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Abstract
In bi-criteria optimization problems, the goal is typically to compute the set of Pareto-optimal
solutions. Many algorithms for these types of problems rely on efficient merging or combining of
partial solutions and filtering of dominated solutions in the resulting sets. In this paper, we consider
the task of computing the Pareto sum of two given Pareto sets A, B of size n. The Pareto sum
contains all non-dominated points of the Minkowski sum M = {a + b|a ∈ A, b ∈ B}. Since the
Minkowski sum has a size of n2, but the Pareto sum C can be much smaller, the goal is to compute
C without having to compute and store all of M . We present several new algorithms for efficient
Pareto sum computation, including an output-sensitive one with a running time of O(n log n + nk)
and a space consumption of O(n + k) for k = |C|. We also describe suitable engineering techniques
to improve the practical running times of our algorithms and provide a comparative experimental
study. As one showcase application, we consider preprocessing-based methods for bi-criteria route
planning in road networks. Pareto sum computation is a frequent task in the preprocessing phase.
We show that using our algorithms with an output-sensitive space consumption allows to tackle
larger instances and reduces the preprocessing time compared to algorithms that fully store M .
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1 Introduction

Solving multi-objective combinatorial optimization problems demands to find the set of
non-dominated solutions, also referred to as skyline, Pareto frontier or Pareto set. To solve
problem instances of substantial size, solution approaches often rely on efficient combina-
tion and filtering of partial solutions. In particular, non-dominance filtering of unions or
Minkowski sums of intermediate Pareto sets occur as a frequent subtasks in optimization
algorithms. Examples include decomposition approaches for multi-objective integer program-
ming [16], dynamic programming methods for multi-objective knapsack [7], bi-directional
search algorithms for multi-criteria shortest path problems [4], or Pareto local search for
multi-objective set cover [14].
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A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
B1 1, 60 3, 58 5, 51 13, 50 14, 46 15, 43 21, 42 22, 38 24, 36 26, 34
B2 4, 56 6, 54 8, 47 16, 46 17, 42 18, 39 24, 38 25, 34 27, 32 29, 30
B3 7, 54 9, 52 11, 45 19, 44 20, 40 21, 37 27, 36 28, 32 30, 30 32, 28
B4 10, 53 12, 51 14, 44 22, 43 23, 39 24, 36 30, 35 31, 31 33, 29 35, 27
B5 13, 50 15, 48 17, 41 25, 40 26, 36 27, 33 33, 32 34, 28 36, 26 38, 24
B6 16, 49 18, 47 20, 40 28, 39 29, 35 30, 32 36, 31 37, 27 39, 25 41, 23
B7 17, 48 19, 46 21, 39 29, 38 30, 34 31, 31 37, 30 38, 26 40, 24 42, 22
B8 21, 47 23, 45 25, 38 33, 37 34, 33 35, 30 41, 29 42, 35 44, 23 46, 21
B9 24, 45 26, 43 28, 36 36, 35 37, 31 38, 28 44, 27 45, 23 47, 21 49, 19
B10 28, 41 30, 39 32, 32 40, 31 41, 27 42, 24 48, 23 49, 19 51, 17 53, 15

Figure 1 Example instance with input Pareto sets A, B of size 10. The Minkowski sum has 100
elements. The Pareto sum C consists of 27 elements (marked green in the plot as well as in the
matrix representation).

In this paper, we focus on the efficient computation of the filtered Minkowski sum of
two-dimensional Pareto sets A, B. The Minkowski sum M is defined as the set of elements
derived from pairwise addition of elements in A and B. However, the Minkowski sum often
contains many dominated elements. In fact, it was proven in [12] that for A, B of size n, the
set of non-dominated elements in M – which we refer to as Pareto sum of A, B – might have
a size in o(n). Thus, algorithms that first compute all elements of M and subsequently apply
non-dominance filtering might be unnecessarily wasteful as they come with a running time
and space consumption in Ω(n2). The goal of the paper is to design practical algorithms
for Pareto sum computation with output-sensitive space consumption, and to evaluate their
performance on realistic inputs. As one particular use case of our methods, we will consider
the bi-criteria route planning problem in road networks. There exists a plethora of algorithms
to compute the set of Pareto-optimal paths between a given source and a target node in the
network, see e.g. [8, 2]. The currently fastest methods rely on preprocessing. In particular,
variants of contraction hierarchies (CH) have been proven to be very useful in this context
[17, 19]. In a CH, the input graph is augmented with so called shortcut edges that represent
sets of Pareto-optimal paths between their end points. The shortcuts store the costs of these
paths in the form of Pareto sets. On query time, shortcuts are instrumented to decrease
the search space size of a Pareto-Dijkstra run, resulting in significantly faster query times
and reduced space consumption. In the preprocessing phase, the shortcuts are inserted
incrementally. The base operation is to concatenate two shortcut or original edges e = {u, v}
and e′ = {v, w} to form a new shortcut {u, w}. The Pareto set of the new shortcut is the set
of non-dominated elements in the Minkowski sum of the Pareto sets corresponding to e and e′.
Thus, the preprocessing time crucially depends on an efficient Pareto sum computation. In [9],
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it was discussed that computing the Minkowski sum and filtering all dominated elements in a
naive fashion is too time-consuming. Therefore, filtering strategies were proposed that prune
dominated elements. However, these strategies are not guaranteed to retrieve the Pareto
sum but usually produce a superset thereof. Keeping supersets slows down later stages of
the preprocessing as well as query answering. We will propose novel algorithms that allow
for fast and exact Pareto sum computation.

