
were used as value ranges for the creation of the datasets.

As shown in [8], the movements correspond most closely to 
the predefined trajectory when using an axis interpolation 
where each axis is interpolated individually but synchronously 
with a block change at the start of the breaking ramp. In this 
paper, each movement is defined by 250 G-Code blocks 
representing the predefined points from the interpolations
generated for a duration of 10 s.

4. Creation of training datasets

As described above, datasets can be generated with 
reference runs where all axis movements are unique, which 
leads to high information content. To be able to specifically 
examine the effects of the probability distribution and the type 
of interpolation as well as the differences between translational 
and rotational axes, 100 subdatasets were generated on the test 
machine for all axis. Each subdatasets consists of 30 recordings 
based on the same ID pool and is recorded with a sample rate 
of 500 Hz and a length of 10 s.  For this purpose, the different 
probability distributions (GAM, EXP) and interpolation types 
(LBS, SBS, CBS, PCHIP, AKI) are combined for translatory 
and rotatory axes.

5. Experimental setup

The training datasets were created with a DMC 60H - HDM
milling machine with three translatory axes (X / Y / Z), one 
rotary axis (B) and a spindle. The brownfield machine was 
retrofitted with a new SINUMERIK control system and 
additional sensors to make it industry 4.0 capable. 

For a test dataset, additional data from a CMX 600 V milling 
machine was used. This machine has three translatory axes (X 
/ Y / Z) and is equipped with the same SINUMERIK control 
system as the DMC 60H - HDM. 

6. Basic approach of training the ML models

In order to gain as much knowledge as possible from the 
training and to take advantage of different approaches, different 
ML models were chosen for the training. On the one hand, 
ANNs were trained in the form of a ResNet, a FCN and a 
single-layer Long Short-Term Memory (LSTM). On the other 
hand, a Random Forest (RF) was trained. ResNet and FCN 
were selected based on their ability to classify time series, 
which was demonstrated in [3], and the structure was also 
adopted from them. Moreover, this time series classification 
capability of ResNet and FCN were reconfirmed in [4]. LSTM 



148 Philipp Gönnheimer  et al. / Procedia CIRP 118 (2023) 145–150

and RF showed decent results in previous studies, moreover, 
RF is easy to train and gives simple insight into the 
classification task [7]. Another advantage of RF is that domain-
based expert knowledge can be incorporated into it through 
feature selection.

Before the actual training, the recordings of the created 
reference runs are prefiltered. Here, zero output signals, signals 
without numerical values, binary signals, constant signals, 
cyclic signals and double signals are assigned to their class via 
rules, since generally valid rules exist for this. For the ML 
models, the focus is thus on the detection of the important 
useful signals, including current, torque, speed and position,
which are also recorded by most brownfield machines [2]. 
After this filtering and classification, the individual reference 
runs still contain 50 signals from the initial 100 signals. These 
50 signals include the current, the torque, the load, the speed
signal, which is acquired at the drive, the preset position after 
fine interpolation of all four axes and the spindle. In addition, 
the feed rate, which is fed to the controller, the control 
difference, the position of the indirect and the direct 
measurement, the position at the input of the position controller 
and the power signals of all four axes plus the actual position 
of the spindle are included.

An overall data set was created from these filtered reference 
runs with the unclassified signals. For this purpose, samples of 
the same length were extracted for each signal. The following 
sample lengths were chosen: 100, 500, 1000, 2500 and 5000 
data points. 5000 data points represents the maximum, since 
most reference runs have approximately this length. The 
shorter sample lengths were chosen, on the one hand, to be able 
to classify shorter time segments later, on the other hand, to 
find an overall optimal length for the classification. From these 
samples, the samples that had only zeros or a constant value 
were again filtered to ensure for the training data that they had 
the highest information.

For training of the RF, features were calculated from the 
individual samples. Three different feature groups were chosen 
for this purpose. Feature group 1 contains ten conventional 
statistical features used for classifications, taken from [7]. In 
feature group 2, these ten features were supplemented by seven 
features related to a priori knowledge about machine tools.
Feature group 3 contains only the seven features based on a 
priori knowledge. For the ANNs, the time series are directly 
usable as training data, they were only normalized using a z-
transformation as in [3].

Prior to the actual training, the total data set created was 
stratified split up into 80 % training and 20 % test data. Finally, 
with the 80 % training data, the RF and ANNs were trained for 
the different sample lengths and features.

