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Correlation between phase stiffness and condensation energy across the non-Fermi to Fermi-liquid
crossover in the Yukawa-Sachdev-Ye-Kitaev model on a lattice
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We construct and analyze a lattice generalization of the Yukawa-Sachdev-Ye-Kitaev model, where spinful
fermions experience onsite, random, all-to-all interactions with an Einstein bosonic mode, and random intersite
coherent hopping. We obtain the exact self-consistent numerical solution of the model at mean-field level,
and analytical approximations, for all values of fermion-boson coupling and hopping, under the spin-singlet
ansatz and at particle-hole symmetry, both in the normal and superconducting states, thus tracing the entire
phase diagram. In the normal state, the competition between hopping and coupling leads to crossovers between
Fermi-liquid and non-Fermi-liquid states, as reflected by the fermionic and bosonic spectral functions and the
normal-state entropy. We calculate the finite phase stiffness of the superconducting state through the equilibrium
electromagnetic response. Furthermore, we study the critical temperature Tc, as well as the spectral functions, the
quasiparticle weight, the gap, and the condensation energy in the superconducting state. At weak coupling, we
retrieve a disordered generalization of Bardeen-Cooper-Schrieffer theory. At strong coupling, asymptotically Tc

saturates but the stiffness decreases, which suggests strong superconducting fluctuations. Tc is maximum in the
single-dot limit, while the stiffness peaks exactly at the crossover between non-Fermi-liquid and Fermi-liquid
phases. We discover that the quasiparticle weight, the stiffness, and the condensation energy, are all correlated
as a function of coupling, reminiscent of the correlations observed in high-temperature cuprate superconductors.
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I. INTRODUCTION

Unconventional superconductivity continues to represent a
major challenge of contemporary condensed-matter research.
Primary examples, such as cuprates, are characterized by puz-
zling normal-state behavior, in which the electronic spectrum
near so-called antinodal points in momentum space is struc-
tureless and devoid of sharp quasiparticle excitations [1–10].
This is in contrast to the emergence of a well-defined coher-
ence peak in the spectral function for T < Tc, which suggests
that incoherent normal-state fermions are transformed, at least
partially, into coherent Bogoliubov excitations of the super-
conducting condensate [11–18]. The partial transformation is
reflected in the fact that the spectral weight of Bogoliubov
quasiparticles is small, in particular for underdoped systems,
located not too far from the Mott-insulating parent state.

To rationalize this transformation from an incoherent
normal toward a coherent superconducting state, it is desir-
able to design and analyze controlled theoretical approaches
that reproduce key features of unconventional superconduct-
ing states stemming from normal-state incoherent electrons
(the “strange-metal phase” [19–21]). A striking feature is
the observed correlation among the coherence-peak spectral
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weight, the superfluid stiffness, and the condensation energy
in cuprates [14,22]. In this work, we analyze a solvable
model that describes the FL to NFL crossover and that re-
produces this correlation between Bogoliubov quasiparticle
weight, phase stiffness, and condensation energy: the Yukawa-
Sachdev-Ye-Kitaev model on a lattice, to be described in the
following.

Our approach inserts itself into the general framework
of quantum critical (QC) superconductors, regarded as a
valuable route toward understanding pairing in NFL sys-
tems. There, the fermionic spectral function for single-particle
excitations—see Eq. (10) for a formal definition—assumes
the power-law (“branch cut” [23]) form AQC(ω) = A0|ω|2�−1

as a function of frequency ω, with constant A0 and exponent
�. The limit of fully incoherent electrons is then � = 1/2,
where AQC(ω) becomes frequency-independent. The physi-
cal origin of such power law is rooted in strong electronic
interactions, which destroy Landau quasiparticles. These in-
teractions are generated by the proximity to a quantum critical
point (QCP), marking a zero-temperature phase transition
tuned through an external parameter, e.g., chemical dop-
ing or pressure [1,21,24–27]. The influence of the QCP on
finite-temperature physics is manifested through an extremely
short “Planckian” characteristic lifetime for single-particle
excitations [1,3,28], which in turn produces anomalous spec-
troscopic and transport properties like a linear-in-temperature
resistivity [2,28–30]; such anomalous scalings have been
observed in various families of materials, like cuprate su-
perconductors [2–9], graphene [31–34], delafossites [35–37],
heavy fermions [38–45], and WP2 [46,47]. Concurrently, the
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same quantum fluctuations close to the QCP engender soft
bosonic modes, which are capable of generating an effective
attractive interaction between electrons and thus mediating
Cooper-pair formation.

If one investigates superconducting instabilities with the
spectral function AQC(ω) and an instantaneous BCS-like
pairing interaction VSC(ω) = −V0�(ω0 − |ω|) [48], which is
negative and constant below a cutoff ω0, then one concludes
that a condensed phase would arise only above a threshold
coupling to the bosonic mediator [49–52], and not for all
values of the coupling constant like in BCS theory. The in-
ferred rarity of superconductivity would then be difficult to
reconcile with its observed ubiquitousness in various classes
of QC systems, such as heavy fermions [53–57] and pnictides
[58–61]. In reality, the self-consistently determined QC in-
teraction, which takes into account the feedback of electrons
on bosons, acquires the power-law form VSC(ω) = V0|ω|1−4�

with the same exponent � as the spectral function: it is this
singular behavior that amplifies the tendency to QC pairing,
thus compensating for the weakened ability of NFL electrons
to form Cooper pairs. Hence, the origin of NFL states and of
Cooper pairing are intimately connected in such QC models,
including our proposed one. In this sense, although the details
of our specific model will be developed in the Sachdev-Ye-
Kitaev (SYK) approach, ensuing superconducting properties
like the gap equation will bear the same common structure of
QC superconductors, i.e., a “generalized Cooper instability”
[62–71]; hence, we expect our results to qualitatively hold for
generic NFL, QC systems.

Within the recently developed theoretical advances in
QC superconductivity, which allow for sign-problem-free
quantum Monte Carlo simulations [72–80], an appealing for-
mulation stems from the SYK picture. Initially formulated
for Majorana fermions in 0 + 1 dimensions (0 + 1D) [81–87],
and generalized to complex fermions to analyze spin glasses
[88–92] and NFL normal phases [93–98], the SYK paradigm
was found to include superconducting ground states below
a critical temperature Tc [99–109]. In general, the SYK
model describes N species (“flavors”) of fermions interacting
through a random and infinitely ranged interaction [87]. Such
interaction might be fermionic (e.g., a four-fermion term) or
bosonic (e.g., a Yukawa coupling to an Einstein boson) in
nature. Averaging over the disordered configurations implied
by randomness, one discovers a critical phase with a vanish-
ing quasiparticle weight and a power-law spectral function at
low temperatures and energies. The appeal of SYK formula-
tions is manifold: they are exactly solvable in the N → +∞
limit, in contrast to other approaches, yielding an artificially
built but controlled example of QC strongly interacting elec-
trons; they reproduce many experimentally observed aspects
of NFL and strange-metal physics, like an extended regime
where the resistivity is proportional to temperature; they are
maximally chaotic, and therefore allow for exact studies of
quantum chaos [110–112]; they also allow for an explicit
gravity dual in an asymptotic anti-de Sitter (AdS) space
AdS2 [27,81–84,113–120], thus contributing complementary
insights into the “holographic” AdS/CFT correspondence
between AdS gravity models and conformal field theories
(CFTs) [27,113,121–124].

The three fundamental assumptions of the SYK pictures
may find physical grounding. The all-to-all interactions re-
semble mean-field approaches that are local in space, i.e.,
where the physical properties do not depend on spatial coordi-
nates and fluctuations in space are neglected, like dynamical
mean-field theory (DMFT) [125,126].

Whether the SYK method discussed here can serve as a toy
model for strongly interacting electrons is an open question.
However, it is worthwhile pointing out a recent development
in describing the phenomenology of the cuprates in terms of a
theory with random electron-boson interactions [97,98,127].
Key results, like the linear-in-temperature resistivity, can ob-
tained in a limit where the mean value of the coupling
vanishes. Then the underlying many-body problem is almost
identical to the one discussed in the present work. The large
number N → +∞ of flavors required to achieve an exact
solution may be interpreted as an abundance of internal energy
levels, or degrees of freedom, of a local quantum dot isolated
from the environment. Fluctuations beyond the large-N limit
can then included through numerical studies [112,128–132],
to check the validity of the large-N calculations. In this
respect, another complementary technique is the AdS/CFT
correspondence, which allows one to map a strongly in-
teracting condensed-matter system to a weakly interacting
gravity theory; the holographic dual is another promising path
to investigate fluctuations around the saddle-point solutions
[81,133] and nonequilibrium effects [134]. The randomness
of the model may simulate real disorder, like in granular
matter or nanoscopic flakes [135–139], or be understood as an
effective description of a clean system with a rich spectrum
of low-energy excitations (the flavors), over which we aver-
age to extract macroscopic properties. Notably, randomness
can be self-generated in strongly interacting systems, such
as frustrated magnets [89,92] and in the spin-freezing region
of multi-orbital Hubbard models [140–143]: these specula-
tions might provide a physical justification for effective SYK
descriptions.

