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We present important use cases and limitations when considering results obtained from Cluster
Perturbation Theory (CPT). CPT combines the solutions of small individual clusters of an infinite
lattice system with the Bloch theory of conventional band theory in order to provide an approx-
imation for the Green’s function in the thermodynamic limit. To this end we are investigating
single-band and multi-band Hubbard models in one- and two-dimensional systems. A special inter-
est is taken in the supposed pseudo gap regime of the two-dimensional square lattice at half filling
and intermediate interaction strength (U ≤ 3t) as well as the metal-insulator transition. We point
out that the finite-size level spacing of the cluster limits the resolution of spectral features within
CPT. This restricts the investigation of asymptotic properties of the metal-insulator transition, as
it would require much larger cluster sizes that are beyond computational capabilities.

I. INTRODUCTION

The Hubbard model probably belongs to the most
studied systems in solid state theory. Although
its Hamiltonian possesses a simple form, it captures
important aspects of various many-body phenomena
like Mott-insulating states, antiferromagnetism and
superconductivity.1–5. The Hamiltonian has three terms:
the first term describes the hopping of the electrons on
the lattice, the second term a repulsive Coulomb inter-
action of spin up and spin down electrons on the same
site and the third term is the chemical potential, which
we shifted such that half filling corresponds to µ = 0 for
bi-partite lattices:

H = −
∑
σ

∑
x,y

tx,y ĉ
†
x,σ ĉy,σ + U

∑
x

n̂x,↑n̂x,↓

− (µ+ U/2)
∑
x

(n̂x,↑ + n̂x,↓), (1)

where x and y are labelling the lattice sites and σ =↑, ↓
denotes the spin index. With ĉ†x,σ, ĉy,σ we denote the
fermionic creation and annihilation operators and n̂x,σ =
ĉ†x,σ ĉx,σ is the occupation number operator.
One interesting aspect of the Hubbard model is its

Mott-insulating state at high interaction strength as well
as the associated metal-insulator transition it suppos-
edly captures. In this regard a pseudogap regime at
intermediate interaction strength has been discussed2,6.
Within this study we investigated this regime using Clus-
ter Perturbation Theory (CPT). Introduced by Senechal
et al.7 CPT has shown remarkable results when applied
to the Hubbard model, despite being of low numerical

cost. While these results caught our initial interest for
the method, we came to the conclusion that care has to
be taken when interpreting the results of CPT, especially
concerning features like spectral gaps. In the following,
we will first outline the method, apply it to the systems
of interest and then analyse carefully the accuracy of the
results by comparing the one dimensional case to exact
results using Bethe ansatz.

II. METHODS

A. Cluster Green’s functions

In Cluster Perturbation Theory (CPT) the main ob-
jective is to construct an approximation to the retarded
Green’s function Gr(k, ω) of a given lattice system in the
thermodynamic limit. This function is especially useful
as it provides direct access to the spectral function8,9:

A(k, ω) = − 1

π
ImGr(k, ω). (2)

As CPT aims at approximating the Green’s function of
the full system by combining the solutions of small finite
clusters cut out of the infinite lattice, we first have to
discuss how to obtain the interacting Green’s function
on such a cluster. For this we first define the retarded
Green’s function for two fermionic operators Â and B̂ as:

Gr
Â,B̂

(t, t′) = −iΘ(t− t′)⟨{Â(t), B̂(t′)}⟩ (3)

where {. . . , . . .} is the anticommutator, t and t′ are time
arguments and Θ(t) is the Heavyside Theta function.
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Note that we are only interested in the T = 0 case, which
means that the expectation value (⟨...⟩) only consists of
the ground state |Ψ0⟩. For the retarded Green’s func-
tion we have t > t′ and as the Hamiltonian of interest is
time-independent, we can assume t′ to be zero. As we
are going to use a Chebyshev expansion, it is convenient
to rewrite the retarded Green’s function in terms of two
new functions G+

Â,B̂
(t) and G−

B̂,Â
(t)10:

Gr
Â,B̂

(t) = −iΘ(t)⟨{Â(t), B̂(0)}⟩,

= −iΘ(t)⟨Â(t)B̂(0)⟩ − iΘ(t)⟨B̂(0)Â(t)⟩,
= G+

Â,B̂
(t)− G−

B̂,Â
(t). (4)

Where we used the definitions:

G+

Â,B̂
(t) = −iΘ(t)⟨Â(t)B̂(0)⟩, (5)

G−
B̂,Â

(t) = iΘ(t)⟨B̂(0)Â(t)⟩. (6)

Performing a Fourier transformation we can obtain the
Green’s function in the frequency domain as:

G+

Â,B̂
(ω) = −⟨Ψ0| Â[H− E0 − (ω + iη)]−1B̂ |Ψ0⟩ . (7)

G−
B̂,Â

(ω) = −⟨Ψ0| B̂[H− E0 + (ω + iη)]−1Â |Ψ0⟩ , (8)

where η > 0 is an infinitesimal parameter that ensures
convergence.

B. Chebyshev Expansion

Expressions like (7) and (8) can be very efficiently han-
dled using Chebyshev polynomials11. They contain the
function

f±
z (x) = −i

∫ ±∞

0

ei(±z−x)t dt =
1

±z − x
, (9)

with x,Re(z) ∈ R and Im(z) > 0, that can be expanded
using Chebyshev polynomials of the first kind Tn(x):

f±
z (x) =

∞∑
n=0

α±
n (z)Tn(x), (10)

with the expansion coefficients:

α±
n (z) =

2/(1 + δn,0)

(±z)n+1(1 +
√
z2
√
z2 − 1/z2)n

√
1− 1/z2

.

(11)

For the polynomials the following recursion relation
holds:

|Φ0⟩ = b |Ψ0⟩ , (12)

|Φ1⟩ = [a(H− E0)− b] |Φ0⟩ , (13)

|Φn+1⟩ = 2[a(H− E0)− b] |Φn⟩ − |Φn−1⟩ , (14)

where we choose the two parameters a, b ∈ R to fit the
spectrum of the operator a(H − E0) − b into the inter-
val (−1, 1), required by the orthogonality relation of the
Chebyshev polynomials. With this we can identify the
Green’s functions as:

G±
B̂,Â

(ω) = a

∞∑
n=0

α±
n (±a(ω + iη)− b)µn, (15)

where the µn are often referred to as Chebyshev moments
and are defined as the expectation values of the polyno-
mials:

µn = ⟨Ψ0| ÂTn(a(H− E0)− b)B̂ |Ψ0⟩ = ⟨Ψ0| Â |Φn⟩ .
(16)

In order to calculate these moments for the Green’s func-
tion of the finite cluster, we require the Hamiltonian in
a many particle basis. To construct the ground state
we employ a sparse matrix diagonalization as for exam-
ple introduced in Ref.12. The main idea is to explicitly
encode how a specific Hamiltonian acts on basis states
in the occupation number representation. For this, one
needs to at least encode all the basis states in a particu-
lar number sector. Although this can be efficiently done
by saving each basis state as the bitwise representation
of an integer, the computational space still grows expo-
nentially, making it only usable for very small clusters.
Due to limited computational resources our calculations
did not exceed 18 site calculations. Having constructed
the Hamiltonian the groundstate can be calculated using
a Lanczos algorithm.

C. Cluster Perturbation Theory

The goal of Cluster Perturbation Theory (CPT) is
to approximate the Green’s function of a particular lat-
tice model in the thermodynamic limit by combining the
Green’s functions of small individual clusters, for exam-
ple calculated as described in the previous section. Intro-
ductions to this method are presented in Ref.12,13. The
first step is to split the Hamiltonian into two parts:

H =
∑
α

Hcluster
α +Hinter. (17)

In the first part:

Hcluster
α = (Hc

0 +Hc
U )α = −t

∑
σ

∑
x,y∈γc

α

ĉ†x,σ ĉy,σ

+ U
∑
x∈γc

α

(
n̂x,↑ −

1

2

)(
n̂x,↓ −

1

2

)
, (18)

one has the full Hubbard model on small, individual clus-
ters γc

α, each labeled by the index α and in the second
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part:

Hinter = −t
∑
σ

∑
x∈γc

α,y∈γc
β

ĉ†x,σ ĉy,σ, (19)

we only have the hopping elements between these indi-
vidual clusters. Note that due to this splitting, it can be
very useful to describe any lattice site Ri by a combina-
tion of two new vectors:

Ri = rα + rm, (20)

where rα is the position of the individual clusters in a
new superlattice Γ and rm describes the position of an
individual site within a cluster.
One can calculate the Green’s function for one of these
clusters and use this result for the Green’s function of
all other clusters due to the lattice symmetry. We will
refer to this Green’s function as the cluster Green’s func-
tion Gc(rm, rn, ω). The main idea within CPT consists in
calculating the self-energy from the cluster Green’s func-
tion and use it to construct an approximation for the
self-energy of the full system. We can obtain the cluster
self-energy Σc(rm, rn, ω) from a Dyson equation:

Σc(rm, rn, ω) = (Gc
0(rm, rn, ω))

−1

− (Gc(rm, rn, ω))
−1, (21)

where Gc
0(rm, rn, ω) is the non-interacting Green’s func-

tion on the cluster defined as:

(Gc
0(rm, rn, ω))

−1 = ω + iη −Hc
0(rm, rn). (22)

Therefore we obtain for a particular entry of the system
self-energy Σs(Ri,Rj , ω) in real space, connecting two
sites on the same cluster:

Σs(Ri,Rj , ω) = Σs(rα + rm, rα + rn, ω)

= Σc(rm, rn, ω), (23)

and all entries of the self-energy connecting sites on dif-
ferent clusters are set to zero.
Finally, we can use this approximation of the self energy,
namely using the cluster self energy for the self energy of
the full system, in a Dyson equation as before, to obtain
the Green’s function of the full system:

(Gs
0(ω))

−1 = ω + iη −Hinter −
∑
α

Hc
0,α. (24)

Note that in this way, we treat the non-interacting part
exactly. This is why one should view the CPT approxi-
mation as a perturbation theory in U rather than a per-
turbation in the inter-cluster hopping. Finally we end up
with the following expression for the Green’s function of
the full system:

Gs(Ri,Rj , ω) = ((Gs
0(Ri,Rj , ω))

−1

− Σs(Ri,Rj , ω))
−1 (25)

FIG. 1: First Brillouin zone (1. BZ) of the 2D square lattice
with symmetry points and the k-path for the bandstructure
plots.

D. Periodization

While the just described procedure works for finite sys-
tems, it is important to note that there are also so called
periodization schemes, which allow to extend these re-
sults to infinite systems. Here we are going to use the so
called G-scheme, as discussed in Ref.14. The main idea is
based on arranging clusters in an infinite superlattice and
exploiting its translational symmetry. As pointed out be-
fore, one can split any lattice vector into one vector de-
fined on the superlattice and one on a cluster. Therefore,
one can similarly split any wave vector k of the 1st BZ
into a combination of a wave vector in a reduced BZ k̃
associated with the superlattice and one of the Brillouin
zone of a single cluster K. This also allows one to split
the Fourier transformations into two parts, one for the
cluster and one for the superlattice. Using Bloch’s theo-
rem for the superlattice, one ends up with the following
form for a periodized Green’s function:

G(k, ω) = 1

L

∑
a,b

e−ik(ra−rb)Ga,b(k̃, ω). (26)

III. RESULTS

We can now use the just presented methods to calcu-
late the spectral function for our main system of interest,
the 2D Hubbard model on a square lattice at half filling
(Fig. 1, 2, 3). As we can clearly see when considering the
spectral function at the X point and in the midpoint be-
tween Γ and M , CPT here suggests a considerable spec-
tral weight in the gap at U=4t. However, we are going to
show that there are two parameters that pose large addi-
tional constraints on the resolution that can actually be
achieved using CPT. The first parameter is the conver-
gence aiding factor η and the second is the finite cluster
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FIG. 2: Spectral function of the Hubbard model with U=4t on
a 2D square lattice, plotted along the high symmetry axis of
the 1. BZ. The broadening parameter was chosen as η = 0.5.
The cluster calculations were performed on a 4x4 cluster with
120 Chebyshev moments.

FIG. 3: Same spectral function as in Fig. 2, plotted only at
the X point (k = [π, 0, 0]) and the midpoint between Γ and
M point (k = [π/2, π/2, 0]). We can still see a significant
spectral weight at ω = 0 indicating a pseudogap.

size. While the artefacts induced by the convergence aid-
ing factor are related to our approximation of using only
a finite number of Chebyshev moments, the constraints
imposed by the finite cluster size are an inherent limita-
tion of CPT. These additional constraints are typically
not discussed in detail in the literature, but as we are
going to show they actually prohibit us from making ac-
curate judgements about the pseudogap at intermediate
interaction strengths. To see this, we will concentrate on
the 1D Hubbard model since on the one hand it allows
us to compare to exact results from Bethe ansatz and on
the other hand it gives a higher resolution in k-space.