1.1 Related Work

Non-dominance filtering in point sets is a well-studied task in computational geometry [6],
also referred to as skyline or maxima computation. There exist output-sensitive algorithms
for the two-dimensional case as e.g. the one proposed by Kirkpatrick and Seidel [11] with a
running time of O(N log k) where N denotes the size of the point set and k the size of the
skyline. The basic idea is to first partition the input points into k sets of size ≈ N/k with
non-overlapping ranges with respect to their x-coordinates. Then, the sets are processed
individually in sorted order. As k is typically not known beforehand, a more intricate version
of the algorithm allows to achieve the same asymptotic running time by starting with a coarse
partition and refining it on demand as soon as a certain number of non-dominated points are
identified. With a worst-case running time of O(N log N) and close-to-linear running time
for small k, this algorithm seems to be well-suited for Pareto sum computation. However, in
our application we have N = |M | where M is the Minkowski sum of the input sets A, B; and
any approach that relies on access to M as a whole is bound to a running time and space
consumption in Ω(n2).

Using the interpretation of input elements as two-dimensional points, Pareto sum compu-
tation can also be reduced to computing the Minkowski sum of the orthogonal hulls of A and
B (where both sets are augmented with a dummy point based on the maximum coordinate
values in the respective set). The Minkowski sum of two convex polygons can be computed
in linear time [15]. For non-convex inputs P, Q, the polygons are first decomposed into
convex subpolygons P1, . . . , Ps and Q1, . . . , Qt. Then, the linear time algorithm is applied
to all pairs Pi, Qj , and finally the union of all partial results is computed. The running
time depends on the applied decomposition technique and the number and complexity of
the resulting subpolygons [1]. However, if P and Q are orthogonal convex hulls of size n,
their convex decomposition cannot contain fewer than n subpolygons, and thus the approach
needs to compute the union of Θ(n2) partial solutions.

Recently, new algorithms for Pareto sum computation with the potential to achieve
subquadratic running time and space consumption were proposed in [12]. The so called
NonDomDC algorithm exploits the structure of the matrix that represents the Minkowski sum
(see Figure 1). In particular, it makes use of the fact that columns in the matrix are Pareto
sets themselves. Assuming the Pareto sum Pi of elements occurring in the first i columns
is known, Pi+1 can be computed by merging Pi and column i + 1 and pruning dominated
elements in O(|Pi| + n) time. Thus, with P := maxn

i=1 |Pi| denoting the maximum size of an
intermediate solution, the total running time is in O(Pn) and the space consumption is in
O(n + P ). However, this does not constitute an output-sensitive algorithm as the size of
the intermediate Pareto sum can be significantly larger than the final result size. So even
for small k, the algorithm might have cubic running time and quadratic space consumption.
However, their experimental study demonstrates good performance in practice. Similar
methods, as the box-based method proposed in [10], were shown to be outperformed.

ESA 2023
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Table 1 Running time and space consumption of different algorithms for Pareto sum computation.
The input size is denoted by n and the output size by k.

algorithm running time space
NonDomDC (ND) O(n3) O(n2) [12]
Kirkpatrick-Seidel (KS) O(n2 log k) Θ(n2) [11]
Brute Force (BF) O(n4) O(n + k) 4.1
Binary Search (BS) O(n3 log n) O(n + k) 4.2
Sort & Compare (SC) O(n2 log n) O(n + k) 4.3
Successive Binary Search (SBS) O(nk log n) O(n + k) 5.1
Successive Sweep Search (SSS) O(n log n + nk) O(n + k) 5.2

1.2 Contribution
In this paper, we consider the problem of efficient Pareto sum computation in theory and
practice. First, we present an algorithm that has the ability to identify a subset of the
Pareto sum C in linear time. This algorithm can be used as a preprocessing step for all
other approaches for Pareto sum computation. Additionally, we show that for certain kinds
of inputs, the algorithm already returns whole set C. Then, we present and thoroughly
analyze several algorithms for Pareto sum computation with a special focus on achieving an
output-sensitive space consumption. Table 1 provides an overview of the characteristics of
our proposed algorithms as well as existing baseline approaches. In an extensive experimental
study, we compare their scalability. We consider randomly generated data as well as real
inputs that stem from bi-criteria route planning instances. For both input types alike, our
output-sensitive successive sweep search proves to be the most efficient algorithm. This aligns
well with our theoretical analysis, as it turns out, especially for large input sizes, that the
Pareto sum C contains only a small fraction of the elements in the Minkowski sum.