To construct a minimal model of NFL superconductor
in the SYK picture, we have first to complete a general-
ization, and second we have to assess whether the found
low-temperature instability is really a superconducting ground
state. The generalization involves: first, including a notion
of space dimensions, which can be realized by employing
SYK dots as building blocks and placing them on a lattice—
see Fig. 1(b) for an illustrative depiction in 2D; second,
investigating the emergence of a low-temperature electronic
instability in such a lattice. The first step is technically im-
plemented in a variety of ways through hopping parameters,
which can be fixed, or random [144] as the SYK interac-
tions: this protocol has been adopted for Majorana fermions
with random hopping [100] and four-body random interaction
[145–147], spinless complex fermions with random [94,138]
and nonrandom hopping [102,148–151], and spinful complex
fermions with nonrandom hopping [99,148,152]. Physically,
nonrandom hopping parameters with translational invariance
generate a band structure in reciprocal space of momenta
h̄k, while random hopping preserves the local character of
the SYK approach, as it leads to momentum-independent
fermionic propagators after the disorder average. We will
adopt the latter simpler assumption of randomness, which
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FIG. 1. Schematic representation of a 2D lattice of Yukawa-SYK dots with all-to-all interactions. (a) All-to-all interactions (white dashed
lines) between fermion flavors {i, j, l, n} = {1, · · · N }, mediated by a bosonic mode φk with flavor k = {1, · · · M } and with random couplings
gi j,k . (b) Construction of a 2D lattice where the building blocks are the Yukawa-SYK dots, connected by random coherent hopping ti j,xx′ (dashed
yellow lines) between nearest-neighbor sites.

has the drawback of neglecting nonlocality altogether, but it
allows one to retrieve analytical results even in the condensed
phase. Due to the lattice embedding, the complex creation
and annihilation operators ĉi,σ,x, ĉ†

i,σ,x for fermions depend on
a lattice site index x in addition to the flavor i = {1, · · · N }
and spin σ = {↑,↓} indices. One realizes that, already in the
normal state, the competition between onsite SYK interac-
tions and two-body intersite hoppings determines crossovers
between NFL phases (where interactions are dominant) and
FL behavior (where fermions are itinerant).

Second, to identify an instability toward a condensed
phase, the development of anomalous terms of the kind
N −1∑

i ĉ†
i,σ,xĉ†

i,σ ′,x′—see Sec. III for formal definitions—is
regarded as a hallmark. This criterion on the disorder-
averaged theory is in direct correspondence with the appear-
ance of anomalous averages in nondisordered models, which
constitute a superconducting order parameter. The associated
gap equation allows one to determine the critical temperature
Tc where the anomalous term appears, as well as spectral
and thermodynamic properties in the condensed phase. In the
single-dot limit, a superconducting state of this kind has been
retrieved for spinful fermions coupled by a negative Hubbard
onsite term [109], two-body interactions [101], or through
pair-hopping terms [132], and for fermions randomly cou-
pled to an Einstein boson: the Yukawa-SYK model [103,105–
108,119,153]. We will adopt the latter route for onsite interac-
tions, as developed in Sec. III. Recently, lattice calculations in
the superconducting state also became available, for different
pairing sources: collective chargeless excitations induced by
the SYK lattice [100]; additional correlations between the
interaction matrix-elements of spinful fermions [99]; coupling
of dots through two-body interactions that conserve charge
[101]; instantaneous attractive interaction between spinless
fermions [102]; Hubbard onsite interaction and random hop-
ping [109].

The embedding of SYK dots in a lattice is crucial to
demonstrate that the found condensed phase is indeed super-
conducting. In fact, superconductivity is an electrodynamic
phenomenon: a superconductor below Tc is, first and foremost,
a perfect diamagnet, which completely screens static magnetic
fields from its bulk due to nondecaying circulating super-
currents, in accordance with the Meißner-Ochsenfeld effect
[154]. Thus, a notion of space must be included in the model
to account for supercurrent circulation, and to calculate the
associated response function in the presence of a magnetic

field. In our case, such notion of space is introduced through
intersite hopping. In turn, the response function is connected
with the characteristic length scale within which the magnetic
field is exponentially suppressed from the surface of the super-
conductor to its interior: this is the magnetic penetration depth
λL ∝ 1/

√
ρS [154–157], which depends on the phase stiffness

ρS [101]—see Sec. XI for technical details. Therefore, a true
superconducting state involves a finite phase rigidity, or stiff-
ness. One can interpret this phenomenon in the language of
second-order phase transitions, as a spontaneous breaking of
the global U (1) symmetry with associated Goldstone bosons
[158].

The question that we want to answer in this work is: does
the condensed phase in a lattice of Yukawa-SYK dots possess
a finite phase stiffness? Furthermore, in the light of the cor-
relation between ρS , condensation energy, and relative weight
of the superconducting coherence peak, observed in cuprates
[14,22], do we retrieve a similar correlation in the Yukawa-
SYK lattice model? The answer to both questions is yes: in
the following, we analyze the consequences of this analogy,
comparing the spectral and thermodynamic properties of our
superconductor. In synthesis, we generalize the Yukawa-SYK
model to a lattice with random hopping parameters. Using the
replica trick to perform the disorder average on the effective
action, we solve the model exactly in the large-N limit at
particle-hole symmetry, we construct the phase diagram, and
we characterize the FL to NFL crossovers both numerically
and analytically, in the normal and superconducting states.

The manuscript is organized as follows: Sec. II contains
a summary of the main results of this paper. Our model is
introduced in Sec. III, where we derive the effective disorder-
averaged action and the associated saddle-point equations,
valid in the normal and superconducting states. The normal-
state FL and NFL fixed points of our theory are identified in
Sec. IV, with reference to the fermionic and bosonic spectral
functions obtained from the exact numerical solution of the
saddle-point equations. Section V hosts the analysis of the
crossovers between the FL and NFL phases of our model,
while Sec. VI compares the derived crossover criteria with
the normal-state entropy, as an exemplary application. The
superconducting instability is first studied in Sec. VII, where
the critical temperature Tc is identified by the self-consistent
numerical solution of the linearized gap equation, and is com-
pared with approximate analytical expressions in all distinct
regimes. Section VIII discusses the full numerical solution
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and analytical approximations for the zero-temperature zero-
energy gap and the gap-to-Tc ratio in the FL and NFL
phases. The superconducting spectral functions of fermions
and bosons are reported and analyzed in Sec. IX, while Sec. X
deals with the evolution of the dynamical quasiparticle weight
with fermion-boson coupling in the superconducting state.
Section XI reports the derivation and the numerical results
for the phase stiffness ρS as a function of temperature and
coupling, as well as asymptotic analytical formulas in the
FL and strong-coupling regimes. The condensation energy
on the lattice is computed in Sec. XII and compared with
the analogous evolution of the phase stiffness with coupling.
Our conclusions, and perspectives for future developments
of our theory, are summarized in Sec. XIII. Multiple Ap-
pendices report technical details of our work: Appendix A
reports the derivation of the disorder-averaged saddle-point
action; Appendix B describes the numerical methods em-
ployed to self-consistently solve the saddle-point equations on
the imaginary and real axis; Appendices C and D contain
the derivations of the approximate analytical results for var-
ious thermodynamic and spectral quantities, analyzed in the
normal and superconducting states, respectively; a separate
Appendix E focuses on analytical approximations for the
critical temperature; Appendix F shows the derivation of the
thermodynamic grand potential in the normal and supercon-
ducting states. Finally, Appendix G contains the derivation of
the action for charge fluctuations and of the electrodynamic
kernel, used to calculate the phase stiffness.

