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Abstract We present important use cases and limitations when considering results obtained from cluster
perturbation theory (CPT). CPT combines the solutions of small individual clusters of an infinite lattice
system with the Bloch theory of conventional band theory to provide an approximation for the Green’s
function in the thermodynamic limit. To this end, we are investigating single-band and multi-band Hub-
bard models in 1D and 2D systems. A special interest is taken in the supposed pseudogap regime of the 2D
square lattice at half-filling and intermediate interaction strength (U ≤ 3t) as well as the metal–insulator
transition. We point out that the finite-size level spacing of the cluster limits the resolution of spectral
features within CPT. This restricts the investigation of asymptotic properties of the metal–insulator tran-
sition, as it would require much larger cluster sizes that are beyond computational capabilities.

1 Introduction

The Hubbard model probably belongs to the most stud-
ied systems in solid-state theory. Although its Hamil-
tonian possesses a simple form, it captures important
aspects of various many-body phenomena like Mott-
insulating states, antiferromagnetism, and supercon-
ductivity. [1–5]. The Hamiltonian has three terms: the
first term describes the hopping of the electrons on the
lattice, the second term a repulsive Coulomb interac-
tion of spin up and spin down electrons on the same
site, and the third term is the chemical potential, which
we shifted such that half-filling corresponds to μ = 0
for bi-partite lattices:

H = −
∑

σ

∑

x, y

tx, y ĉ†x,σ ĉy,σ + U
∑

x

n̂x, ↑n̂x, ↓

− (μ + U/2)
∑

x

(n̂x, ↑ + n̂x, ↓), (1)

where x and y are labeling the lattice sites and σ =↑,
↓ denotes the spin index. With ĉ†x,σ, ĉy,σ, we denote
the fermionic creation and annihilation operators and
n̂x,σ = ĉ†x,σ ĉx,σ is the occupation number operator.

One interesting aspect of the Hubbard model is its
Mott-insulating state at high interaction strength as

a e-mail: nicklas.enenkel@quantumsimulations.de (corre-
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well as the associated metal–insulator transition it sup-
posedly captures. In this regard, a pseudogap regime
at intermediate interaction strength has been discussed
[2, 6]. Within this study, we investigated this regime
using cluster perturbation theory (CPT). Introduced by
Senechal et al. [7], CPT has shown remarkable results
when applied to the Hubbard model, despite being of
low numerical cost. While these results caught our ini-
tial interest for the method, we came to the conclu-
sion that care has to be taken when interpreting the
results of CPT, especially concerning features like spec-
tral gaps. In the following, we will first outline the
method, apply it to the systems of interest, and then
analyze carefully the accuracy of the results by com-
paring the 1D case to exact results using Bethe ansatz.

2 Methods

2.1 Cluster Green’s functions

In cluster perturbation theory (CPT), the main objec-
tive is to construct an approximation to the retarded
Green’s function Gr(k, ω) of a given lattice system in
the thermodynamic limit. This function is especially
useful as it provides direct access to the spectral func-
tion [8, 9]:
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A(k, ω) = − 1
π

ImGr(k, ω). (2)

As CPT aims at approximating the Green’s function of
the full system by combining the solutions of small finite
clusters cut out of the infinite lattice, we first have to
discuss how to obtain the interacting Green’s function
on such a cluster. For this, we first define the retarded
Green’s function for two fermionic operators Â and B̂
as:

Gr
Â, B̂

(t, t′) = −iΘ(t − t′)〈{Â(t), B̂(t′)}〉 (3)

where {. . . , . . .} is the anticommutator, t and t′ are
time arguments, and Θ(t) is the heavyside Theta func-
tion. Note that we are only interested in the T = 0 case,
which means that the expectation value (〈...〉) only con-
sists of the ground state |Ψ0〉. For the retarded Green’s
function, we have t > t′ and as the Hamiltonian of inter-
est is time independent, we can assume t′ to be zero.
As we are going to use a Chebyshev expansion, it is
convenient to rewrite the retarded Green’s function in
terms of two new functions G+

Â, B̂
(t) and G−

B̂, Â
(t) [10]:

Gr
Â, B̂

(t) = −iΘ(t)〈{Â(t), B̂(0)}〉,
= −iΘ(t)〈Â(t)B̂(0)〉 − iΘ(t)〈B̂(0)Â(t)〉,
= G+

Â, B̂
(t) − G−

B̂, Â
(t). (4)

Where we used the definitions:

G+

Â, B̂
(t) = −iΘ(t)〈Â(t)B̂(0)〉, (5)

G−
B̂, Â

(t) = iΘ(t)〈B̂(0)Â(t)〉. (6)

Performing a Fourier transformation, we can obtain the
Green’s function in the frequency domain as:

G+

Â, B̂
(ω) = −〈Ψ0|Â[H − E0 − (ω + iη)]−1B̂|Ψ0〉.

