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Abstract

Advances in computational power and storage are facilitating a new era of modelling. As the
amount of information captured within datasets has evolved, tools have emerged to better exploit
the statistical properties of such datasets. Machine Learning (ML) methods are one such family of
techniques, leading the revolution of ’data-driven’ solutions which achieve state-of-the-art perfor-
mance in solving tasks across both business and the sciences. ML is concerned with the automated
discovery of the governing relationships within data distributions. The algorithms can be thought
of as a suite of generalized algorithms for extracting information. Seismology is a field naturally
suited to the application of ML, containing high-quality catalogs of seismic recordings - collected
over decades - which are crucial inputs into many seismological studies.

With seismology only starting to widely integrate the latest state-of-the-art ML research over the
last few years, the lack of uptake means that huge performance increases may be possible for tradi-
tional tasks. The detection of arriving seismicity is one such area. Having more complete seismic
catalogs means imaging smaller magnitude events, ’closing the gap’ between seismicity observed in
nature and what can be simulated in laboratory environments. Better-resolution seismic catalogs
are, therefore, crucial for enhancing any physical understanding of seismogenic rupture processes.

This thesis investigates the extent to which ML can improve the task of detecting seismic events.
We first explore and propose new methods for seismic phase arrival identification, applying a Con-
volutional Neural Network (CNN) trained for supervised classification of labelled seismic arri-
vals. We also propose a novel algorithm for the subsequent stage of the event detection pipeline,
the task of seismic phase association. Our proposed association algorithm is designed to operate
efficiently in a scalable and robust manner. We adapt a parametric model fitting framework to
extract a physical model of the seismic wavefield moveout to associate picks to events. We then
turn to the question of how to best evaluate the state-of-the-art ML in seismology. Here, we can
also leverage practices from ML-focused fields such as computer vision, and natural language pro-
cessing. Access to both open-access benchmark datasets and models is crucial for accelerating the
research process. This thesis introduces software specifically designed for this task - SeisBench. It
aims to significantly reduce the amount of work required to conduct ML research in seismology,
accelerating development and iteration. We finally explore how the performance of the latest ML
models varies when moving from well-curated benchmark training datasets to practical pipelines
in less well-explored seismic environments.

We hope our exploratory work and subsequent results, including productionized software, will
facilitate further in-depth research in applying ML to one of the most fundamental tasks in seis-
mology.
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1 Introduction

We live in an era of constant data creation and consumption. Over the last two decades, there has
been an explosion in the amount of data generated and processed daily. This has resulted in the
creation of datasets of unprecedented scales and resolution, fundamentally changing the way in
which we interact with them. To learn from such datasets in an optimal manner, scalable, generic
routines are required. The rise of data-driven techniques which model underlying data distribu-
tions, is, therefore, becoming ever-more prominent. Arising from the realm of statistics, machine
learning (ML) encompasses a range of such techniques used to exploit the information contained
in the latest datasets to perform inference. Due to rapid advances in data storage and lower-cost
computation, these techniques are achieving exceptional results in solving tasks in technology,
business and across the sciences. The widespread adoption of these methods is one of the major
disruptive technologies of our time, which has been compared to the adoption of general com-
puter usage in the 1980s and 1990s [14]. Machine learning encompass a suite of techniques which
operate under the following principles: How can we create models which learn through experi-
ence?; and are there fundamental theoretical laws of learning systems which we can use to model
phenomena and solve unknown questions [51].

In the physical sciences, the typical way to gain a deeper understanding of the underlying fun-
damental laws of nature is by using models based on intuition, using combinations of known and
inferred physical relationships to solve problems. In contrast to this, ML models learn the under-
lying rules from the data. These methods can be thought of as generic routines for learning which
can be applied across domains, and tasks.

1.1 Motivation

Seismology is well-poised to benefit from the application of ML routines. Access to larger datasets
containing high-quality examples is crucial when training a ML algorithm, as the model learns di-
rectly from the data. When provided with sufficient training examples, the general properties of
the task can then be determined, improving performance to new, unseen cases. In seismology,
labelled examples of seismic waveforms have been collected since the inception of the field. As of
2019, the number of stored waveform data in the Incorporated Research Institutions for Seismol-
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1 Introduction

ogy (IRIS) data archive reached approximately 500 TB in total (Figure 1.1), providing a myriad of
potential training data, perfectly suited to ML applications.

Figure 1.1: Size of total IRIS data archive through time. Modified from [60].

As seismic waveforms form the basic starting point of almost all seismological studies, having
such a useful suite of training examples already accessible allows for investigations into the ap-
plication of ML for solving a range of traditional seismic tasks. These tasks can range from the
relatively simple e.g. source parameter estimation, signal denoising etc.; to the complex e.g. in-
verse problems such a seismic tomography. The most fundamental of such tasks is the initial
detection of seismic events from timeseries recordings. The ability to detect more seismic events,
at lower signal-to-noise ratios, affects all subsequent methods which operate on these data. In-
creasing the resolution datasets in seismology, therefore, has huge implications for improving our
understanding of seismic processes, from the ability to image small scale faulting fabrics and asso-
ciated rupture processes, to providing better constraints on wavefield-based inversion methods.

Constant technological advancements in the field also mean that faster, scaleable routines are
sorely needed. The decreasing cost of seismic sensor deployment, along with decreased cost of
compute and storage resources mean that larger node station networks are becoming more com-
mon. Traditional techniques will not be able to deal with such large data streams, which further
highlights the need for a new generation of tools to efficiently and accurately detect seismic events
in modern seismic recording networks.

This thesis investigates how Machine Learning (ML) techniques can be leveraged to improve
the detection of seismic events. The focus is on detecting the regional scale, intense seismicity
following large earthquakes, but the methods presented in this thesis form a general suite of de-
tection routines which can be applied to new seismic environments to help improve detection
rates. The following section introduces the task of seismic event detection, providing a general
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1.2 The seismic event detection task

overview of how it is typically performed, problems that can potentially limit performance. We
also comment on the potential advantages machine learning methods may hold over them, and
what this implies for seismology in general.

1.2 The seismic event detection task

Seismic event detection is the first step of any typical seismological investigation, shown in Fig-
ure 1.2. As the seismic wavefield propagates from a given source, the ground motion is recorded
at seismic sensors. Combining sensors in typical geometries, otherwise known as seismic arrays,
or seismic networks enables detection of the moveout of the same event across different regions
in space and time. The task of seismic event detection is to take these independent pieces of ar-
rival identification, combining them together to identify the presence of some underlying source.
Whilst this may seem conceptually simple, a number of factors greatly influence what is recorded
in the continuous timeseries of a seismometer. For example, simultaneously occurring seismic and
non-seismic sources of energy can also be detected across the seismic network. The moveouts will
overlap with the true source. ’Untangling’ the true independent arrival detections from the false
detections then becomes a non-trivial process (see right-hand-side of Figure 1.2).

Figure 1.2: Schematic diagram showing the typical event detection workflow to identify seismic events from
some continuous timeseries.

Further problems can include different noise thresholds at stations, the false assignment of non-
seismic sources as seismic energy, all complicating the event detection task.

Since the 1960s, seismic arrays have been instrumental in studying earth structure and seis-
mic source processes [114]. From the originally designed networks detect global and regional-scale
seismicity, denser, higher-quality networks are now in place to monitor seismicity in real-time
- present in the prominent seismic danger zones of the Western US e.g. Southern Californian
Seismic Network [15], and Japan e.g. hi-Net [97]. Whilst smaller station spacing increases the
resolution at which we sample the seismic wavefield, potentially resulting in more complete cata-
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1 Introduction

logs of recorded seismicity, this also exacerbates the factors previously described as the frequency
magnitude scaling of the Gutenberg-Richter Law means that there are orders of magnitude more
smaller events compared to larger events. This increases the likelihood of events simultaneously
occurring in time. Traditional approaches for event detection are typically computationally ex-
pensive, so will not scale well in this new era of extensive data. Here, ML methods hold promise
as the routines themselves are often ’embarrassingly parallel’ in their implementation, and depen-
dent on the accuracy of the methods, could easily be applied in real-time to analyse and detect
seismicity.

1.3 Aim and scope of the thesis

With such factors in mind, this thesis investigates the extent to which ML methods can improve or
outperform traditional approaches for seismic event detection. To reliably evaluate such a wide-
ranging question, benchmarking investigations are vital, as they allow for the performance com-
parison of differing routines across some common task to see which perform best. Any newly
proposed components of an event detection presented in this thesis are, therefore, benchmarked
against currently used algorithms. Once benchmarked, individual components are combined to-
gether to detect seismicity in practice. The major focus is to investigate new routines for analysing
the seismicity associated with major earthquakes, so any practical deployment focuses on detect-
ing the seismicity of an aftershock sequence recorded across a dense, regional temporary seismic
network.

1.4 Structure

The thesis is organised as follows; chapter 2 formulates the typical approaches to the event detec-
tion task, highlighting the motivation behind traditional approaches and both the benefits and
limitations of each respective method for detecting seismic events. Here, commentary is included
on how machine learning has initially been applied to improve performance.

Chapter 3 introduces a proof-of-concept case-study for improving the task of seismic phase
classification with deep learning. The proposed neural network for seismic picking is composed
of a convolutional architecture, trained in a fully supervised manner over a labelled training dataset
of manual picks. All training pick examples were made during the aftershock sequence of theMw

8.2 Iquique earthquake in northern Chile. The resulting picks of this initial investigation are
benchmarked against a popular traditional seismic picking approach of the STA/LTA highlight-
ing what advantages such techniques hold over traditional methods [147].

4



1.5 Contributions

Chapter 4 focuses on the subsequent problem of seismic phase association, and whether ma-
chine learning can be leveraged to improve performance for this task. We introduce a novel adap-
tion of a machine learning parametric model fitting algorithm, popular in the computer vision
community, and apply it for correlating seismic phases to their underling source. The investiga-
tion here uses completely synthetically generated data to stress-test the performance of the algo-
rithm on a dataset where the labels are known. This allows for quantitative evaluation of where
proposed method breaks-down, and whether it offers performance improvements over traditional
event association approaches [148].

Chapter 5 explores how benchmarking of machine learning algorithms can be performed in a
standardised manner. The ability to benchmark competing algorithms is crucial for accelerating
development. This is especially true for machine learning, where performance is highly dependant
on the training data. We introduce the toolbox - SeisBench - which has been designed specifically
for benchmarking of machine learning algorithms in seismology. The toolbox itself is designed
for general comparison of models covering the entire variety of seismic tasks [150].

Referring back to the context of the event detection task, we show how the toolbox can be used
to benchmark the current state-of-the-art seismic picking algorithms. All algorithms are applied
across a range of benchmark datasets which cover the entire range of potential earthquake-related
seismic environments. The results highlight how frameworks such as SeisBench can help devel-
opment and assessment of state-of-the-art routines for seismic event detection [93].

Chapter 6 integrates the results of the previous works to set up multiple end-to-end seismic
event detection pipelines for detecting regional seismicity in practice. For this final case-study,
the methods are applied to analyse a subset of the Mw 6.4 2019 Durrës aftershock sequence of
Albania. The results are again benchmarked against the manual analysis of 2 seismic experts.

We finish with a discussion on the viability of the proposed machine learning methods for event
detection in chapter 7, concluding with what we have learned, and a general outlook for ML
applied to the task of seismic event detection.

1.5 Contributions

This thesis is partially based upon the following publications, listed by order in which they are
discussed in the chapters:

• J. Woollam, A. Rietbrock, A. Bueno, and S. De Angelis. “Convolutional neural network
for seismic phase classification, performance demonstration over a local seismic network”.
in Seismological Research Letters 90:2A, 2019, pp. 491–502. doi: http://dx.doi.org/10.
1785/0220180312.

5

http://dx.doi.org/10.1785/0220180312
http://dx.doi.org/10.1785/0220180312


1 Introduction

• J. Woollam, A. Rietbrock, J. Leitloff, and S. Hinz. “HEX: Hyperbolic event extractor, a
seismic phase associator for highly active seismic regions”. in Seismological Society of Amer-
ica 91:5, 2020, pp. 2769–2778. doi: http://dx.doi.org/10.1785/0220200037.

• J. Woollam, J. Münchmeyer, F. Tilmann, A. Rietbrock, D. Lange, T. Bornstein, T. Diehl,
C. Giunchi, F. Haslinger, D. Jozinović, A. Michelini, J. Saul, and H. Soto. “SeisBench—A
Toolbox for Machine Learning in Seismology”. in Seismological Research Letters, 2022.
doi: http://dx.doi.org/10.1785/0220210324.

• J. Münchmeyer, J. Woollam, A. Rietbrock, F. Tilmann, D. Lange, T. Bornstein, T. Diehl,
C. Giunchi, F. Haslinger, D. Jozinović, A. Michelini, J. Saul, and H. Soto. “Which picker
fits my data? A quantitative evaluation of deep learning based seismic pickers”. in Journal
of Geophysical Research: Solid Earth, 2022, http://dx.doi.org/10.1029/2021JB023499.

The author additionally contributed towards further manuscripts which lie outside the main ar-
gument and scope of this thesis - listed below:

• A. Bueno., L. Zuccarello., A. Díaz-Moreno., J. Woollam.,, M. Titos., C. Benítez., S. De
Angelis., (2020). PICOSS: Python interface for the classification of seismic signals. in
Computers geosciences, 142, 104531. doi: https://doi.org/10.1016/j.cageo.2020.104531.

• S. León-Ríos., L. Bie., H. Agurto-Detzel., A. Rietbrock., A. Galve., A. Alvarado., J. Wool-
lam., (2021). 3D local earthquake tomography of the Ecuadorian margin in the source area
of the 2016Mw 7.8 Pedernales earthquake. in Journal of Geophysical Research: Solid Earth,
126(3), e2020JB020701. doi: https://doi.org/10.1029/2020JB020701.
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2 Theory

2.1 Machine learning overview

Before introducing the specific problem of seismic event detection and describing the various ML
techniques applied to this task, we first provide a general, theoretical overview of the background
ML theory. Where this high-level introduction will provide the basis for understanding the tech-
niques introduced in the following sections. As repeatedly highlighted throughout the introduc-
tion, the concept of ML is not new. In fact, many standard ML methods are an assimilation of
traditional statistical techniques which aim to model underlying data distributions in order to
perform inference. Such techniques have existed for decades. Figure 2.1 overview figure displays
the base taxonomy for the different facets of ML. ML algorithms are a subset of the concept of
artificial intelligence. Artificial intelligence techniques are concerned with building intelligent
machines or algorithms to operate in an independent manner.

Within the taxonomy of Figure 2.1 there is a further division - deep learning. Deep learning
involves the application of a single family of algorithms, neural networks. These algorithms are
mathematical approximations of the bioligical decision making processes occurring in nature.
They are trained in a highly parallelized manner and often involve optimizing many millions of
free parameters.

“ Building intelligent machines or
algorithms to operate in an independent
manner ”

Artificial Intelligence

Following this general introduction of the differing ’families’ of algorithms and how they fit to-
gether, the next logical question is: How are these methods optimized for a a given task? The ways
in which ML can be applied is summarised in Figure 2.2. There are 3 predominant approaches,
supervised learning, unsupervised learning, and reinforcement learning.

Supervised learning is where a given model is trained by providing it with a set of examples, and
each example has a corresponding label which is known beforehand. This label is also input into
the algorithm. Examples of this sort of problem includes classification and regression problems. A
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2 Theory

Figure 2.1: Schematic diagram showing the overall taxonomy of where machine learning fits into the field
of artificial intelligence.

typical classification example is: Given a dataset of pictures of cats and dogs, with the an associated
set of labels e.g. ’cat’, and ’dog’, train some ML model to predict the classification label when
provided with an input image.

Unsupervised learning algorithms are where there are no labels known beforehand. Examples
of this type of application can include clustering, and dimensionality reduction. For this type of
task, the model learns directly from the underlying data. Going back to the typical example of a
training dataset of images of cats and dogs. Applying an unsupervised learning pipeline would
involve feeding in the input images, with no corresponding label information for each training
example. The model would then have to cluster the inputs into a predefined number of distinct
groups based on the differences of the input training examples only.

Finally, there is the task of reinforcement learning, which involves trained algorithms to opti-
mise a decision making policy through a delayed feedback mechanism via a reward/cost function.
These models are widely applied to learn general policies in the field of robotics, with typical exam-
ples including controller optimization, autonomous driving, and agents to outperform humans
in controlled environments where all rules are known (e.g. autonomous agents for playing games
such as Chess, Go, and other simple games). This final type of ML paradigm is one which to date,
has not been widely applied to the task of seismic event detection, and also the more generally has
been limited in its applications within seismology.

8



2.2 Supervised machine learning

Figure 2.2: Schematic diagram showing the different ways in which machine learning can be applied.

Following our general definition of the ML landscape, we can now provide a more mathemat-
ical grounding for the techniques relevant to this thesis. In this section, we will first explore a
range of linear parametric methods for supervised classification and regression. Section 2.3 will
then expand on this concept to include non-linear algorithms trained in a supervised manner.
The techniques presented in the aforementioned sections provide the baseline understanding for
the ML methods applied in this thesis. It also provides a basic grounding, more generally, when
discussing how these techniques are being leveraged for the event detection task in seismology.
Following the theoretical introduction, we turn to a review of the state-of-the-art methods for
event detection present in the literature (section 2.4).

2.2 Supervised machine learning

We have commented on the general form of the supervised learning problem, which is; given some
input features, predict a given output where the label information is both known and simultane-
ously input into the algorithm during training. This very high-level definition can be thought
of as the ML interpretation of a concept which has existed for decades - if not centuries. The
fundamental goal is to find the features of the inputs which directly affect the output. In general
statistical terminology, the inputs are often termed the predictors, or the independent variables;
the outputs are the dependant variables or target.

The type of output dictates type of the supervised learning approach. If the target output is a
discrete set of categories, then it a classification task. For example: Given an input set of measure-
ments of an individual, predict whether the person has diabetes. In this case there are 2 discrete
groups, or categories (does not have diabetes, has diabetes). Which is encoded as a categori-
cal variable (0, 1). The numeric representation of the categorical variable for K groups provides
the label information for the classification task.

For the regression task, the output response is just the simpler case of outputting some quan-
titative value given a set of input features. As a simple example for this case: Given the rainfall for
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the last 10 days, predict the amount of rainfall tomorrow. In this case, the label information is the
amount of rainfall for a given day.

2.2.1 Classification

We first consider the simple case of linear estimators for regression and classification. This will
highlight the main underlying concepts behind some fundamental ML techniques, and also so-
lidify understanding of typical ML nomenclature. One of the most fundamental approaches in
statistics is the approach of least squares. Given an input vector XT = (X1, X2, ..., XN ), where
X denotes a column vector and therefore, XT is the transposed row representation; we wish to
output a optimal suite of prediction values Ŷ via some linear model

Ŷ = β̂0 +
N∑
j=1

Xj + β̂j . (2.1)

Here, βi represents the coefficients for each model parameter and β0 is the intercept term. Eq. 2.1
can be equivalently written as an inner-vector product where the intercept term takes a value of 1.

Ŷ = XT β̂. (2.2)

Given this linear model, the aim is the then find the set of coefficients which output the optimal set
of predictions. The least-squares approach does this by finding the coefficients β̂ which minimize
the sum of the squared residuals between the predictions and true values

ϵT ϵ = (y −Xβ)T (y −Xβ). (2.3)

Where the residual ϵ = (y −Xβ). As 2.3 is quadratic, the solution can be found directly via by
differentiating with respect to β, providing the normal equations

XT (y −Xβ) = 0. (2.4)

If XTX is invertable, then the unique solution is

β = (XTX)−1XT or, β = X+y, (2.5)

where X+ is the Moore-Penrose pseudo-inverse of X .
For the classification task, converting the output prediction Ŷ to some discrete representation

δ(X) can be achieved through some discriminant rule which maps continuous values to discrete
classes. For the linear estimator, this classifier typically suboptimal when compared against other

10
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Figure 2.3: Linear decision boundary for classifying data generated from two independant Gaussian distri-
butions with varying mean.

more advanced methods, but it helps to solidify conceptually how we can move between cases of
classification and regression. A simple example would be

δ(X) =

 1 XT β̂ ≥ 0

−1 XT β̂ < 0.
(2.6)

From here, the decision boundary to place any new input Xi into a given group is given by
δ(X) = 0. Eq. 2.6 denotes a binary classification task, predicting a total of two potential groups,
but it should be easy to see how the discriminant rule can be extended further, introducing extra
cases to incorporate multi-class classification problems. Figure 2.3 shows a schematic example to
classify input data into 2 discrete groups using the linear least-squares approach, with the decision
boundary of Eq. 2.6 also plotted as a dashed line. Any points lying on either side of the decision
boundary are put into distinct groups.

2.2.2 Regression

Linear approximators

For the regression case, the aim is map some function f(X, β̂) to output a suite of predictions
Ŷ , where the form of Ŷ is now a column vector of continuous valued predictions. Figure 2.4
highlights how Eq. 2.5 can be used to fit a linear function to some continuous data.

For understanding, again it makes sense to first just considering the basic case of linear esti-
mators only. Non-linear functional approximators are often extensions of the linear case, where
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Figure 2.4: Linear regression using Moore-Penrose pseudo inverse of some linear model y = mx+bwhich
is contaminated with noise sampled from a Gaussian distribution with fixed variance.

direct solutions to the approximating function do not exist. For such models, methods are min-
imised via iterative optimization procedures, but the general methodology for solving often re-
mains constant between both the linear and non-linear variants.

The Gauss-Markov Theorem states that the least-squares regression estimator (Eq. 2.5) pro-
vides the best linear unbiased estimator of the parameters β. ’Best’ means that this estimator will
have the smallest variance amongst all linear unbiased estimators. Provided, linearity in parame-
ters, no multi-co-linearity between input features, errors having constant variance (homoscedasc-
ity), and independence of the error terms.