In first trainings and also by previous findings from [7], it
was shown that there are dependencies or similarities between 
some signals, which make a distinction clearly difficult. This 
concerns among others current, torque and load, indirectly and 

directly measured positions, given position after fine 
interpolation and positions at the input of the position controller 
and generally equal signal groups of the different axes. Based 
on these findings, these difficult-to-distinguish signals were 
combined to signal groups for the final training. For the RF, 19 
target classes resulted, for the ANNs 15 target classes. 

After training, the ML models were tested with the 
remaining 20 % of the data set from the reference runs of the 
DMC 60H - HDM machine. Additionally, a test was performed 
with data from the CMX 600V machine to make statements 
about the generalizability of the ML models to other machines.

7. Results

Table 1 and Table 2 show the results of the ML models of 
the training, the validation during the training and the final test 
of the trained ML model with data from the DMC 60H - HDM 
and the CMX 600 V. The accuracies of the classification using 
the ML models are presented as results. These accuracies refer 
to the ratio of correctly classified samples and the total 
number of samples.

For the training of the LSTM, only the sample length 100 
led to a convergence in the training and thus to a stable training 
result, which can also be further evaluated. For this reason, only 
the result of the LSTM with the sample length of 100 data 
points is listed here.

Table 1. Training, validation and test results of RF.
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1 100 99.89 % 75.27 % 75.04 % 34.99 % 

1 500 99.99 % 81.27 % 81.09 % 33.71 % 

1 1000 99.99 % 82.78 % 82.74 % 34.41 % 

1 2500 100 % 84.91 % 84.74 % 31.77 % 

1 5000 99.99 % 87.75 % 87.48 % 33.48 % 

2 100 100 % 99.64 % 99.59 % 37.49 % 

2 500 100 % 99.93 % 99.92 % 33.95 % 

2 1000 100 % 99.95 % 99.94 % 29.91 % 

2 2500 99.99 % 99.96 % 99.96 % 31.39 % 

2 5000 99.99 % 99.98 % 99.96 % 31.26 % 

3 100 99.99 % 98.74 % 98.63 % 35.84 % 

3 500 100 % 99.72 % 99.69 % 38.13 % 

3 1000 100 % 99.84 % 99.82 % 32.44 % 

3 2500 99.99 % 99.95 % 99.90 % 31.54 % 

3 5000 100 % 99.93 % 99.91 % 29.00 % 
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Table 2. Training, validation and test results of KNN.
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ResNet 100 98.40 % 97.78 % 97.75 % 41.94 %

ResNet 500 99,00 % 99.00 % 98.98 % 28.33 %

ResNet 1000 99.20 % 99.11 % 99.20 % 35.86 %

ResNet 2500 97.30 % 97.19 % 97.30 % 36.81 %

ResNet 5000 98.30 % 98.13 % 96.81 % 23.50 %

FCN 100 91.00 % 90.84 % 90.22 % 30.11 %

FCN 500 93.20 % 90.70 % 91.55 % 25.49 %

FCN 1000 93.10 % 89.72 % 92.43 % 25.49 %

FCN 2500 94.50 % 91.05 % 84.94 % 33.70 %

FCN 5000 73.20 % 72.51 % 71.49 % 25.06 %

LSTM 100 91.30 % 89.71 % 90.54 % 37.87 %

8. Evaluation of results

As the results from the previous section show, the ML 
models obtained by training on the DMC 60H - HDM reference 
runs provide very good classification results with an overall 
accuracy of 90 % to 99 % in most cases for this machine's data.
The RF and the ResNet provide the best results. For the RF, it 
must be noted that feature group 1 in the results show a 
tendency towards no optimal fit in classification, especially for 
smaller sample lengths. Similar results are shown by the FCN 
for sample lengths of 2500 and 5000 data points.

When transferring the ML models to the CMX 600V, it 
becomes clear by the strong decrease of the classification 
accuracy that no universal generalization capability of the ML 
models to other machines could be achieved. This problem 
shows up independently of the type of ML model. 

One reason for this could be that the reference runs of the 
DMC 60H - HDM cover too much the characteristics of exactly 
this machine and therefore there is an overfitting of exactly this 
machine in the training. In addition, the dependencies and 
similarities of different signals may also differ for different 
machines, which makes a universal generalization of a ML 
model difficult. In general, it also shows that for overall 
accuracy on CMX 600V data, sample length and feature group 
play only a minor role in RF, but features based on a priori 
knowledge tend to classify better. For ResNet, there is a clear 
difference in overall accuracy with respect to sample length. 
Sample lengths of 100, 1000, and 2500 data points provide 
significantly higher accuracies than 500 and 5000 data points. 
For the FCN, the sample length of 100 and 2500 data points 
provide the highest overall accuracy. 

