KIT | KIT-Bibliothek | Impressum | Datenschutz

Non-linear oscillators with Kuramoto-like local coupling: Complexity analysis and spatiotemporal pattern generation

García Medina, K.; Estevez-Rams, E.; Kunka, D. ORCID iD icon 1
1 Institut für Mikrostrukturtechnik (IMT), Karlsruher Institut für Technologie (KIT)

Abstract:

Can a simple oscillator system, as in cellular automata, sustain complex nature upon discretization in time and space? The answer is by no means trivial as even the most simple, two-state, nearest neighbours cellular automata can lead to Universal Turing Machine (UTM) computing power. This study analyses a recently proposed model consisting of a ring of identical excitable Adler-type oscillators with local Kuramoto-like coupling in terms of its complexity. Regions with non-trivial, complex behaviour have been identified, where spatiotemporal maps closely resemble those found in elementary cellular automata, not only from the visual perspective but also from entropic measures characterization. Also, the possibility of enhanced computation at the edge of chaos is explored by monitoring the effective complexity measure, entropy density and informational distance, following previous approaches. Distance matrix, and the corresponding dendrograms, show that in the complex regions, a non-trivial set of hierarchies emerges where local communities can appear and sustain themself in time. The fact that coupled oscillators can be realized through dedicated electronic circuitry or the result of natural processes can make finding such complex dynamics, with potential computational power, an important one in a broad scope of applications and implications.


Volltext §
DOI: 10.5445/IR/1000163553
Veröffentlicht am 30.10.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Mikrostrukturtechnik (IMT)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2023
Sprache Englisch
Identifikator KITopen-ID: 1000163553
Umfang 14 S.
Vorab online veröffentlicht am 01.10.2023
Nachgewiesen in arXiv
Dimensions
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page