Non-linear appromixators

We have formulated how supervised learning can be performed models which assume linearity of
the input features. The methods are often simple and powerful, but the assumption of linearity
in the features imposes a strong bias on the simplicity of the model and, therefore, limits types of
relationships it can fit. In the physical world, non-linearities exist, and many processes are in fact
best approximated using highly non-linear functions such as partial differential equations.

We will now introduce how linear regression can be applied to fit non-linear functions. Under
these conditions, the convexity of the solution space cannot be guaranteed, so there is the potential
for the first-order steepest descent method to get stuck in local minima. One way to improve
convergence towards an optimal solution is by utilizing higher-order gradients. We will start with
the basic approach of Newton’s method. This provides faster convergence when compared against
standard gradient descent, which utilises the first-order gradients only (see Figure 2.5).
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Figure 2.5: Schematic of convergence of iterative optimisation algorithms. The convergence path of gra-
dient descent is in gray, Newton’s method is in green. Newton’s method uses second-order
curvature properties to improve the convergence for convex functions.

Starting with the 1-D case, given some input variable x, providing an initial starting value xo ∈
R, Newton’s method solves the recurrence relation

xn+1 = xn − f ′(xn)

f ′′(xn)
. (2.7)

This can be interpreted as finding the minima of a quadratic approximation of f(x), as op-
posed to a linear approximation associated with steepest descent. There are a number of caveats
with this approach, which we will see if we expand this out to to higher dimensions. Here, the
gradient calculations generalise to the well-known Jacobian

Ji,j =


∂f1
∂u1

. . . ∂f1
∂un

... . . . ...
∂fm
∂u1

. . . ∂fm
∂un

,

 (2.8)

and Hessian

Hi,j =


∂2f
∂x2

1
. . . ∂2f

∂x1∂xn

... . . . ...
∂2f

∂xn∂x1
. . . ∂2f

∂x2
n
,

 (2.9)

matrices respectively. Equation 2.7 now generalises to

xn+1 = xn − [Hf(xn)]
−1∇f(xn) for x ≥ 0. (2.10)
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Calculating the second-order derivatives in Equation 2.10 makes the solution unstable whenH

is non-invertable, or if the H is not positive-definite. This ill-conditioning can lead to Newton’s
method not converging to some solution. In addition to this, the storage requirements of the
algorithm are now O(n2) due to the (nxn) H; requiring O(n3) flops to solve the system of
equations at each iteration. For most cases this is not practical. To overcome this, the Gauss-
Newton iterative descent method takes advantages of the properties of the sum of squares error
function to improve convergence.

Given some function f(X, β̂) the Gauss-Newton method of minimisation iteratively finds
the minimization of the residuals

xn+1 = xn − (JT
r Jr)

−1JT
r r(x

n). (2.11)

Where the Gauss-Newton method is solving a linearized version of the norm

min∥r(x(n)) + Jr(xn)∆∥22 where ∆ = x− x(n) (2.12)

With no second order gradient calculations needed, this is an improvement over Equation 2.10
in terms of convergence, but the ∆ term means that Equation 2.11 can still result in divergence,
as the approximation has made assumptions about the sum of squared residuals having small
changes close to the minima, strong convexity, and moderate non-linearity. When this is violated,
Gauss-Newton descent will potentially diverge from the global solution. Further variants of this
optimization process attempt to overcome this caveat when tackling the problem of non-linear
modelling. Such methods implement a damping parameter α to the gradient step.

xn+1 = xn + α∆. (2.13)

The most popular variation of this approach to non-linear regression is the Levenberg-Marquardt
algorithm [69], provided as the default method in many curve fitting packages (e.g. MATLAB,
SciPy; Figure 2.6).

2.3 Supervised Deep Learning: Neural Networks

Whilst the non-linear optimization procedures introduced until now allow for the modelling of
a large range of phenomena, a-priori knowledge is still required to define the form of the model
parameters to fit. Now, we introduce a new type of ML algorithm which is agnostic to the type
of function to be fit - neural networks. In recent years, the family of neural network algorithms
have demonstrated widespread success across many fields. These methods are often interpreted as
’black-box’ methods which automatically map some input to some output. They can, however,
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Figure 2.6: Linear regression of some non-linear function y = ae−bx + c. The residual sum of squares is
minimized using the Levenberg-Marquardt iterative optimization procedure, which comes as
the default non-linear optimization for regression in the SciPy scientific computing package in
Python.

be thought of as simple non-linear function approximators. The key idea behind neural networks
is to find linear combinations of the input features, and apply a non-linear function, which are
then optimized for globally.

2.3.1 The Perceptron

We will start with a basic or ’vanilla’ neural network of standard form, the feedforward neural
network. The fundamental concept underpinning neural networks is to use a mathematical ap-
proximation of decision making processes found throughout nature - neurons. In nature, biolog-
ical neurons are responsible for making decisions throughout the natural world. Neurons are the
mechanism in the brain which sends messages throughout the body via chemical signals and elec-
trical impulses. Neurons allow for the body to send messages in response to external stimuli. The
mathematical approximation of this phenomena is termed The Perceptron [110]. First presented
in 1958, it’s conceptual introduction predates many of the success of neural networks by decades.
Simply, a perceptron takes, a suite of inputs XT = (x1, x2, ..., xN ), applies a corresponding
weighting to each input θ = (θ1, θ2, ..., θN ), computes the weighted sum of the inputs, applies
a non-linearity - commonly known as an activation function ϕ(·), and adds a bias term b to the
output (Ŷ ). A schematic of the mathematical model of the perceptron is shown in Figure 2.7

1

1The term ’activation function’ can also be thought of in terms of a ’basis function’ and, in fact, wider generalisations
exist for the simple perceptron.
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Figure 2.7: The mathematical model of the Perceptron which takes a set of inputs, applies a weighting to
each one, computes the dot product of the weighted inputs, applies some activation function
and adds a bias term.

Ŷ = ϕ(θT ·X) + b (2.14)

Here, the output can encompass both regression and classification cases. For the regression case,
the output is simply of length N − 1, for classification, the output would be of length K , where
K is the number of different categories. The general idea is to find a functional approximation f⋆

through a mapping, y = f(X; θ), learning the values of the parameters (θ) that result in the best
approximating function.

2.3.2 Neural NetworkDesign

By joining together layers of perceptrons in a network, different non-linear functional forms can
be combined together, to increase the approximating power of f(X; θ). Connections between
individual functional approximators, can be viewed as an acyclic graph composed of M nested
functions fL(X) = (f (1)(f (2) . . . (f (L)(X)))). Each f (l) is then termed a layer of the neural
network, which takes a suite of inputs and some non-linearity to the weighted inputs, adding a
bias term and ’feeding’ the outputs to the next layer of the neural network. Typical terminology
is to call f (1) the input layer to the neural network, f (2) to f (L−1) are then the hidden layers of
the network, where L is the total number of layers in the network, and f (L) is the output layer of
the network
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Ŷ = f (L)(X) =(f (1)(f (2) . . . (f (L)(X))))

f (1) =ϕ(θT ·X) + b(1)

f (2) =ϕ(θT · f (1)) + b(2)

...

f (L) =ϕ(θT · f (L−1)) + b(L).

(2.15)

2.3.3 How to train a neural network

As no closed-form solution will exist for such highly non-linear function, neural network parame-
ters must also be optimized through iterative, gradient-based optimization procedures, evaluated
using some cost function J . Gradient computation is done via recursive application of the chain
rule, to derive the ’direction’ in which to change each respective parameter of the neural network
to minimise J(θ). This process is termed backpropagation in deep learning nomenclature. The
fact that the backpropagation step can be done efficiently [67] on massively parallelized architec-
tures has been a key factor behind the exponential increases in adoption of deep learning across
business and the sciences. The neural network is some parameterized distribution p(y|X; θ), and
so, the frequentist approach of Maximum Likelihood Estimation (MLE) can be to optimize the
network parameters, where the cost function is the cross-entropy or negative log-likelihood of the
true distribution and the networks predicted distribution

J(θ) = −Ex,y∼p̂data log pmodel(Ŷ |X). (2.16)

Here, Eq. 2.16 has been kept in the general form, as the parameterized distributions pmodel and
p̂data vary with task/network dimensions.

For regression cases, the cost function is typically the sum-of-squared errors

J(θ) = −1

2
Ex,y∼p̂data ||y − f(x; θ)||2 + c. (2.17)

Other variations of the cost function can exist for both cases of problem, but as an overview, these
are two of the most widely used. As a consequence of optimizing using MLE, Eq. 2.16 is agnostic
to the parameterization of the neural network, meaning that we do not have to define a new J for
each new network architecture.

Building and training a neural network, therefore, consists of the following fundamental steps:
define the task (e.g. supervised classification/regression, unsupervised latent space mapping), de-
fine the cost function, optimize or ’train’ the algorithm, monitor the training/optimization stage
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until it reaches an ’acceptable’ level. At the final point the network parameters are no longer up-
dated, and you are left with an algorithm to perform your given task.

The backpropagation algorithm

Before explaining how neural networks are optimized let us first consider the case ’forward prop-
agation’, analogous to the forward problem of inverse theory. A set of input features X are in-
put to the network, undergoing repeated transformations, to map to some output prediction
Ŷ = f(X; θ). This is known as the forward-pass. This is also where the feedforward term in
’feedforward neural networks’ comes about as information ’flows forward’ through the network
only. To update the parameters, the backpropagation reverses the order of operations, and goes
computing the partial derivatives of J(Ŷ , Y ; θ) with respect to the network parameters θ. This
is known as the backward pass. Training can then be performed to minimise the cost function
through gradient descent, iterating between forward and backward passes; each forward pass out-
puts a new set of predictions, the backward pass computes the gradient of the cost function with
respect to the network parameters to minimise the J(Ŷ , Y ; θ).

This is the overall concept; to solidify understanding, we go through each step in detail. To
avoid introducing extra notational complexity, we introduce the following key parameters. The
neural network parameterization θ consists of a set of weights w(l)

ij , where w
(l)
ij represents the

weight for the connection from the jth neuron in layer (l−1) to the ith neuron in the lth layer; and
also biases, b(l)i , denotes the bias of the ith neuron in the lth layer. Following this notation format,
we can write g(l)i as the activation function for the ith neuron in the lth layer. This representation
is another way of writing the individual functional mappings f (i) of Eq. 2.15, and allows us to
succinctly define the activation of any given layer g(l) in vectorized form as

g(l) = ϕ(w(l)g(l−1) + b(l)). (2.18)

Eq. 2.18 shows how any layer of the network can now be expressed as a function of all the weights
and biases of previous layers directly mapping to the current layer. If we define g(l) = ϕ(z(l)),
where z(l) is the weighted input of all the input neurons to the lth layer, the forward pass, where
the neural network maps inputs to a set of predictions is computed as follows,

Ŷ = g(L)


g(l) = X, if l = 0

z(l) = w(l)g(l−1) + b(l), for l = 1, ..., L

g(l) = ϕ(z(l)), for l = 1, ..., L.

(2.19)
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The error for the output layer can subsequently be written as,

δ(L) = ∇gJ ⊙ ϕ′(z(L)). (2.20)

Here, ⊙ is the element-wise product. Eq. 2.20 shows the gradient of the cost function, as a func-
tion of the input parameters in the ’activation’ layers zL. We can go further, and express the error
term for each layer as a function of the error in the next layer

δ(l) = ((wl+1)T δl+1)⊙ ϕ′(z(l)), (2.21)

This allows for errors to be computed for any layer in the network, determining the change in cost
function with respect to all of the parameterized weights and biases. Using Eq. 2.20 and Eq. 2.21,
we can now apply the backpropogation algorithm. Starting at the output layer, the gradients of
the activations gl are computed for each of the l layers, back to the input layer.

∂J

∂w
(l)
ij

= gl−j
j δ

(l)
i and

∂J

∂b
(l)
i

= δ
(l)
i . (2.22)

Applying Eq.2.22 from layerL to layer1, allows for the determination of the direction in which
to change each individual weight and bias in the network to minimise J .

The entire process has a nice compact, vectorized representation. In addition to being easy to
represent mathematically, the nature of the vectorized operations make it highly efficient. In fact,
modern software packages in the deep learning community provide versions of the backpropoga-
tion, through generalised computational graph frameworks. Known as auto-differentiation, it al-
lows for gradients to be automatically computed between nodes of the graph, and is the approach
used by many popular deep learning libraries such as Tensorflow [1], PyTorch [99], Theano [10],

amongst others. This interesting approach naturally lends itself to the scientific community, as
many scientific problems involve calculus. Many software packages for deep learning can, there-
fore, also be used for rapid prototyping and development of ideas for solving complex functions
without the use of meshes, meaning there is no reliance on finite-difference schemas. The scien-
tific community is just starting to see the power of such toolboxes for imposing known physical
constraints on powerful non-linear functional fitting ability of neural networks. This has driven
a wave of interesting work combining powerful nonlinear modelling capacity of neural networks,
adding known physical constraints into the loss function [104, 53].

2.3.4 Choice of activation function

Until now, we have considered the activation function ϕ(·) to be some arbitrary non-linear func-
tion. As we have shown the optimization process to involve the calculation of the activation gra-
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Figure 2.8: The different non-linear activation functions ϕ(·) commonly applied in neural networks.

dient through recursive application of the chain rule, the choice of activation function is a key
component of neural network architecture design. Initially, the step function was used as this was
more inline with the biological understanding of neurons, where they ’fire’ once the inputs pass a
certain value. Naturally, repeatedly computing the gradient of the step-function is not well-suited
for optimization, as small changes in the weighted inputs can produce a large change in the out-
put during the backprogation step. As neural networks were further developed, they were more
widely incorporated into modelling statistical processes, the step function was then replaced by
other non-linear functions with better properties related to differentiation. Typically, the Recti-
fied Linear Unit (ReLU) [94], or Sigmoid function are now used for the input and hidden layers.
Figure 2.8 displays each of the aforementioned functions.

For the final output layer, the type of activation function applied depends upon the task. For
the binary classification case (K = 2), the sigmoid function is used, in the case of multiple classes
(K ≥ 3), the Softmax function is used

fk(Ŷ ) =
eYj∑K
j=1 e

Yj
, (2.23)

which normalises the output probability distribution amongst the K classes. For the regression
case, the output activation layer gL can use a linear activation, or a ReLU activation for positive
only outputs.

2.3.5 Neural Network Variants

We have established how the conceptual underpinnings of the feedforward neural network intro-
duced in Section 2.3.2 - the perceptron. We have also now introduced how a ’vanilla’ feedforward
neural network is constructed and optimised. The idea of using ’perceptons’ as a mathematical
model of decision making has however been around for decades, with it first discussed as early as
the start of the 1960s. Throughout the 1970s to early 1980s, however, neural networks received
limited interest. This was mainly due to the limited recognised work on implementing the cru-
cial component of the backpropogation algorithm. Backpropogation had been implemented as
a computational method for optimization from as early as 1970 [72], it was also shown to be a
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Figure 2.9: Example of how the exploding/vanishing gradient problem manifests during neural network
training due to the gradient calculation of the activation function tending towards zero at ex-
trema.

method to train feedforward neural networks from as early as 1974 [146]. The lack of interest
came about as the academic community as a whole were pessimistic regarding the ability of neu-
ral networks to solve problems, leading to limited recognised publications. It was not until a con-
cise presentation of the modelling power of neural networks, in 1986 [117] that interest in such
approaches started being recognising within the scientific community.

Following this seminal publication, interest in the use of neural networks was firmly established,
with the resulting interest obtaining some key findings. A key proof was that neural networks are
universal function approximators [48]. This finding was crucial, as it stated that given an infinitely
sized hidden layer, a feedforward neural network could be trained to approximate any function,
regardless of its complexity. Practical case studies followed (e.g. handwritten digit recognition us-
ing neural networks) [66]; but, whilst theoretically feedforward neural networks could be trained
to perform any given task or approximate any given function, this was never the case in practice.
Limitations in approximating performance were fundamentally due to the available computa-
tional power, and the exploding/vanishing gradient problem.

The exploding or vanishing gradient problem is simply a consequence of the recursive applica-
tion of the chain rule. Repeated gradient updates will push the update step to the extreme val-
ues of the activation function. Here, the gradient changes get asymptotically smaller towards 0,
which causes the gradient to explode (tend to maxima), or vanish (tend to minima). An example
of how this manifests is shown in Figure 2.9, with the gradient of the sigmoid activation function
displayed as the dashed red line.

This is particularly a problem for fully-connected neural networks due to the nature of the
connection between neurons, and makes the training of large networks problematic.

Convolutional Neural Networks

To overcome this problem, it was recognised that neural networks must extract features using
sparser representations. One way in which to do this is via Convolutional Neural Networks (CNNs)
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- initially termed weight sharing [66], the idea pass a convolutional filter over the input which has
a common weight matrix. This feature vector will be automatically optimized to extract features
for a given task. By chaining together layers of convolutional operations, more abstract features
can be identified, again increasing the approximating power of the network. CNNs were the first
deep learning architecture to be widely deployed in commercial applications.

Starting with the typical convolution operator, taking some real valued input x(t) and apply a
weighting function w(a), where a is the delay term. We take a weighted average across each step
of t, to give the response

s(t) =

∫
x(a)w(t− a)da

s(t) =(x ⋆ w)(t).

(2.24)

The ⋆ operator is typically used to represent a convolution. In deep learning nomenclature the
weighting vector appliedw(·) is a termed the kernel. In practice, the the convolution is computed
over a discretized input x(t).

s(t) =(x ⋆ w)(t) =
∞∑

a=−∞
x(a)w(t− a). (2.25)

This operation can be generalizing to multi-dimensional inputs. If we define an input 2D input
vector I , and pass though a 2D kernel K ,

S(i, j) = (I ⋆ K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j −m); (2.26)

and using the commutative property, the 2D convolutional operator is commonly implemented
in ML toolboxes as

S(i, j) = (I ⋆ K)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n). (2.27)

The early successes of CNNs can be attributed to the following properties. Firstly, the con-
cept of weight sharing greatly decreases the number of free parameters required to represent fea-
tures when compared against a feedforward neural network. For examples, consider the case of
inputting a 2D input consisting of a 28 x 28 pixel image for a classification task, for the feedfor-
ward case, each input pixel will be represented by a single neuron in the input layer which maps to
the first hidden layer. If we were to then decide to represent the first input layer with 100 neurons,
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the total number of weighting parameters would have scaled to 78,400 (28 x 28 x 100; O(m x n)

). In contrast, the convolutional operation optimizes for the values inside the kernel only. For our
image example, we using a CNN, we could pass over a 3x3 kernel to extract features, and then
pass the output to a fully connected layer, for the final case, the total number of free parameters is
then (9 x 100; O(k x n) ). This sparse features mapping force the network to compose extracted
features starting with simple relationships. Often k≪n, as only few parameters are required to de-
fine these simple relationships, providing a huge decrease in the number of operations required for
forward/backward-pass iteration. Another beneficial feature of CNNs when compared against
the traditional feedforward architecture, is that the extracted features have equivariance. This is a
property of the convolutional operator, it means that changing the input to the convolutional op-
eration produces an equivalent change in the produced output. Such a property means that small
shifts in the input do not greatly affect the produced features. The same features could be present
at different points in the input image and the convolutional kernels are still able to recognize and
extract such features irrespective of their position.

Pooling

With sparse-representations key to improving the performance of the traditional neural network,
further steps were then made to expand upon this process. Following the application of some
convolutional layer, the output can be replaced with a statistical summary metric. This operation
is termed Pooling, and is commonly applied in tandem with the convolutions. Max-pooling [156],

is one of the most common, and replaced the maximum value within a given N-D region. Variants
of this can include a range of typical statistical averages within of the region. This step ensures
that the derived features are invariant to translations, meaning that a small change in the inputs
does not produce a large change in the outputs. It also further reduces the required number of
operations by a pre-defined factor which is directly proportional to the size of the pooling region
- to improve computational efficiency.

We have now covered the subset of ML algorithms which have been utilized in this thesis. These
methods have been incorporated into novel routines for seismic event detection. Chapter 3 utilises
a CNN architecture to perform supervised classification of seismic phases. Chapter 4 uses an iter-
ative application of non-linear LSQRs regression, adapted within a model fitting logic to handle
low signal-to-noise problems. Chapter 5 integrates a range of state-of-the-art of deep learning
models in seismology for seismic phase classification; these are made available through a software
toolbox for unified access. Chapter 6 integrates a subset of the different introduced ML compo-
nents for seismic phase classification and event association and provides a benchmarking analysis
of how they perform both against each other, and also against traditional manual techniques.
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Figure 2.10: Schematic of the different methods to detect seismic events from seismometer timeseries
recordings. The centre map inset shows the synthetic propagation of 3 events across the net-
work, color-coded based on the underlying event. Waveform events take this information and
identify the presence of a seismic event based on the similarity or coherence of the waveforms
themselves; phase association-based workflows first identify the deterministic onsets of seis-
mic phases, then correlate these seismic phases using either known physical laws related to
event propagation, or unsupervised clustering-based routines assuming phase detections lo-
cally close to one another belong to the same event.

2.4 Methods of seismic event detection

With a theoretical grounding provided for the ML methods present in this thesis, we now turn
back to the seismic event detection task, to explore it in more detail. First introducing how it
has been performed historically and then exploring how ML is now being leveraged to improve
performance for each individual aspect of the task. As the scale and density of seismic arrays have
evolved over time, various detection methods have been proposed to identify events across seismic
networks. These methods to perform the event detection task can be split into two main cate-
gories; detection methods which operate on the waveforms, waveform-based methods, and meth-
ods which operate on deterministic identifications of arriving seismic phase energy termed pick,
or phase association-based methods. A schematic overview of what information is used to detect
and correlate the presence of seismic events across a range of seismometer timeseries recordings is
displayed in Figure 2.10.