2 Problem Definition

In this section, we formally define the notion of a Pareto sum and provide notation used
throughout the paper.

▶ Definition 1 (Domination). Given two points p, p′ ∈ R2, we say that p dominates p′, or
p ≺ p′, if p ̸= p′ and p.x ≤ p′.x as well as p.y ≤ p′.y.

▶ Definition 2 (Pareto set). A set S ⊂ R2 is a Pareto set if no point in S dominates another
point in S, that is ∄s, s′ ∈ S with s ≺ s′.

We always assume that Pareto sets are sorted in lexicographic order. We use Si to refer to
the element with rank i in set S.

▶ Definition 3 (Minkowski sum). Given two Pareto sets A, B ⊂ R2, their Minkowski sum
M = A ⊕ B is defined as M := {a + b| a ∈ A, b ∈ B}.

In a slight abuse of notation, we will use M to refer to the set of elements in the Minkowski
sum as well as the matrix where Mij = Ai + Bj .

▶ Definition 4 (Pareto sum). Let A, B ⊂ R2 be two Pareto sets of size n and let M = A ⊕ B

denote their Minkowski sum. Then the Pareto sum C of A, B is defined as the set of all
non-dominated points in M .

Figure 1 illustrates the concepts of Minkowski and Pareto sums. Throughout the paper, we
will use k to denote the size of C.
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Figure 2 Left: Pareto sets A, B together with their convex hulls. Right: The Minkowski sum
CH(A) ⊕ CH(B) of the convex hulls encloses all pairwise vector additions a + b with a ∈ CH(A)
and b ∈ CH(B). The respective vertices (green points) are a subset of the Pareto Sum C.

3 Minkowski Sum of Convex Hulls

In this section, we present an algorithm that for given Pareto sets A, B computes part of their
Pareto sum in linear time. Thus, this algorithm can be used as an efficient preprocessing
method before applying other (more costly) techniques.

For two convex polygons P, Q ∈ R2, their Minkowski sum P ⊕ Q is a convex polygon
with at most |P | + |Q| vertices and these vertices can be computed in linear time [15]. Let
now A, B be sorted Pareto sets augmented with dummy points (x, y) where x := maxs∈S s.x

and y := maxs∈S s.y for S = A and S = B, respectively. We use CH(A) and CH(B) to
refer to the convex hulls of these two sets. The following observation captures the connection
between these convex hulls and the Pareto sum.

▶ Observation 5. The vertices of the Minkowski sum CH(A) ⊕ CH(B) are a subset of the
Pareto sum of A and B (excluding the dummy point sum).

For a sorted Pareto set, its convex hull can be computed in linear time using Andrew’s
algorithm [3]. Then, using the linear time Minkowski sum algorithm on the two convex hulls
and extracting the respective polygon vertices, we obtain a subset of the Pareto sum C, see
Figure 2. If both A, B are convex, then this procedure already returns all of C. We thus get
the following corollary.

▶ Corollary 6. The Pareto sum of two convex, sorted Pareto sets can be computed in O(n).

For non-convex A, B, we might only get part of the Pareto sum. However, as this step
only takes linear time (assuming the Pareto sets are presorted), it can always be used as an
initial step before applying other algorithms. We will discuss below in more detail how the
knowledge of C ′ ⊂ C can be exploited to decrease the practical running time of several of
the algorithms we propose.

ESA 2023
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4 Base Algorithms

In this section, we discuss three simple base algorithms for Pareto sum computation along
with engineering concepts for their acceleration and space consumption reduction. The
algorithms all proceed by checking for each element p ∈ M whether there exists p′ ∈ M that
dominates p. If there is no such p′, the point p is added to the Pareto sum C. The only
difference between the algorithms is the implementation of the dominance check.

4.1 Brute Force (BF)

The easiest way to check for a point p ∈ M whether it is non-dominated is by pairwise
comparison to all other elements in M . This dominance check takes O(|M |) time per point,
accumulating to a total time of O(|M |2) = O(n4). As the elements Mij can be computed on
demand, the space consumption is linear in the input size n and the output size k.

▶ Corollary 7. The BF algorithm runs in O(n4) time using O(n + k) space.

4.2 Binary Search (BS)

To decrease the time needed for the dominance check, we take the structure of M into
account. Based on the assumption that A and B are sorted and that Mij is defined as
Ai + Bj , we have the property that each column (and each row) of the matrix M forms a
sorted Pareto set on its own. Thus, if we want to check whether column Mj contains an
element dominating p, we simply have to find the entry Mij with the largest index i such that
Mij .x ≤ p.x as well as the entry Mi′j with the smallest index i′ such that Mi′j .y ≤ p.y. Then
all elements in Mj with a row index in [i′, i] dominate p (or are equal to p). Accordingly, the
dominance check for Mj boils down to evaluating whether i′ ≤ i holds. These two indices can
each be identified via a binary search over the respective coordinates in the column. Hence
the dominance check time per column is in O(log n), resulting in a total time of O(n log n)
per element in M . Entries of M that need to be accessed can be computed on demand.