(7)

G−
B̂, Â

(ω) = −〈Ψ0|B̂[H − E0 + (ω + iη)]−1Â|Ψ0〉,
(8)

where η > 0 is an infinitesimal parameter that ensures
convergence.

2.2 Chebyshev expansion

Expressions like (7) and (8) can be very efficiently han-
dled using Chebyshev polynomials [11]. They contain
the function

f±
z (x) = −i

∫ ±∞

0

ei(±z−x)t dt =
1

±z − x
, (9)

with x, Re(z) ∈ R and Im(z) > 0, that can be expanded
using Chebyshev polynomials of the first kind Tn(x):

f±
z (x) =

∞∑

n=0

α±
n (z)Tn(x), (10)

with the expansion coefficients:

α±
n (z) =

2/(1 + δn, 0)
(±z)n+1(1 +

√
z2

√
z2 − 1/z2)n

√
1 − 1/z2

.

(11)

For the polynomials, the following recursion relation
holds:

|Φ0〉 = b|Ψ0〉, (12)

|Φ1〉 = [a(H − E0) − b]|Φ0〉, (13)

|Φn+1〉 = 2[a(H − E0) − b]|Φn〉 − |Φn−1〉, (14)

where we choose the two parameters a, b ∈ R to fit the
spectrum of the operator a(H−E0)−b into the interval
(−1, 1), required by the orthogonality relation of the
Chebyshev polynomials. With this, we can identify the
Green’s functions as:

G±
B̂, Â

(ω) = a

∞∑

n=0

α±
n (±a(ω + iη) − b)μn, (15)

where the μn are often referred to as Chebyshev
moments and are defined as the expectation values of
the polynomials:

μn = 〈Ψ0|ÂTn(a(H − E0) − b)B̂|Ψ0〉 = 〈Ψ0|Â|Φn〉.
(16)

To calculate these moments for the Green’s function
of the finite cluster, we require the Hamiltonian in a
many particle basis. To construct the ground state, we
employ a sparse matrix diagonalization as for example
introduced in Ref. [12]. The main idea is to explicitly
encode how a specific Hamiltonian acts on basis states
in the occupation number representation. For this, one
needs to at least encode all the basis states in a par-
ticular number sector. Although this can be efficiently
done by saving each basis state as the bitwise represen-
tation of an integer, the computational space still grows
exponentially, making it only usable for very small clus-
ters. Due to limited computational resources, our cal-
culations did not exceed 18 site calculations. Having
constructed the Hamiltonian, the groundstate can be
calculated using a Lanczos algorithm.

123



Eur. Phys. J. Spec. Top.

2.3 Cluster perturbation theory

The goal of cluster perturbation theory (CPT) is to
approximate the Green’s function of a particular lat-
tice model in the thermodynamic limit by combining
the Green’s functions of small individual clusters, for
example calculated as described in the previous section.
Introductions to this method are presented in Refs. [12,
13]. The first step is to split the Hamiltonian into two
parts:

H =
∑

α

Hcluster
α + Hinter. (17)

In the first part:

Hcluster
α = (Hc

0 + Hc
U )α = −t

∑

σ

∑

x, y∈γc
α

ĉ†x,σ ĉy,σ

+ U
∑

x∈γc
α

(
n̂x, ↑ − 1

2

)(
n̂x, ↓ − 1

2

)
, (18)

one has the full Hubbard model on small, individual
clusters γc

α, each labeled by the index α and in the
second part:

Hinter = −t
∑

σ

∑

x∈γc
α, y∈γc

β

ĉ†x,σ ĉy,σ, (19)

we only have the hopping elements between these indi-
vidual clusters. Note that due to this splitting, it can
be very useful to describe any lattice site Ri by a com-
bination of two new vectors:

Ri = rα + rm, (20)

where rα is the position of the individual clusters in a
new superlattice Γ and rm describes the position of an
individual site within a cluster.