FIG. 4: Spectral function obtained from a cluster Green’s
function of a 16 site tight binding chain with a broadening
parameter of 10−7 leading to negative values in the spectral
function.

A. Convergence Aiding Factor

The convergence aiding factor η enters the Green’s
function in Eqs. (7) and (8). We calculate these Green’s
functions with the help of the Chebyshev expansion (15)
that, in practise, is evaluated only with a finite number of
Chebyshev moments. This leads to artefacts in the spec-
tral function in the form of Gibbs oscillations. This is il-
lustrated for the spectral function of the non-interaction
1D chain evaluated for a cluster with 16 sites, see Fig. 4.
In Fig. 5 we show the spectral function for a specific
k-value as a function of frequency that clearly displays
oscillations. Note that a higher Chebyshev order only
increases the frequency of these oscillations (see Fig. 6)
but does not change their magnitude. These oscillations
can be identified as Gibbs oscillations that usually arise
when approximating a sharp step function (in this case
the δ-peak) by a finite Fourier expansion series. In order
to suppress these artificial oscillations we will choose a
sufficiently large value for the broadening parameter η,
such that the Chebyshev expansion is capable of resolv-
ing the peak without Gibbs oscillations. In addition, the
finite cluster is naturally characterized by a finite level
spacing. In order to mimic an infinite system and to ob-
tain smooth bands, a finite broadening parameter η has
to be chosen such that it smears out the effect of the
finite level spacing10.

While this means that altogether one has to choose η
rather large (Fig. 7), one should also realize that one
can counteract the effects of this broadening to a large
extend by including the same large parameter for η in
the non interacting Green’s function when calculating the
self energy. Effectively this corresponds to subtracting η
from the inverse of the Green’s function,

Gc(ω) =
[
(Gc(ω, ηC))

−1 − iηC
]−1

(27)
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FIG. 5: Spectral function of a 16 site tight binding chain at
k = 3π/4 with nch = 60 chebyshev moments and a broadening
parameter of 10−7. We can see oscillations around the peak
leading to negative values in the spectral function.

FIG. 6: Same spectral function as in Fig. 4 but calculated
using nch = 120 Chebyshev moments. Note that the ampli-
tude of the oscillations does not decrease, but their frequency
increases in accordance with Gibbs phenomenon.

While this procedure works extremely well, as shown
in Fig. 8, it still depends on the exact choice for η, and
it is a priori unclear which value to choose for η. Here
we want to propose two different approaches.

The first approach uses the typical single particle level
spacing of the non interacting cluster for the broadening
parameter η, that can be estimated as

η =
4t

MC
(28)

where 4t is the bandwidth with t the hopping amplitude
and MC the cluster size. This smears the discrete clus-
ter levels (Fig. 9), and leads to a good approximation of
the continuous cosine band structure one expects for a
1D system (Fig. 10). Applying this choice for the CPT
approximation to the 1D Hubbard model, one finds a fi-

FIG. 7: Again the same spectral function as in Fig. 4 calcu-
lated using nch = 120 Chebyshev moments but now with a
broadening of η = 0.25. The oscillations disappear, because
the peak is artificially broadened.

FIG. 8: Removing the artificial broadening by means of
eq. (27) results in a sharp δ-like peak in the spectrum.

nite spectral weight within the Hubbard gap illustrating
the numerical artefact that is induced by a large η, see
Figs. 11 and 12.

As a second approach we propose an extrapolation
scheme that calculates the CPT Green’s function for mul-
tiple values of η and performs an extrapolation of the
results to η = 0 (see Figs. 13 and 14). Although this
procedure is physically sound and results in sharp peaks,
there is no guarantee that this procedure will lead to the
correct thermodynamic limit. In addition, obtaining a
sharper peak does not automatically provide a more ac-
curate result. Only in cases where the actual width of the
peak is resolved by the Chebyshev expansion, i.e. wider
than the many particle bandwidth divided by the number
of Chebyshev moments, the extrapolated peaks could be
considered reliable. Remarkably, despite the peak height
and width being η dependent, the peak position appears
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FIG. 9: Spectral function of a 16 site Hubbard model at U=0
(tight binding chain) with a broadening of η = 0.15. We can
see individual levels of the cluster.