▶ Corollary 8. BS runs in O(n3 log n) time using O(n + k) space.

To reduce the practical running time of the BS algorithm, we propose the following
engineering techniques.

Pruning. Whenever we identify a non-dominated point p and add it to C, we can also
compute all entries in M dominated by p in time O(n log n), again with the help of two
binary searches per column. For those points, dominance does not need to be checked
again. However, if we simply store a flag for each entry in M whether it needs to be further
considered or not, the space consumption increases to n2. Instead we can store for each
column the set of intervals of dominated points in an interval tree. The number of intervals
per column is upper bounded by k. Then, for a point p = Mij we can query the interval tree
in time O(log k) to see whether the point lies in a dominated region. Intervals can also be
added or merged within the same time. However, the space consumption would still increase
to O(nk). To keep the space consumption linear, one might only want to store a constant
number of intervals per column (e.g. only the largest one) and then merge or replace intervals
if possible or needed. If pruning is applied, we can also disregard fully dominated columns in
the binary searches of the remaining elements.
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Figure 3 Input Pareto sets following different kinds of distributions (left) and schematic depiction
of the corresponding Minkowski matrix M (middle). Green dots indicate entries in M that are
points on the Minkowski sum of the convex hulls of A and B, black dots indicate entries that are
dominated by the green ones, and orange dots encode the remaining elements of the Pareto sum
which then together dominate the white dots. In the right images, the Minkowski sum and the
Pareto sum are illustrated based on point coordinates.

Priority Binary Search (PBS). As soon as dominance checks might be avoided for some
of the elements based on the pruning techniques described above, the order in which the
points are considered impacts the running time. Identifying points that dominate many other
points early on can significantly reduce the total number of checks. For that purpose, we will
use the preprocessing step described in Section 3 to get an initial set of points C ′ ⊂ C. We
can directly exclude any points dominated by the points in C ′. Furthermore, we conjecture
that points in the same rows or columns as the points of C ′ occupy in M are likely to be
also part of C. Thus, we give priority to these points in our search. Figure 3 shows some
visual support for this hypothesis.

4.3 Sort & Compare (SC)
Given a sorted set of points, extracting the set of non-dominated points can be accomplished
in constant time per point. The smallest element is always added to C. For each other
element in sorted order, we check whether it is dominated by (or equal to) the currently last
element in C. If that is not the case, the element is added to C.

Computing and sorting M as a whole takes time O(n2 log n) and requires quadratic space.
But we can exploit the structure of M to improve the space consumption to linear as follows:
We use a min-heap data structure and initialize it with the first row of M . Each element
in the heap remembers its position in M . When we extract the min element Mij from the
heap and C is empty so far, we add the element to C. Otherwise, we compare Mij to the
element added to C last. If Mij is not dominated, we also add it to C. In any case, we add
its column successor Mi+1j to the heap (as long as i < n). As each column is a sorted Pareto

ESA 2023



60:8 Pareto Sums of Pareto Sets

set in itself, we know that Mi+1j has to have larger x-value than Mij . Thus, we extract
the elements from the heap exactly according to their global lexicographic order. As the
heap never contains more than n elements, its space consumption is in O(n) and the heap
operations take O(log n) per round.

In conclusion, the heap-based variant has the same asymptotic running time as the one
where we fully compute and sort M , but a significantly reduced space consumption.

▶ Corollary 9. SC runs in O(n2 log n) time using O(n + k) space.

5 Output-Sensitive Algorithms

If the Pareto sum C contains (almost) all elements of the Minkowski sum M , a quadratic
running time is needed already to report C. In this case, the running time of SC is
asymptotically optimal up to logarithmic factors. However, in case C is small, subquadratic
running times might be possible. We will present two output-sensitive algorithms in this
section that have a running time asymptotically faster than SC for k ∈ o(n) or k ∈ o(n log n),
respectively. Both algorithms detect the elements in C successively. This is a well-established
paradigm for output-sensitive skyline computation, see e.g. [13, 18]. However, known
algorithms rely on the explicit availability of the point set to construct an efficient search
data structure. Based on the following lemma, we will design successive algorithms that do
not need access to M as a whole.

▶ Lemma 10. Let A, B be two Pareto sets and c, c′ ∈ C two elements of their Pareto
sum with c.x < c′.x. Then the lexicographically smallest element m in M that dominates
(c′.x − ε, c.y − ε) for ε > 0 is also part of C (if such an element exists).

Proof. We first argue that for any m ∈ M , the smallest point p ∈ M dominating m (or
being equal to m) is part of the Pareto sum C. Assume otherwise for contradiction. Then
there is a point p′ ∈ C that dominates p and thus also m. But in this case p′ is smaller than
p which contradicts the choice of p as smallest element to dominate m.