One can calculate the Green’s function for one of
these clusters and use this result for the Green’s func-
tion of all other clusters due to the lattice symmetry.
We will refer to this Green’s function as the cluster
Green’s function Gc(rm, rn, ω). The main idea within
CPT consists in calculating the self-energy from the
cluster Green’s function and use it to construct an
approximation for the self-energy of the full system. We
can obtain the cluster self-energy Σc(rm, rn, ω) from a
Dyson equation:

Σc(rm, rn, ω) = (Gc
0(rm, rn, ω))−1

− (Gc(rm, rn, ω))−1, (21)

where Gc
0(rm, rn, ω) is the non-interacting Green’s

function on the cluster defined as:

(Gc
0(rm, rn, ω))−1 = ω + iη − Hc

0(rm, rn). (22)

Therefore, we obtain for a particular entry of the system
self-energy Σs(Ri, Rj , ω) in real space, connecting two
sites on the same cluster:

Σs(Ri, Rj , ω) = Σs(rα + rm, rα + rn, ω)
= Σc(rm, rn, ω), (23)

and all entries of the self-energy connecting sites on
different clusters are set to zero.

Finally, we can use this approximation of the self-
energy, namely using the cluster self-energy for the self-
energy of the full system, in a Dyson equation as before,
to obtain the Green’s function of the full system:

(Gs
0(ω))−1 = ω + iη − Hinter −

∑

α

Hc
0,α. (24)

Note that in this way, we treat the non-interacting part
exactly. This is why one should view the CPT approx-
imation as a perturbation theory in U rather than a
perturbation in the inter-cluster hopping. Finally, we
end up with the following expression for the Green’s
function of the full system:

Gs(Ri, Rj , ω) = ((Gs
0(Ri, Rj , ω))−1

− Σs(Ri, Rj , ω))−1 (25)

2.4 Periodization

While the just described procedure works for finite sys-
tems, it is important to note that there are also so
called periodization schemes, which allow to extend
these results to infinite systems. Here we are going to
use the so called G-scheme, as discussed in Ref. [14].
The main idea is based on arranging clusters in an infi-
nite superlattice and exploiting its translational sym-
metry. As pointed out before, one can split any lattice
vector into one vector defined on the superlattice and
one on a cluster. Therefore, one can similarly split any
wave vector k of the 1st BZ into a combination of a wave
vector in a reduced BZ k̃ associated with the superlat-
tice and one of the Brillouin zone of a single cluster K.
This also allows one to split the Fourier transformations
into two parts, one for the cluster and one for the super-
lattice. Using Bloch’s theorem for the superlattice, one
ends up with the following form for a periodized Green’s
function:

G(k, ω) =
1
L

∑

a, b

e−ik(ra−rb)Ga, b(k̃, ω). (26)
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3 Results

We can now use the just presented methods to calcu-
late the spectral function for our main system of inter-
est, the 2D Hubbard model on a square lattice at half-
filling (Figs. 1, 2, 3). As we can clearly see when con-
sidering the spectral function at the X point and in
the midpoint between Γ and M , CPT here suggests a
considerable spectral weight in the gap at U = 4t. How-
ever, we are going to show that there are two param-
eters that pose large additional constraints on the res-
olution that can actually be achieved using CPT. The
first parameter is the convergence aiding factor η and
the second is the finite cluster size. While the artefacts
induced by the convergence aiding factor are related
to our approximation of using only a finite number of
Chebyshev moments, the constraints imposed by the
finite cluster size are an inherent limitation of CPT.
These additional constraints are typically not discussed
in detail in the literature, but as we are going to show
they actually prohibit us from making accurate judge-
ments about the pseudogap at intermediate interaction

Fig. 1 First Brillouin zone (1. BZ) of the 2D square lattice
with symmetry points and the k-path for the bandstructure
plots

Fig. 2 Spectral function of the Hubbard model with U = 4t
on a 2D square lattice, plotted along the high symmetry
axis of the 1. BZ. The broadening parameter was chosen as
η = 0.5. The cluster calculations were performed on a 4 × 4
cluster with 120 Chebyshev moments

strengths. To see this, we will concentrate on the 1D
Hubbard model since, on the one hand, it allows us to
compare to exact results from Bethe ansatz and on the
other hand, it gives a higher resolution in k-space.