FIG. 10: Spectral function for the same system as in Fig.
9 but with a broadening of η = 0.25. We can see that the
peaks start to overlap and to resemble a continuous cosine
bandstructure, as expected for an infinite tight binding chain.

to be rather stable against a variation of η.

B. Accuracy of CPT results

It is important to note that the finite size level spacing
of the cluster used within CPT acts as a cutoff that limits
any spectral resolution. Spectral features like gaps can
only be resolved reliably if they are larger than this cutoff.
As far as interaction effects are concerned, CPT only
accurately reflects the same information that a careful
analysis of the cluster result would also provide.

To extract such an information from the cluster result
directly, let us consider the spectral function of a 16 site
1D Hubbard chain without interaction as was shown in
Fig. 9 and with an interaction of U=4t (Fig. 15). As one
would expect for the non interacting case we can see 16

FIG. 11: CPT result for a 1D Hubbard model at U = 2t
based on a 16 site cluster with broadening η = 0.25, based
on the average single particle level splitting. We obtain two
continuous bandstructures with the expected Hubbard gap.

FIG. 12: CPT result for the same system as in Fig. 11
shown only for k = π/2 but with different broadening pa-
rameters. We can see, that the residual spectral weight in the
gap strongly depends on the broadening parameter.

individual levels forming a cosine shaped band, while for
the interacting case the levels in the middle of the spec-
trum move apart. Hence, the actual band gap is given
by the shift of the energy levels rather than their fre-
quency difference directly. Table I shows the frequency
difference of a particular interaction strength subtracted
by the difference in the non interacting case, while the
table below shows the exact results one would get in the
thermodynamic limit using Bethe ansatz (Tab. II). As
we can see, only for U = 4t, 8t the gap size agrees up to
the second decimal place with the exact result. However,
this means that for U = 1t, 2t and using CPT with the
currently computationally accessible cluster sizes we can
not judge if there is an actual gap in the system, as the
deviation is on the same order of magnitude as the actual
gap. Additionally we can see that the gap size does not
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FIG. 13: Again CPT results for the same system as in Fig.
11 but using an extrapolation scheme for the broadening pa-
rameter. We again obtain two continuous bands separated by
the Hubbard gap, however the bands are narrower.

FIG. 14: Same plot as in Fig. 12 but now for the CPT data
obtained with the extrapolation scheme for the broadening
parameter. We can see that the spectral function in the gap
almost disappears.

change significantly with the cluster size. Hence we have
to assume that the considered cluster sizes are simply to
small to resolve the gap accurately. Now in order to
arrive at the same result using the full CPT calculation,
we can simply plot the spectral function in the middle
of the spectrum. If we do this for multiple cluster sizes
(Fig. 18), we can see, that the peaks slightly move to the
center with increasing cluster size. Hence we can extrap-
olate the peak positions for the gap of an infinite cluster
as shown in Fig. 19. This results in gaps comparable
to results obtained directly from the cluster (Tab. I). As
in the case where we just considered the cluster we see
that the error is too large to judge the gap accurately
at U = 1t, 2t. After this discussion, we now return
to the 2D case which sparked this investigation in the
first place. We come to the conclusion that CPT is not

FIG. 15: Spectral function of a 16 site Hubbard chain at
U=4t and a broadening parameter of η = 0.15. Comparing
to the non interacting result in Fig. 9 we can see shifts in
the positions of the single particle levels.

FIG. 16: The average of the spectral function at the k points
k1/2 = M

2
± 1 for the M=16 site calculations as shown in

Fig. 9.

able to resolve reliably the spectral weight within the gap
and, in particular, to predict the presence or absence of
a pseudogap despite the resolution that the plot in Fig. 2
suggests. This is, firstly, due to the influence of the finite
broadening parameter used to dampen the Gibbs oscilla-
tion induced by the Chebyshev approximation, and, sec-
ondly, due to the finite level spacing associated with the
chosen 2D cluster.

C. Use Cases for CPT

One might now pose the question as to why one should
employ CPT in the first place, since all of the reliable in-
formation is already contained in the cluster results. To
this end, one should realize that just judging from the
cluster results it can be very hard to identify how the
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FIG. 17: The same plot as in Fig. 16 but with an interaction
strength of U=4t. We can see the shift in the peak positions
which corresponds to the Hubbard gap.