For waveform-based methods, the waveform information is typically combined in two differ-
ent ways for event detection. Waveform-based migration approaches use the coherency of the
seismic wavefield as it propagates to detect events. Waveforms from different stations are shifted
in time and stacked to identify the focus point of the seismic energy in time and space [52, 42,

29, 50] - corresponding to the seismic source. This is also known as the ’delay-and-sum’ concept.
The stacking step boosts the signal-to-noise ratio, allowing for the detection of smaller magni-
tude events. It is, however, a compute intensive undertaking, and whilst variants of this approach

24



2.4 Methods of seismic event detection

are now being proposed which can utilise the parallelized nature of deep learning [102, 79], the
traditional approach will not scale well in this new era of large nodal seismic arrays.

The second major way in which waveform information can be used is through template match-
ing. Waveform-based template matching methods use the similarity of waveform signature to
cluster events belonging to the same source into groups dependant on the region of origin. Pre-
determined example waveform templates are cross-correlated to identify events [36, 126], but this
biases the detections to be of a similar nature to the reference template, and again, it is compu-
tationally expensive. Potentially, templates could instead be selected automatically e.g. [13], but
this scales asO(N2) and so cannot be applied extensively. Variations of the traditional correlation
function have more recently been proposed to overcome the compute limitations, which also aim
to improve performance through the use of ML [102, 88, 79].

The second major approach to detect seismic events, phase association-based methods split the
event detection stage up into two steps. Firstly, the impulsive arrivals of seismic energy (e.g. the
arrival of a P- or S-wave) are detected in the continuous timeseries - often called the ’picking’ stage.
These ’picks’ are then independent deterministic detections of seismic energy which are correlated
across neighbouring stations to identify the underlying source - often termed the ’association’
stage.

For decades the ’state-of-the-art’ method for the picking stage was for a human expert to man-
ually identify the seismic phase onsets. Naturally, this is a slow, and tedious process compared to
automated approaches, but historically provided exceptionally accuracy. Traditional automated
picking methods derive characteristic functions (CFs), or functional approximations of the prob-
ability of a seismic phase onset to infer pick onset times. These CFs are built using combina-
tions of statistical properties such as Kurtosis [7, 119], frequency information [75], moving aver-
ages (STA/LTA) [4, 3] amongst others. From the wide variety of ’traditional’ automated picking
methods, the moving average STA/LTA approach proved the most popular. The pick rates for
’traditional’ methods, based on manual feature extraction, massively under-represent the true seis-
micity when deployed during highly active seismic periods, even when applied over dense seismic
networks [107]. This poses a problem, as the pickers determine the threshold of information to
correlate. Fewer accurate picks mean that less information is available to identifying seismic events.
More recently, a new suite of picking algorithms have been proposed which apply deep learning
to automatically infer the characteristic properties of seismic phase arrivals [159, 86, 111]. This new
type of technique exhibits accuracy similar to, or event greater than, that of a manual expert and
have huge performance benefits over other methods. The performance benefits enable the excep-
tional standard of picking accuracy of a human expert to be applied across the entire sequence
of continuously recorded seismic data. This has not been previously possible and has resulted in
pick catalogs orders of magnitude larger than obtain from previous studies.
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Figure 2.11: Schematic of the Gutenberg-Richter Law, displaying how smaller events occur orders of mag-
nitude more frequently for each integer step along the magnitude scale (x-axis).

The secondary step of an phase-based detection pipeline the ’association’ step aims to take the
pick information and correlate this to an underlying source. The fact that events can overlap in
time has already been highlighted (Figure 1.2), which greatly influences the association stage. With
smaller magnitude events occurring an order of magnitude more frequently (Gutenberg Richter
Law; figure 2.11), correlating smaller scale seismicity to its source its not a trivial task.

When it comes to detecting seismic events, decreased detection thresholds, such as what has
been shown with the latest advancements in seismic picking, greatly complicate the detection pro-
cess due to the power-law scaling of information to correlate. Nevertheless, the ability to identify
events in such extensive datasets, has huge implications regarding the ability to better infer the
physical processes of earthquakes, resolving faulting networks and imaging rupture processes.

To provide a direct of example, Figure 2.12 displays the results of running a cross-correlation
method to detect seismic events throughout the entire S Californian region on all recorded seis-
micity over the period 2008 - 2017 [113]. This result was a step change in the number of events
that can be feasibly identified with traditional methods, detecting over a 10-fold increase of total
number of events compared to the previous catalog, with ∼1.81 million seismic events detected
in total. The catalog was obtained using standard methods in seismology, but the authors had
to utilize ∼ 200 Nvidia GPU cards, running on highly efficient super-computing architectures,
which is an expensive undertaking. Can the data-driven techniques of ML can generate a similar
solution without the associated cost in terms of compute power and time?

This is why the seismological community has a major recent focus on developing novel event
association algorithms to efficiently detect events in the latest pick catalogs. ML has again been
applied for this task in many forms, from graph theory [80], unsupervised clustering [160], recur-
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Figure 2.12: Detected seismicity of the 2019 seismic event detection study [113]. The comparison plot dis-
plays the improved resolution of faulting structures around the San Jacinto fault zone. This
has been obtained by detecting smaller magnitude events, which much higher resolution in
the new QTM catalog (bottom panel), compared against the previous Southern Californian
Seismic Network Catalog (top map). The inset map shows the study location in S. California
Original figure obtained from [113].

27



2 Theory

rent neural networks [112], amongst others. It also motivates the work of this thesis, where we
now introduce ML-driven components to both identify and correlate seismic events.
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3 Deep learning for seismic picking -
application of a convolutional
neural network

This chapter presents a machine learning approach for detecting seismic phases. We build a su-
pervised classification pipeline, training a simple CNN architecture on a limited training dataset
for deep learning purposes. We choose to evaluate a simpler model for two reasons. Firstly, our
training dataset contains only∼ 11,000 training examples, a simpler architecture, therefore, limits
the number of free parameters of our model, reducing the potential for overfitting. Secondly, to
date, the potential for smaller neural network architectures to be trained on a case-by-case basis
in new regions has not been explored. There have been studies which explore the potential of
deep learning for seismic phase picking trained on ∼ millions of training examples. In many en-
vironments, however, we do not have this scale of training data available a-priori. We frame the
task as a supervised multi-class classification problem for classifying seismic timeseries recordings.
For each point in the timeseries, our CNN architecture predicts the probability that the seismic
trace is recording the presence of either seismic phases (P-phase or S-phase), or noise. As detecting
seismic phases is the first part of any phase-based event detection pipeline, and will motivate the
methods we introduce in the later sections. The chapter is based upon the following publication:

• J. Woollam, A. Rietbrock, A. Bueno, and S. De Angelis. “Convolutional neural network
for seismic phase classification, performance demonstration over a local seismic network”.
in Seismological Research Letters 90:2A, 2019, pp. 491–502. doi: http://dx.doi.org/10.
1785/0220180312.

3.1 Introduction

Accurate detection of earthquake signals generated within the Earth is a fundamental and chal-
lenging task in seismology. Traditionally, the optimal method of identifying seismic phases in-
volves a trained analyst manually inspecting seismograms and determining individual phase arrival
times. Continuous developments in data acquisition and storage have resulted in vast, unprece-
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3 Deep learning for seismic picking - application of a convolutional neural network

dented increases in the volume of available seismic data. For such large-scale datasets, traditional
manual picking methods are rendered unfeasible due to the required investment of time and re-
sources; in addition, manual picking incorporates the subjectivity of different analysts which can
bias pick accuracy. Further development of reliable automated picking methods are therefore es-
sential to assist seismologists in their efforts to process large-scale datasets.

3.1.1 Historic Auto-pickers

The pressing need for a reliable automatic phase picker is not new, and numerous methods have
been proposed to detect P- and S- wave onsets automatically. The most commonly used method
for automatic phase picking is still the STA/LTA approach [4, 3, 30], which measures the ratio
between the energy of the seismic signal over a short-term and a long-term window; any values of
the STA/LTA ratio above a defined cut-off threshold represent a phase arrival. Baer and Kradolfer

(1987) modified the STA/LTA incorporating an envelope function and a dynamic signal thresh-
old into the characteristic function. There are numerous other approaches, including those based
upon higher-order statistics [119, 120, 63], autoregressive methods [68, 128, 105], shallow neural net-
works [144, 21, 22, 155, 34], methods which utilise wave polarisation [7], and those which utilise
pickers in tandem [95]. Whilst there has been extensive development of auto-picker routines, au-
tomated picking algorithms cannot currently match the accuracy of an experienced analyst. This
is attributed to the complex nature of earthquake source and propagation, with multiple physical
processes affecting the wavefield; variations in attenuation, noise-interference, source mechanism
and energy-partitioning at interfaces all affect the observed waveform.

3.1.2 Why historic auto-picking routines are typically inferior
compared to human analysts

Traditional automated picking methods are manually optimized for individual networks and/or
even on a station-by-station basis, fine-tuning the ‘characteristic functions’ to distinguish body
wave phases from noise. E.g., triggers can be based on the frequency content of a trace, kurtosis,
or some other combination of manually extracted features. One common problem is that S-wave
phases are more difficult to pick as their onset is often masked by the coda of P-waves and manually
extracted features will often struggle to identify the S-wave in such instances [39].

3.1.3 Advancements in deep-learning

Rather than extracting individual features, deep-learning-based algorithms focus on learning rep-
resentations of data, where multiple layers of processing provide varying levels of abstraction
[65, 123]. Recent advancements in deep learning techniques have yielded a suite of procedures
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which demonstrate ‘super-human’ performance when applied to solve problems in fields ranging
from computer vision [62], to speech-recognition [46]. Convolutional Neural Networks (CNNs),
are a form of supervised machine learning that achieves exceptional results in classifying multi-
dimensional inputs such as images, videos, and audio [62, 54, 64]. CNNs apply repeated con-
volutional and pooling operations to the input data, resulting in a set of learnable filters which
automatically ‘engineer’ the appropriate features for classification. The appropriate features are
extracted by fine-tuning of the network’s internal parameters (or weights), via a computer-based
optimisation process. The intrinsic properties of CNNs make them an ideal method for natural
signal classification [65]. Natural signals often demonstrate local connections between samples,
an example being the higher amplitudes observed immediately following an impulsive phase ar-
rival. The major advantage of a CNN approach is how such features are then optimised. Shared
weights throughout the network result in the systematic optimisation of decision boundaries to
find the best weighted combination of local features to classify phase onsets. Another major factor
behind the success of deep-learning methods is that the only required input is a large dataset of
labelled examples for training. Within the seismological community, large datasets of labelled data
are readily available in the form of manually picked earthquake catalogues for many regions. We
are now starting to see the adoption of deep-learning-based methods to solve problems in seismo-
logical processing [102, 111, 159, 137]. Preliminary results indicate such methods can match or even
surpass human levels of performance in seismic phase classification. So far, CNN approaches have
been trained over extensive catalogues of (∼millions) labelled examples collected over decades [111,

159]. We now investigate the dependency of the input data on classification performance by apply-
ing a CNN to classify seismic phases, where the network is trained over a relatively small catalogue
of events (∼ 11,000 P- & S-phase pairs). Can a relatively simple CNN architecture display similar
performance improvements in the absence of an extensive training dataset? If a feature engineer-
ing approach demonstrates generalisation capabilities when trained over a small local dataset with
inherent biases, this will further validate the potential of deep-learning-based methods over tradi-
tional techniques for seismic phase classification.

3.1.4 Data

The dataset used in training the CNN is a manually picked catalogue of 411 events containing
approximately 11,000 P- & S-phase pairs, located throughout the Iquique region of Northern
Chile. The training catalogue has also been used to perform a minimum 1D velocity inversion,
presented in tandem with the results. Events occurred between March-May 2014 and are recorded
over a network of 65 broadband and short-period stations distributed throughout Northern Chile
and Southern Peru; all stations use a sampling frequency of 100Hz (Figure 3.1).
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Figure 3.1: Distribution of manually picked events throughout Northern Chile, stations are indicated by
white triangles, event hypocentres are plotted as a function of depth.

Manual picking of events was performed using Seismic Data eXplorer (SDX) software: http:
//doree.esc.liv.ac.uk:8080/sdx/. We process the dataset by applying a linear detrend. Whilst
the CNN approach is shown to learn the characteristics of P-phases, S-phases, and noise [159],

due to our limited training dataset, the CNN network will only be presented with a small portion
of noise examples. To limit the potential for the CNN to erroneously identify noise it has not
been trained on as phases, and to homogenize the data set due to different instrumentation; we
bandpass filter the data between 2 - 25 Hz, a frequency range which lies in the passband of all
instruments deployed.

Manual picks are represented probabilistically as a Gaussian function (σ = 1s, Figure 3.2),
reducing the bias associated with erroneous picks. The σ parameter was determined through

manual parameter testing. Larger σ values resulted in the network acting more as an event ‘detec-
tor’ where the output probabilities were not impulsive enough to obtain a definitive phase-onset.
Values lower than 1 second resulted in a high proportion of ‘miss-picks’ as manual pick errors not
captured by the classification vector had a detrimental effect on engineering the appropriate fea-
tures for phase classification. The dataset is split into training, validation and test batches (with
ratios of 80:10:10 respectively).

3.1.5 Dataset augmentation and training

Deep learning-based classifiers contain a significant number of trainable parameters in the solu-
tion space, therefore, an extremely large number of examples are needed to prevent overfitting of
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3.2 Methodology

Figure 3.2: An example of input data (top) and classification data (bottom), inputs to the CNN are 3-
component traces, linear-detrended, bandpass filtered between 2 - 25 Hz. The associated classi-
fication vector for P-pick and S-pick are represented probabilistically as a Gaussian withσ = 1s.

the training dataset and to enhance generalisation. Our dataset is relatively small for deep learning
purposes. To overcome the limitations associated with a small training dataset we perform several
additional processing steps. Events are scaled by multiplication of a value drawn from a lognor-
mal distribution, the ends of the segmented event are tapered to limit impulsive amplitude spikes
generated by processing, varying levels of Gaussian noise are then added to each batch, resulting
in greater variations of signal vs. background noise. The training events are therefore modified
to show a range of arrival types, rather than the high-magnitude, well-recorded events that are
typically seen in a small catalogue of manually selected earthquakes for further studies. The input
window size for the CNN is 6 seconds. To train the CNN, a given input batch is sequentially win-
dowed with a timestep of 0.4 seconds. The windows are randomly shuffled before being used in
training, preventing the CNN from learning any unnecessary temporal order. A small time step
is used to increase the total number of events during training; also, having the network learn to
recognise the presence of phases at any point in the input window will help the network generalise
beyond the training dataset. Formatting the input data in such a way reduces the biases associated
with our small dataset and enhances the capability of the network to pick varying types of arrival.

3.2 Methodology

3.2.1 Network architecture

The input to the network compromises three one-dimensional windows (x) where each window
samples an individual component. For this given input, the network outputs the probability of
either P-phase, S-phase, or Noise for each time sample within that window (Figure 3.3).
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Figure 3.3: Schematic of the overall CNN architecture, displaying the sequential convolution and re-
sampling operations applied to the input window.

Probabilities are output by applying the ‘softmax’ or normalised exponential function to the
final layer

p(Y = i|x) = eαi(x)∑3
j=1 e

αj(x)
. (3.1)

Where j = 1,2,3 represents the P-phase, S-phase and Noise classes, x contains the associated
weights for the final layer. The input data are passed through repeated transformations; con-
volutional operations initially extract the appropriate features to characterise each class, the ex-
tracted features then go through repeated re-sampling stages, to output per-class probabilities. At
each stage, a Rectified Linear Unit (ReLU) activation function is applied [94]. The cost function
used to train the CNN is given by the negative log-likelihood NLL(x, θ) a multi-class classifi-
cation problem, where each class is characterised as a series of discrete probability distributions,
NLL(x, θ) is also termed the cross-entropy loss function,

NLL(x, θ) = −
3∑

k=1

n−N∑
n=0

log(p(ck|xn, θ). (3.2)

N represents the total number of training instances, ck corresponds to the class label assigned
to the input (xn) and the network weights θ. Eq. 3.2 is minimised using Adaptive Moment Esti-
mation (ADAM, [56]) along with batch training. The network weights are therefore updated at
the end of each batch, overn training instances. Hyperparameter optimisation is the derivation of
the optimal network parameters and is a major challenge when designing neural network architec-
tures [9]. Parameters such as number of layers, regularisation of layers, convolutional kernel shape,
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Figure 3.4: Schematic displaying how strided 1D convolutions quickly incorporate the long-term temporal
dependencies of the input data into the convolution kernel.

and the learning rate can all be optimised. Methods to solve this problem consist of, grid search,
random search, and manual estimation. As our study aims to demonstrate that a robust CNN can
be trained on small datasets, the focus is on efficient implementation over more time-consuming
systematic search methods. Once a robust network architecture is derived, a constrained search is
performed for the best combination of hyper-parameters

Our final network architecture consists of 3 convolutional layers, followed by 3 layers of up-
sampling (Figure 3.3). Again, due to the limited nature of the training dataset, the focus for the
network architecture is to limit the potential for overfitting. To localise the features corresponding
to different classes, convolutional layers apply strided 1D convolutional filters along each compo-
nent (Figure 3.4.).

The stride for the convolutional window is set to 4, this down-samples the time series by a factor
of 4 for each layer, reducing the overall number of free parameters and allowing for quicker incor-
poration of long-term temporal dependencies into the convolution kernel. A dropout parameter
is added to the second convolutional layer. Dropout is a regularisation technique which randomly
drops weights during training, reducing model complexity [131]. One-dimensional max-pooling is
applied to the final convolutional layer, further reducing the overall number of network weights.

3.2.2 Picking Phases

To obtain P- and S-phase onsets from the CNN output probabilities, we use knowledge of the
simple temporal relationships between P- and S-phases to determine onset times (Figure 3.5). For
the P-phase probability distribution p = [p1, p1, . . . , pn] and the S-phase probability distribu-
tion s = [s1, s1, . . . , sn] if P-phase probabilities exceed a defined cut-off threshold pcut the P-
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Figure 3.5: Displaying how the temporal relationship between P- and S-phases is used to identify phase
onsets from the output CNN probabilities. Solid lines correspond to the output P-/S-phase
probabilities; vertical dashed lines indicate phase onsets and the phase type is labelled above each
vertical dashed line. Vertical dotted lines indicate the start or end of a P-/S-phase search window,
where the corresponding labels are again presented at the top of each line. The horizontal dotted
line represents the pcut parameter used in determining phase onsets.

phase onset is searched for within the window [pstart, pend]. The onset is set at the index of the
maximum P-phase probability within this range. If the P-phase criterion is met, the correspond-
ing S-phase is searched for within the searched window [sstart, send], if

∑send
sstart

si > scut then
the S-phase is set at the index of the maximum S-phase probability within search window. Both
conditions must be satisfied for an event to be picked, consequently, the ratio of P:S phase picks
using these criteria is 1:1. The parameters used in detecting phase onsets are provided in Table 3.1,
note that all index values are relative to the initial pcut index.

3.3 Results

3.3.1 Predictions

The trained network takes a 6 second input window for 3-component data and makes phase pre-
dictions for each time sample within the window. Figure 3.6 displays a sample of the output
phase probabilities for events in the test dataset. The predictions display a clear distinction be-
tween P-phases and S-phases, further confirming that deep-learning-based classification methods

pcut 0.75 scut 5
pstart -200 sstart 500
pend 200 send 4000

Table 3.1: Parameters applied to the autopicker function, which takes advantage of the temporal relation-
ship between phases to identify phase onsets, all start/end indexes are given in samples (where
sampling rate for all instruments = 100Hz).
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engineer the appropriate features to accurately categorise P, S, and noise classes. This presents a
major advantage over historic auto-picking methods which utilise manual feature extraction and
often struggled to identify the S-phase.

To obtain P/S phase onsets, we apply our autopicker function, with input parameters of Table
3.1, taking advantage of the simple temporal relationship between P- and S-phases to assign phase
onsets (vertical lines on Figure 3.6). The phase onsets are then compared against the original man-
ual picks and the residuals are plotted (Figure 3.7).

The residual distribution for the test dataset displays a good agreement in the centre of both
the P- and S- residual distribution; however, the CNN has also picked extra events/phases in some
waveforms. These extra phase picks may be accurate; however, any additional events are not rep-
resented in our classification vectors as a detailed association of individual phases to specific events
arriving simultaneously is beyond the scope of this work. This negatively affects the residual dis-
tribution and is responsible for several of the large outliers observed.

3.3.2 Relocation testing

To overcome the issue of extra picked arrival times from simultaneously occurring events biasing
our residual comparison, we perform an additional test to remove arrival times from any events
overlapping in time. This additional test provides a more consistent assessment of auto-picker
performance. We perform an iterative inversion procedure, relocating both the original manual
picks and the CNN picks for the initial dataset. The catalogues are relocated using the VELEST
routine [59], which applies a minimum-1D velocity model along with station corrections to solve
for hypocentre locations. Hypocentral parameters are solved for all events within the catalogue.
When using VELEST, all phase picks within a segmented trace are assigned to a single event during
relocation. The large outlier residuals a significant distance (+3s) from the trend are attributed to
multiple picked events in the same segmented trace being erroneously classified as a single event
in VELEST. We, therefore, reject events with RMS residual larger than 3s to remove any picked
events overlapping in time. Statistics of the residual distribution for the original manual picks
compared against the CNN picks is provided in Table 3.2. The residual distribution indicates
that manually picked P-phases are slightly more accurate than CNN P-phase picks (σ decreased
by 0.051s); however, S-phase picks of the CNN approach achieve similar performance to manual
picking (σ decreased by 0.019s). We recognize that our training and test data set used for the
earthquake location data set are not independent; however, the residual distribution obtained
from the CNN methodology is similar to that of the manual picks of an expert seismologist.
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Figure 3.6: Output CNN prediction probabilities when applied to identify phase onsets for the test dataset,
phase onsets are indicated by vertical lines.
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Figure 3.7: Residual of CNN predicted phase onsets vs. original manual picks for the test dataset.