II. SUMMARY OF MAIN RESULTS

Our main result is that, in a lattice of coupled Yukawa-
SYK sites described by the Hamiltonian (1), that serves as
a solvable model for superconductivity in a regime with-
out quasiparticles, interesting phenomenological correlations
among the quasiparticle residue in the superconducting state,
the phase stiffness, and the condensation energy emerge. In
our model we vary the fermion-boson coupling g and the
hopping parameter t0 to establish these correlations. They
are, at least qualitatively, analogous to experimental obser-
vations in cuprate superconductors [14,22], where the tuning
parameter was the carrier concentration. These findings are
summarized in Fig. 2: the quasiparticle residue is obtained
from the inverse of the dynamical weight Z (iω1) at the first
Matsubara frequency ω1—see Sec. X and Appendix B 4—and
is shown in Fig. 2(a); the phase stiffness ρS (T ), converted
into an energy scale as ρS (T )/�L, where �L is a constant–
see Eq. (65b) in Sec. XI—that encodes the underlying lat-
tice structure of the theory [19] and the number of fermion
flavors—is displayed in Fig. 2(b); finally, Fig. 2(c) shows the
condensation energy �	/(N ω0) per fermion flavor, in units
of the bare boson frequency ω0, evaluated from the difference
between the thermodynamic grand potentials in the normal
and superconducting states; see Sec. XII. All curves are com-
puted from the exact numerical solution of the saddle-point
equations (4) in the superconducting state, in the large-N
limit, corresponding to the Hamiltonian (1).

The stiffness is maximal precisely at the FL/NFL
crossover, which is marked by vertical arrows in Fig. 2(b)
for a given hopping. Our analytical approximations in the

FIG. 2. Correlation between quasiparticle residue, phase stiff-
ness, and condensation energy as a function of fermion-boson
coupling g, found in the Yukawa-SYK model on a lattice, i.e., our
model described by the Hamiltonian (1). All curves are calculated
deep in the superconducting state, for different hopping parameters
t0. (a) Inverse of the dynamical weight Z (iω1) at the first Matsubara
frequency, calculated on the imaginary axis; see Sec. X. (b) Energy
scale ρS (T )/�L corresponding to the phase stiffness ρS (T ); see
Sec. XI. (c) Condensation energy computed from the difference be-
tween the grand potentials in the normal and superconducting states;
see Sec. XII.

weak-coupling regime, which corresponds to a disordered FL
in the normal state [144], indicate that Z−1(iω1) and ρS (T )
are exponentially increasing functions of g, because in this
regime the superconductor follows a disordered version of
BCS theory, where the zero-temperature superconducting gap
�0 ∝ e−1/λ̄ with coupling constant λ̄ ∝ g2/t0—see Eq. (36);
at finite hopping, the same qualitative behavior is retrieved for
the condensation energy �	. In the opposite, strong coupling
limit, where fermions are fully incoherent and the normal
state is a NFL, we show that the residue Z−1(iω1) ∝ g−2 and
the stiffness ρS (T ) ∝ Z−2(iω1) ∝ g−4; correspondingly, �	

slowly decreases in magnitude [105], mirroring the evolution
of the previously analyzed quantities.

The nonmonotonic evolution of ρS (T ) with g is contrasted
by the monotonic one of the critical temperature Tc, which
is computed from the linearized gap equation (34) and ana-
lyzed in Sec. VII: in the weak-coupling regime, the disordered
FL pairs in accordance with the BCS formula Tc ∝ e−1/λ̄—
see Eq. (35)—and thus limT →0 ρS (T )/(kBTc) ∝ �0/(kBTc) ≈
0.567, i.e., the stiffness and the pairing temperature are pro-
portional to each other; conversely, in the strong-coupling
NFL regime, we have limg→+∞ Tc ≈ 0.112ω0/kB, and so the
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FIG. 3. Large-N schematic phase diagram of the Yukawa-SYK
model on a lattice, represented by the Hamiltonian (1), as a function
of dimensionless fermion-boson coupling constant g and at fixed
hopping t0. The classical-gas phase (light-blue shaded region) de-
velops at small coupling, at temperatures kBT >

√
zt0, where z is

the coordination number. At lower temperatures, the system forms a
disordered Fermi liquid, the SYK2-FL phase dominated by hopping
(dark-blue shaded region); the low-temperature boundary of this
phase is determined by the crossover energy ωc, as calculated in
Sec. V. At the lowest temperatures and right to the crossover scale ωc,
the system is a non-Fermi-liquid labeled SYK-NFL (orange-shaded
region). At strong coupling, for kBT/ω0 � g−2, the impurity-like
regime (purple-shaded region) appears. A low-temperature super-
conducting phase (red-shaded region) is delimited by Tc (red curve),
which is exponentially suppressed with decreasing coupling in the
SYK2-FL regime, while it reaches asymptotically kBTc ≈ 0.112ω0

in the impurity-like regime, where ω0 is the bare boson frequency
[105]. At higher values of hopping, the FL/NFL crossover energy ωc

occurs at higher g, such that a direct crossover between the SYK2-FL
and impurity-like regimes occurs; see Fig. 1(c) of Ref. [159]. The
normal-state crossovers are analyzed in Sec. IV.

characteristic energy scale ρS (T )/�L ∝ g−4 of the stiffness
per fermion flavor is much smaller than kBTc: this effect is
indicative of strong superconducting phase fluctuations.

The relation between the stiffness and the finite-frequency
electromagnetic response of the Yukawa-SYK superconductor
is further investigated in the companion paper Ref. [159],
where it is shown that the nonmonotonicity of ρS (T ) with
fermion-boson coupling is reflected into a different spectral
weight removal from the low-energy optical conductivity,
upon entering the superconducting state: this phenomenon
offers a direct way to observe the NFL/FL crossovers in
the condensed phase of the Yukawa-SYK model on a lattice.
Moreover, the FL/NFL crossovers manifest themselves in
qualitative differences between the spectral functions in the
FL and NFL phases—see Secs. V and IX: In the normal
state, the power-law fermionic spectral function and the soft
boson excitations of the NFL regime leave the stage to the

semicircular Wigner spectral function of the disordered FL
[144], with almost free bosons; in the superconducting state,
the BCS-like gap of the FL regime transforms into a spectral
function with multiple peak-dip-hump features in the strong-
coupling regime, which are self-trapped states created by the
pairing field [105,160]. Finally, the NFL/FL crossovers can
be identified by the zero-temperature entropy in the large-N
limit and in the normal state, which is finite in the NFL phase
but is vanishing in the FL regime—see Sec. VI. The entire
phase diagram of the model (1) is schematically drawn in
Fig. 3.

III. MODEL

We consider the following model of electrons with all-to-
all interactions, coupled to phonons:

Ĥ = −
N∑
i=1

∑
x

∑
σ

μĉ†
i,x,σ ĉi,x,σ

+ 1

2

M∑
k=1

∑
x

[
π2

kx + ω2
0φ

2
kx

]

+
N∑

{i, j}=1

∑
σ

M∑
k=1

∑
x

(gi j,k + g�
ji,k )ĉ†

i,x,σ ĉ j,x,σ φkx

+
∑
〈x,x′〉

N∑
{i, j}=1

∑
σ,σ ′

ti j,xx′ ĉ†
j,x′,σ ĉi,x,σ , (1)

with ĉ†
i,x,σ , ĉi,x,σ fermionic operators on a lattice with site

indexes x for spin σ = {↑,↓}, obeying usual anticommu-
tation relations, and scalar bosonic degrees of freedom φkx

with canonical momentum πkx, such that φkxπk′x′ − πk′x′φkx =
iδkk′δxx′ . The indices {i, j} = {1, · · · N } run through the
fermionic flavors, while the index k = {1, · · · M } refers to
the bosonic species. The all-to-all couplings gi j,k are assumed
to be random real numbers obeying a Gaussian distribution
with null average and variance ḡ2/(2N 2). Likewise, by as-
sumption the hopping parameters ti j,xx′ follow a Gaussian
distribution with zero average and variance t2

0 /(2N ), and
they act only between nearest-neighbour sites 〈x, x′〉; see also
Appendix A. Formally, the theory (1) is a generalization of
the electron-phonon model of SYK superconductivity [105]
to a lattice of SYK fermions. We employ the replica trick
to perform averages over the “disorder” determined by the
randomness of the couplings gi j,k and of the hoppings ti j,xx′ , as
described in Appendix A. This way, we deduce that the model
(1) is controlled by the following disorder-averaged effective
action S =∑x Sx, where

Sx

N
= −Tr log

(
Ĝ−1

0 − 
̂x
)+ 1

2
Tr log

(
D−1

0 − �x
)− 2

∫
ττ ′

Gx(τ ′, τ )
x(τ, τ ′) + 1

2

∫
ττ ′

Dx(τ ′, τ )�x(τ, τ ′)