3.1 Convergence aiding factor

The convergence aiding factor η enters the Green’s func-
tion in Eqs. (7) and (8). We calculate these Green’s
functions with the help of the Chebyshev expansion
(15) that, in practice, is evaluated only with a finite
number of Chebyshev moments. This leads to artefacts
in the spectral function in the form of Gibbs oscilla-
tions. This is illustrated for the spectral function of the
non-interaction 1D chain evaluated for a cluster with
16 sites, see Fig. 4. In Fig. 5, we show the spectral
function for a specific k value as a function of fre-
quency that clearly displays oscillations. Note that a
higher Chebyshev order only increases the frequency
of these oscillations (see Fig. 6) but does not change
their magnitude. These oscillations can be identified as
Gibbs oscillations that usually arise when approximat-
ing a sharp step function (in this case the δ-peak) by a
finite Fourier expansion series. To suppress these artifi-
cial oscillations, we will choose a sufficiently large value
for the broadening parameter η, such that the Cheby-
shev expansion is capable of resolving the peak without
Gibbs oscillations. In addition, the finite cluster is nat-
urally characterized by a finite level spacing. To mimic
an infinite system and to obtain smooth bands, a finite
broadening parameter η has to be chosen such that it
smears out the effect of the finite level spacing [10].

While this means that altogether one has to choose
η rather large (Fig. 7), one should also realize that one
can counteract the effects of this broadening to a large
extend by including the same large parameter for η in
the non-interacting Green’s function when calculating

Fig. 3 Same spectral function as in Fig. 2, plotted only at
the X point (k = [π, 0, 0]) and the midpoint between Γ and
M point (k = [π/2, π/2, 0]). We can still see a significant
spectral weight at ω = 0 indicating a pseudogap
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the self-energy. Effectively this corresponds to subtract-
ing η from the inverse of the Green’s function,

Gc(ω) =
[
(Gc(ω, ηC))−1 − iηC

]−1
. (27)

While this procedure works extremely well, as shown
in Fig. 8, it still depends on the exact choice for η, and
it is a priori unclear which value to choose for η. Here
we want to propose two different approaches.

The first approach uses the typical single particle
level spacing of the non-interacting cluster for the
broadening parameter η, that can be estimated as

η =
4t

MC
, (28)

where 4t is the bandwidth with t the hopping amplitude
and MC the cluster size. This smears the discrete clus-
ter levels (Fig. 9), and leads to a good approximation of
the continuous cosine band structure one expects for a

Fig. 4 Spectral function obtained from a cluster Green’s
function of a 16 site tight binding chain with a broadening
parameter of 10−7 leading to negative values in the spectral
function

Fig. 5 Spectral function of a 16 site tight binding chain at
k = 3π/4 with nch = 60 Chebyshev moments and a broad-
ening parameter of 10−7. We can see oscillations around the
peak leading to negative values in the spectral function

1D system (Fig. 10). Applying this choice for the CPT
approximation to the 1D Hubbard model, one finds a
finite spectral weight within the Hubbard gap illustrat-
ing the numerical artefact that is induced by a large η,
see Figs. 11 and 12.

As a second approach, we propose an extrapolation
scheme that calculates the CPT Green’s function for
multiple values of η and performs an extrapolation of
the results to η = 0 (see Figs. 13 and 14).

Although this procedure is physically sound and
results in sharp peaks, there is no guarantee that this
procedure will lead to the correct thermodynamic limit.
In addition, obtaining a sharper peak does not auto-
matically provide a more accurate result. Only in cases
where the actual width of the peak is resolved by the
Chebyshev expansion, i.e., wider than the many par-
ticle bandwidth divided by the number of Chebyshev
moments, the extrapolated peaks could be considered

Fig. 6 Same spectral function as in Fig. 4 but calculated
using nch = 120 Chebyshev moments. Note that the ampli-
tude of the oscillations does not decrease, but their fre-
quency increases in accordance with Gibbs phenomenon

Fig. 7 Again the same spectral function as in Fig. 4 calcu-
lated using nch = 120 Chebyshev moments but now with a
broadening of η = 0.25. The oscillations disappear, because
the peak is artificially broadened
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Fig. 8 Removing the artificial broadening by means of
Eq. (27) results in a sharp δ-like peak in the spectrum

Fig. 9 Spectral function of a 16 site Hubbard model at
U = 0 (tight binding chain) with a broadening of η = 0.15.
We can see individual levels of the cluster