GAP < 220◦ P S
µp σp µs σp

CNN -0.261 0.445 0.282 0.749
Manual -0.124 0.394 0.390 0.730

Table 3.2: Statistics of the pick residual distribution of the original manual phase picks and the CNN phase
picks. Statistics computed assuming a normal distribution where µp, µs denote the average P-
phase and S-phase residual, and µp, µp denote the P- and S-phase residual standard deviation
respectively.
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STA/LTA CNN
P 72,655 77,623
S 63,353 77,623

Total 136,008 155,246

Table 3.3: Overall number of automatic picks on a separate catalogue of new events throughout Northern
Chile.

3.3.3 Autopicker comparison

To further test the CNN picker, we apply the CNN methodology in predicting phase-onsets for a
separate catalogue of events throughout Northern Chile, on the same temporary seismic network.
Events were initially segmented using an iterative approach based on a STA/LTA trigger [107]

and provides a useful test case for the CNN method. The relocation procedure is again applied
to compare performance. The initial number of phase picks for both methods is provided in
Table 3.3. Figure 3.8 displays an event from the new catalogue picked using the CNN method,
multiple event arrivals are again present in the traces. To limit the effect of this issue on our residual
comparison, we set both the STA/LTA and CNN method to only pick a single P-/S-phase pair per
trace and again use the iterative relocation procedure to assess residual. The relocated hypocentre
distribution for both methods are displayed in Figure 3.9 and Figure 3.10.

It can be clearly observed that locations are more clustered in the CNN approach and are bet-
ter concentrated along the plate interface, indicating the greater consistency in phase picks for the
CNN approach. Phase residuals for the relocated events are displayed in Figure 3.11; we show
residuals for both the final catalogues (minimum azimuthal gap < 220◦) and for only the best-
located events (minimum azimuthal gap < 160◦). Statistics for the residual distributions are dis-
played in Table 3.4.

Assuming a normal distribution, the CNN method exhibits decreased variance in phase resid-
ual for both P- and S- phases when compared to the optimised STA/LTA approach. The reloca-
tion residuals (Figure 3.11) are not just dependent upon the accuracy of detected phases, but also
on velocity variations not captured in the 1D model or station corrections affecting the residuals.
As both catalogues were relocated with the same iterative re-location procedure using the same
1D velocity model and station delay terms, discrepancies in residual distributions should directly
reflect the relative consistency of picks in each catalogue. Investigating the residual distribution,
the CNN approach has markedly improved both the overall relocation residual (Figure 3.9 vs.
Figure 3.10), and the variation in residual for both P- and S-phases. In addition to this, the differ-
ence in σ for the well-located events is shown to be more accurate for the CNN approach, with σ

improving by 0.230s for P-phases and 0.326s for S-phases when compared against the optimised
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Figure 3.8: Demonstrating the CNN auto picker performance on a new dataset for Northern Chile, where
events were segmented using an STA/LTA trigger [107]. We only allow the auto picker to pick
the presence of a single P-/S-phase per trace, to prevent relocation errors.
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Figure 3.9: Hypocentre relocation comparison for the CNN auto-picked catalogue. Event relocations are
plotted as a function of RMS residual, slab profile is provided by [44].

Figure 3.10: Hypocentre relocation comparison for the STA/LTA auto-picked catalogue. Event relocations
are plotted as a function of RMS residual, slab profile is provided by [44].

STA/LTA picking approach respectively. The statistics of the residual distribution are also in a
similar range to that of the manual picks (see Table 3.2).
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3.3 Results

Figure 3.11: Both auto picking methods phase residuals following hypocentral relocations, plotted for well-
located events (minimum azimuthal gap 160◦) and the for entire relocated catalogues (mini-
mum azimuthal gap 220◦)

GAP < 220◦ GAP < 160◦
CNN STA/LTA CNN STA/LTA

µp -0.238 -0.216 -0.247 -0.333
σp 0.487 0.696 0.393 0.623
µs 0.277 0.539 0.270 0.435
σs 0.780 1,081 0.596 0.922

Table 3.4: Statistics of residual distribution for both the CNN and STA/LTA derived catalogs. GAP <
220◦ and GAP < 160◦ relate to the filters applied to the catalogs to only keep events with an
azimuthal gap less than the threshold in degrees. µp, µs, σp, σs are the average P- and S-phase
residual, and the standard deviation of the P- and S-phase residual distribution respectively.
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3.4 Discussion

3.4.1 CNNs as an efficient method of feature engineering

This chapter has investigated the potential for deep learning techniques to improve the perfor-
mance of the first stage of any phase-based event detection pipeline - seismic phase picking. CNNs,
are an optimal technique for this task, they can be interpreted as an automatic feature engineering
approach when compared against traditional methods which use manual derivation of ’character-
istic functions’ for detecting the presence of a seismic phase. This investigation shows that even
when the data are scarce, a simple CNN approach still significantly outperforms traditional tech-
niques such as the STA/LTA. This is evidenced by the improvedσ of the P- and S- pick relocation
residuals, for the well-located events (minimum azimuthal gap < 160◦), resulting in a decrease
of 0.230 s, and 0.326 s respectively when using the CNN over the STA/LTA picking approach.
The results from this work add to the literature on supervised learning-based methods for seismic
phase classification and demonstrate that with appropriate considerations regarding overfitting
and generalization, such methods can improve seismological processing workflows, not just for
large well-recorded catalogs, but for varying study regions and datasets.

3.4.2 Future work

Future applications of deep learning techniques for seismic phase picking could therefore in-
clude deploying such pre-trained systems on poorly monitored areas of interest resulting in im-
proved data recovery (recall), and more efficient automation of seismic workflows. The results
of this work also raise interesting questions, inline with other initial investigations of deep learn-
ing for seismic event detection [102, 159]. The improved recovery of seismic phases, especially the
improved recovery of the S-wave, has huge implications for improving the quality of identified
events. As deep learning-based pickers such as CNN architectures are also potentially able to op-
erate at lower signal-to-noise ratios, this will result in many more individual deterministic onsets
to correlate to an underlying source. We have highlighted the power-law scaling of the Gutenberg-
Richter law (Figure 2.11). This relationship means that that CNNs, along with other related deep
learning techniques, could potentially generate orders of magnitude more picks when compared
against traditional approaches to-date. The next step of phase-based seismic event detection is to
correlate these phase identifications to some underlying source. This is now a much more diffi-
cult problem in light of recent developments in seismic phase detection, and provides a natural
avenue for future work. Can ML/data-driven techniques also be leveraged to correlate this in-
creased amount of information, in an efficient manner? This is what we will explore in Chapter
4.
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4 Seismic Phase Association Through
Machine Learning

After having explored how ML approaches are transforming the amount of phase information
obtained from seismic streams, this chapter presents a novel method for associating this new gen-
eration of seismic phase catalogs in an efficient manner. Again, we focus on how to best exploit the
information contained in such catalogs through the use of ’data-driven’ techniques. We adapt a
parametric model fitting approach, applying an iterative hypothesis testing logic to enable extract-
ing of true events even in very low signal-to-noise ratio environments. Our parametric model is
based on the physical properties of the moveout of seismic energy with distance, this contrasts the
highly non-linear functional approximators, such as neural networks which are strongly depen-
dant on the training data. With this approach, we can provide a generalized first-order approxima-
tion for the predicted arrival of seismic phases across arbitrary local to regional seismic networks.
This is agnostic to the station network geometry, where other techniques could require retraining
on a case-by-case basis to deploy to new regions. To systematically test the performance of our
approach, we construct a series of synthetic tests to see where the performance of our algorithm
breaks down. The chapter is based upon the following publication:

• J. Woollam, A. Rietbrock, J. Leitloff, and S. Hinz. “HEX: Hyperbolic event extractor, a
seismic phase associator for highly active seismic regions”. in Seismological Society of Amer-
ica 91:5, 2020, pp. 2769–2778. doi: http://dx.doi.org/10.1785/0220200037.

4.1 Introduction

The automatic detection of seismic onset from radiated energy caused by an earthquake or other
sources has been studied intensively over the last decade. However, the correlation of onset times
to a common source, termed phase association, has not gained much attention until recently.
With the continued increase in station density, along with hugely improved automatic detection
algorithms the amount of detected seismic phases has increased enormously. This has led to a
renewed focus on phase association methods to correlate the seismic energy contained within the
latest, extensive phase catalogues.
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Since the inception of phase association, the predominant approach to solving this problem
typically involves the application of a grid-based search procedure. Whilst individual nuances
exist, these algorithms can be summarized as seeking to parameterise the region of interest and
back-project arrivals to detect those which originated from the same coherent source [109, 37, 118,

27]. Often requiring large-numbers of parameters to tune, along with complex logic to prevent
mis-associations, backprojection methods struggle to associate events during periods of intense,
frequent seismicity, struggling when events occur close to each other in space and time, or if events
are not well imaged throughout the seismic network. All current software packages for automatic
earthquake association currently apply some form of the backprojection methodology to corre-
late events (e.g. Earthworm, SeisCompP3, Early-Est, Antelope, GLASS3).

Separate from associating deterministic phase picks, seismic events can also be correlated with
template-matching techniques, which correlate events based on similarity of neighbouring wave-
forms [36]. These methods work well for small networks, performing accurate event correlations
for regions of low signal to noise [126, 101, 113], but the expensive computational cost reduces
generalizability. In addition, matched templates are highly dependent on the ‘master’ template
selected and therefore might “ignore” a vast number of small earthquakes for which no template
exists, potentially misrepresenting the seismicity in a given region.

Seismologists are continuously seeking the identification of smaller, more frequently occur-
ring events as they provide further insight into the complex physical processes occurring within
the subsurface. Dense catalogues of well-located seismic arrivals are, therefore, of vital importance
within seismology. The data can be used for creating higher resolution tomographic models[127,

45] and the improved hypocentral locations develop the understanding of a variety of seismogenic
processes; examples include monitoring of seismicity rate changes [81], anthropogenic induced
seismicity [47, 73] and fault imaging [55]. As classical seismic association routines cannot corre-
late events during the most intense seismic episodes, the crucial processes occurring during these
periods remain undetected. For example, the post-seismic period of a major earthquake contains
extensive seismicity. Accurately resolving the complex, small-scale seismicity occurring during
such periods could hold the key to further understanding of an entire range of physical processes
associated with earthquake ruptures.

With the continued advancements in instrument deployment, increasingly smaller magnitude
events are now being detected. These events often lie close to or below the background noise
level and are more likely to occur simultaneously. Seismic picking algorithms have also progressed
significantly in recent years [7, 63], accurately and reliably picking such larger volume datasets.
In particular, the recent application of deep learning-based techniques to seismic picking has it-
self resulted in a step-change in overall volume of picks now being made, with these techniques
demonstrating state-of-the-art performance at increasingly lower signal-to-noise ratios (SNR) [111,
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159, 147]. Such factors further increase the number of phases to simultaneously correlate, render-
ing traditional association methods unsuitable as they are overwhelmed by the vast portions of
information contained in such datasets. In light of such developments, event-association meth-
ods have seen a renewed focus, where the application of machine learning-based techniques again
demonstrate significant performance improvements over traditional methods. The single-station
waveform similarity detection algorithm, FAST [152] applies a datamining approach to encode
compact representations of continuous waveform data for efficient clustering of similar wave-
forms. This removes the need for a ‘master’ template and greatly reduces computational cost. [112]

apply a recurrent neural network to model the temporal and contextual relationship between se-
quential picks to discriminate which belong to the same event. [80] improve upon previous back-
projection methods by approaching the problem in a graph-theory context, solving for sources
and phase assignments simultaneously. As developments in seismic sensor resolution and picking
methods continue, we can expect the seismic phase association task to inevitably involve associat-
ing increasing amounts of simultaneously occurring seismic events, in the presence of numerous
false impulsive signals.

Considering this continued growth in seismic data volume, we seek to leverage an approach
to seismic phase association which is computationally efficient and performs estimation well in
the presence of outliers (low SNR). We adopt the logic of the RANdom SAmple Consensus
(RANSAC) [32] algorithm, a machine learning technique widely applied within the computer
vision community [124, 96] and apply this to the phase association task. This approach to param-
eter estimation is specifically designed to work in the presence of a high proportion of outliers,
a common problem for temporary seismic networks where stations are often installed in imper-
fect seismic recording conditions. By incorporating such logic, we mitigate many of the problems
associated with traditional association methods and are able to demonstrate a minimum event
spacing resolution of ∼15 s through synthetic testing. Accurate event associations at this scale are
beyond the typical detection rates for regional seismic operational and research catalogues [127].

We present a computationally efficient phase association routine which can be applied in real-
time, throughout all typical seismic environments.

4.2 Hyperbolic Event eXtractor (HEX) associator logic

The problem of associating seismic phases can be cast as a parameter estimation problem, where
we seek to identify - to first order - the hyperbolic relationship in a catalogue of automatic picks
generated by an earthquake with unknown origin time. This problem can be treated analogous to
the Normal-Moveout (NMO) correction in reflection seismology. For a homogeneous half-space,
the arrival time of the pick ti at station i with location (xi, yi) can be expressed by
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t2i = t20 +

√
(xi − x0)2 + (yi − y0)2

v2
(4.1)

With a seismic velocity v, location of the epicentre (x0, y0) and zero offset time t0 which in our
case incorporates the unknown origin time of the earthquakes. Therefore, all picks associated with
the same event can be approximated by a travel time hyperbola. It is well known from reflection
seismology that equation 4.1 provides a good approximation for a one-dimensional velocity model
when replacing v with the root mean square average velocity, vRMS ; even for 3D velocity models
the hyperbolic approximation still acts as a very good zero order approximation [41]. There are two
major advantages to applying the hyperbolic moveout to the event association problem. Firstly,
by only inverting for a combination of zero offset travel time (therefore depth) and origin time the
strongest trade off in the event localisation problem is circumvented. Secondly, we do not have to
pre-define a velocity model as v in equation 4.1 is used in the sense of a hyperparameter acting as
a first order control over the curvature of the hyperbola.

4.2.1 RANSAC for seismic phase association

The RANSAC algorithm is a parameter estimation approach which iteratively draws random
minimal sets of data points from a data distribution (γD). Each set of samples (γS) form a candi-
date solution for the model parameters (mn). For every iteration, the candidate model is evaluated
according to some cost-function, with the standard being an inlier/outlier-based threshold. After
n trials, the best scoring candidate model is saved as the final model. This conceptually simple,
but powerful approach is easily generalisable and so is extensively used throughout the computer
vision community due to its proven ability to deal with datasets containing a high proportion of
outliers [115].

Framing the RANSAC logic in the context of the event association problem; the data distri-
bution (γD) represents the catalogue of deterministic phase picks. As we seek the association of
phases corresponding to the same underlying seismic source, we apply the RANSAC algorithm
to iteratively sample subsets of picks (γS ; refer to the black points in Figure 4.1).

Each γS is used in constructing a parametric model of event moveout (hyperbola, Figure 4.1),
where the model is projected across all stations, providing arrival time predictions. Any “inliers”
are, therefore, phases which lie within the models predicted arrival time plus some threshold (clear
points, Figure 4.1), and the “outliers” are any other phases. All models are evaluated based on their
weighted inlier count, with the best scoring model saved. RANSAC assumes that once a subset
of picks belonging to the same underlying event is found, the fitted model provides an optimum
solution to explain both the physical moveout parameters, and to associate any phases related to
that event. Figure 4.1 displays a summary of the HEX associator logic.
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Figure 4.1: Schematic demonstrating the logic of the HEX association routine.

Algorithm 1 Extract hyperbolae using RANSAC
Require: n ≥ 0

Set starting number of inliers Nbest = 0
for n trials do

Select subset of α traveltime observations randomly from [tw, tw+n]]
Using α samples, perform least-squares estimation of Eq. 4.1 to get hyperbola parameters

(x0, y0, t0, v)
Create candidate hyperbola using model parameters and project arrival times (ts)
Count N traveltime observations within projection ± residual threshold (ts = ti ± r)
if number of inliers N greater than previous best (N > Nbest) then

Save new inlier count as best (Nbest = N )
Save candidate hyperbola parameters as best (pbest = [x0, y0, t0, v])

end if
end for

We solve for the hyperbolic parameters through constrained least-squares [12]. Bounds can be
set for each parameter during optimisation, to ensure physicality in the inversion process. By
framing this parameter estimation problem within the RANSAC logic (pseudo-code provided
in Algorithm 1), any false picks are easily disregarded, as the algorithm discriminates based on a
physical model of wavefield propagation. Many extensions to the standard RANSAC framework
exist. Proposed adaptions improve specific aspects of either; computation time, accuracy, or ro-
bustness. These factors inherently trade-off against one-another. Probabilistic extensions such
as MLESAC (Maximum Likelihood SAC) [139], MAPSAC (Maximum A Posterior Estimation
SAC) [138] modify the cost-function to maximise the likelihood, improving accuracy at the ex-
pense of computational cost [18]. Other proposed adaptions attempt guided sampling (GASAC,
[108]; PROSAC, [78]) in the sample selection stage to accelerate performance, but the additional
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Figure 4.2: Trade-off plot for estimated number of trials to select a full inlier subset (k) as a function of
inlier-outlier ratio and number of source picks

computation step can again increase the computation time [18]. If the true distribution is known,
the computational cost of RANSAC can be simply estimated. With the number of trials required
to select a full inlier subset (k) defined as

k =
log(1− p)

log(1− ϵα)
, (4.2)

where p is the probability that at least one of the subsets is outlier free (typically set to 0.99;
e.g. [25]), ϵ is the ratio of inliers to outliers, and α is the number of observations to select. The α
value is an upper-bound for the number of required iterations as it assumes samples are selected
independently. Figure 4.2 displays the trade-off plot for k as a function of both ϵ and α, demon-
strating how the ratio of inliers to outliers in the distribution exhibits the strongest control over
the estimated minimum number of trials.

For the problem of event-association, dense pick catalogues contain an unknown number of
events. An unknown number of false picks further decreases the inlier-outlier ratio, greatly in-
creasing the estimate fork (Figure 4.2). Considering such factors, our application of the RANSAC
logic seeks to optimize computational performance, whilst remaining robust. To optimise the
computational performance, we apply the traditional inlier/outlier count as the cost-function.
Applying a ‘hard-bounded’ cost function additionally allows for accommodation of any poten-
tial uncertainty in the model, such as the non-hyperbolic moveout due to a heterogenous velocity
half-space. We also perform our own form of ‘guided’ sampling. When sampling candidates, only
picks within a pre-defined window [tw, tw+n] are selected (dashed line, Figure 4.1). This increases
the inlier-outlier ratio (ϵ) decreasing k. Factors such as spherical divergence and attenuation de-
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crease the likelihood of a phase onset being detected with distance from source. We, therefore,
apply a distance-based weighting schema to any inliers, focusing hyperbola extraction on local
spatial regions where there is the greatest likelihood of detecting seismic phases linked to the same
event.

4.3 Synthetic testing

When associating phases in practice, the true number of sources will be unknown. To quanti-
tatively test the performance of our algorithm, we adopt a synthetic testing workflow. This ap-
proach mainly follows the rationale of the latest event association studies [112, 80]. It should be
noted that whilst adopting a synthetic testing workflow in line with previous works allows for
general comparisons with other association techniques, the forward models and underlying sta-
tion network geometries differ for each study. Direct quantitative comparisons cannot, therefore,
be performed, as the testing regions are fundamentally different. General performance compar-
isons can, however, be made as all methods follow a common testing approach. All coordinates
are expressed in terms of distance from the centre of gravity of the seismic network. We initially
generate a grid of 3,146 events throughout northern Chile, all sources within the event grid have
spacing 20 x 20 x 2 km in latitude, longitude, and depth respectively (Figure 4.3).

Figure 4.3: Displaying station network throughout northern Chile used in synthetic testing. Triangles rep-
resent seismic stations; the grid of potential event sources is delineated by the boxed region.
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Forward modelling of the P-phase traveltimes for each source are calculated using the 1D veloc-
ity model of [49]. Each traveltime is assigned a label corresponding to the synthetic source from
which it originated. The aim is to cluster or correlate phase arrivals which correspond to the same
event source. As the routine is associating P-phase hyperbolae, for all of the following tests the
optimization bounds for Equation 4.1 are set as (xmin = −400km, xmax = 400km, ymin =

−400km, ymax = 400km, tmin = −30s, tmax = 40s, vmin = 5km/s, vmax = 12km/s).
It should be noted that in our test a source might be located outside the station network, a phe-
nomenon commonly encountered within subduction zone environments.

4.3.1 Single event stress test

To highlight the unique advantages afforded by the RANSAC framework, the HEX associator is
tasked with first associating a single event in the presence of increasing proportions of false picks
(Figure 4.4). For this test, one source is selected from the event-grid and the forward travel-times
are calculated. A ratio of M false picks are added (termed ‘noise factor’ in Figure 5). All false
arrival times are sampled from a uniform distribution U ∼ (ttmin, ttmax). If the weighted inlier
count is less than a minimum value γ, the association to a single common event is rejected. These
parameters are then systematically tested, varying the ratio of false picks, the number of sample
points used for fitting (α), and the residual cut-off threshold (γ). Testing for a single event only
provides a simple guide as to where the algorithms association performance breaks down. The
results of this test also serve as a general outline for HEX input parameter selection.