−
∫

ττ ′
[Fx(τ ′τ )�†

x(τ, τ ′) + F †
x (τ ′τ )�x(τ, τ ′)] + zt2

0

2

∫
ττ ′

[Gx(τ, τ ′)Gx′ (τ ′, τ ) − F †
x (τ, τ ′)Fx′ (τ ′, τ )]

+ ḡ2
∫

ττ ′
Dx(τ, τ ′)[Gx(τ, τ ′)Gx(τ ′, τ ) − F †

x (τ, τ ′)Fx(τ ′, τ )]. (2)
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Here
∫
ττ ′ ≡ ∫ dτ

∫
dτ ′, z is the coordination number (the

number of nearest-neighbour sites) and we have introduced
the cumulative bilocal fields

Gx(τ, τ ′) = 1

N

N∑
i=1

ĉ†
ixσ (τ ′)ĉixσ (τ ),

Fx(τ, τ ′) = 1

N

N∑
i=1

ĉix↓(τ ′)ĉix↑(τ ),

Dx(τ, τ ′) = 1

M

M∑
k=1

φkx(τ ′)φkx(τ ), (3)

where the normal fermionic propagator Gx(τ, τ ′) is diagonal
in the spin index σ . The normal and anomalous fermionic self-

energies, as well as the bosonic self-energy, are respectively
given by 
x(τ, τ ′), �x(τ, τ ′), and �x(τ, τ ′). They are defined
as the Lagrange multipliers for the identities which introduce
the bilocal fields (3); see Appendix A.

In the following, we set M = N for simplicity. General-
izations to a different number of fermion and boson flavors
were reported for the single-dot limit [104,105,107,153], and
their lattice counterpart for the model (1) is left for future
work. Notice that, after performing the disorder averages in
the replica-symmetric ansatz, the bilocal fields are expected
to acquire translational invariance in time and space, i.e., the
disorder realization is the same for any lattice site x. For this
reason, in the following we drop the index x when referring
to the disorder-averaged theory. In the limit of large N , the
saddle-point equations coming from the action Eq. (2) are
given by


(iωn) = ḡ2kBT
+∞∑

m=−∞
D(i	m)G(iωn − i	m)+ zt2

0

2
G(iωn), (4a)

D(i	n) = 1

	2
n + ω2

0 − �(i	n)
, (4b)

�(i	n) = −2ḡ2kBT
+∞∑

m=−∞
[G(iωm)G(iωm + i	n) − F (iωm)F (iωm + i	n)], (4c)

�(iωn) = −ḡ2kBT
+∞∑

m=−∞
F (iωm)D(iωn − iωm)− zt2

0

2
F (iωn), (4d)

G(iωn) = iωn − μ + 
∗(iωn)

[iωn + μ − 
(iωn)][iωn − μ + 
∗(iωn)] − |�(iωn)|2 , (4e)

F (iωn) = �(iωn)

[iωn + μ − 
(iωn)][iωn − μ + 
∗(iωn)] − |�(iωn)|2 . (4f)

Equations (4e) and (4f) have the standard form of the normal
and anomalous fermion propagators found in Eliashberg the-
ory [161–163], here written for dispersionless fermions with
chemical potential μ. A crucial aspect of the saddle-point
theory (4) is that the boson themselves acquire the self-energy
(4c), due to their interaction with fermions. This is essential
for the non-Fermi-liquid physics entailed by our model: The
fermion-boson interaction is at once responsible for the de-
struction of fermionic quasiparticles and the softening of the
bosonic mode with bare frequency ω0. It is also responsible
for the low-temperature instability toward a superconducting
ground state, to be explored in the following. As a result
of fermion-boson coupling, the natural frequency ω0 of the
boson oscillator is renormalized according to

ω2
r = ω0 − �(0), (5)

where �(0) is the static value of the boson self-energy (4c).
The system (4) realizes a self-consistent problem for

the SYK fermions on a lattice, with random hoppings—
characterized by variance t2

0 /(2N ) and coordination number
z—and coupling to an Einstein phonon mode of natural
frequency ω0, dressed by the fermion polarization bubble
according to Eq. (4c). The coupling constant ḡ has dimensions

[energy]3/2 and is made dimensionless with the normalization
g = g/ω3/2

0 [105]. The equations are simplified by introducing


(iωn) = iωn[1 − Z (iωn)] (6)

and

�(iωn) = Z (iωn)�(iωn), (7)

as in standard Eliashberg theory. Our main goals are to
calculate the superconducting critical temperature Tc, thermo-
dynamic properties such as the grand potential in the normal
and superconducting states, and the phase stiffness of the
system (4). In the following, we will focus on the particle-hole
symmetric case μ = 0. The main details of our numerical
methods are reported in Appendix B.

IV. FIXED POINTS IN THE NORMAL STATE

Let us first solve the coupled saddle-point equations (4) in
the normal state, that is, assuming that the anomalous prop-
agator F (iωn) and the anomalous self-energy �(iωn) both
vanish. For couplings gi j,k taken from the Gaussian orthog-
onal ensemble (GOE), i.e., real-valued and preserving time
reversal symmetry, the solution below is valid in the normally
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conducting state at T > Tc; if the couplings are extracted from
the Gaussian unitary ensemble (GUE), they are complex-
valued and break time-reversal symmetry, so that there is no
superconducting phase and the following represents the full
solution of the model for any temperature [105,106].

The normal-state coupled equations on the imaginary axis
are


(iωn) = ḡ2kBT
+∞∑

m=−∞
D(i	m)

1

i(ωn − 	m)Z (iωn − i	m)

+ zt2
0

2
G(iωn), (8a)

�(i	n) = −2ḡ2kBT
+∞∑

m=−∞

1

iωmZ (iωm)

× 1

i(ωm + 	n)Z (iωm + i	n)
, (8b)

together with the Dyson equations

G−1(iωn) = iωn − 
(iωn) (9)

and (4b) for the fermion and boson propagators. The real-axis
versions of Eqs. (8) formally stem from the analytic con-
tinuation iωn → ω + i0+ of the Matsubara propagators, and
they can be numerically solved by resorting to the spectral
(Lehmann) representation; see Appendix B 5. This represen-
tation allows us to study the spectroscopic properties of the
system, such as the fermionic spectral function

A(ω) = − 1

π
Im{GR(ω)}, (10)

where GR(ω) = G(iωn)|iωn→ω+i0+ is the retarded fermionic
propagator [164].

In what follows we will compare the full numerical so-
lution of Eqs. (8) on both the imaginary and real axis, to
approximate analytical expressions that are valid in specific
regimes of the model.

There is a total of four fixed points for Eqs. (8): one is
the trivial classical-gas noninteracting regime, two give rise
to non-Fermi liquids, and the remaining one represents a
disordered Fermi liquid; the latter is the only new fixed point
that arises due to nonzero hopping, while the other regimes
are quantitatively affected by the lattice embedding of the
SYK dots, but are qualitatively similar to their already stud-
ied counterparts in the single-dot limit [105]. The four fixed
points are schematically depicted in Fig. 3, together with the
low-temperature superconducting phase.

The classical-gas regime occurs at high temperatures with
respect to coupling and hopping, that is, for kBT � √

zt0 �
ω0g: it is characterized by approximately noninteracting
fermions and bosons with propagators G(iωn) ≈ 1/(iωn) and
D(i	n) ≈ 1/(	2

n + ω2
0 ), respectively. At lower temperatures,

such unstable free fermions flow toward the other fixed points
of the model, the physics of which we now describe. Quantita-
tive details on our analysis of the imaginary-axis equations of
our model can be found in Appendix C.

A. Quantum critical non-Fermi-liquid fixed point: NFL-SYK

When the fermion-boson coupling is dominant with respect
to hopping, such that g2ω2

0 � zt2
0 , but is sufficiently small so

that g2 < kBT/ω0 < g−2, the system enters the non-Fermi-
liquid quantum critical phase, which we label NFL-SYK. In
these conditions, a nonzero t0 only quantitatively affects the
fermionic and bosonic properties, but the physics is qualita-
tively analogous to the single-dot limit. Thus, the properties
of the NFL-SYK phase are analogous to the ones studied in
Sec. IIIa of Ref. [105]. For a self-contained explanation, let us
recall such properties.