Now, if there is any point m ∈ M that dominates the dummy point (c′.x − ε, c.y − ε) the
above argumentation applies. ◀

Clearly, M11 and Mnn are always part of the Pareto sum, as those are the points with smallest
global x-value and y-value, respectively. All other elements in C must have an x-value in
the open interval (M11.x, Mnn.x). Thus, if we have an oracle that returns the smallest point
m ∈ M (with respect to lexicographic ordering) in a given range [xmin, xmax) × [ymin, ymax),
we can compute C based on Lemma 10 as follows. We initialize C = M11, Mnn and
xmin = M11.x, xmax = Mnn.x, ymin = Mnn.y, ymax = M11.y. Then we query the oracle to
get the smallest point m in the respective range. If such a point does not exist, we abort.
Otherwise we add the point m to C and set xmin = m.x, ymax = m.y before repeating the
process. Figure 4 illustrates the core concept.

Thus, the algorithm discovers the points in C one-by-one in increasing order of their
x-values (except for Mnn which is known from the start) using k calls to the range-minimum
oracle. A naive oracle implementation would be to check all points in M for containment in
the range and to keep track of the minimum among them. Then each call to the oracle costs
O(n2) and the overall running time of the successive algorithm would be O(n2k). Next, we
describe how to implement the oracle more efficiently.
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Figure 4 Initial search range (green rectangle) spanned by M11 and Mnn. The range-minimum
element m then leads to a reduction of ymax and an increase of xmin (blue arrows) which tightens
the search range for the next element of C.

5.1 Successive Binary Search (SBS)
In the BS approach described in Section 4.2, we use two binary searches per column of M

to check for a query point m ∈ M whether an element dominating m exists in that column.
We can use the same concept to implement a range-minimum oracle: For each column, we
identify via binary searches the first position fx with an x-coordinate larger or equal to
xmin, the last position lx with an x-coordinate smaller than xmax, the first position fy with a
y-coordinate smaller than ymax, and the last position ly with a y-coordinate larger or equal
to ymin. If [fx, lx] ∩ [fy, ly] ̸= ∅, we return max(fx, fy). The entry at that position is the
smallest point dominating m in the column. Keeping track of the smallest returned point
over all columns provides the desired result in O(n log n) per oracle call.

▶ Corollary 11. Successive BS runs in O(nk log n) time using O(n + k) space.

For standard BS we can use the Minkowski sum of the convex hulls of A and B to already
identify a subset C ′ with size k′ ≤ k of the Pareto sum C without the need of binary searches.
We can apply the same initialization here and then simply use the successive algorithm
independently in each of the k′ − 1 ranges induced by any two consecutive points in C ′ (in
sorted order). By that, the number of oracle calls increases to at most k + k′ − 1 < 2k as in
each of the k − 1 ranges the respective last oracle call will return no point. This does not
affect the asymptotic running time, though. But it allows to conduct up to k′ − 1 oracle
calls in parallel.

To further foster parallelization, we can weaken the oracle requirement to always return
the smallest point in a given range to the requirement to return any non-dominated point
in the range. The new point then splits the previous range into two subranges that can be
queried independently. With that, the oracle might be called up to k + 2k′ − 2 < 3k times as
now in each of the k′ − 1 ranges the call to its leftmost induced subrange and the call to
its rightmost induced subrange will return no point. Again, the asymptotic running time
remains unaffected. To implement the weaker oracle, we propose the so called Cascading
BS (CBS) algorithm. Again, we consider the columns one after each other. But now, as
soon as we find a column entry p in the given query range, we update the range immediately
and then search for a point dominating p in the remaining columns. If we find such a point,
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we immediately update again. Note that it can never happen that a point p′ in an already
visited column dominates p, as then we would have selected one point from said column to
tighten the query range and there can never be two points in one column dominating one
another. Thus, after we considered all columns, we can safely add the current point p to C.

For an example of the difference between SBS and CBS, consider the matrix in Figure
1 and assume the current search range is [14, 53) × [15, 44). SBS discovers the element
A6 + B1 = (15, 43) next as this is the point with smallest x-value that dominates the dummy
point (53 − ε, 44 − ε). CBS, however, first detects the point A1 + B10 = (28, 41) as it
already dominates the dummy point. It then proceeds by trying to find an element that
dominates (28, 41). It thus detects A3 + B5 = (17, 41) next and tightens the search range
accordingly. As this is a Pareto sum point, no further dominating elements are found in the
remaining columns and (17, 41) is returned and added to C. The search range is then split
into [14, 17) × [41, 44) and [17, 53) × [15, 41), which can be processed independently.

5.2 Successive Sweep Search (SSS)
To improve the oracle time of SBS, we observe that the binary searches in the columns are
somewhat redundant. If M was fully available, we could apply fractional cascading [5] to the
column vectors. This would reduce the running time to compute the positions fx, lx, fy, ly in
all columns from O(n log n) to O(n). Thus, the k oracle calls cost O(nk). Unfortunately,
computing M and the data structure for fractional cascading requires space and time in
Θ(n2). Fortunately, we can also achieve linear oracle time without the need to access M as a
whole. Based on the structure of M , we know that for an entry Mij all elements Mst with
s ≥ i and t ≥ j have a larger x-coordinate than Mij but a smaller y-coordinate. Vice versa,
all elements in Mst with s ≤ i and t ≤ j have a smaller x-coordinate than Mij but a larger
y-coordinate. This implies, for example, that the position of fx in some column cannot be
larger than the position of fx in the neighboring column to its left. Similar relationships
hold for the positions of lx, fy and ly in neighboring columns. Accordingly, we can find
the respective column values by a single left-to-right sweep, where the search path forms a
monotone staircase structure and is thus bounded in length by 2n.