Figure 4.5 displays the statistics for the single event stress test when the number of sample points
(α) is set to 5. Any cases where HEX has detected false additional events are plotted as crosses.

The precision and recall metrics [103], assess the association performance for this simple test
case (Equation. 4.3).

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
, F1 =

2(PXR)

P +R
(4.3)

Precision is defined as the ratio of true positives (TP) (true event picks correctly associated) to
true positives plus false positives (FP) (false picks incorrectly associated); the recall is the ratio of
true positives to true positives plus false negatives (FN) (true event picks the associator missed); the
F1 score is simply the harmonic mean of both the precision and recall. For any of the HEX input
parameter combinations, no spurious event associations are made when up to 50 % false picks
are present in the input window (noise factor = 1). Increasing the minimum number of sample
points to use in the model selection stage (α) allows for accurate event correlation of events at
greater noise levels, but such an approach decreases the probability of detecting smaller magnitude
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Figure 4.4: A result of the single-event stress test. Top plot compresses all the arrivals onto a latitude tran-
sect, plotting arrivals as solid circles, picks then associated by HEX are overlain by crosses, the
true event moveout is indicated by the dashed line, source picks for hyperbolic parameter esti-
mation are diamond markers. Bottom plot displays the same association hyperbola in 3D.
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Figure 4.5: Results of the single event stress test where number of sample points (α) was set to 5. Crosses
represent iterations where the association routine found extra, false events.

events, which are typically only picked across a limited number of local stations. Increasingα also
raises the computation time (refer to Figure 4.2, Equation 4.2). Figure 4.5 serves to highlight the
inherent suitability of the RANSAC framework to the phase association problem. The approach
associates phases even in cases of significant noise. As a physical model of seismic event moveout
is used to correlate phases, once a full inlier subset is detected, the remaining picks corresponding
to this event are typically found, indicated by the recall metric in Figure 4.5.

4.3.2 Continuous stream simulation stress test

For future applications, we envisage that the HEX association algorithm will be applied on real-
time data streams. To test the performance under such conditions, a workflow is constructed for
the simulation of multiple sources arriving simultaneously. The initial catalogue of 3,146 events
are randomly shuffled and sampled. For each iterative sample taken from the catalogue, the event
onset time ti is set to the previous event onset time plus a given offset c. Where c is drawn from a
uniform distribution U within a specified range (Equation 4.4). The onset time of the first event
t0 is set to 0.

ti = ti−1 + c where c ∼ U(cmin, cmax) (4.4)

54



4.3 Synthetic testing

Figure 4.6: Displaying the P-phase arrivals for the continuous stream simulation. Events are coloured are
function of true event label, the true event moveouts are indicated by dashed lines.

The maximum source receiver distance is varied for each event to simulate heterogenous prop-
agation effects, again sampling from a uniform distributionU ∼ (80, 250)km. The ratio of false
picks is set to 0.4 with false picks onset times drawn from U ∼ (0,max(tt)). Figure 4.6 dis-
plays an example of the synthetic event data where cmin = 0s and cmax = 20s. The synthetic
data catalogue is then sequentially windowed and passed to the associator (window-size=150s,
timestep=10s). To ensure the association routine fully captures all phases corresponding to an
event, the window size should be large enough to capture the full hyperbolic moveout of arrivals
across the network. We also recommend setting a timestep < inlier search window size to allow
the algorithm to fully capture any event foci which lie at the edge of the search window. HEX is
then applied to each window to search for potential events with the following input parameters
(n = 1000, α = 5, γ = 50, r = 2). If the number of phases present in the sampling window
is less than α, or if an associated hyperbolas weighted inlier count is less than γ then all events in
the window are assumed to be found, and the routine continues to the next window.

Figure 4.7 displays an example of how the synthetic events are sequentially associated and re-
moved from the synthetic catalogue. For this test, a metric to assess the performance of HEX in
terms of associating events is also required. For each association made (Ai), the Event Precision
(Ep

i ) is calculated between it and the c true events

Ep
i =

c
max
j=1

Ai ∩Bj

|Ai|
(4.5)

As the maximum intersection identifies the true event (Bj) with the most common picks to
Ai. We assume that Ai is attempting to associate this true event. Ep

i is simply theratio of correct
picks over total picks associated. We calculate the recall metric similarly; for each true event Bj ,
the Event Recall (Er

j )is calculated by comparing over all d event associations
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Figure 4.7: Example of how the HEX algorithm sequentially associated 3 hyperbolae from the synthetic
catalogue in a ’greedy’ manner, where once an event is associated the phases are removed from
the catalogue. Events are coloured a function of true event label, dashed line denotes HEX
association moveout.

Er
j =

d
max
i=1

Ai ∩Bj

|Bj |
(4.6)

Er
j represents the ratio of true picks recovered within an association. Similar to [112], we deter-

mine that any associations with Ep
i > 0.5 are correct. This is where more than half the picks in a

given association are common with a single true event.

4.4 Results

We systematically stress test the HEX algorithm by setting cmin = 0 and varying cmax from 10,
15, 20, 25, 30, 60, 100 to 120s. For each test, 1000 events are created. To account for the random-
ness of the synthetic generator, each test was repeated 5 times and the average values were taken
as final performance statistics. Figure 4.8 displays the results of the continuous stream synthetic
tests. The performance is exceptional up to ∼ 15 s average spacing. However, we do note that
there is no clear drop off in the event precision and recall curves, so this performance assessment
is subjective.

Beyond groupings of picks, HEX also estimates epicentral parameters for each association. This
information can be used in further evaluating the accuracy of any detections. For every HEX
association, we again use the maximum intersection of Ai and Bj to identify which true event
the algorithm has attempted to correlate. For this event, the distance between true and predicted
epicentre provides a further estimate of association accuracy. We show the proportion of events
within r km of the true epicentre, as a function of the average event time separation (Figure 4.8).
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Figure 4.8: Displaying the Event Precision, Event Recall and epicentral error for the continuous stream
synthetic tests.

Figure 4.9: Epicentral error distribution. Left hand side plot is a histogram of the epicentral relocation
error, confidence intervals are indicated by vertical dashed lines. Right hand side plot is the
map view of epicentres, the size and scale of the marker is a function of the epicentral error.

Again, at 15s average spacing 92% of the events have an epicentral error< 10 km, indicating correct
associations. The epicentral coordinates provided by HEX should be used as starting locations for
automatic earthquake locations to account properly for uncertainties and location error estimates.
Figure 4.9 shows the epicentral error distribution of one of the continuous stream tests when
setting cmax = 30. The median (x̂) is used as a measure of central tendency.

4.5 Discussion

4.5.1 WhereML can enhance seismic phase association

Whilst earthquake detection is a well-established concept within seismology, recent developments
underline the need for improved association algorithms. Improved picking routines [159, 111, 147]

and instrumentation mean that there are now significantly greater volumes of picks which need
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correlating. Seismic association algorithms are, therefore, seeing a renewed focus [112, 80, 153]. We
present HEX as an efficient routine to associate events under extreme noise conditions. Applying
a framework specifically designed to deal with a large proportion of outliers in the data distribu-
tion, greatly enhances the robustness of the routine. HEX differs from traditional back-projection
based phase association methods in that the parameterization and subsequent grid-searching steps
are not required. From a computational perspective this is more tractable. The association prob-
lem is essentially reduced to iteratively fitting the best hyperbolic model to explain the data, as-
suming that the full set of samples is contaminated by noise. The hyperbolic fitting concept has
been used for decades in reflection seismology. Any phase associations are made based upon the
underlying physical model of wavefield propagation, and errors in either the picks, or the model
itself can be accommodated with a hard bounded cost function. HEX can deal with scenarios
where over 50% of the picks are false, opening up the possibility to have highly sensitive pickers
which operate at lower signal-to-noise ratios but create a significant amount of false picks.

4.5.2 Extrapolating performance to realtime continous data streams

In this work, we perform associations over a regional network, however, the routine itself can be
applied to detect on regional, local or even micro-seismic scale. With our stress tests performed
for our sparse, regional network, a greater inter-station distance makes event correlations inher-
ently more difficult. As events are better recorded across denser networks, we expect performance
to even increase when applied to such scenarios. Sampling the maximum source to station dis-
tance from a uniform distribution also represents an upper bound on seismicity rate. As event
frequency and magnitude obey a logarithmic relationship in practice, large magnitude events will
not overlap as significantly as shown in Figure 4.6. Finally, simultaneously occurring arrivals will
interfere and only be detected as a single arrival in practice; all these factors indicate that the stress
tests performed in this study serve as an extensive example as to the limitations of the HEX rou-
tine.

Whilst this study introduces HEX as viable approach to phase association, we expect future
adaptations of this logic to further improve performance and generalisability. For example, the
selection of γ is intrinsically linked to optimal event associations. The optimal γ value will vary
based on the underlying station distribution. Practical applications of the HEX associator should
explore a general guide for the γ parameter as a function of station geometry. Other adaptions
to the HEX routine are introduced in later sections to improve it’s applicability in practical ap-
plications. The S-wave information is also integrated to improve the amount of information be-
longing to one underlying event which needs correlating. This has a significant impact on the
signal-to-noise ratio of true phase picks related to false picks associated with either separate, un-
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related events, or false picks picking some form of impulsive noise. These new integrations are
applied in a practical case study in chapter 6.

4.5.3 How to evaluate competingML event detection algorithms

After having introduced two novel techniques to both detect (chapter 3) and associate seismic
phases (this chapter), what remains is to quantitatively evaluate how these methods perform on
real data. To achieve this, systematic benchmarking routines are vital. Being able to compare
state-of-the-art routines easily across the same data is a key component of advancing the state-of-
the-art for any task. Our initial presentation of the new ML-based components has performed
some benchmarking against traditional methods but we can greatly improve the way in which
benchmarking is achieved. The following chapter (chapter 5) will explore this concept. We will
introduce software specifically designed for iterating and comparing state-of-the-art methods for
seismic event detection and more general tasks in seismology.
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Given the rapid increase in interest in ML methods throughout recent years, numerous workflows
now exist to apply ML to notable tasks in seismology. For fields where ML is more well-established
(e.g. computer vision and natural language processing), the rapid advancement of the state-of-the-
art algorithms for solving tasks can be attributed to two major factors; firstly, the open availability
of benchmark training data for assessing performance; and secondly, the development of general-
purpose toolboxes for accelerating research and development. An added benefit of such general
purpose toolboxes is that they often provide high-level interfaces to the latest state-of-the-art re-
search. For new researchers in the field, this can greatly reduce the ’barrier for entry’ - which helps
grow the research community. Such toolboxes can, therefore, act as a reference point for pro-
ductionizing the research process and quickly comparing the benefits and limitations of the latest
models.

In this chapter, we present SeisBench as such a toolbox for ML research. It is a general purpose
toolbox for accessing both benchmark training data, and the latest state-of-the-art models for ML
tasks in seismology. This chapter is based upon the following publication:

• J. Woollam, J. Münchmeyer, F. Tilmann, A. Rietbrock, D. Lange, T. Bornstein, T. Diehl,
C. Giunchi, F. Haslinger, D. Jozinović, A. Michelini, J. Saul, and H. Soto. “SeisBench—A
Toolbox for Machine Learning in Seismology”. in Seismological Research Letters, 2022.
doi: http://dx.doi.org/10.1785/0220210324.

It is also based upon

• J. Münchmeyer, J. Woollam, A. Rietbrock, F. Tilmann, D. Lange, T. Bornstein, T. Diehl,
C. Giunchi, F. Haslinger, D. Jozinović, A. Michelini, J. Saul, and H. Soto. “Which picker
fits my data? A quantitative evaluation of deep learning based seismic pickers”. in Journal
of Geophysical Research: Solid Earth, 2022, http://dx.doi.org/10.1029/2021JB023499.

Where the benchmarking works were conducted through the SeisBench toolbox. Here, both
Jannes Münchmeyer (J.M) and myself contributed equally to both publications, in particular,
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we both worked on assimilating the different benchmark datasets, converting the waveforms and
metadata from the differing data formats found at individual research centres into the standard-
ized SeisBench format. We jointly built the unified interface in PyTorch [99] to access the models,
converting any pre-trained weights. The remaining components of the software also saw joint im-
plementation, including any augmentation pipelines For the picking benchmark, J.M performed
the computation of the benchmarking itself, with the project outline and metric definition a com-
munal work Both majorly contributed to the write up and review process for either paper, along
with additional inputs from the other co-authors. Both publications, therefore, have an ’equal
contribution’ footnote appended to the author list - to denote contributions.

5.1 Introduction

Seismology has always been a ‘data-rich’ field. With the continued advances in computational
power, along with the increased use of high-density density deployments of nodal geophones,
the seismic wavefield is now recorded with increasing resolution and fidelity. Such advances are
not just exclusive to seismology; within science in general, larger, more detailed datasets are being
compiled. Machine Learning (ML) has risen to prominence as a set of techniques to best exploit
the information contained in such extensive datasets. Often termed ‘data-driven’ methods, ML
tools probabilistically model the statistical properties of a given dataset to perform inference for a
given task. As datasets get larger, and the inference step becomes a more tractable problem, these
techniques are now achieving state-of-the-art performance across the entire spectrum of scientific
fields. In many areas performance is outpacing the human analyst.

Although some pioneering works harnessed neural networks for seismological applications [145,

140], for many years such techniques did not find wider usage in seismology until approximately
three years ago. The possibility to assemble large datasets, massive parallelisation on commodity
hardware through GPU computing, algorithmic improvements and, importantly, the availability
of software frameworks such as PyTorch [99] and Tensorflow [1] has driven a wave of applications
of ML techniques to classical seismological problems, including earthquake phase identification
[159, 111, 147, 157, 143], earthquake detection [85, 86, 157, 102, 26, 98], magnitude estimation [74,

84, 31, 91], and earthquake early warning [61, 71, 92], amongst others.
From these initial works, a natural question arises: which ML techniques perform best for

each task? Answering this question is not trivial, as each study uses different data, different ML
frameworks for algorithm development, and different assessment metrics. Benchmarking and
comparison studies are, therefore, inherently difficult. The varying data used during training is
a particular problem, as the variable nature of earthquake source, propagation medium and site
conditions mean that the performance of a model trained on one region or environment might
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not be directly compared to a model trained in a different region. To enable fair comparisons of
models and model architectures over a range of possible environments, benchmark datasets are
essential.

Labelled benchmark datasets have been vital to rapid-progress in various classic ML application
domains, most prominently computer-vision (MNIST, Deng, 2012; ImageNet Deng et al., 2009),
and natural language processing (Sentiment140, Go, Bhayani, and Huang, 2009), as they allow for
easy assessment of which ML algorithms perform best. Creating such quality-controlled datasets
takes, however, a significant amount of time. Benchmark datasets perform this step for users en-
suring comparability of different studies, greatly accelerating the development and testing of novel
ML algorithms. With ML methods only recently being widely adopted in seismology, historically,
there were no benchmark datasets available for comparison works. This situation is now chang-
ing with the value of such datasets widely recognised. The seismological benchmark datasets now
emerging (e.g. LenDB, Magrini et al., 2020; INSTANCE, Michelini et al., 2021; NEIC, Yeck et al.,

2021; STEAD, Mousavi et al., 2019) already cover a wide-range of potential seismic environments
(e.g. global, regional, local), essential factors for training robust algorithms.

However, the availability of new benchmark datasets does not completely solve the comparison
problem. Remaining issues include the differing data formats employed by different benchmarks,
and the specific framework libraries ML researchers use to implement their models e.g. PyTorch,
Tensorflow, Keras [19], Sklearn [100], add complexity to any comparison work. Any benchmark-
ing must, therefore, check that operations applied within each library are directly comparable,
with no discrepancies in implementation.

The easy availability of both benchmark datasets, and standardised access to the latest models,
are crucial ingredients for advancing the state-of-the-art. As this problem is common to any ap-
plication based on ML [57], tools have been developed in other fields to provide researchers with
easy access to models and benchmark datasets (e.g. FLAIR, Akbik et al., 2019, natural language
processing toolbox). These continue to be widely used, evidence of their ability to aid develop-
ment.

To date, we are unaware of the availability of such software in seismology. The outlined bottle-
necks affect a wide range of potential users of ML. For the ’practitioner’, who wishes to apply ML
models to their seismic data, they are currently facing significant hurdles, as they would have to
learn specific frameworks to integrate the latest ML algorithms into their workflows. For the ’ex-
pert’ interested in developing novel techniques, they currently have to integrate various models,
testing over varying datasets’, which may be in differing formats. Without any frameworks or tool-
boxes to help with these problems, researchers must construct such comparison pipelines from
scratch. This is a significant undertaking. These factors are currently hindering more widespread
ML adoption in seismology and are limiting progress in the development of the next generation
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of ML methods. Tackling these problems is key if the seismological community is to accelerate
the development of ML techniques for seismic tasks and promote further adoption of ML within
the field. We have built the SeisBench open-source software package to address these issues.

5.2 The SeisBenchML framework

SeisBench provides a unified point-of-access for ML development and application within the seis-
mological community. Built in Python, it integrates both state-of-the-art models and datasets in
a single framework. Figure 5.1 visually highlights this concept, introducing the core components
of SeisBench. The range of datasets presented in the initial release include currently published
seismological benchmark datasets from the literature, directly integrated into the package.

Figure 5.1: Schematic diagram to show the motivation behind SeisBench. SeisBench acts as a unifying
framework for developing models and applying them to seismic data. The differing packages
used for model development, and the differing benchmark dataset formats are represented by
varying colours. The data, generate, and model tags highlight the different modules available
within SeisBench.

SeisBench also provides access to additional custom benchmark datasets which are made newly
available in the initial release of the software. As all datasets within SeisBench adhere to a com-
mon format, users can compare their algorithms across a range of seismic environments, from
detecting global signals to local settings. Models are accessed through a unified interface – en-
abling easy comparison of differing approaches. Whilst the model interface is designed towards
integrating various deep learning models, the types of models that can be built and compared in
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SeisBench are not just limited to deep learning-based routines; traditional methods can also be
directly deployed and integrated into comparison workflows. Finally, typical data augmentation
and pre-processing steps are provided through an augmentation API. With seismologists, and
general ML practitioners often, re-implementing the same operations for data pre-processing and
augmentation, inclusion of many of the standard processes and augmentations in SeisBench will
further facilitate faster model development.

SeisBench is designed to be generally applicable to the entire spectrum of general seismological
tasks, such as source parameter estimation, magnitude estimation, ground motion prediction.
Whilst the currently included models relate specifically to picking and event detection, SeisBench
is suitable for many other seismological tasks based on waveform analysis. The extensible nature of
the API means that any parameter from a datasets’ metadata can be used as a label (target variable),
enabling the construction of any supervised classification pipeline.

5.2.1 Data - Standardising access to Benchmark datasets

A standardised format for seismic waveforms and metadata information

The SeisBench data module contains functionality to read and process seismological datasets
which have been converted into the SeisBench standardised format. Using a standardised frame-
work enables the construction or conversion of varying benchmark seismological datasets. The
dataset format follows a typical approach encountered within the ML community (Figure 5.2),
where the waveforms (training examples) are included in a single file. We use Hierarchical Data
Format 5 (HDF5) to store the raw waveforms [33]. Each multi-component waveform example is
indexed by a lookup key. For all datasets, the required parameter ‘trace_name’ is used as the lookup
key. The labels/metadata associated with each training example are then stored in a simple table-
structure (.csv). To ensure compatibility across datasets, metadata parameter names should follow
a common naming schema ‘CATEGORY_PARAMETER_UNIT’ where: category defines the
object which the parameter describes (i.e., path, source, station, trace); parameter describes the
provided information e.g. latitude or longitude; and unit provides the unit of measurement e.g.,
m, cm, s, counts, samples.

Where several entries are required, such as trace start time and station name and location, such
a data structure leaves the freedom to include additional specialised metadata only available for
selected datasets. The metadata information is read into memory with the popular, high-level
data-analysis library Pandas [106]. With such a format, users can easily create their own custom
pipelines to query and extract metadata information associated with the waveforms. Providing
a common framework for data storage is key to any proposed benchmarking works. Imposing
restrictions on both the format and naming schema ensures that any newly defined parameters
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Figure 5.2: Example of data structure for SeisBench. Waveforms are stored in a HDF5 file, indexed by trace
name. The metadata for each waveform example is stored in a table format as a .csv file. The
trace name is required as a column, as this is then used as the lookup key to the raw data. This
schematic diagram displays the overall concept, with the implementation slightly more complex
to optimise performance. For more information see the technical documentation (https://
seisbench.readthedocs.io/en/latest/).

are still standardised across datasets. This greatly the aids extensibility and comparability across
datasets. Data throughput can be a major factor in the efficiency of training and application of
ML models. SeisBench therefore introduces additional performance optimizations to the data
structure that enhance IO read/write speed.

Once a dataset has been converted to the SeisBench format, it is integrated into the SeisBench
API by extending the base dataset interface, providing a unique class for the dataset. Ordering the
datasets into a class-based hierachy naturally reflects the dataset format. Common operations such
as filtering metadata and obtaining waveforms are all available via the base dataset interface. Fur-
ther individual properties of each dataset can then be encapsulated in the dataset class. Tools are
available to help scientists to convert their own datasets into benchmark datasets and contribute
them to the SeisBench repository, if desired.