The key findings of the NFL-SYK state are that the low-
energy fermion and boson propagators follow a power-law
(“branch cut” [23]) form in frequency, characteristic of quan-
tum critical systems:

G−1(iωn) = iωn

(
1 + c1

∣∣∣∣ g2

ωn

∣∣∣∣2�
)

, (11)

D−1(i	n) = 	2
n + ω2

r + c3

∣∣∣∣	n

g2

∣∣∣∣4�−1

, (12)

with the renormalized boson frequency

ω2
r = c2

(
kBT

g2

)4�−1

. (13)

The numerical coefficients in Eqs. (11)–(13) are c1 ≈
1.154700, c2 ≈ 0.561228, and c3 ≈ 0.709618, while the ex-
ponent is 1/4 < � < 1/2 depending on the ratio N /M
between the number of fermion and boson flavors. For N =
M , we have � ≈ 0.420374134464041 [105]. Through the
Dyson equation (9), the self-energy that corresponds to the
Green’s function (11) assumes the low-energy form [105]


(iωn) = −isign(ωn)c2g4�|ωn|1−2�, (14)

which differs from purely fermionic versions of SYK models
only in the value of the exponent � [87].

The propagators (11) and (12) imply that fermion-boson
interaction destroys both fermionic and bosonic quasiparticles
on the same footing. On the one hand, the fermions acquire an
SYK-like imaginary self-energy (14) with anomalous expo-
nent �; on the other hand, the boson dynamics is dominated
by an anomalous Landau damping governed by the same ex-
ponent �. That the system is quantum critical can be deduced
from the renormalized frequency (13), which vanishes at T →
0 for all values of g and ω0. This is because the degeneracy
stemming from the diverging charge susceptibility of bare
fermions is lifted in the SYK-NFL state, thus providing the
stability of the latter with respect to charge fluctuations.

Figure 4(a) shows the NFL-SYK spectral function A(ω)
from Eq. (10) at different temperatures kBT/ω0, obtained from
the exact numerical solution of Eqs. (8) on the real axis. We
choose g = 1 and t0 = 0 (single-dot limit). The dashed green
curve is given by the zero-temperature limit of Eq. (11), where
the Matsubara frequencies become the continuous variable
iω. We clearly appreciate the power-law low-energy feature
that develops at low temperature, a signature of the quantum
critical phase. At the same time, the bosons are strongly renor-
malized with a progressive softening of their frequency ωr , as
shown in Fig. 4(b) which displays the imaginary part of the
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FIG. 4. Numerically exact spectral function and bosonic propagator in the normal state, showing the crossover from the NFL-SYK to the
SYK2-FL regimes as a function of hopping. (a) Fermionic spectral function in the single-dot limit (t0 = 0) and for coupling g = 1, as a function
of energy ω and at temperature kBT/ω0 = {0.001, 0.005, 0.01, 0.05}. The dashed green curve is the analytical low-energy SYK-NFL spectral
function, given by Eq. (11) for g = 1. (b) Imaginary part of the bosonic propagator, for the same parameters as in panel (a). The dashed green
curve corresponds to the low-energy analytical boson propagator (12) in SYK-NFL regime for g = 1. (c) Fermionic spectral function at fixed
temperature kBT/ω0 = 0.01 and coupling g = 1, as a function of energy ω and for different hoppings t0/ω0 = {0, 0.5, 1, 2, 4}. The dashed gray
curve corresponds to the SYK2-FL spectral function (17), for t0/ω0 = 4. (d) Imaginary part of the bosonic propagator, for the same parameters
as in panel (c). The dashed vertical line is given by the approximate renormalized boson frequency (18) in SYK2-FL regime.

retarded boson propagator DR(ω) at different temperatures.
The dashed green curve is given by Eq. (12) at T = 0. The
softening is accompanied by the development of the power-
law divergence (cut by temperature) signaling the critical
dynamics of bosons.

By increasing hopping such that the terms depending on
zt2

0 in Eqs. (8) are no longer negligible, the fermionic and
bosonic dynamics progressively transform. Then, what is the
new phase to which the system flows to? To answer this
question, we need to study the large-hopping limit of Eqs. (8),
as presented in the next section.

B. Disordered Fermi-liquid fixed point: SYK2-FL

We now increase the hopping such that g2ω2
0 � zt2

0 keep-
ing the temperature in the window g2 < kBT/ω0 < g−2.
Hence, the physics will no longer be dominated by intradot
fermion-boson coupling but by coherent hopping between
nearest-neighbors sites on the lattice. The single-dot quantum
critical dynamics of Sec. IV A then crosses over to another
fixed point, which we baptize SYK2-FL. The label “SYK2”
refers to the fact that the physics is dominated by the two-
body term given by t0 in the Hamiltonian (1), similarly to
the SYK models SYKq with q-fermion interactions [133],
while “FL” indicates that it is a kind of Fermi liquid endowed
with fermionic quasiparticles [87]. While strictly speaking
the hopping term is random [165], such that the system is
disordered, the many-body density of states given by the
hopping-dependent terms in Eqs. (8) has a polynomial number
of energy levels lying at low energy, which allows mapping
the problem to a Fermi-liquid picture [87]. Other distinctive
features that such disordered phase shares with standard Fermi

liquids include a DC resistivity ρDC ∝ T 2 and a heat capacity
CV ∝ T [87,94]. This purely fermionic limit of SYK2 has
been extensively studied in the condensed-matter and holo-
graphic contexts (see, e.g., Refs. [144,166]). In our setting, we
have the distinction that fermion-boson coupling, while weak
compared to hopping in this regime, still has a nonnegligible
effect on the low-temperature physics of the model: notably,
the weak-coupling transition to a superconducting state, that
we will analyze in Sec. VII.

In the normal state, the saddle-point equations (8) can be
analytically decoupled and solved in the SYK2-FL regime:
They yield

G(iωn) =
iωn − isign(ωn)

√
(ωn)2 + 2zt2

0

zt2
0

≡ −2isign(ωn)

|ωn| +
√

(ωn)2 + 2zt2
0

(15)

and


(iωn) = zt2
0

2
G(iωn) (16)

for the fermion Green’s function and self-energy, respectively.
Notice that the above solution is formally exact in the g → 0
limit, while for finite coupling there will be small but finite
corrections. Once continued to the real axis by the means of
Eq. (10), Eq. (15) yields the Wigner semicircular (or more
precisely, semielliptical) spectral function

A(ω) = 1

π

√
2zt2

0 − ω2

zt2
0

�
(
2zt2

0 − ω2
)
, (17)
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where �(x) is the Heaviside theta function. Figure 4(c) shows
how the crossover between the SYK-NFL phase and the
SYK2-FL regime affects A(ω). This evolution is obtained by
numerically solving the full saddle-point problem (8) on the
real axis. We work at fixed temperature T = 0.01ω0/kB and
coupling g = 1, and we increase the hopping from zero—see
red curve, same as in Fig. 4(a)—to t0 = 4ω0. We visually
appreciate that the low-energy spectral function evolves from
the power-law behavior of Eq. (11) for t0 = 0, to the SYK2-FL
Wigner spectral function (17) shown by the dashed gray line.
Thus, the fermions become more coherent and approach the
energy distribution typical of the disordered Fermi liquid.
Although quasiparticles are formally defined in this regime,
their quasiparticle weight Z = [1 − ∂Re{
R(ω)}/∂ω|ω=0]−1

is still small compared to unity, and their lifetime as given
by 1/Im{
R(ω)} is still short compared to standard nondis-
ordered Fermi liquids (see the broadening of the spectral
function for t0 = 4ω0).

Notably, the effect of fermion-boson interaction on bosons
themselves is not entirely negligible. This is illustrated in
Fig. 4(d), which shows the imaginary part of the real-axis
boson propagator DR(ω) at temperature T = 0.01ω0/kB and
coupling g = 1, as a function of hopping. Increasing the latter,
the strongly damped and softened peak for t0 = 0 evolves
into a well-defined excitation that moves toward ωr � ω0:
The bosons become progressively more free. Nevertheless,
the residual broadening of the peak for t0 = 4ω0 and its
renormalized natural frequency indicate that fermion-boson
coupling still plays a role. For instance, we can demon-
strate that the renormalized boson frequency is approximately
given by

[ωr (0)]2 ≈ ω2
0 − 8

√
2ḡ2

3π
√

zt0
(18)

at zero temperature in the SYK2-FL regime; see Ap-
pendix C 2 a. Equation (18) produces the dashed vertical gray
line in Fig. 4(d). Notice that the T = 0 value (18) is finite,
meaning that neither fermions nor bosons are critical in the
Fermi-liquid regime.