Even better, we can have a single unified sweep to find the range-minimum m in linear
time: We start at Mn1, that is, the last entry of the first column. Whenever we enter a new
column j, we apply upwards linear search in that column until we reach an entry Mij where
either Mij .x > xmin and Mi−1j .x ≤ xmin or where Mij .y < ymax and Mi−1j .y ≥ ymax. Thus,
we get i = max(fx, fy); except if the entry we start from already has a too small x-value
or a too large y-value or both which means that the column contains no point in the query
range. In the former case, we check whether Mij is contained in the range. If the check is
passed, Mij is a valid candidate for the range-minimum m. We keep track of the smallest
viable candidate over the course of the algorithm. We then go from element Mij to its right
neighbor Mij+1 and proceed with the new column as described above. After processing the
last column, we return the current m as the range-minimum element.

▶ Lemma 12. The sweep algorithm computes the smallest m ∈ M in a given range in O(n).

Proof. To prove correctness, we need to argue that for a column j entered at row i and
exited at row i′ ≤ i, the range-minimum m can not be an entry Mi∗j with i∗ < i′ or i∗ > i.

Clearly, checking elements in column j with a row index smaller than i′ cannot give us
any viable candidates, as either their respective x-value is too small or their y-value is too
large by definition. Hence we only need to consider i∗ > i. If Mij is in the query range, then
the entries in column j with i∗ > i cannot constitute the range-minimum as they all have an
x-value larger than that of Mij . If Mij is not in the query range, we have the following cases:
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Mij .x > xmax. But then Mi∗j .x > xmax holds as well.
Mij .x < xmin or Mij .y > ymax. This case only occurs if i = n. Thus there is no i∗ > i.
Mij .y < ymin. But then Mi∗j .y < ymin holds as well.

Accordingly, if column j contains the range minimum it needs to be an element with a row
index in [i′, i]. If Mi′j is in the range, it is clearly the best candidate in column j for the
range-minimum m. If Mi′j is not in the query range, then the same applies to all entries
in the same column with larger row index as argued above. Thus, it is sufficient to check
Mi′j for each column j. The running time is determined by the number of elements in M

that are accessed. As the interval of elements checked for each column only overlaps with
the intervals of all columns to its left in a single row index, at most 2n elements in M are
considered in total. ◀

Based on this sweep search (SS) oracle, we now get a successive algorithm with better running
time than SBS.

▶ Corollary 13. Successive SS runs in O(n log n + nk) using O(n + k) space.

In fact, if k ∈ o(log n), the running time is dominated by the initial sorting step of the
elements in A, B. For k ∈ o(n), we achieve a subquadratic running time.

For acceleration of sweep search in practice, we observe that if we enter a column at row
i and confirm for some value i′ < i that Mi′j is still feasible with respect to xmin and ymax,
we do not have to check intermediate rows to get the correct range-minimum by virtue of
Lemma 12. Similarly, if we have not found any Mij in column j with Mij .x ≥ xmin and
Mij .y < ymax and the same inequalities apply to some Mij′ with j′ > j, we do not need
to check intermediate columns for range-minimum candidates. Thus, in both cases we can
introduce a skip threshold ∆ > 1 and check for i′ = i − ∆ or j′ = j + ∆, respectively, whether
the necessary conditions apply. If that is the case we skip intermediate rows or columns and
then try to skip ahead again. If skipping is no longer possible, we simply fall back to linear
search. Accordingly, in the worst case, we check at most one superfluous element for each
row and column. This does not increase the asymptotic running time of the oracle but might
reduce its running time in practice if skipping is successful.

Furthermore, similar to CBS, we also propose Cascading Sweep Search (CSS). Here
again, whenever we found a temporary range-minimum candidate m we immediately tighten
the search range to enforce that further candidates need to dominate the current m to be
considered. The sweep search then also guarantees to return an element of the Pareto sum C.
The Minkowski hull preprocessing and the split of search intervals to foster parallelization as
described for CBS can be applied here as well.