M U=1t U=2t U=4t U=8t

6 (∆(U)−∆(0))/2 0.03 0.16 0.66 2.24

8 (∆(U)−∆(0))/2 0.03 0.15 0.64 2.24

10 (∆(U)−∆(0))/2 0.02 0.14 0.63 2.24

12 (∆(U)−∆(0))/2 0.02 0.13 0.62 2.25

14 (∆(U)−∆(0))/2 0.02 0.13 0.62 2.26

16 (∆(U)−∆(0))/2 0.03 0.13 0.63 2.30

TABLE I: Half of the band gap ∆, calculated using the peak
positions from the interacting case and correcting them using
the peak positions of the non interacting one.

FIG. 18: Shown is the influence of the cluster size on the band
gap for U/t = 4. We show the spectral function at k = π/2.
The peaks defining the gap get broader and move closer to-
gether the larger the cluster. Note that the minimum spectral
weight within the gap stays almost constant with system size
and is almost zero due to our choice of η = 0.15. The peaks
which are marked are used for a finite size extrapolation in
Fig. 19.

FIG. 19: The ω values of the peaks marked in Fig. 18 are
plotted against the inverse of the corresponding cluster size.
Doing so allows for a finite size extrapolation to zero, corre-
sponding to an infinite cluster size. The arrangement of the
data suggests a linear extrapolation, which we performed and
the result at zero is shown in the title. It corresponds to half
the bandgap (∆CPT /2). The second value was obtained, by
doing the same extrapolation for the deviation from the exact
Bethe result (∆CPT /2−∆Bethe/2).

U=1t U=2t U=4t U=8t

∆Bethe/2 0.003 0.086 0.643 2.340

∆CPT /2 0.028 0.143 0.683 2.344

(∆CPT /2)Error 0.025 0.057 0.040 0.004

TABLE II: In row one, we show half the band gap ∆ calcu-
lated using Bethe ansatz. In row two, we give half the gap
size obtained via CPT and in row three the extrapolation of
the deviation. We can see that the results deviate on the or-
der of magnitude of 10−1, as they already did, when we were
just considering the cluster result. This was expected, since
the accuracy of CPT is determined by the finite cluster.

actual band structure of a system would look like. CPT
though, acting as a sort of interpolation scheme between
the single particle levels of the cluster and the infinitely
large lattice, can give a very good first guess of the band
structure, which comes at a negligible additional compu-
tational cost. Especially for materials, where short range
correlations are predominant, this guess will be highly
accurate. Hence one might view it as a useful tool when
scanning through a variety of materials. One can simply
perform fast CPT calculations for each material, identify
interesting band structures and then use more advanced
methods to investigate these materials further. As an
example, we provide the spectral functions for a more
exotic lattice, the Lieb lattice15 in Fig. 20 and 21.
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FIG. 20: Spectral function of the Lieb lattice at U = 0 ob-
tained via CPT using a 2x2 cluster of three atomic unitcells.
We can see the flat band at ω = 0.

FIG. 21: The CPT result for the spectral function of the Lieb
lattice, but at U = 4t. We can observe a splitting of the flat
band.

IV. CONCLUSION

In this study we have presented fundamental limita-
tions of the CPT method. Most importantly we showed
that the cluster Green’s function already contains, as far
as interaction effects are concerned, all the information
that is included in the CPT Green’s function and CPT
only stays consistent with this information. Analysing
the 1D case we have shown that the current computa-
tional limitations prohibit us to make accurate judge-
ments of features like the Hubbard gap at intermediate
interaction strengths, as this would require calculations
on larger clusters, as the resolution is limited by the fi-
nite size induced level splitting. Additionally and specif-
ically, for the approach of calculating the cluster Green’s
function via a Chebyshev expansion, we have shown that
Gibbs oscillations require the choice of a large broaden-
ing parameter that in return prohibits one from making
accurate judgements about the broadness of the peaks
in the single particle spectrum. Hence we conclude that
use cases for CPT are limited to cases where one is in-
terested in obtaining numerically cheap initial guesses
for the spectral function of materials with short range
correlations, while more advanced methods need to be
employed, to gain higher resolution.

Data availability The data presented in this publica-
tion is avaliable on Zenodo under the DOI: 10.5281/zen-
odo.8063247.
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