The crossover between the SYK-NFL and SYK2-FL
regimes analyzed so far departed from the hypothesis g2 <

kBT/ω0 < g−2. However, in the single-dot limit we know
that the impurity-like phase appears for kBT/ω0 > g−2 [105].
Therefore, it is interesting to analyze how hopping affects the
impurity-like fixed point as well. We perform such analysis in
the next section.

C. Strong-coupling impurity-like fixed point

In the intermediate temperature window g−2 < kBT/ω0 <

g2 and for zero hopping, the system (8) enters another non-
Fermi-liquid regime, labeled impurity-like and also analyzed
in Ref. [105]. We recall the essential properties of such
phase, before studying how the lattice embedding modifies the
single-dot results. In the impurity-like regime, the character-
istic energy scale of fermions

	0 = 16g2ω0

3π
(19)

is large with respect to ω0, so that fermions are “cold” and
perceive bosons essentially as static. Therefore, the fermion
self-energy has a similar form as the one for static impurities,
while the fermionic propagator G(iωn) behaves as if fermions
were quantum critical with exponent � = 1/2—see Eq. (11).
Formally, we have

G(iωn) = −2isign(ωn)

|ωn| +
√

(ωn)2 + 	2
0

≡
iωn − isign(ωn)

√
(ωn)2 + 	2

0

	2
0

/
2

(20)

for fermions and

D−1(i	n) = 	2
n + ω2

r (21)

for bosons, with the renormalized frequency

ωr = 3π

8g

√
ω0kBT . (22)

The fermionic self-energy corresponding to Eq. (20) is


(iωn) = 	0

4
G(iωn)

= iωn

2

⎛
⎝1 −

√
1 + 4[8g2ω0/(3π )]2

ω2
n

⎞
⎠

≈ −isign(ωn)
8ḡ2

3πω2
0

, (23)

where the last step is the leading small-frequency expansion,
which is Eq. (26) of Ref. [105].

Notice the formal equivalence of Eqs. (15), (16) in SYK2-
FL regime and Eqs. (20), (23) for the impurity-like fixed
point, upon the mapping 2zt2

0 ↔ 	2
0: static and random bo-

son scattering acts in the same way as random hopping
(which is also static by definition) on fermions. This fea-
ture will be crucial to derive approximate expressions for
the fermion propagators and self-energies, which interpolate
across the whole SYK2-FL to impurity-like crossover and
allow us to analyze the phase stiffness in the superconducting
phase; see Sec. XI. Although the propagators are formally
equivalent in the SYK2-FL and impurity-like phases, their
nature is different. The SYK2-FL is a Fermi liquid, while
in the impurity-like regime we have to analyze multiple bo-
son configurations, even for a given disorder configuration
of the couplings gi j,k [105]: Bosons and fermions strongly
interact and influence each other, and the bosons are approx-
imately static only as a consequence of their interaction with
fermions; this hinders a mapping to a Fermi-liquid problem
[105,134].

While the fermion dynamics is similar in the Fermi-liquid
and impurity-like regimes, the boson behavior is what differ-
entiates most the two regimes. This is perhaps most evident
from the respective renormalized frequencies (18) and (22),
which are finite and vanishing at zero temperature, respec-
tively. Thus, in the impurity-like regime the bosons are sharp
but soft excitations with a strongly renormalized frequency
ωr . Such properties are visually illustrated in Fig. 5(b), which
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FIG. 5. Numerically exact spectral function and bosonic propagator in the normal state, showing the crossover from the impurity-like to the
SYK2-FL regimes as a function of hopping. (a) Fermionic spectral function in the single-dot limit (t0 = 0) and for coupling g = 4, as a function
of energy ω and at temperature kBT/ω0 = {0.15, 1, 5, 15}. The dashed green curve is 1.12 times the analytical low-energy impurity-like spectral
function, stemming from Eq. (24) for g = 4. (b) Imaginary part of the bosonic propagator, for the same parameters as in panel (a). The dashed
vertical green line is the approximate renormalized boson frequency (22) in impurity-like regime. (c) Fermionic spectral function at fixed
temperature kBT/ω0 = 0.15 and coupling g = 4, as a function of energy ω and for different hoppings t0/ω0 = {0, 4, 10, 20, 30}. The dashed
gray curve corresponds to the SYK2-FL spectral function (17), for t0/ω0 = 30. (d) Imaginary part of the bosonic propagator, for the same
parameters as in panel (c).

shows the imaginary part of the retarded boson propagator at
coupling g = 4 and t0 = 0, for different temperatures, from
the exact numerical solution of the saddle-point problem (8)
on the real axis. Notice the progressive softening of the bo-
son excitation peak, which remains well defined. The dashed
green vertical line is given by Eq. (22) for temperature T =
0.15ω0/kB. A similar softening dynamics has been pointed out
in the context of magnetic precursors in cuprates [167,168].

The fermionic spectral function from Eqs. (10) and (20) is
again a Wigner semicircle:

A(ω) = 2

π

√
ω2

0 − ω2

	2
0

�
(
	2

0 − ω2
)
, (24)

which is the same as Eq. (17) upon the substitution 2zt2
0 �→

	2
0. Figure 5(a) shows the numerically exact A(ω) from

Eqs. (8) for g = 4 and t0 = 0, for different temperatures.
The extremely broad spectral function signals incoherent
fermions, and the dashed green curve stems from 1.12G(iω),
with G(iω) the zero temperature version of Eq. (20).

Due to the mapping between the SYK2-FL and impurity-
like fermion propagators, we can expect a smooth crossover
between the two regimes, characterized by a semicircular
spectral function which changes in width and height but
not in shape. This is exactly what happens, as shown by
Fig. 5(c), numerically calculated on the real axis for g = 4,
T = 0.15ω0/kB, and for different hoppings. The blue curve
for t0 = 30ω0 consistently agrees with the SYK2-FL spectral
function given by Eq. (17). Correspondingly, by increas-
ing the hopping, the strongly renormalized bosons of the
impurity-like regime stiffen and become more free, since the

boson self-energy �(0) decreases due to the relatively weaker
fermion-boson interaction. This is shown in Fig. 5(d) by the
full numerical solution for the imaginary part of the boson
propagator, for the same parameters as in Fig. 5(c). On the
SYK2-FL side of the crossover and close to zero temperature,
the renormalized boson frequency still follows Eq. (18), which
would give ωr ≈ 0.6ω0 for t0 = 30ω0. For the same hopping,
the blue curve in Fig. 5(d) displays a larger ωr , which is due
to thermal effects since T = 0.15ω0/kB is still relatively larger
than zero. We checked that further lowering the temperature
makes the real-axis numerical solution agree with Eq. (18) in
the SYK2-FL regime.

Notice that the crossover to the disordered Fermi-liquid
regime occurs at much higher values of hopping for the
impurity-like phase, compared to the SYK-NFL phase; this
is seen by comparing Figs. 5(c), 5(d) and 4(c), 4(d). Thus,
the question arises of where precisely the different crossovers
occur at a given dimensionless ratio t2

0 ω0/ḡ2. We give
quantitative estimations of the specific crossover energies in
the next section.

V. NORMAL-STATE CROSSOVERS

The NFL/FL crossovers, described in Sec. IV and sum-
marized in the phase diagram sketched in Fig. 3, can be
quantitatively characterized as a function of the ratio between
fermion-boson interaction and coherent lattice hopping. Our
chosen criterion refers to the respective fermion self-energy

(iωn) in each regime.

First, consider the crossover between the SYK-NFL and
SYK2-FL phases, described for the spectral functions in
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FIG. 6. Characteristic energy/temperature scale for the cross-
over between SYK-NFL fixed point and SYK2-FL regime as a func-
tion of fermion-boson coupling g for different hopping parameters
t0. The dashed gray line is the asymptotic large-coupling limit (40)
for the superconducting critical temperature Tc, which is valid for
g → +∞ both in the single-dot limit and on a lattice; see Sec. VII C.
The shaded orange area delimits the SYK-NFL region of the single-
dot phase diagram, where the crossover estimation is valid. The
analytical low-energy expansion (27) produces the dashed curves of
the same color as the solid curves, the latter corresponding to the full
numerical solution for ωc.

