

Karlsruhe Institute of Technology

Institute for Neutron Physics and Reactor Technology (INR) P.O. Box 3640, D-76021 Karlsruhe, Germany ^a**EUROfusion** Programme Management Unit DEMO Central Team, Garching, Germany

Referenc

www.kit.edu

Potential of radioactive isotopes production in DEMO for commercial use

Pavel Pereslavtsev, Christian Bachmann^a, Joelle Elbez-Uzan^a, Jin Hun Park

Objectives

Assessment of the DEMO neutron source potential to generate radioactive isotopes with different half-lives for medical application

Workflow

- Preparation of the DEMO CAD model with an irradiation port
- Conversion into the MCNP geometry representation
- Development of the DEMO model with HCPB blankets and integrated Irradiation Cell (IC)
- MCNP simulation to get neutron spectra in the IC
- Activation analyses in the IC(s)
- Analyses of the results

Time [days]						
Isotope	T _{1/2}	Reaction [target material]	Irradiation campaign, days [camps/year]	Max. specific activity, [reference], Bq/g	Max. yield ¹ , commercial yield ² , [total yield/year], TBq	Price assessment, M\$/year
⁹⁹ Mo	65.94 hours	⁹⁸ Mo(n,γ) ⁹⁹ Mo [⁹⁸ Mo]	10 [11]	1.2·10 ¹⁰ [1.2·10 ¹⁰]	4.4·10 ^{1*} 1.4·10 ^{2*} [1650]*	10÷30
¹⁹² lr	73.83 days	¹⁹¹ Ir(n, γ) ¹⁹² Ir [Na ₂ IrCl ₆]	10 [11]	6.7·10 ¹¹ [6.85·10 ¹⁰]	3.0·10 ¹ 1.9·10 ² [2200]	20÷60
¹⁰³ Pd	16.99 days	¹⁰² Pd(n, γ) ¹⁰³ Pd [¹⁰² Pd]	10 [11]	2.7·10 ¹⁰ [3.7·10 ⁹]	1.2·10 ¹ 7.6·10 ¹ [847]	20÷90
¹⁶⁹ Yb	32.026 days	¹⁶⁸ Yb(n, γ) ¹⁶⁹ Yb [Yb ₂ O ₃]	10 [11]	3.2·10 ¹² [1.6·10 ¹²]	7.5·10 ¹ 3.8·10 ² [4290]	20÷70
²⁰⁴ TI	3.78 years	²⁰³ Tl(n, γ) ²⁰⁴ Tl [Tl]	35 [3]	1.2·10 ⁹ [1.4·10 ⁸]	8.8·10 ⁰ 5.6·10 ¹ [168]	-
125	59.408 days	¹²⁴ Xe(n,γ) ¹²⁵ Xe → ¹²⁵ Ι [¹²⁴ Xe]	10 [11]	6.5·10 ¹⁴ [6.0·10 ¹⁴]	2.6·10 ⁻¹ 1.5·10 ⁰ [17]	15÷55
⁶⁰ Co	5.2714 years	⁵⁹ Co(n,γ) ⁶⁰ Co [Co]	365 [1]	2.4·10 ¹⁰ [2.2·10 ¹¹]	6·10 ² - [2200]	0.1÷30
131	8.04 days	¹³⁰ Te(n,γ) ¹³¹ Te → ¹³¹ I [TeO ₂]	35 [3]	4.4.10 ⁹ [1.0.10 ¹⁰]	1.0·10 ³ 5.3·10 ³ [18000]	40÷200
90 Y	64.0 hours	⁸⁹ Υ(n,γ) ⁹⁰ Υ [Υ]	10 [11]	2.5·10 ¹⁰ [3.7·10 ¹⁰]	3.1.10 ² 1.2.10 ³	5÷140

KIT – The Research University in the Helmholtz Association

Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 - EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.