Providing a common endpoint for benchmark datasets

We have converted a range of seismological benchmark datasets (Table 5.1; Figure 5.3) into the
SeisBench data format. These datasets contain various types of seismic arrivals from local to global
scales (Figure 5.4). All the datasets were either compiled from publicly available seismic data and
metadata, or were directly converted from a published benchmark dataset from the literature.
SeisBench thus provides easy access to data and model interfaces. All users have to do upon in-
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Figure 5.3: Benchmark datasets integrated into SeisBench with the initial release of the software; seismic
sources are circles, stations are triangle markers. Not shown are some additional datasets which
are included in the SeisBench initial release dataset collection, but are either missing source in-
formation (NEIC, GPD, Ross2018JGRPick, Ross2018JGRFM, Meier2019JGR), or have min-
imal number of events for plotting (the local Iquique dataset).

stallation of the package is to instantiate their preferred data/model object; the data will then be
downloaded and cached for repeat use. Within each benchmark dataset, training, validation, and
testing splits are pre-defined to reduce variability of benchmark comparisons resulting from ran-
domness or different choices for dataset splitting approaches. Of course, it remains possible to
define custom splits for specialized applications.

Here, we summarise the benchmark datasets integrated into the first release of SeisBench. The
benchmark datasets can be separated into two groups, datasets that are missing some common
metadata such as station location information, and those that contain all typical metadata in-
formation such as the station location and source parameters. Table 5.1, and Figure 5.3 and 5.4
generally only show those datasets of the first group, where all the common metadata are present.
The following dataset descriptions provide further information on the included metadata.
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Table 5.1: Overview of the datasets. The noise column indicates the number of dedicated noise traces. Note
that it is still possible to extract noise examples from datasets without dedicated noise traces by se-
lecting windows before the first arrival. For distances, the datasets cover local(L, 0≤∆<150 km),
regional (R, 150≤∆<600 km), and teleseismic (T,∆> 600 km) records. The datasets with vari-
able trace length contain considerably more than 60s of data for most examples. fs denotes the
sampling rate. When this parameter varies within a dataset, the range of sampling rates is listed.
The GPD, JGRPick, JGRFM, Meier2019JGR datasets are omitted from this table because these
datasets do not contain source property information. NEIC is included because it is used for the
benchmark comparison in [93].

Traces Events P picks S picks Noise Region Dist Tr. length fs [Hz]
ETHZ 36,743 2,231 35,227 18,960 0 Switzerland L/R variable 100 - 500

INSTANCE 1,291,537 54,008 1,159,249 713,883 132,288 Italy L/R 120 s 100
Iquique 13,400 409 13,327 11,361 0 N. Chile L variable 100
LenDB 1,244,942 303,902 629,095 0 615,847 various L 27 s 20
SCEDC 8,111,060 378,528 7,571,970 4,364,155 0 S. California L variable 40 - 100
STEAD 1,265,657 441,705 1,030,231 1,030,231 235,426 various L/R 60 s 100

GEOFON 275,274 2,270 284,240 2,847 0 global R/T variable 20 - 200
NEIC 1,354,789 137,424 1,025,000 329,789 0 global R/T 60 s 40

ETHZ
The ETHZ benchmark dataset is a manually compiled dataset for SeisBench. It contains local
to regionally recorded seismicity throughout Switzerland and neighbouring border regions. The
data are recorded on the publicly available networks: [134, 16, 132, 133, 5], operated by the Swiss
Seismological Service (SED) at ETH Zurich. To construct this dataset, we obtained both the wave-
form recordings and the corresponding metadata information via SED’s FDSN web service (http:
//www.seismo.ethz.ch/de/research-and-teaching/products-software/fdsn-web-services/). Any
detected seismic event from this network has had the phases manually labelled, including the dis-
crimination of first, and later phases (e.g. Pn vs. Pg). In addition to the typical phase identification,
the magnitude and polarity information is also available. In total, there are 57 metadata variables
available for this dataset. We select all M > 1.5 events from the period of 2013 - 2020 for integra-
tion. In total there are 2,231 events containing 36,743 waveform examples. The traces are all in
raw counts.

We split training examples for this dataset into training, validation, and testing example splits
by setting all events before August 1st 2019 as training examples (61.6%), all events between this
date and the 4th September 2019 are set as the validation split (9.9%), and all the remaining events
later than this date are the testing split (28.5%). Please note that the validation set can also be called
the development set. These terms are interchangeably used throughout the literature.
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GEOFON
The GEOFON monitoring service acquires and analysis waveforms from over 800, globally dis-
tributed seismic stations worldwide. The GEOFON benchmark dataset has been compiled from
these recordings. It is a teleseismic dataset which includes 2270 events containing∼275,000 wave-
form examples occurring between 2009 – 2013. Events have been picked automatically initially,
with manual analysis and onset re-picking performed routinely whenever necessary to improve
the location quality. The magnitudes range from ∼M 2 - 9. With the bulk of events compromis-
ing intermediate to large events (M 5-7; Figure 5.4). Any regional events with smaller magnitudes
are predominantly from the regions of Europe and northern Chile. 54 metadata variables are
included with this dataset, the trace units are in raw counts.

For the GEOFON dataset, please note the varying class distributions of picked phase types for
this dataset. For local and near-regional events S onsets have been picked and for a small fraction
both Pn and Pg are included. For teleseismic events, almost no S onsets have been picked. Depth
phases have been picked occasionally but not comprehensively

For the training, validation and testing splits, we set all events occurring before 1st November
2012 as training examples (58.6%), all events between this date and 15th March 2013 as the vali-
dation examples (10.1%), and any remaining events past this date as the testing examples (31.3%).

INSTANCE
The INSTANCE benchmark dataset [83] comprises ∼1.3 million regional 3-component wave-
forms from the Italian region, containing ∼50,000 earthquakes M 0 – 6.5 and also including
∼130,000 noise examples. Within SeisBench, we provide separate access to the individual parti-
tions of this dataset. The noise examples and signal examples are available as their own distinct
dataset; the seismic events are further subdivided into datasets with waveforms in counts, and
with waveforms in ground motion units. A combined dataset containing all noise examples and
waveform examples in counts is also available. A total of 115 metadata variables are provided. In
addition to the standard metadata variables, this dataset includes a rich set of derived metadata,
e.g. peak ground acceleration and velocity, assigned pick label uncertainty in seconds.

The training, validation, and testing sets are performed by randomly selecting ’event-wise’ for
this dataset. All waveform examples belonging to the same event are, therefore, in the same split
group. The final proportion of waveform examples for each class are 60.3% for training, 10% for
validation, and 29.7% for testing respectively.

Iquique
The Iquique benchmark dataset is a benchmark dataset of locally recorded seismic arrivals through-
out northern Chile originally used in training the deep learning picker in [147]. It contains 13,400
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waveform examples with 13,327 manual P-phase picks and 11,361 manual S-phase picks. All wave-
form units are in raw counts, there are 23 metadata variables associated with this dataset.

For this dataset, the training, validation and testing splits are selected through randomly sam-
pling the training examples, returning 60%, 30% and 10% for the training, validation, and testing
splits respectively.

LenDB
The LenDB benchmark dataset [77] is a published benchmark dataset containing local earth-
quakes recorded across a global set of 1487 broad-band and very broad-band seismic stations. It
comprises ∼1.25 million waveforms. The dataset is split into 629,095 local earthquake examples
and 615,847 noise examples. The data were processed using a bandpass filter between 0.1 - 5∼Hz
and the instrument response was deconvolved to convert the recordings into physical units of ve-
locity. Unlike the other datasets, only automatic P-phase picks are provided for LenDB. In total
there are 23 metadata variables for this dataset.

The training, validation, testing split is performed by selecting all examples with waveform start
times before 16th January 2017 as training examples (60%). Any examples between this date and
the 16th August 2017 form the validation split (9.5%), and the remaining examples past this date
form the test split (30.5%).

SCEDC
The Southern Californian Earthquake Data Centre (SCEDC) benchmark dataset has been con-
structed from publicly available waveform data [122]. The waveforms and associated metadata are
obtained via the Seismic Transfer Programme (STP) client [121]. For the obtained seismic arrivals,
all events have been manually picked. We select all publicly available recordings of seismic events
in the Southern Californian Seismic Network, over the period 2000 - 2020. Only local record-
ings of seismic events (∼M -1 – 7) are included, with source to station paths spanning up to a
maximum distance of ∼200 km. The dataset comprises ∼8 million waveform examples, which
contain ∼7.5 million P-phases and ∼4.3 million S-phases. This dataset also contains a range of
seismic instrument types including: extremely short period, short period, very broadband, broad-
band, intermediate band and long period instruments - both single and 3-component channels
are also present. Units for the examples are raw counts.

The split for this dataset is set randomly, with 60%, 10%, and 30% of the data compromising
the training, development, and testing splits respectively. For the magnitude metadata informa-
tion, please note the increase of M = 0 in events in comparison to the overall trend (Figure 5.4)
which suggests some data cleaning is still required for this dataset for the purposes of magnitude
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prediction.

STEAD
The STanford EArthquake Dataset (STEAD; Mousavi et al., 2019) published benchmark dataset,
contains a range of local seismic signals – both earthquake and non-earthquake – along with noise
examples. The dataset includes ∼1.2 million waveforms, of which ∼200,000 are noise examples
and the remaining contain seismic arrivals from ∼450,000 earthquakes (∼M -0.5 - 8). The units
for the waveform examples are raw counts and there are 40 metadata variables associated with this
event.

For the split, we use the same test set as defined in [86] which randomly set 10% of the exam-
ples as testing examples, we then add a validation set by randomly sampling from the remaining
samples. The final ratios of the training, validation, and testing split are again 60%, 30%, 10% re-
spectively.

The following datasets include cases where the publicly available waveform data, along with
corresponding metadata was available for training ML models, but some common metadata is
missing.

NEIC
The National Earthquake Information Centre (NEIC; Yeck et al., 2021) published benchmark
dataset comprises ∼1.3 million seismic phase arrivals with global source-station paths. As infor-
mation on the trace start-time and station is missing for this dataset, it is stored in the SeisBench
format, but without this normally required information.

For the training, development and testing split, the original publication presented randomly
sampled splits, based on event-id. This random splitting approach is implemented in the Seis-
Bench conversion of this dataset, again at 60%, 10%, and 30% for the training, development, and
testing examples respectively.

There are additional datasets integrated into SeisBench which were originally used in train-
ing notable deep learning algorithms in seismology. Typically, the waveforms for these datasets
were already pre-processed for training, including windowing and labelling, so the original sta-
tion metadata for each training example is unavailable for these datasets. As many of the datasets
also use picked waveforms from the SCEDC network, this results in potential common overlap
between the following listed datasets, for both metadata parameters and waveforms. The only
differences being potentially different metadata variables across datasets (e.g. picked phase labels,
vs. first motion labels).
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The deep learning training datasets converted into SeisBench format include: the ’GPD’ train-
ing dataset [111] containing 4,773,750 examples of 4s waveforms, sampled at 100 Hz; the ’Ross2018JGRFM’
dataset used for training the deep learning-based first motion polarity detection routine in the [112]

study, containing 6∼s Z-component waveform samples from 100 Hz instruments; the ’Ross2018JGRPick’
dataset used for training the deep learning-based picker presented in the same work; The ’Meier2019JGR’
dataset, which contains the S. Californian component of the training examples from the [82]

work.

Figure 5.4: Logarithmic histograms of epicentral distance and magnitude distributions for the datasets
with source and station information. For the two-dimensional scatterplot in the last column, all
points are plotted with transparency to highlight the overall distribution. The Iquique, NEIC,
GPD, Ross2018JGRPick, Ross2018JGRFM, Meier2019JGR datasets are not shown because
they are lacking either, magnitude, or source and station location information.
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5.3 Models

The SeisBench model interface is an extensible framework which encompasses the application
of all types of models to seismic data. It is designed to be generalizable to arbitrary seismic tasks
which operate on waveform data. A range of deep learning models from the literature are provided
through SeisBench (Table 2). All deep learning models are integrated with the PyTorch frame-
work [99]. Where possible, models integrated into SeisBench have the corresponding weights
from the original training procedure integrated. We also provide weights for each of the mod-
els trained on each of the included datasets (see the companion paper to this work, [90]).

5.3.1 Initially integrated models

The initial set of models integrated into SeisBench are listed below, where the acronyms CNN and
RNN relate to Convolutional Neural Network, and Recurrent Neural Network respectively. For
a more detailed description, refer to [90].

BascicPhaseAE CRED DPP EQT GPD PhaseNet
# Params 33,687 293,569 199,731/

546,081/ 21,181
376,935 1,741,003 23,305

Type U-Net CNN-RNN CNN/RNN/RNNCNN-RNN-
Attention

CNN U-Net

Training set N. Chile S. California N. Chile STEAD S. California N. California
Orig. weights N Y N Y Y N
Reference [147] [85] [130] [86] [111] [159]

Table 5.2: Description of the models studied. The number of parameters refers to the total number of
trainable parameters. Note that these numbers might deviate slightly from the ones published
by the original authors due to differences in the underlying frameworks. For DPP, information
delimited by slashes indicate Detector/P-Picker/S-Picker networks. The row "Orig. weights" in-
dicates whether original weights were published and are available in SeisBench. For PhaseNet,
weights were published by the authors, but these weights could not straightforwardly be inte-
grated into SeisBench due to technical issues.

• BasicPhaseAE [147], basic CNN U-Net, initially applied to regional aftershock sequence
in Chile.

• CRED [85], CNN-RNN Earthquake Detector, initially trained on 500,000 training signal
and noise examples from Northern California.

• DPP [130], DeepPhasePick, is a combination of a CNN for phase detection and two RNNs
for onset time determination. Like BasicPhaseAE, the networks were designed for detect-
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ing and picking local events, with an initial application on a regional seismic network in
Chile.

• EQT [86], EarthQuake Transformer, an Attention-based Transformer Network to both
detect and pick events.

• GPD [111] Generalised Phase Detection, CNN algorithm to detect seismic phases.

• PhaseNet [159], CNN autoencoder algorithm, adapts the U-Net segmentation framework
to the 1D problem of classifying seismic phases.

5.4 Training data generation pipeline

A common task for training ML models in seismology is building data generation pipelines. First,
some pre-processing is usually done; for example, traces need to be truncated to the correct length
and possibly normalized, labels need to be encoded. Furthermore, often it is beneficial to aug-
ment the data to increase the variability on training examples, for example by adding noise to the
waveforms. To standardize this task, reduce the required coding amount and reduce errors in the
training pipeline, SeisBench provides the generate API (cf. Figure 5.1).

The generate API provides individual processing blocks, e.g., window selection, label defini-
tion, or normalization, which can be combined into a data generation pipeline in a flexible way.
While many standard augmentations are already implemented, custom routines can be added eas-
ily. As the generate API only relies on the abstract data API, the same set of augmentations can
be applied to any SeisBench compatible dataset with minimal changes in the code. In addition,
since the generate API is integrated with PyTorch, it can facilitate efficient data generation with
PyTorch’s built-in multi-processing.

5.5 Example workflows - Using SeisBench benchmark
datasets and models

Here we highlight how the features and functionality provided through SeisBench can support
users with their tasks, from practitioners just looking to use an ML model to experts wishing to
conduct extensive, in-depth, comparison and benchmarking pipelines.

74



5.5 Example workflows - Using SeisBench benchmark datasets and models

5.5.1 Workflow 1 - Use pre-trained models for picking new seismic
streams

This workflow is relevant for practitioners who seek to leverage ML techniques on seismic data,
but do not necessarily have the in-depth domain knowledge to do this through ML frameworks.
This example demonstrates how to pick seismic waveforms with two leading, pre-trained mod-
els (EQT and GPD) via the SeisBench API. The commands to do this are displayed in Figure
5.5. The high-level functionality allows users to apply ML models to seismic data with just a few
commands. If not previously downloaded, the pre-trained model weights are downloaded and
subsequently cached for repeat use. The annotate and classify methods of the SeisBench models
integrate with stream objects from the obspy package [11], widely used within the seismological
community. We omit the plotting code for brevity. Users can easily expand upon this example
workflow to conduct seismic detection and picking pipelines. In terms of computational perfor-
mance, we test the EQTransformer implementation on a K80 GPU and annotate 24 hours of
100 Hz data from a single station in 6 s. Scaling this process results in a months worth of data
being labelled in ∼3 minutes.
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Figure 5.5: Example code-blocks which download a seismic waveform [1], then loads a pre-trained deep
learning picking model and applies the model to predict on the seismic stream using either one
of two ML architectures (GPD and EQTransformer) [2]. Resulting picks and characteristic
functions from the output probabilities are displayed beneath the code blocks. Characteristic
function is abbreviated to "CF". Picks are represented by dotted lines, event detections for the
EQT case are the shaded regions. The GPD picker makes a spurious S -pick before the onset
of the event but as the original model weights have been incorporated into the pickers to pick
on new, unseen data, this example may not be representative of the optimum performance of
the respective model architectures, which could be achieved by training on data matched to the
application case.

5.5.2 Workflow 2 - Training models

Training a deep learning model

For those wishing to train a deep learning model, Figure 5.6 provides a run through of how this
workflow can be built in SeisBench. This workflow highlights how the data, generate, and model
modules combine to help users perform all the typical tasks required in such a pipeline. Any load-
ing of the required models and data is performed initially. In this example, we train PhaseNet on
the INSTANCE dataset. Once the dataset and model are loaded, the generate module can be used
to perform typical pre-processing and data augmentation steps on the waveforms. The generator
object accepts a suite of augmentations which will be applied to each batch during training. In
this example, we randomly window the waveforms, normalise the amplitudes using the maximum
amplitude present in the window, change the datatype to 32bit floats, finally creating a probabilis-
tic vector representation of P-picks, S-picks, and noise examples in the waveform. These steps can
be achieved in 10 lines of code through SeisBench (see the Preprocessing and augmentations code
block, Figure 5.6). The waveforms following processing are displayed in Figure 5.6. The aug-
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mented waveform data then form a training sample for PhaseNet. We also show the standard
PyTorch syntax to iterate through a DataLoader object and train the model as the last step (see
the Train code block, Figure 5.6).
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Transfer learning

Rather than train a new model from scratch, transfer learning forms another common workflow
users may require. Transfer learning, involves using a pre-trained model, initially trained for some
given task - for example detecting seismic phases on a regional scale throughout S. California - and
subsequently training the model to solve a related task - such as detecting teleseismic arrivals. This
is often a useful as the knowledge learned during the initial training phase results in relatively less
data being required to optimize the model for the new task.

The modular nature of the API means that to switch any dataset or model for another, all that
is required is to change data or model imported (indicated by the dashed lines in Figure 5.6). So, to
load a pre-trained version of a given model, all users have to do is call the from_pretrained method.
The syntax to perform this step is also displayed in workflow 1. Datasets can also be swapped easily.
For the purposes of this example, any dataset containing P-, and S-picks could be loaded in place
of the INSTANCE dataset in workflow 2, and the training would then be performed on this
alternative dataset, using the PhaseNet model initially trained on regional seismic waveforms in
California as initialization for the training.

5.5.3 Workflow 3 - Benchmark differing models across differing
datasets

Beyond training for a single model or dataset, SeisBench allows for comparison pipelines to be eas-
ily constructed. Having an objective measure of the performance of newly proposed algorithms
against current state-of-the-art routines is fundamental to progress in any field, and standard pro-
cedure in traditional ML domains such as image recognition. As ML is a recent adoption within
seismology, it could be argued that this step has not yet been carried out extensively. A detailed
benchmarking study of various published ML picking models was carried out by us with the Seis-
Bench framework and is presented with the companion paper to this work [90]. The code used
for this benchmark study is made available and can serve as a template for future benchmarking
studies1.

5.6 Extensibility

The SeisBench API is published with an open-source license (GPLv3). The software is designed
to be extensible, and we encourage the seismological community to contribute. If users wish to
integrate their own benchmark datasets or models to the package for public download, we ask
that they get in touch with the project through GitHub (https://www.github.com/seisbench/

1Available at https://github.com/seisbench/pick-benchmark
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5.6 Extensibility

Figure 5.6: Example code-block with additional schematic diagrams displaying syntax required to per-
form full training of a deep learning model in SeisBench. PhaseNet is used for training, with
the INSTANCE dataset being used as training data. Further workflow examples demonstrat-
ing the functionality provided by SeisBench can be found at https://github.com/seisbench/
seisbench/tree/main/examples.
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seisbench); where further information on the contribution guidelines can be found. In particular,
we encourage inclusion of already published models and datasets. The code-base has extensive test
coverage to reduce the risk of coding errors.

With the picking and detection problems having been widely explored in recent years with
ML approaches, more complex problems are now being tackled with these techniques. We en-
visage that the models incorporated into SeisBench will expand to include such tasks. For ex-
ample, hypocentre determination, source parameter estimation, etc., can all be constructed with
SeisBench. All that is required is that the labels for a supervised learning task are present in the
metadata. Once the state-of-the-art ML models for a given task are available in SeisBench - as
shown with the picking example above - the major advantages of integrating new models within
this framework become apparent. The initial processing routine set up for a model can be di-
rectly used to compare against existing state-of-the-art models. This ease of testing will hopefully
promote further innovation of ML in seismology.

5.7 Discussion

In this chapter we have introduced the SeisBench toolbox as an open-source Python package, built
to aid users in their application of ML techniques to seismic data. SeisBench minimizes common
barriers to development for both practitioners looking to apply ML methods to seismic tasks,
and experts who wish to benchmark and train leading algorithms. The software provides access
to recently published benchmark datasets for machine learning in seismology, downloadable and
accessible through a common interface. SeisBench extends this concept to provide a common
access point to ML models, with state-of-the-art models and corresponding weights for seismic
tasks directly integrated. We provide access to a range of picking models from the literature in
the first iteration of the software but the framework is applicable for many seismological tasks
based on waveform analysis such as location and magnitude estimation. By tackling some of the
common bottlenecks encountered when developing ML algorithms, we hope that SeisBench will
help practitioners iterate and deploy their models, advancing the development of the next gener-
ation of ML technique within seismology. As an anecdotal point, since its open-source release,
and publication of the software paper [150], SeisBench has seen over 1,200 individual users access
the documentation for the package, from over 70 countries. This is testament to the growing
requirement for such general purpose ML tooboxes in seismology.