Fig. 10 Spectral function for the same system as in Fig. 9
but with a broadening of η = 0.25. We can see that the peaks
start to overlap and to resemble a continuous cosine band-
structure, as expected for an infinite tight binding chain

Fig. 11 CPT result for a 1D Hubbard model at U = 2t
based on a 16 site cluster with broadening η = 0.25, based
on the average single particle level splitting. We obtain two
continuous bandstructures with the expected Hubbard gap

Fig. 12 CPT result for the same system as in Fig. 11 shown
only for k = π/2 but with different broadening parameters.
We can see, that the residual spectral weight in the gap
strongly depends on the broadening parameter

Fig. 13 Again CPT results for the same system as in
Fig. 11 but using an extrapolation scheme for the broad-
ening parameter. We again obtained two continuous bands
separated by the Hubbard gap; however, the bands were
narrower
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Fig. 14 Same plot as in Fig. 12 but now for the CPT data
obtained with the extrapolation scheme for the broadening
parameter. We can see that the spectral function in the gap
almost disappears

reliable. Remarkably, despite the peak height and width
being η dependent, the peak position appears to be
rather stable against a variation of η.

3.2 Accuracy of CPT results

It is important to note that the finite-size level spacing
of the cluster used within CPT acts as a cutoff that lim-
its any spectral resolution. Spectral features like gaps
can only be resolved reliably if they are larger than
this cutoff. As far as interaction effects are concerned,
CPT only accurately reflects the same information that
a careful analysis of the cluster result would also pro-
vide.

To extract such an information from the cluster result
directly, let us consider the spectral function of a 16 site
1D Hubbard chain without interaction as is shown in
Fig. 9 and with an interaction of U = 4t (Fig. 15). As
one would expect for the non-interacting case, we can
see 16 individual levels forming a cosine shaped band,
while for the interacting case, the levels in the middle of

Fig. 15 Spectral function of a 16 site Hubbard chain at
U = 4t and a broadening parameter of η = 0.15. Comparing
to the non-interacting result in Fig. 9, we can see shifts in
the positions of the single particle levels

the spectrum move apart. Hence, the actual band gap
is given by the shift of the energy levels rather than
their frequency difference directly. Table 1 shows the
frequency difference of a particular interaction strength
subtracted by the difference in the non-interacting case,
while the table below shows the exact results one would
get in the thermodynamic limit using Bethe ansatz
(Table 2). As we can see, only for U = 4t, 8t the gap size
agrees up to the second decimal place with the exact
result. However, this means that for U = 1t, 2t and
using CPT with the currently computationally accessi-
ble cluster sizes, we cannot judge if there is an actual
gap in the system, as the deviation is on the same order
of magnitude as the actual gap. Additionally we can see
that the gap size does not change significantly with the
cluster size. Hence, we have to assume that the con-
sidered cluster sizes are simply too small to resolve the
gap accurately.

Now to arrive at the same result using the full CPT
calculation, we can simply plot the spectral function in

Fig. 16 The average of the spectral function at the k points
k1/2 = M

2
± 1 for the M = 16 site calculations as shown in

Fig. 9

Fig. 17 The same plot as in Fig. 16 but with an interaction
strength of U = 4t. We can see the shift in the peak positions
which corresponds to the Hubbard gap
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Table 1 Half of the band
gap Δ, calculated using the
peak positions from the
interacting case and
correcting them using the
peak positions of the
non-interacting one

M U = 1t U = 2t U = 4t U = 8t

6 (Δ(U) − Δ(0))/2 0.03 0.16 0.66 2.24

8 (Δ(U) − Δ(0))/2 0.03 0.15 0.64 2.24

10 (Δ(U) − Δ(0))/2 0.02 0.14 0.63 2.24

12 (Δ(U) − Δ(0))/2 0.02 0.13 0.62 2.25

14 (Δ(U) − Δ(0))/2 0.02 0.13 0.62 2.26

16 (Δ(U) − Δ(0))/2 0.03 0.13 0.63 2.30

Table 2 In row one, we
show half the band gap Δ
calculated using Bethe
ansatz

U = 1t U = 2t U = 4t U = 8t

ΔBethe/2 0.003 0.086 0.643 2.340

ΔCPT/2 0.028 0.143 0.683 2.344

(ΔCPT/2)Error 0.025 0.057 0.040 0.004

In row two, we give half the gap size obtained via CPT and in row three the extrapolation

of the deviation. We can see that the results deviate on the order of magnitude of 10−1, as
they already did, when we were just considering the cluster result. This was expected, since
the accuracy of CPT is determined by the finite cluster

the middle of the spectrum. If we do this for multiple
cluster sizes (Fig. 18), we can see that the peaks slightly
move to the center with increasing cluster size. Hence,
we can extrapolate the peak positions for the gap of an
infinite cluster as shown in Fig. 19. This results in gaps
comparable to results obtained directly from the cluster
(Table 1). As in the case where we just considered the
cluster, we see that the error is too large to judge the
gap accurately at U = 1t, 2t.