6 Experimental Evaluation

We implemented the seven algorithms for Pareto sum computation listed in Table 1 in
C++: The two existing approaches, namely the Kirkpatrick-Seidel algorithm (KS) [11] and
NonDomDC (ND) [12], the three base algorithms (BF, BS, SC), and the two successive
algorithms (SBS, SSS). For KS, we implemented the simpler (and thus faster) variant, where
the output size k (used for partitioning) is given as an input. We simply compute k with one
of our other algorithms and then feed the result into KS. For ND, we actually implemented
two variants described in [12]: In the first variant (described in more detail in Section 1.1),
one always merges the current result with the next column (Sequential ND, SND). In the
second variant, columns are combined in a MergeSort like fashion (Doubling ND, DND). As
benchmark data we use randomly generated inputs as well as real inputs. Both types of data
sets are described in more detail below. All experiments were conducted on a single core of a
3.4 GHz AMD Ryzen Threadripper 1950X 16-core processor with 126 GB of RAM.
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6.1 Results for Generated Data

To generate Pareto sets, we take two random samples of n unique values from a given range.
The first sample is sorted increasingly and represents the x-coordinates within the Pareto set.
The second sequence is sorted decreasingly and represents the y-coordinates. We consider
uniform, Gaussian and exponentially distributed samples over the range [0, n]. In addition,
we investigate A and B where the respective x-coordinates are drawn from vastly different
intervals, namely with upper bounds

√
n and n2. We call this a shifted distribution. Figures

3 and 5 show example instances for each input type. Running times are always averaged
over 100 generated instances per tested value of n.
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Figure 5 Example instances for uniform and shifted uniform point distributions For the latter,
note the logscale of the y-axis. The color coding is the same as in Figure 3.
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Figure 6 Average running times of all algorithms on uniform distributions (left) and of the top
six algorithms on exponential distributions (right). Note the logscale of the y-axis.



D. Hespe, P. Sanders, S. Storandt, and C. Truschel 60:13

0 2000 4000 6000 8000 10000
Input size n

10 4

10 2

100

102

Ti
m

e 
[s

ec
on

ds
]

Running Time on Gaussian Distribution

Sort & Compare
Successive Binary Search
Successive Sweep Search
Sequential ND
Doubling ND
Kirkpatrick-Seidel

0 2000 4000 6000 8000 10000
Input size n

1.0

1.1

1.2

1.3

1.4

1.5

1.6

In
te

rm
ed

ia
te

 o
ut

pu
t s

ize
 / 

ou
tp

ut
 si

ze

Intermediate Output Size on Gaussian Distribution

Sequential ND
Doubling ND

Figure 7 Left: Average running times of selected algorithms on Gaussian distribution. Right:
Intermediate output size of the Sequential ND and Doubling ND algorithms.

Figure 6, left, shows the running times of all algorithms on uniformly distributed instances.
In line with our theoretical analysis, the Brute Fore approach is by far the slowest. Instances
larger than n = 3000 were not tested as those already took over an hour. The engineered
Binary Search algorithm (PBS) is faster than BS by an order of magnitude but not as fast as
the other competitors. Note that we used the variant here that guarantees output-sensitive
space consumption by storing the borders of at most on block of dominated elements per
column. In compliance with the experimental results in [12], we see that DND is faster than
SND. However, they are both slower than the Kirkpatrick-Seidel and the Sort & Compare
algorithm, which exhibit very similar running times. SSS is faster than the second best
algorithm, Sort & Compare, by a factor of 2-5. On exponential distributions the results
are similar, see Figure 6, right. But the ND variants perform slightly worse. On Gaussian
distributions, the ND variants are about two orders of magnitude slower than SSS and even
scale worse than SBS, see Figure 7, left. The reason for this behavior is investigated in
Figure 7, right, which depicts the intermediate solution sizes of the ND algorithms. On
uniform and exponential distributions, the space overhead is less than 1%. However, on
Gaussian distributions, SND and DND require 20% and 65% more space than the output
(and our output-sensitive algorithms), respectively. Also note that even if intermediate sizes
are not much larger than the final size, it might be that the maximum intermediate size
is reached early and persists close to that value, thereby increasing the running times of
the individual column merge steps. Thus, the ND algorithms are both very sensitive to the
distribution of the input points and the position of the Pareto sum points within the matrix.
In contrast, the performance of our sweep algorithms depends primarily on the size of the
output, which was within 4n across all tested instances and distributions.

On uniform, Gaussian and exponential distributions, our engineered SSS variant with
∆-skipping had little impact. On shifted distributions, however, this concept proved to be
very effective due to the Pareto sum points being mostly located either in the first few rows
or the last few columns of the matrix (see Figure 5), and Pareto sum sizes being small in
general. Using ∆ =

√
n, we achieved speeds-ups of two orders of magnitude over all other

approaches on instances with n = 10000.
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Table 2 Experimental results for BCH computation on three road networks of different size.
The table shows the input graph sizes, the number of edges in the augmented graph (original +
shortcuts), the number of non-trivial Pareto sum computations, as well as the running times for
conducting these computations with four different algorithms. The final row shows the preprocessing
time spent on operations other than Pareto sum computation.