Due to the poor results on the CMX data with no overall 
accuracy higher than 42 %, these results were analyzed again 
in more detail to see whether, if necessary, individual signals 
or signal groups such as the position signals of the translational 
axes were detected in a meaningful way in order to be able to 
use the trained ML models for partial classification or in 
combination. In addition, this was used to check whether the 
selection of the target classes based on the reference runs of the 
DMC 60H - HDM machine was too specific, which was 
already indicated by the training results of FCN and LSTM.

This analysis showed that the RF with feature group 3 and a 
sample length of 500 data points provided the best results. 
With this, three individual signals (speed of the spindle, preset 
position after fine interpolation of the spindle and actual 
position of the spindle) and two signal groups (positions of the 
translatory axes and control differences) could be classified 
with more than 92 % accuracy, whereby none of the other 
signals was incorrectly assigned to one of these signals or 
signal groups with a proportion greater than 5 %. In addition to 
these signals, also the feed rates, which are fed to the controller, 
summarized as a signal group of all axes reached an accuracy 
of more than 84 %, whereby no other signal with a share larger
than 0.3 % was wrongly assigned to this signal group. In Table 
1.3 the result of this evaluation is shown again in detail. It 
shows the overall accuracy and the maximum incorrectly 
assigned share of another signal. The latter indicates the 
percentage of the signal that was most often incorrectly 
assigned to the signals indicated in Table 3.

This finding again shows that features based on a priori
knowledge can better separate signals from each other. This is 
also in line with the results of a similar scenario from [5], 
in which feature-based classification of sensor signals 
from vehicles was performed, also involving time series 
between which different dependencies occur. This showed 
that with features based on a priori knowledge from vehicle 
technology provided the best classification accuracy when 
assigning signals to signal classes. [5] 

Table 3. Evaluation of RF with a sample size 500 and feature group 3.
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The ResNet with the sample length of 1000 data points was 
also able to classify the power signals with more than 78 %
accuracy, with no other signal being misclassified as a power 
signal with a percentage greater than 1 %.

9. Conclusion and outlook

Due to the fact that no ML model achieved sufficiently good 
results for both high accuracy and high generalizability, as
shown in chapter 7 and 8, further adaptations of the overall 
model have to be made. Since the overall model is to be used 
in a standardized way in brownfield environments, it is 
necessary that the signals of different machines can also be 
identified with high accuracy. Two concrete approaches are 
available for further improvements.

9.1. Optimization of the existing model

One approach would be to improve the ML model by 
extending the data base of different machines, which is used as 
a training basis. The creation of additional reference runs and 
the recording of process data could lead to a higher accuracy 
and generalizability. The problem of specific characteristics of 
the training data would be mitigated by the additional data of 
further machines. This would generate a commonly applicable 
image that can be used to train the ML model. The pre-filtering 
as well as the separation according to the classification of the 
ML model still exist.

9.2. Hybrid approach

Based on the good identification capability of signal types, 
the ML approach can be enriched using a set of rules built on a 
priori knowledge. This hybrid approach promises to result into 
higher identification accuracy.

This could result from a multi-step process in which signals 
are first prefiltered. Among other things, binary and cyclic 
signals are already classified, which can be identified by simple
rule bases. The advantage of a filter with classification is that 
the data is not sorted out, but can be used for further data 
processing by assigning it to classes.  Subsequently, signal 
classes, such as current / torque, could be classified according 
to [7]. These can be classified with high accuracy by ML 
models according to [7]. Also, the results from chapter 7 show 
that. e.g. position signals can be classified particularly well in 
the case of a RF. Due to physical relationships and correlations, 
large dependencies exist, which is why the corresponding 
classes can be further separated by rule-based models. This 
allows further information to be generated from the data. By 

means of the breakdown of the signals, these can be assigned 
to the respective machine addresses. This enables the direct 
assignment of the signals to the classes in real time.

Using the hybrid approach, the accuracy issues identified in 
Chapter 8 related to high generalizability could be solved by 
merging ML models and rule-based approaches.

The identified signals can then be used to apply OEE 
optimizations such as predictive maintenance, condition 
monitoring, and process optimization in the brownfield 
industry. In subsequent work, the approach for identification by 
prefiltering, ML models and rule bases without additional 
reference runs will be developed as a hybrid approach and 
validated on various machines.
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