Such toolboxes can facilitate rapid examination of ML algorithms on curated benchmark datasets,
but previous chapters have already alluded to the heterogeneity of seismic wave propagation. This
property can result in major differences in seismic data across different regions. It also poses chal-
lenges when deploying ML tools in practice to new seismic environments. With data-driven tech-
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5.7 Discussion

niques so strongly dependant on the training data, practical performance of ML algorithms on
new out-of-sample data may still differ when applied to new regions - even when trained using
millions of labelled examples. This is an open question in the research community, and practical
investigations of the latest ML tools are to-date an active area of research. The next chapter will
focus on this question, where we again benchmark and deploy some of the latest ML algorithms
(often using the high-level API provided through the SeisBench toolbox), but here we are eval-
uating their performance in a completely new environment, containing highly active seismicity
following the Mw 6.4 2019 Durrës earthquake in Albania.
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6 Combining machine learning
components for event detection: A
case study in Albania

This chapter combines a selection of the latest methods in seismic event detection to analyse an 18-
day period of aftershock seismicity for the Mw 6.4 2019 Durrës earthquake in Albania. We test
two phase association-based event detection workflows methods, the EarthQuake Transformer
(EQT) end-to-end seismic detection workflow [86], and the PhaseNet picker [159] with the Hy-
perbolic Event eXtractor associator [148]. Both ML approaches are benchmarked against a data
set compiled by two independently operating seismic experts who processed a small subset of
events of this 18-day period. Both ML methods demonstrate good generalization performance
when applied to new regions with the larger catalog (PhaseNet & HEX) achieving a magnitude
of completeness of ∼1. By relocating the derived catalogs with the same minimum 1D velocity
model, we calculate statistics on the resulting hypocentral locations and phase picks.

We find that the ML methods yield results consistent with manual pickers, with a bias that is
no larger than that between different pickers. The achieved fit after the relocation is comparable
to that of the manual picks but the increased number of picks per event for the ML pickers, es-
pecially PhaseNet, yields smaller hypocentral errors. The number of associated events per hour
increases for seismically quiet times of the day, and the smallest magnitude events are detected
throughout these periods, which we interpret to be indicative of true event associations. Such
practical pipelines will serve as a useful comparison when used in conjunction with the results of
previous chapters’ work on designing and benchmarking solutions to the seismic event detection
problem.

Elements of this work form part of the Masters Thesis of Van der Heiden (VH) [141]. De-
noting contributions, JW (thesis author) implemented the automated event detection pipeline,
including both picking and association components. VH extracted the matching events from the
catalogs and determined the minimum 1D velocity model for the region; JW analysed the matched
event locations, writing the results and discussion within this chapter.
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6.1 Introduction

6.1.1 The seismic event detection problem: How is it tackled?

Throughout recent years there has been an explosion in interest in the application of Machine
Learning (ML) methods in seismology. Driven by increases in computational storage and com-
pute capacity, these techniques are proving effective in solving a variety of tasks across the field.
One such area which has received a particular interest is the task of seismic phase and event de-
tection. Numerous approaches utilising ML are now attempting to detect seismic events at ever
lower-signal to noise ratios. With this task forming a fundamental step to many seismological
workflows, even minor increases in the event detection rate could greatly affect the subsequent
understanding of any underlying physical-processes.

As the detection of seismic events is an intrinsic point of many workflows in seismology, nu-
merous methodologies have evolved for performing this task over decades. These varying ap-
proaches to detect the coherent energy of seismic events can be typically split into three cate-
gories: migration-based, cross-correlation-based, and phase association-based methods. The first
two groups operate directly on time series, compromising either the (usually) filtered waveforms
or characteristic functions, with the final group operating on pre-determined arriving phase in-
formation.

Migration-based approaches detect events through coherency of the seismic wavefield, back-
propagating waveforms or characteristic functions derived from them to find the focusing en-
ergy point in time and space as the source location and origin time [52, 42, 28]. Whilst this ap-
proach enables the detection of smaller magnitude events due to the underlying stacking process,
it is computationally expensive. Depending on the frequency range used and whether oscillatory
waveforms, or unsigned characteristic functions are back-projected, this can also impose strict de-
mands on the quality of the assumed velocity model. Additionally, if the seismicity rate increases,
distinguishing between multiple events and their associated P- and S-wave radiated energy be-
comes challenging because many secondary maxima can occur due to interference of waves from
different events, making it hard to understand which maxima correspond to real events.

Cross-correlation-based event detection routines use the similarity of waveform signature to
cluster waveforms belonging to the same seismic source region into groups. The predominant
technique is template matching [36, 126] where a correlation function is used as the similarity
metric, but more varied approaches using the same concept also exist [102, 88, 79]. However, due
to bias towards templates of existing seismicity, events at ’hot-spots’ can be detected well but the
analysis might be blind to earthquakes not located in already known clusters.

Phase association-based event detection involves splitting the event detection pipeline into two
distinct stages, highlighted in Figure 6.1. Firstly, the impulsive onsets of seismic phase arrivals
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Figure 6.1: Schematic overview of a typical event detection pipeline.

are detected (the seismic picking stage, Figure 6.1) and classified via wave type (e.g. P- or S-wave).
These independent detections of seismic energy are then correlated to their underlying source (the
association stage, Figure 6.1). The association step is non-trivial, as other sources of seismic energy
arriving in the continuous data can result in false picks, complicating the association process.

In this work we focus on the this specific approach, comparing the relative merits of phase
association-based event detection workflows for analysing continuous data from a temporary af-
tershock deployment.

For many years, due to the heterogeneous nature of seismic wave propagation, the most ac-
curate method was for a human expert to perform the picking stage. The natural drawbacks of
having to employ a human expert is that the task becomes time-intensive, rendering the approach
impractical in the current era of extensive data [70]. In contrast, automated phase association
pipelines offer orders of magnitude faster processing speeds, historically at the expense of event
detection and location accuracy.

In terms of methods, again there are a wide variety of techniques proposed. Automated pick-
ing algorithms can encompass traditional characteristic function-based approaches, applied for
decades in real-time detection pipelines [4, 3, 6, 75], but more recently, deep learning based picker
have emerged as the leading automated picking method [159, 111, 86, 129]. Deep learning routines
are typically trained on millions of labelled phase examples to automatically infer the character-
istic properties of seismic phase onsets. The latest deep learning routines now display accuracy
levels similar to - or even exceeding - the performance of a human expert [93]. These methods are
massively parallelized, and can be applied via GPU architectures, enabling rapid processing. They
are also able to detect significantly more picks compared to traditional approaches [147].

Any increase in the phase detection rate renders the second component of an event associa-
tion pipeline more difficult. Ignoring the potential for false picks, the simple power-law scaling
of the Gutenberg-Richter relationship highlights that, as the minimum detectable event size de-
creases, orders of magnitude more events should be detected. Due to this factor, compute inten-
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sive phase association algorithms (e.g. backprojection-based, or cross correlation-based methods)
will require significant compute time if they are to associate smaller magnitude events - which are
key for enhancing the physical understanding [113]. This problem is further exacerbated by the
increasing number of sensors present in the latest seismic deployments.

To cope with increased level of information to correlate, there has also been a recent influx of
novel association algorithms, which have been designed with scalability in mind. These can incor-
porate traditional ideas combined in a new way e.g. Rapid Earthquake Association and Location
(REAL) [153], a hybrid approach which takes a typical waveform backprojection methodology
and applies it in a ’sparse’ way through using the coherency of detected phases instead of the
waveform itself. There are also a more prominent general suite of techniques being applied to
tackle the scalability problem; ML-based methods, which can utilise the information contained
within extensive datasets to perform inference. Newly proposed phase association methods utilise
a variety of ML techniques, from graph-theory [80], Bayesian Gaussian Mixture Models for unsu-
pervised clustering [160], recurrent neural networks [112], and also RANdom SAmple Consensus
(RANSAC) [32], a data-driven ML technique to fit a parametric model to a data distribution [148,

158]. These techniques aim to improve both accuracy and performance of the phase association
task, decreasing the minimum threshold of detectable events given the new conditions of densely
recorded picks in time and space.

Accurate event association algorithms are therefore a key tool for seismologists aiming to bet-
ter image and interpret the processes occurring within the subsurface. This work analyses 18 days
of continuous data from a short period aftershock seismic network following the Mw 6.4 Dur-
rës event. We apply a selection of the latest ML-based methods for both seismic picking, and
phase association to test how they perform associating a physical aftershock sequence recorded
over a dense local array of recording instruments. Our analysis tests the PhaseNet [159] and EQ-
Transformer (EQT); [86] pickers. The EQT implementation also comes packaged with its own
associator. This associator, along with the Hyperbolic Event eXtractor (HEX) [148] approaches
are integrated into the detection pipelines to associate events. All detection pipelines are bench-
marked against the manual event picks of two seismic experts who worked independently to anal-
yse randomly selected events of the aftershock sequence. Such a workflow is similar in scope to
[20], where we seek to evaluate the potential improvements ML algorithms hold over traditional
methods for event detection.

6.1.2 Seismic setting

The continental collision of the Adriatic micro-plate with Eurasia generates the compressional
tectonic structures observed throughout western Albania. Faulting structures in the region have
been highly active, with notable events recorded in historical records. The largest of these being
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the 1979 Mw 6.9 event occurring ∼100km north of the coastal city of Durrës [8]. In recent years,
the occurrence of numerous moderate-large magnitude events (2016, 2017, 2018) indicated a re-
activation and changing stress dynamics within these faulting structures. TheMw 6.4 mainshock
ruptured ∼10 km north Durrës at a depth of 24 km [35] on 26 November 2019.

The Geoforschungs Zentrum Postadam (GFZ) and Karlsruhe Institute of Technology (KIT)
in conjunction with Polytechnic University of Tirana deployed 30 3-component short-period
seismic instruments (a mixture of 1Hz and 4.5 HZ sensors) to record the aftershocks sequence
(Figure 6.2; Schurr et al., 2020). Stations were deployed from approximately two weeks after the
mainshock. Stations were deployed close to houses to facilitate rapid deployment and ensure se-
curity of the recording devices which also means that an increased noise level had to be accepted.
All stations were operated offline and the data was collected in regular visits of about 3 months,
which became more complicated as the COVID-19 pandemic took hold in Europe.

6.2 Methodology

6.2.1 Event detection methods

To benchmark our various approaches, all methods are applied on the same period of continuous
waveform data, 2019-12-13 to 2019-12-31. This covers an ∼18-day period directly following the
deployment of the first instruments. With the first instruments from the temporary network only
recording from 16 days after the mainshock, the recorded data does not capture the aftershock
seismicity occurring immediately after the main rupture.

The comparison of workflows for processing the 18 days of continuous waveform data are dis-
played in Figure 6.3. In total, there are three stages to our event association workflow: picking,
association, and location. We apply three workflows, one combined manual approach, and two
automatic approaches, resulting in three independent event catalogs over the analysis period. For
the manually analysed control data set we applied a standard STA/LTA (short time average over
long term average) arrival and event detection procedure as outlined in [107]. The main reason
behind this was to quickly compile a basic event list from which about 300 events were selected
for manual analysis in order to gain a quick impression of aftershock activity and maybe identify
the main causative fault. The magnitude range of selected events is roughly between ML 1 and
4, providing a good range of magnitudes for the benchmarking exercise. For the automated pro-
cedures, our choice of algorithm for the association step was motivated by the results from the
picking stage. Below, we first state the overall performance of the different picking methods.

The total number of picks for each method are displayed in Table 6.1. In total, analyst A picked
9,761 total phases, and analyst B picked 2,980 phases; for the automated approaches, EQT [86]

picked 78,778 phases, and PhaseNet [159] picked 561,326 phases. The total number of picks be-
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Figure 6.3: Outline of workflows for generating seismicity catalogues for comparing automated and man-
ual approaches. All derived catalogs are evaluated against one another. See text for references to
the different methods.

Table 6.1: Picking statistics following the application of the various manual and automated approaches in
processing all continuous waveform data over the recording network from 2019-12-13 to 2019-
12-31. Values denote the total number of picks made in the first stage of the event detection
pipeline, before any association stage.

Parameter Manual Automatic

Analyst A Analyst B EQT PhaseNet

P-picks 5,758 1,680 39,918 289,509
S-picks 4,003 1,300 38,860 271,817

total 9,761 2,980 78,778 561,326
#P/#S 1.438 1.292 1.027 1.065

tween manual approaches and automated approaches cannot be compared directly, however, as
the manual picks these were not picked in a comprehensive manner. Both EQT, and PhaseNet
output probabilistic Characteristic Functions (CFs), which are a proxy for the probability of the
occurrence of each phase. Picks are obtained from the output CFs by defining a cut-off value past
which the sample of the maximum will be set as a pick onset. This threshold is a user-definable
input parameter, for both picking algorithms we use the default value from the original publica-
tions.

As the EQT pick catalog contains almost an order of magnitude less picks than the PhaseNet
approach, irrespective of which cut-off probability threshold used, EQTs simple built-in associa-
tion routine can deal with this level of pick information (one pick arriving on average every 20 s
across the network), whereas we use the machine learning-based HEX routine [148] to associate
the greater number of pick information generated by PhaseNet (one pick arriving on average ev-
ery 3 s, across the network) In the final stage of each workflow the probabilistic location software
NonLinLoc (NLLOC) [76]) is applied to locate any associated events.
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As the goal of this study is to verify the quality of automatic event catalogs made with the
latest ML methods, any events located by each approach should, therefore, exhibit well-located
hypocentres. To ensure all compared events are well-located, all final catalogs are filtered according
to the following criteria. The minimum acceptable number of phases for a location are set as
6 for P-phases, and 4 for S-phases. As poor S-phase constraints are known to lead to incorrect
focal depth estimates [40], for the relocation step, we only relocate events with phase information
satisfying the following criteria [43]; azimuthal gap< 180◦ (e.g. [58]); at least 1 S-wave arrival must
be at an epicentral distance less than the focal depth (e.g. [17]).

6.2.2 Evaluation

We first compare the results of the two manual event catalogues against one another to see how
they differ amongst themselves. This provides an assessment of how the baseline catalogs vary
between one-another acts as a reference point of consistency for which the automatic procedures
can be evaluated against. Following this comparison, the two manual event catalogues are merged
to one combined manual event catalogue (without duplicates). Merging of matched events from
manual analysts is done as follows: first, all picks and phases from both analysts are merged into
a single combined manual catalog; then duplicated events are determined as events from each re-
spective manual analyst with an onset time within 5s; finally, we fit an linear trend through the
combined catalog events RMS relocation residual and total number of detected phases. As resid-
ual is strongly correlated to an event size and moveout across the network, factoring in this trend
allows for determination of the ’better-quality’ events when comparing matched events (discussed
further in section 6.3.3). The event with the smallest ’corrected’ RMS is then taken as the event
to use. Only the phases of the ’best quality’ manual events are then used in the combined cat-
alog. This combined manual catalog is then compared to the EQT and PhaseNet catalogs (top
workflow, Figure 6.3).

The quality of all automatic event locations are assessed by comparing against this suite of
’base’ benchmark events. Evaluating the latest events association methods against this approach
provides a relative estimate against the ’traditional’ state-of-the-art, when performing event as-
sociation in practice. Once the varying manual and automated events catalogs are obtained, the
workflow to pairwise compare events between catalogues is the following:

1. Find commonly detected events in both catalogues (using origin time). We consider events
with an origin time difference of less than 2 s to be the same event.

2. Find common phase arrivals between pairs of matched events (using station and phase in-
formation) and calculate their residuals.
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Figure 6.4: Event distribution in time. On the left each event is marked by a point, on the right the growth
of cumulative number of events is shown.

Table 6.2: Comparison of the statistics of various automatic and manual event catalogs. Compared statis-
tics are related to the matched events only and include: the number of matched events; the de-
tected picks within matched events, and the mean ratio of the number of P picks and the num-
ber of S picks per matched event. For the manual analyst comparison, percentages are stated
as fraction of picks of analyst A. For the automatic vs. combined manual catalog comparisons,
the percentages are stated as a fraction of the combined manual baseline catalogs picks. EQT.
denotes the EQTransformer event detection method; PhN. denotes the PhaseNet & HEX de-
tection method; An. A and An. B denote Analyst A and analyst B, respectively; Man. denotes
the combined manual baseline event catalog.

Comparison Manual EQTransformer PhaseNet & HEX

Catalog An. A An. B match Man. EQT. match Man. PhN. match

events 209 43 33 219 1,110 206 (94.06%) 219 3,351 218 (99.54%)
picks 1,318 1,640 1,278 (96.97%) 7,799 7,892 6,494 (83.27%) 8,221 11,107 7,937 (95.90%)
#P/#S 1.41 1.18 1.36 1.05 1.35 1.09

3. Analyse the comparison statistics of matched events and phases.

We determine events with an origin time difference of less than 2s to be the same event.

6.3 Results

6.3.1 Benchmarking automated event detectionworkflows

The overall event detection results over the benchmarking period are displayed in Figure 6.4, and
Table 6.2. From the combined manual baseline catalog, the EQT approach detects 94.1% of the
manual events, and the PhaseNet & HEX approach detects 99.5 % of the manual events. EQT
finds 1,110 events in total, with PhaseNet & HEX finding 3,551 events (Figure 6.4).
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Table 6.3: Comparison of statistics for common events between catalogs. For the manual events, the differ-
ences are calculated as the derived results from Analyst A compared against the results of Analyst
B. Subscripts ’eqt’, ’phn’, ’base’ refer to EQTransformer, PhaseNet & HEX, and manual base-
line, respectively.

Comparison Manual EQTransformer PhaseNet & HEX

µA−B σA−B µbase−eqt σbase−eqt µbase−phn σbase−phn

Depth (km) -0.2530 0.5764 0.2146 0.6235 0.0161 0.4339
Latitude (km) -0.0046 0.0031 -0.0005 0.0030 -0.0007 0.0028

Longitude (km) -0.0006 0.0056 -0.0010 0.0045 -0.0005 0.0034
RMS (s) -0.1148 0.0517 -0.0033 0.0576 -0.0243 0.0496

number of picks -10.9394 5.1109 -0.2233 10.0491 -13.0229 7.9616
number of P picks -3.2424 2.1456 -4.8211
number of S picks -6.5455 -2.5971 -8.4174

6.3.2 Statistics of matched events and phases

The results of the comparison routine are shown in Table 6.3, where we calculate statistics of the
residual differences of matched events between catalogs, determined for a set of common event
parameters. For example, the mean number of P-picks for the PhaseNet vs. manual baseline com-
parison (µ = −4.8211) means that on average, PhaseNet picks 4.8211 more P-picks when com-
paring matched events of the PhaseNet catalog with the manual baseline catalog We calculate
statistics for the following parameters; depth, latitude, longitude, Root-Mean-Square location er-
ror (RMS), and the Number of Picks (NPS). We compare the events detected by both manual
analysts against one another, to provide a rough reference point for the consistency of the manual
seismic phase picking.

For all matched events, the intersection of common picks are then examined. Once common
picks are identified between catalogs, the phase pick residuals can be determined, The statistics
of pick differences are displayed in Table 6.4 and Figure 6.5. Residuals are calculated for arrival
time in seconds, pick weight, and epicentral distance to the station where the phase was picked
in kilometers. Again, all metrics describe the nature of the residual distribution when comparing
matched phases in both catalogs. Traveltime denotes the difference in pick onset time. The un-
derlying distributions for the traveltime residual comparison of matched phases are displayed in
Figure 6.5.

The PhaseNet & HEX, and EQT association approaches display an average difference in pick
onset of 0.038, and 0.043 s, respectively, i.e., they pick slightly earlier than the baseline catalogue,
which is dominated by the picks from analyst A. This average difference in pick onset between au-
tomated approaches and the baseline manual catalog is smaller than the mean difference between
the two analysts, where analyst B seems to have picked 0.112 s earlier on average (this estimate is
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Table 6.4: Phase pick difference for matched phases. For the ’Manual’ column the matched phase picks
of Analyst A are compared with those of Analyst B; for ’EQT’ and ’PhaseNet’ columns, the
phase picks of EQTransformer and PhaseNet are compared against the manual baseline catalog,
respectively. ’NLLoc weight’ refers to the difference in pick weighting assigned in the NLLoc
relocation procedure for matched picks.

Comparison Manual EQTransformer PhaseNet & HEX

phase µA−B σA−B µbase−eqt σbase−eqt µbase−phn σbase−phn

Travel time (s) P 0.112 0.118 0.043 0.322 0.038 0.269
S 0.058 0.268 0.064 0.483 -0.006 0.347

NLLoc weight P 0.087 0.134 -0.066 0.156 -0.102 0.133
S -0.129 0.165 -0.002 0.196 -0.027 0.177

based on a very small number of events, though). However, the standard deviation of the pick
time differences with respect to the manual baseline is larger for the automated methods (0.270
s for PhaseNet & HEX, and 0.321 s for EQT) when compared against the variation observed be-
tween different analysts (0.122 s). So, whilst both automated approaches detect more picks per
event (Table 6.3), these picks have potentially larger associated uncertainties compared to a man-
ual analyst.