ROAD1 ROAD2 ROAD3
#Nodes 349479 1246440 3835238
#Edges 720363 2612260 8037228
#BCH-edges 1325259 4981957 15703653
#PS computations 899390 4424857 48844050
Kirkpatrick-Seidel 32.09 s 1234.15 s >24 h
Sort & Compare 13.45 s 587.77 s 47374.67 s
Doubling ND 19.03 s 454.42 s 37447.61 s
Successive Sweep Search 4.83 s 129.62 s 9668.33 s
Additional preprocessing 7.23 s 54.66 s 1237.58 s

6.2 Results for Real Data

As a real-world application of Pareto sum computation, we consider bi-criteria route planning
in road networks. Here, given an input graph G(V, E) and costs c1, c2 : E → R+, the goal is
to either compute all Pareto-optimal paths with respect to c1, c2 between two nodes s, t ∈ V ,
or the path optimal with respect to one cost while not exceeding a budget on the other
(also known as the constrained shortest path problem). To accelerate query answering, a
bi-criteria contraction hierarchy (BCH) data structure can be used. In the preprocessing
phase of a BCH, the input graph is augmented with additional edges, also called shortcuts.
The shortcut insertion is guided by a node permutation π : V → {1, . . . , n}. For nodes
u, w ∈ V , a shortcut {u, w} is inserted if and only if there exists a simple path from u to w on
which no node has a higher π value than max(π(u), π(w)). The shortcut represents all simple
paths p between u and w with that property. For each Pareto-optimal p, the respective cost
tuple (c1(p), c2(p)) should be assigned to the shortcut. To compute these Pareto sets for all
shortcuts in an efficient manner, a bottom-up approach is used. Let u be the inner node on a
path p from u to w with maximum π-value. If the Pareto sets A and B of the shortcuts {u, v}
and {v, w} are known, respectively, the Pareto set of {u, w} is the Pareto sum C of A and B.
If there are multiple paths p, the final Pareto set of {u, w} is formed by the non-dominated
elements of the union of all these Pareto sums. The non-dominated union of two Pareto sets
can be computed in linear time by merging the presorted sets to obtain the sorted union
and then applying the simple non-dominance check as described in the SC approach. In the
final BCH, queries can be answered with a bi-directional Pareto-Dijkstra run that relaxes
shortcut edges instead of many original edges whenever possible. This significantly reduces
the search space and allows to answer queries orders of magnitude faster [17, 9].

In our experiments, we use test graphs extracted from OpenStreetMap with Euclidean
distance and positive height difference as edge costs (in compliance with [17]). Based on our
results on generated data, we use the best four algorithms (KS, SC, DND and SSS) for Pareto
sum computation. Note that Pareto sets A and B do not necessarily have the same size here,
but all proposed Pareto sum computation algorithms can be easily adapted. Table 2 shows
the characteristics of the three road network instances we considered in our experiments
and the outcomes. The number of Pareto sum computations in the preprocessing phase of
the BCH reported in the table excludes trivial inputs where either A or B has size 1. We
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Figure 8 Detailed results for the ROAD2 instance. Left: Running times in seconds per Pareto
sum computation in dependency of the size of the Minkowski sum. Right: Pareto sum size as
percentage (logscale) of the size of the Minkowski sum.

Figure 9 Detailed results for the ROAD3 instance. Left: Running times in seconds per Pareto
sum computation in dependency of the size of the Minkowski sum. Right: Pareto sum size as
percentage (logscale) of the size of the Minkowski sum.

observe that the time spent on non-trivial Pareto sum computations dominates the overall
preprocessing time, especially on larger networks. There are significant differences in running
time between the algorithms we tested, though. On all instances, SSS is the fastest approach.
It is roughly an order of magnitude faster than the KS algorithm which fully computes
and stores M . With KS, we could not compute a BCH data structure within a day on our
largest instance with about 4 million nodes. Interestingly, in contrast to the experiments on
generated data, DND outperforms SC. Figure 8 shows the running times for all individual
Pareto sum computations as well as the size of the respective results for the ROAD2 instance.
We observe that the larger the Minkowski sum M , the smaller the relative output size. This
explains why SSS consistently outperforms the other approaches, especially on larger inputs.
Figure 9 shows results for the two best algorithms, DND and SSS, on ROAD3. Here, |M |
was up to 3 · 106 and the percentage of elements in the Pareto sum C even approached 0.1.
This is very beneficial for the SSS algorithm as the smaller the output size the fewer range
minimum oracle calls are needed.

Furthermore, we used DND and SSS in query answering to combine Pareto sets in the
bi-directional Pareto-Dijkstra run whenever the forward and the backward search meet. On
the ROAD3 instance, a speed-up of up to 5 over DND was achieved when using SSS.
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7 Conclusions and Future Work

We introduced scalable algorithms for Pareto sum computation which avoid the computation
of the whole Minkowski sum. Our successive sweep search algorithm was shown to perform
best across all instances, generated or real, while guaranteeing an output-sensitive space
consumption. One direction for future work is to carefully parallelize all discussed algorithms.
We also implemented and tested the cascading sweep search variant, which enables parallel
successive search, and observed that the sequential running time matches that of successive
sweep search while splitting the search ranges in many subranges which could be processed in
parallel. Furthermore, even in a parallel implementation, the sweep search algorithm keeps its
output-sensitive space consumption. Another direction for future work is the consideration
of higher-dimensional input points. While some algorithms are easily generalizable, novel
range minimum oracles need to be designed for the successive algorithms to work.
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