After this discussion, we now return to the 2D case
which sparked this investigation in the first place. We
come to the conclusion that CPT is not able to resolve

Fig. 18 Shown is the influence of the cluster size on the
band gap for U/t = 4. We show the spectral function at
k = π/2. The peaks defining the gap get broader and move
closer together, the larger the cluster. Note that the mini-
mum spectral weight within the gap stays almost constant
with system size and is almost zero due to our choice of
η = 0.15. The peaks which are marked are used for a finite-
size extrapolation in Fig. 19

reliably the spectral weight within the gap and, in par-
ticular, to predict the presence or absence of a pseudo-
gap despite the resolution that the plot in Fig. 2 sug-
gests. This is, first, due to the influence of the finite
broadening parameter used to dampen the Gibbs oscil-
lation induced by the Chebyshev approximation, and,
second, due to the finite-level spacing associated with
the chosen 2D cluster.

Fig. 19 The ω values of the peaks marked in Fig. 18 are
plotted against the inverse of the corresponding cluster size.
Doing so allows for a finite-size extrapolation to zero, corre-
sponding to an infinite cluster size. The arrangement of the
data suggests a linear extrapolation, which we performed
and the result at zero is shown in the title. It corresponds to
half the bandgap (ΔCPT /2). The second value was obtained
by doing the same extrapolation for the deviation from the
exact Bethe result (ΔCPT /2 − ΔBethe/2)

123



Eur. Phys. J. Spec. Top.

Fig. 20 Spectral function of the Lieb lattice at U = 0
obtained via CPT using a 2×2 cluster of three atomic unit-
cells. We can see the flat band at ω = 0

Fig. 21 The CPT result for the spectral function of the
Lieb lattice, but at U = 4t. We can observe a splitting of
the flat band

3.3 Use cases for CPT

One might now pose the question as to why one should
employ CPT in the first place, since all of the reliable
information is already contained in the cluster results.
To this end, one should realize that just judging from
the cluster results, it can be very hard to identify how
the actual band structure of a system would look like.
CPT, though, acting as a sort of interpolation scheme
between the single particle levels of the cluster and
the infinitely large lattice, can give a very good first
guess of the band structure, which comes at a negligible
additional computational cost. Especially for materials,
where short range correlations are predominant, this
guess will be highly accurate. Hence, one might view
it as a useful tool when scanning through a variety of
materials. One can simply perform fast CPT calcula-
tions for each material, identify interesting band struc-
tures, and then use more advanced methods to investi-
gate these materials further. As an example, we provide
the spectral functions for a more exotic lattice, the Lieb
lattice [15] in Figs. 20 and 21.

4 Conclusion

In this study, we have presented fundamental limita-
tions of the CPT method. Most importantly we showed
that the cluster Green’s function already contains, as
far as interaction effects are concerned, all the infor-
mation that is included in the CPT Green’s function
and CPT only stays consistent with this information.
Analyzing the 1D case we have shown that the current
computational limitations prohibit us to make accurate
judgements of features like the Hubbard gap at interme-
diate interaction strengths, as this would require calcu-
lations on larger clusters, as the resolution is limited by
the finite-size-induced level splitting. Additionally and
specifically, for the approach of calculating the cluster
Green’s function via a Chebyshev expansion, we have
shown that Gibbs oscillations require the choice of a
large broadening parameter that in return prohibits one
from making accurate judgements about the broadness
of the peaks in the single particle spectrum. Hence, we
conclude that use cases for CPT are limited to cases
where one is interested in obtaining numerically cheap
initial guesses for the spectral function of materials with
short range correlations, while more advanced methods
need to be employed to gain higher resolution.
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K. Held, N. Blümer, M. Aichhorn, A. Toschi, Fate of the
false Mott–Hubbard transition in two dimensions. Phys.
Rev. B 91(12), 125109 (2015)
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