6.3.3 Matched event locations

For evaluating the location consistency, the differences between the manual analysts can again
provide a baseline metric which we can compare the automated catalogs against. The locations of
compared event catalogs are displayed in Figure 6.6. When comparing the 209 events of Analyst A
and 43 events of Analyst B, 33 events are matched, detected across both event catalogues. These
intersecting events differ in epicenter by 705 m on average (left panel, Figure 6.6). For the 206
matched events from the EQT catalog (94.1% of the total baseline events), these locations exhibit
an average epicenter difference of 424 m when compared against the baseline catalog (centre panel,
Figure 6.6). Finally, 218 (99.5%) of the base events are found using PhaseNet and HEX; locations
show a difference of 377 m in epicentral distance on average (right panel, Figure 6.6).
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Figure 6.7 displays the travel time residual (RMS) plotted as a function of number of picks
(NPS) for matched events in each of the event catalog comparisons. Generally, we expect the
RMS to increase with an increase in associated number of picks due to larger numbers of picks
made at varying distance ranges incorporating higher pick uncertainties. This is easily visualised
with the comparison between manual analysts. Analyst B picked more phases than Analyst A for
every event, resulting in a larger RMS for every event, and is indicated by the positive slope of
connecting line in left panel of Figure 6.7. This signifies how we cannot simply take the standard
RMS residual values as a ’gold standard’ of uncertainty, as there are other contributing factors
influencing the RMS. For example, not accounting for the 3D velocity perturbations in the relo-
cation procedure could potentially account for the increase of RMS as a function of the number
of picks; furthermore, picks at larger distances, more frequent for the automatic pickers, might
suffer more from this.

The automated EQT approach finds events with a similar RMS and number of associated picks
to the manual baseline catalog (see central panel in Figure 6.7). EQT makes ∼0.2 more picks per
event on average (Table 6.3). In terms of location RMS, events located by the human analysts
range between RMS 0.06 to 0.37 s, and for EQT event RMS ranges between 0.06 and 0.44 s
(Figure 6.7). Results for the Manual and PhaseNet & HEX approach comparison are distinctively
different. Here, we see that the majority of PhaseNet events have a RMS ranging between 0.11
and 0.31 s, and the number of picks per event ranges from 38 to 58. On average, the PhaseNet &
HEX method associate ∼13 more picks per event than the human analysts, increasing the RMS
by 0.024 s on average (Table 6.3).
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Figure 6.7: Travel time residual (RMS) as a function of number of picks for matched events from the man-
ual Analyst A vs. Analyst B comparison (left), EQTransformer vs. Manual baseline catalog
comparison (center), and PhaseNet & HEX vs. manual baseline catalog comparison (right).
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6.4 Discussion

6.4.1 How doML-based event detection pipelines compare to manual
detection methods?

The results of the benchmarking analysis indicate that the latest ML event detection methods
at least match the reliability of individual analysts for individual events, while potentially being
able to analyse very large number of events. More specifically, improvements do not only relate
to greater numbers of event detections, but the ML detectors can identify a greater number of
phases per event, with the ability to pick at larger distance ranges with relatively minor increases
in RMS residual. Both end-to-end automated workflows in the EQT and PhaseNet & HEX ap-
proaches take continuous seismic data streams, and return ∼5x and ∼16x more events, respec-
tively, than our manually analyzed catalog. 219 events is a typical number of manually analyzed
detections for temporary aftershock campaigns which can be quickly processed over a feasible
time period. For a manual analyst to reach the number of detections of the ML workflows, this
would be a significant, time-intensive undertaking. ML detected events are well-recorded across
the seismic network, returning accurate event locations which can be used in subsequent analysis.
Such results are in line with other works now applying ML tools to process seismicity [135, 20],

where ML are displaying significant performance improvements over traditional methods. With
the increasing popularity of ML event detection components, our results may also help inform
future researchers who are seeking to apply such techniques in and end-to-end fashion. Within
the community, toolboxes are becoming available to streamline this task [154, 150], testament to
their growing usefulness.

Our investigation focuses on benchmarking a selection of fully integrated event detection pipelines,
Crucially, the ML workflows presented here require no a-priori knowledge of the subsurface ve-
locity structure to make these accurate detections. As the Albania region is one such area without
a well-constrained velocity structure to date, we can see how applying such end-to-end detection
workflows will greatly enhance understanding of the seismic structure of yet unexplored regions.
This is especially true for the phase association problem, as whilst there might be room for perfor-
mance increases by incorporating additional information like a region-specific 1D or 3D velocity
model; however, the drawback of these approaches are that you are relying on a-priori knowledge,
which might not be available for new regions or only of poor quality. The full PhaseNet & HEX
event catalog from this work has been used in performing a new 1D velocity model inversion for
the Albania region, using only results of the automated detection methods [141].

One remaining question to ask is: Are all of the automatically detected aftershocks real events?
To answer this question we investigated in more detail the obtained catalogue by looking into
the magnitude and the time distribution of the events. Firstly, we compute magnitude estimates
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(ML) for all the events in both the manual, and the PhaseNet & HEX catalog (Figure 6.8), using
the calibration for the Albanian region of [89]. We estimate magnitudes for all the events detected
throughout the analysis period, so in this case, the final quality filtering step is not performed.
This is as the magnitude calculation only very weakly depends on event depth, so here, we do not
need such strict criteria, boosting the total number of associated events to 270 for the manual ap-
proach and 5,548 for the PhaseNet & HEX approach. The PhaseNet & HEX automatic catalog
is determined to be complete above ML 1, with the manual catalog complete to ML 2.5. We note
that the magnitude of completeness for the manual catalog should not be used in a direct com-
parison with the automated procedures, as the manual events were not picked in an exhaustive
manner. It does, however, indicate what sort of completeness can be achieved when aiming to
perform a standard manual analysis of an aftershock sequence, in a reasonable period of time.

Figure 6.8: Frequency-magnitude distribution for the PhaseNet & HEX detected events and manually de-
tected events over the benchmarking period. The final quality location filtering has not been
applied here.

Diurnal variation of detected events Secondly, we investigate the dependence of the number of
detected events on the time of day in the benchmarking period. Figure 6.9 displays the number of
detected aftershocks throughout the day for both ML-based methods. We also overlay the average
amplitude of background noise (between 1 to 10 Hz) for each respective 3-component channel
(HHE, HHN, HHZ). A clear diurnal pattern is observed. The noise estimation curve shows
background noise increasing during the day and decreasing at night. As the seismic network is in
the vicinity of populated areas, we can relate this to anthropogenic activity.
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Figure 6.9: Number of detected aftershocks per hour in the day for both ML-based methods overlaid by
the 3-component network noise in 1-10 Hz band.

If the workflows were wrongly associating noise, we would expect the distribution of after-
shocks throughout the day to match the daily background noise distribution, with more events
in the middle of the day, during periods of higher background noise. For true associations, the
expected behaviour would be to detect larger numbers of the smaller magnitude aftershocks dur-
ing the night when the noise level drops (see the noise estimation point for components in the
edge portions of Figure 6.9). The number of associated aftershocks through the day exhibits the
latter behaviour, indicating true associations (see the hourly event count bars in Figure 6.9). Such
a time-of-day dependency on the number of detected events is well-known from the manual anal-
ysis. This pattern is further highlighted when plotting the magnitude of events through time (Fig-
ure 6.10). Here we can clearly see the local minima of detected event magnitudes roughly aligning
with the occurrence of midnight.
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Figure 6.10: Magnitude-time plot of detected events over the benchmarking period for the PhaseNet &
HEX detection workflow.

6.4.2 Contrasting results when applying state-of-the-artMLmodels
to new regions

Both methods are making true associations, uncorrelated to the background noise level but, a sur-
prising result is the number of picks made by both ML methods in practice. EQT makes 78,778
picks in total, and PhaseNet makes 561,326 total picks. This result is in contrast to the latest re-
sults of benchmarking works using curated benchmark datasets [93], which determined EQT and
PhaseNet to detect phases at a similar rate. One potential explanation is the length of the input
window required for both algorithms. EQT requires a 60s input window, PhaseNet requires a
30s input window, but due to the nature of the CNN method along with a lack of global connec-
tions, its receptive field is ∼4 s long. The larger input window for EQT means that longer term
temporal dependencies can be optimised for during training. When deployed in practice to a new
seismic region not seen during the training stage - such as Albania - these relatively longer-term
temporal relationships may now differ due to the natural heterogeneity of wave propagation. An-
other way in which the learned temporal relationships could differ is due to the potentially higher
seismicity rate of a temporary aftershock deployment. In such a network, simultaneously occur-
ring events are more likely, overlapping in time to change the arriving waveform signature. These
factors could potentially be contributing to the decrease in pick identifications when compared to
PhaseNet, which applies a CNN with a smaller input window to detect local relationships only.
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This thesis has sought to explore to what extent ML can be leveraged to solve the historical task of
seismic event detection. We initially outlined the motivation behind conducting such work. With
the scale of seismic data becoming exponentially larger, we outlined how ML techniques are well-
suited to exploit the information contained within such datasets. To evaluate this problem, the
initial chapters 3, 4 focused on designing and implementing novel solutions to both identify and
associate seismic phases. Our initial experimentation was benchmarked against traditional tech-
niques to quantitatively outline the potential benefits and limitations of ML-based event detec-
tion. Later chapters then expanded upon this concept of benchmarking, introducing software to
act as a reference point for facilitating ML research within the field 5. We finally deployed multiple
end-to-end ML-based seismic event detection pipelines in practice in chapter 6. Here, we evalu-
ated performance in practice to see if these latest methods performed as well as was expected from
the literature summarizing performance on the latest curated datasets [93]. Again, evaluating all
components against the traditional state-of-the-art of a manual expert.

We now summarize our findings in this concluding chapter. We will go through what has been
learned from each respective work, commenting on any potential implications and future work
related to our investigations, and from there we will conclude with a general outlook for data-
driven solutions for the event detection task. We will also outline what the latest results imply for
the field of seismology in general.

7.1 Deep learning for detecting seismic phases

In chapter 3 we implemented a novel CNN architecture for detecting the presence of seismic
phases. This study was conducted with the algorithm trained on a relatively small dataset of ∼
11,000 P- and S-phase pairs. All training examples were manually labelled following the occur-
rence of a moderate magnitude seismic event in northern Chile. We showed that even in the ab-
sence of extensive training data, ML methods could still outperform traditional automated seismic
picking techniques in new regions. CNNs are a natural fit for detecting the presence of seismic
phases, as the arrival of seismic energy at a seismometer is associated with local changes in fre-
quency content and amplitude of a seismic timeseries. These features are well-suited for detection
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by the convolutional kernel. A result validated by other published works applying CNN architec-
tures for seismic picking [159, 111]. CNNs were shown to ’automatically’ engineer the appropriate
features for classifying seismic phases in continuous seismic streams. This was evidenced by the
increased proportion of accurate S-phase identifications compared to traditional approaches such
as the STA/LTA. With S-phase identifications often masked in the coda of later arrivals, manu-
ally defined ’characteristic functions’ struggled to identify S-phases compared CNNs. Such results
have huge implications for improving not only the number of picks able to be detected but also the
quality of the detected picks. An increased number of S-phases is vital for improved relocations
of seismic events [40]. This was evidenced by the increased resolution of hypocentral relocations
using our CNN approach, attributed to the improved P-/S-phase pick ratio.

Chapter 3 acted as an initial exploratory work into the potential future applications of ML
pickers. The improvements in relocations associated with the higher quality picks of later phases
could result in deep learning being leveraged to improve the identification of the entire spectrum
of later depth phases (e.g. Pn and Pg phases). This would transform the resolution of crustal
tomography studies. More generally, a trained deep learning architecture essentially consists of
a set of weights and bias terms are applied to an input, so the runtime complexity of these algo-
rithms is O(n). This is in contrast to other leading methods to identify seismic events, such as
cross-correlation methods, which have a runtime complexity of O(n2). As the number of seis-
mic sensors exponentially increases, trained deep learning methods have an advantage over other
techniques when it comes to optimizing for the computational cost of such investigations. The
fact that they also either match or exceed state-of-the-art accuracy for the seismic event detection
task also outlines the positive impact these types of algorithms can have when applied to phase
picking.

7.2 HEX as a phase association algorithm for the latest
generation of seismic phase catalogs

Following the results from chapter 3, we then focused on how to associate the increased number
of seismic phases generated by the latest picking algorithms. Again, implementing a novel data-
driven solution which adapts the RAndom SAmple Consensus Algorithm (RANSAC) [32] logic.
We employ this logic to fit a parametric model of the seismic wavefield moveout with distance
and time - terming the algorithm the Hyperbolic Event eXtractor (HEX) [148]. The RANSAC
framework was primarily employed in the computer vision community for tasks such as extract-
ing shapes from point-cloud estimation [25]. Such an approach has numerous benefits compared
to other non-parametric solutions. Once a seismic event is found, we can provide a first-order
approximation of the seismic wavefield propagation to new points in space. This helps boost
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the number of seismic phases correlated, which greatly improves the robustness of any statistics
during downstream tasks such as relocation or event magnitude estimation. Synthetically stress-
testing the performance of the HEX association algorithm, identified that it can still associate
events when the signal-to-noise ratio of the event catalogs are up to 50 %. This is crucial for de-
tecting seismicity in high-noise environments.

This new generation of association algorithm has been specifically designed to accurately asso-
ciate the orders of magnitude larger seismic phase catalogs now being created in seismology with
deep learning pickers - as shown in chapter 3. HEX was designed to operate on local to regional
seismic networks. On this scale, an enhanced understanding of the physical processes associated
with major earthquake ruptures can only be achieved through more detailed, well-resolved seis-
mic catalogs that capture small-magnitude events. This will allow for the imaging of small-scale
faulting fabrics [113] and will close the gap between the types of rupture processes observed in
laboratory conditions [116], vs. what we see in nature.

7.3 Establishing frameworks for the research ofML in
seismology

Having introduced new ML-based methods for detecting and associating seismic events, chap-
ter 5 turns to the question of how to systematically benchmark leading techniques. Here, fields
where ML techniques are more well-established, such as computer vision and natural language
processing, provide a useful reference point for best practices [2]. Such general-purpose toolboxes
for accessing the latest state-of-the-art research and conducting benchmarking workflows are vital
to advancing the state-of-the-art in any field. Chapter 5 introduces the open-source SeisBench
Toolbox [149], as a framework for performing such tasks.

The functionality introduced with the SeisBench package provides a unified interface for ac-
cessing not only state-of-the-art ML models for general tasks in seismology, but also a unified API
for accessing benchmark training datasets. The detection of seismic events is a task where ML has
been applied most widely to date in seismology [102, 159, 160, 111, 147, 86, 130]. Benchmarking a
wide range of algorithms is a time-intensive task without such tools. Users’ have to integrate a
range of ML APIs in order to reproduce results. More generally, SeisBench will act as a general
reference point for the ML community in seismology, as it provides a high-level interface to apply
ML techniques to seismic data. This is a step-change compared to having to learn the relevant
underlying deep learning frameworks and it means that practitioners, who may not necessarily be
experts in ML, can also benefit from these techniques. To date, we have seen great feedback re-
garding the usefulness of the toolbox within the seismological community, with over 1,000 users
from 70 countries. Future expansion and integrations into the toolbox will expand the range of
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models integrated into the framework to more general workflows in seismology. The API has been
designed with this in mind, with the natural linking between metadata and raw training examples
perfectly suited to both supervised, and unsupervised pipelines. New benchmark datasets can also
be integrated in an extensible way, and whilst we already have over 20 million waveforms recorded
in the SeisBench benchmark training datasets, data from other more varied environments is due to
be integrated - from volcano seismic data to ocean bottom seismometer datasets. This will further
expand the audience for the package and solidify its standing as a general-purpose ML toolbox for
the community to use in aiding their research.

7.4 BenchmarkingML event detectionworkflows in
practice

Chapter 6 then concluded with applying the latest seismic event detection components to de-
tect seismicity in practice. Here, we tested two state-of-the-art phase association routines, the
EarthQuake Transformer (EQT) end-to-end seismic detection workflow [86], and the PhaseNet
picker [159] with the Hyperbolic Event eXtractor associator [148]. For both ML pipelines, we
constructed a benchmarking work, comparing the derived events against a dataset compiled by
two independently operating seismic experts. The reasoning for constructing such a pipeline was
twofold. Firstly, the manual labels act as a reference point for the traditional ’gold standard’ of ac-
curately associating seismic events. This provides valuable insight into whether the ML pipelines
display general improvements in detecting seismicity in practice - highlighting how far we have
come in improving algorithms to solve this task. Secondly, with seismic event propagation so het-
erogeneous, the performance of seismic events associated in practice may vary largely depending
on the region in where they are applied. The Albanian region has had a relative period of seismic
quiescence over recent decades. It, therefore, remains relatively under-explored when compared
to the training data available in many benchmark datasets (e.g. the Western United States).

Both ML-based approaches processed an 18-day subset of the 2019 Durrës aftershock sequence.
From the two approaches, we found that the PhaseNet & HEX method detects 3,551 events in
total, and EQT detects 1,110 events in total, compared to the 219 manually analysed events. The
difference in the number of identified events between ML methods is attributed to the step change
in phase detections generated during phase picking. PhaseNet identifies 561,326 total picks, with
EQT identifying 78,778 total picks when applied to detect continuous data in practice. This
level of automated phase detections is orders of magnitude above what can feasibly be analysed
by a manual expert due to time constraints, displaying a similar level of accuracy to the manual
expert. By relocating the events using the same minimum 1D model, we matched events and
phases common between seismic catalogs and analysed the resulting statistics. Further analysis
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indicates that the occurrence of the ML-detected events is inversely correlated to the background
noise level, further indicating true associations.

A pertinent finding from the practical case study of chapter 6 was that neural network archi-
tectures can potentially display varying recall when compared to their initial performance on cu-
rated benchmark datasets. As part of the publication of the SeisBench software package [150], we
also conducted an in-depth systematic benchmarking of the leading deep learning seismic pickers
[93]. The results of this study found that three neural network architectures performed excep-
tionally on the supervised classification task of seismic phase picking - across all environments
and benchmark datasets. These pickers were the PhaseNet picker [159], the EQT picker [86], and
the Generalized Phase Detector picker (GPD) [111]. For our practical investigation in Albania,
PhaseNet displayed a higher recall rate compared to EQT in recovering picks; irrespective of the
detection threshold. In total, the final PhaseNet picker found over 7 times more picks when com-
pared against the respective EQT architecture. There could be many reasons for this difference.
We attributed the lower number of detections for EQT to be due to the longer input window,
where potentially longer term temporal relationships need to satisfy conditions seen during train-
ing. This is in contrast to the PhaseNet picker, which had a much shorter receptive window, and
could abstract the feature extraction process starting on local features, and through nested oper-
ations incorporate more global relationships. It is worth noting that the higher recall rate may
not necessarily be better, as this could lead to a higher number of false picks. It does, however,
indicate a potential discrepancy between the performance of pickers across curated benchmark
datasets from well-explored seismic regions, and the practical performance observed in new ar-
eas. This finding will need to be validated with other works benchmarking deep learning picking
algorithms in practice.

7.5 Outlook

Let us now revisit the main question posed in chapter 1; namely, can we utilize ML to better
exploit the information contained within historical catalogs of continuous seismicity to improve
the resolution of seismic datasets. Our aim was to highlight and explore how well-suited data-
driven methods are for this task. We can summarize our key findings and outlook under 4 key
themes.

⋄ Machine Learning can greatly improve performance when detecting
seismic events.

As highlighted in chapter 3, we have shown that ML techniques can improve recovery rates for
the task of seismic phase picking. This agrees with case studies from the literature also exploring
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this task, recovery of seismic events can be ∼ order of magnitude larger [102] when using deep
learning over traditional automated techniques. Operating at lower signal-to-noise ratios and able
to reliably pick phases in the presence of coda of other arrivals, deep learning pickers can transform
the resolution of seismic arrival catalogs, which has huge implications for the processing of all
downstream tasks which operate on these data. They also offer better runtime performance than
the quadratic scaling of other leading methods such as cross-correlation. This means that event
detection can be performed across large-scale regional seismic networks without the associated
cost in compute time and resources that would of been required when using template matching
[113].

We have also shown how ML can be leveraged to deal with the exponentially increased amount
of data generated by these latest techniques. Again, data-driven methods are a natural solution to
these sorts of problems, as they offer significant run-time performance improvements over more
traditional methods such as backpropogation, but they are also built to withstand higher levels of
noise. This factor is crucial when exploring new seismic environments, or for temporary seismic
installations where anthropogenic noise can contaminate the recordings of seismic arrivals.

⋄ Leveraging unified toolboxes for benchmarking and advancement of
the state-of-the-art.

With the seismological field now starting to widely exploit ML solutions for a range of seismic
tasks, there are a myriad of practical workflows emerging applying new models to novel datasets
and then commenting on their respective performance. This sort of exploratory investigation is
great when first seeking out the best techniques used to solve problems, but once past this ex-
ploratory phase, refinement of leading models and algorithms should be conducted in a more
systematic way. Taking examples from other fields where ML has been well-established (e.g. NLP,
computer vision), both benchmark training data, and the use of toolboxes to standardise opera-
tions is crucial for advancement of the state-of-the-art. We have presented our own packages in
this thesis for performing such tasks in seismology. The key ideas are to streamline the develop-
ment process, and reduce barriers of entry for new researchers into the field. Toolboxes such as the
one presented within this thesis act as a general reference point for the community as a whole, and
will facilitate rapid benchmarking for leading models, even to more general tasks outside the scope
of seismic event picking and detection e.g. seismic signal denoising, source parameter estimation
etc.
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⋄ The need for practical pipelines to augment benchmarkingworks

With systematic benchmarking pipelines, there may be a tendency to focus on any ’in-sample’
data, which has already been recorded and labelled in some benchmark dataset. This can lead
to biases in the modelling process, which in turn can lead to overfitting and poor generalization
performance. To further now explore how the next generation of event detection components can
be integrated into analysis pipelines and research workflows, a number of practical case studies
are required, applying these models to new environments, under different noise conditions to
objectively assess performance e.g. [135].
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