Sec. IV B. We can estimate the characteristic energy ω (or
temperature T ) scale at which such crossover occurs, as the
energy ω at which the respective self-energies (14) and (16)
of the two phases coincide. Actually, it is convenient to com-
pare the corresponding real-valued dynamical quasiparticle
residues through Eq. (6), which yields

ZNFL(iωn) = 1 + sign(ωn)

ωn
c1g4�|ωn|1−2�, (25)

for the SYK-NFL fixed point and

ZSYK2 (iωn) = 1

2
+ 1

2|ωn|
√

(ωn)2 + 2zt2
0 (26)

in the SYK2-FL regime. A solution to ZNFL(iωn) =
ZSYK2 (iωn) can be obtained numerically at arbitrary iωn ≡
iωc. This gives the crossover scale ωc depicted in Fig. 6.
Schematically, for {kBT, ω} < ωc the physics is dominated
by hopping, while for {kBT, ω} > ωc the NFL fixed point
of single-dot dynamics prevails. At low energy, we can ap-
proximate Eq. (25) with ZNFL(iωn) ≈ c1/|ωn|g4�ω1−2� and
Eq. (26) with ZSYK2 (iωn) ≈ t0

√
z/(

√
2|ωn|), so that equating

the last two expressions gives an analytical result for ωn ≡ ωc:

ωc = 2− 1
2−4�

(
t0

√
zg−4�

c1

) 1
1−2�

. (27)

Equation (27) yields the dashed lines in Fig. 6, for the cor-
responding values of t0. For kBT = 0.01ω0 ≡ ωc and g = 1,
Eq. (27) predicts that the crossover occurs at t0/ω0 ≈ 0.784.
This estimation qualitatively agrees with the real-axis calcu-
lations in Fig. 4(c), where we observe the first discernible
differences with respect to the SYK-NFL form of the spectral
function for t0/ω0 = 1. Such evaluation of the crossover en-
ergy also agrees with the imaginary-axis numerics, as shown

t0/ω0 = 5

t0/ω0 = 10

t0/ω0 = 20

t0/ω0 = 50

imp.-like

1 2 3 4 5 6 7 8 9 10
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103

104

ω
c
/ω

0

FIG. 7. Characteristic energy/temperature scale for the
crossover between impurity-like fixed point and SYK2-FL regime
as a function of fermion-boson coupling g for different hopping
parameters t0, in accordance with Eq. (29). The dotted black line is
the asymptotic large-coupling limit (40) for Tc, which is valid for
g → +∞ both in the single-dot limit and on a lattice; see Sec. VII C.
The shaded purple area delimits the impurity-like region of the
single-dot phase diagram.

in Fig. 18 for the fermionic and bosonic propagators in Ap-
pendix C.

Next we analyze the crossover between the impurity-like
and the SYK2-FL regimes, which occurs at stronger values
of coupling g as discussed in Sec. IV C. The low-frequency
expansion of the self-energy in the impurity-like regime is
given by the last line of Eq. (23), and it is associated with
the dynamical quasiparticle weight

ZIL(iωn) = 1 + 8ω0

3π |ωn|g2. (28)

Equation (28) must be compared to the residue (26) in the
SYK2-FL regime. The solution to ZIL(iωn) = ZSYK2 (iωn) is
analytical at all frequencies, and reads (for ω′

c = ωn > 0)

ω′
c = 9π2zt2

0 − 128g4ω2
0

48πg2ω0
. (29)

The curves in Fig. 7 originates from Eq. (29), each
corresponding to different values of t0. Notice that Eq. (29)
would predict a maximum coupling strength at which
ω′

c = 0, i.e., above which the SYK2-FL regime completely
disappears; however, such coupling falls outside the regime
where Eq. (29) is valid, since it occurs at energies ω < ω0/g2.
At g = 4 and kBT = 0.15ω0 ≡ ω′

c, Eq. (29) is satisfied
for t0/ω0 ≈ 19.312. Such an estimation is in qualitative
agreement with the spectral functions in Fig. 5(c): the purple
curve for t0 = 10ω0 is the one of lowest hopping for which
deviations with respect to the impurity-like form of the
propagator are noticeable. Equation (29) is also consistent
with the imaginary-axis numerical solution of the saddle-point
equations (8), as shown in Fig. 19 for the fermion and boson
Green’s functions in Appendix C.

Having quantitatively characterized all normal-state
crossovers on the saddle point, implied by Eqs. (8), a
consequent task is identifying measurable observables of
such crossovers. Of particular interest in this respect are
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FIG. 8. (a) Normal-state large-N grand potential 	ns(T ) of the Yukawa-SYK model on a lattice as a function of normalized temperature
kBT/ω0 for coupling constant g = 1 and at fixed hopping t0/ω0 = {0, 1, 2}; data points are the results of the numerical solution of Eq. (30),
with the saddle-point propagators stemming from Eqs. (8). The dashed green curve is the result for free fermions and bosons, corresponding to
the last two terms in Eq. (30). The numerical calculations are performed with a number of Matsubara frequencies Nf = 105. The inset zooms
in on the low-temperature region; the dashed curves are smooth polynomial interpolations of the numerical data. (b) Normal-state entropy
S(T ) as a function of normalized temperature kBT/ω0, for the same parameters as in panel (a), calculated from the numerical derivative of
the polynomial interpolations of 	ns(T ). The inset zooms in on the low-temperature regime, where we see the finite T = 0 entropy in the
single-dot limit (t0 = 0).

thermodynamic quantities, that can all be calculated from
the normal-state grand potential of the fermions coupled
to bosons. For this reason, in the next section we tackle
the problem of the saddle-point grand potential, and as an
example of crossover-sensitive thermodynamic variable we
calculate the entropy, both in the single-dot limit and on the
lattice.

VI. NORMAL-STATE THERMODYNAMICS: GRAND
POTENTIAL AND ENTROPY

To identify observable consequences of the crossovers ana-
lyzed in Sec. V on the thermodynamic properties of the lattice,
we compute the on-shell normal-state grand potential 	ns. As
an exemplary application, we will focus on the entropy S =
S(T ): this quantity is finite in the T → 0 limit taken after the
N → +∞ limit, for theories where the fermion propagator
displays a branch-cut singularity, which include the Majorana
and complex-fermion versions of the SYK model [81,91,93–
95,123,133,169,170]. We will shortly realize (see Fig. 8) that
this property persists in the zero-hopping limit t0 = 0 of our
Yukawa-SYK lattice, that is, for the NFL-SYK and impurity-
like single-dot fixed points [105,106]. Instead, for any t0 > 0
we will find limT →0 S(T ) = 0, so that the excess entropy is
released on a lattice even in the large-N limit [94].

The on-shell normal-state grand potential per fermion
flavor is 	/N = −kBT ln Zsp, where Zsp = e−Ssp is the
partition function linked to the saddle-point action Ssp; the
latter corresponds to the disorder-averaged effective action
(2) where the bilocal fields have been substituted with their
saddle-point expressions, yielded by the stationarity con-

ditions (8). In this section we focus on the normal-state
grand potential 	 = 	ns, where F (iωn) and �(iωn) van-
ish. Aforementioned derivation, sketched in Appendix F 1,
leads us to the following expression for generic chemical
potential μ:

	ns

N
= kBT

∑
iωn

{
2 ln

[
G(iωn)

G0(iωn)

]
− z

t2
0

2
[G(iωn)]2

}

+ kBT
∑
i	m

{
−1

2
ln

[
D(i	m)

D0(i	m)

]
+ D(i	m)�(i	m)

}

− 2kBT ln
[
1 + eμ/(kBT )

]
+ kBT

4

{
ω0

kBT
+ 2 ln

[
1 − e−ω0/(kBT )

]}
. (30)

In general, the Matsubara sums in Eq. (30) must be evaluated
numerically. To ease the convergence of these sums, the grand
potential for free fermions and free bosons, given by the last
two terms in Eq. (30), has been simultaneously added and
subtracted in Eq. (30).

Figure 8(a) shows the evolution of the temperature-
dependent grand potential across the SYK-NFL to SYK2-FL
crossover, for coupling g = 1, μ = 0 (particle-hole sym-
metry), and hoppings t0/ω0 = {0, 1, 2}. The full numerical
solution of Eqs. (30) and (8) is marked by the colored data
points. The dashed green curve labeled “free” shows the grand
potential of free fermions and bosons, to which the numer-
ical results consistently converge for large temperature with
respect to hopping and coupling: this is the classical-gas fixed
point of the model, where temperature dominates over all
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interactions and all particles are essentially free. We notice
that temperatures of order kBT � 5ω0 are necessary, in order
for the Yukawa-SYK results to approach the free-fermion
limit. At first glance, this is surprising because fermions are
already free at a temperature scale kBT/ω0 � g2 in the single-
dot limit [105] and of kBT/ω0 � min{g2,

√
zt0/ω0} on the

lattice; see Fig. 3. However, the bosons are not completely
free until temperatures of kBT � 10ω0 are reached, as shown
by the imaginary-axis results for the SYK-NFL renormalized
boson frequency in Fig. 20: This is the reason why the “free”
limit of the theory is approached only above temperatures
of order 10ω0/kB: fermions are already essentially free at
T ∼ ω0/kB, but bosons necessitate of temperatures about ten
times larger to reach the independent-particle limit.

The inset of Fig. 8(a) zooms on the low-temperature
regime, where we see that increasing hopping lowers 	ns(T ).
The dashed colored curves superimposed on the numeri-
cal data points represent a smooth polynomial interpolation,
which we partially differentiate with respect to temperature T
to find the entropy:

S

N
= − 1

N

∂	ns(T )

∂T
. (31)

The results of Eq. (31) are displayed in Fig. 8(b), where
again the dashed green curve shows that the Yukawa-SYK
entropy approaches the one of free fermions and bosons in
the large-temperature limit. The most remarkable differences
between curves at different hoppings appear in the low-
temperature regime, marked by the gray shading and zoomed
upon in the inset. There, we observe that the zero-temperature
entropy in the single-dot SYK-NFL limit (blue curve) is fi-
nite, namely S(0)/N ≈ 0.52. This value differs from purely
fermionic versions of the SYK model, where S(0)/N ≈ 0.46
[94]. Such discrepancy can be traced back to the different
anomalous exponent � of the SYK-NFL self-energy (14)
with respect to SYKq models. At any finite hopping, as ex-
pected [94] the entropy vanishes (within numerical accuracy)
at T → 0. This feature happens because of the crossover
between the SYK-NFL and SYK2-FL regimes, which occurs
here below a temperature scale kBT < ωc with ωc the SYK-
NFL/SYK2-FL crossover energy analyzed in Sec. V. The
latter estimation gives the dashed red and gold vertical lines
in the inset of Fig. 8(b), below which the SYK2-FL physics
progressively takes over. There, we know that the fermionic
entropy S(0)/N = 0 [87], and the same is realized here for
our Yukawa-SYK lattice model.

Here the results in Fig. 8 merely serve as a demonstra-
tion of the practical observability of the crossovers analyzed
in Sec. V. They provoke multiple interesting questions, for
instance related to the dependence of the zero-temperature
entropy on coupling g in the single-dot limit, and its relation
to the heat capacity CV in the normal and superconducting
states of our model. We believe that these points deserve their
own dedicated discussion, to which we defer such analysis.
In what follows, we focus instead on the superconducting
transition that appears when the coupling constants {gi j,k} are
real-valued, taken from the GOE. We will then endeavor to
investigate the properties of the superconducting state on the
lattice, notably the phase stiffness which is the main focus of
the present work.

VII. CRITICAL TEMPERATURE

A. Linearized saddle-point equations and numerical results

To investigate the onset of superconducting pairing, we
compute the corresponding critical temperature Tc in our
large-N theory. Let us emphasize that we define Tc as
the temperature at which the superconducting gap function
�(iωn) vanishes at all frequencies, i.e., the gap-closing tem-
perature. The latter does not necessarily coincide at finite
N with the temperature at which superconducting phase co-
herence sets in Refs. [10,19,171], and true long-range order
is established. The distinction between kBTc and the energy
scale associated with the phase stiffness will be the main
subject of Sec. XI. To obtain Tc, we linearize Eqs. (4a)–(4c) in
�(iωn) neglecting all higher-order terms. This way we obtain
[105]


(iωn) = ḡ2kBT
+∞∑

m=−∞
D(i	m)

1

i(ωn − 	m)Z (iωn − i	m)

+ zt2
0

2
G(iωn), (32a)

�(i	n) = −2ḡ2kBT
+∞∑

m=−∞

1

iωmZ (iωm)

× 1

i(ωm + 	n)Z (iωm + i	n)
, (32b)

�(iωn) = ḡ2kBT
+∞∑

m=−∞

D(iωn − iωm)

[ωmZ (iωm)]2
�(iωm)

+ zt2
0

2

�(iωn)

[ωnZ (iωn)]2
. (32c)

The single-dot case (t0 = 0) was analyzed in reference [105].
At finite t0, the gap equation (32c) can be equivalently refor-
mulated in terms of a modified function

�̃(iωn) = �(iωn)

{
1 − zt2

0

2[ωnZ (iωn)]2

}
, (33)

giving the linearized gap equation for �̃(iωn)

�̃(iωn) = ḡ2kBT
+∞∑

m=−∞

D(iωn − iωm)

[ωmZ (iωm)]2 − zt2
0

2

�̃(iωm). (34)

Equation (34) reduces to the �(iωn)-linearized version of
Eq. (28) in Ref. [105] for t0 = 0 (isolated-dot limit). With
finite hopping, Eq. (34) represents an eigenvalue problem for
�̃(iωn): at T < Tc, the largest eigenvalue is greater than one,
and consequently the self-consistent loop tends to increase the
value of �̃(iωn). Conversely, at T > Tc the self-consistency
drives �̃(iωn) to zero and all eigenvalues of the problem
(34) are therefore smaller than one [161]. At the critical tem-
perature T = Tc, the largest eigenvalue is exactly one. This
criterion is used to solve Eq. (34) exactly for Tc = Tc(g, t0),
and further details on our numerical method are collected in
Appendix B 3. The ensuing results are displayed in Fig. 9 as
a function of coupling g, with differently colored data points
corresponding to different hopping t0. Figure 9(a) shows that
our results in the single-dot limit (red squares) are perfectly
consistent with the results of Ref. [105] (red crosses). This
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FIG. 9. Superconducting critical temperature as a function of fermion-boson interaction g, at fixed hopping t0, obtained from the self-
consistent solution of the linearized saddle-point equations (32). (a) Comparison between the results of Ref. [105] in the single-dot limit
(t0 = 0) and our data for kBTc/ω0, as a function of g2, showing the scaling kBTc ≈ 0.16ḡ2/ω2

0. (b) Normalized critical temperature kBTc/ω0 as
a function of g for different hopping t0/ω0 = {0, 1, 2, 4}. T ∞

c , given by the dashed horizontal line, is the asymptotic strong-coupling limit (40)
for g → +∞.

indicates that kBTc/ω0 ∝ g2 at small g � 1 and t0 = 0. Such
quadratic dependence is qualitatively altered for nonzero co-
herent hopping, as illustrated in Fig. 9(b). There, we observe
that increasing t0 leads to an exponential suppression of Tc at
small coupling, compared to the single-dot results. In fact, the
detrimental effect of hopping on Tc lends itself to an intuitive
interpretation: since onsite fermion-boson coupling is at the
origin of both quantum criticality and superconductivity for
fermions in the single dot, a large ratio

√
zt0/ḡ2/3 weakens

quantum-critical superconductivity, because intersite hopping
competes with onsite pairing. In the limit

√
zt0/g2/3 → +∞,

where coupling to bosons is negligible, Eq. (34) only has the
trivial solution �̃(iωn) = 0 so that fermions do not supercon-
duct. Therefore, the critical temperature is much higher in the
non-Fermi-liquid SYK-NFL phase, than in the Fermi-liquid
SYK2-FL one, at fixed g. However, even in the SYK2-FL
phase, pairing does happen for an arbitrarily small g, which
reminds us of the standard Cooper instability. Indeed, in
Sec. VII B we will find that Tc in this regime exactly follows
the BCS formula [172–174].

However, in the impurity-like strong-coupling regime—
see purple-shaded area in Fig. 9(b)—Tc is negligibly affected
by hopping for values as large as t0 = 4ω0. Hence, the
single-dot impurity-like results of Sec. IV C still apply on
the lattice, which proves that the pairing transition in the
impurity-like regime is more robust with respect to lattice
embedding than Cooper-pair formation in the SYK-NFL
state. Naturally, further increasing hopping would lead to the
impurity-like/SYK2-FL crossover as predicted by Eq. (29).

The above arguments lead to the key conclusion that coher-
ent hopping always reduces Tc with respect to its single-dot
value, at fixed coupling. Then, the maximum Tc of the lattice
is found for t0 → 0, which is the limit analyzed in Ref. [105].
This realization leads to questioning how the critical temper-
ature is exponentially suppressed when

√
zt0/ḡ2/3 is large, in

other words, what is the nature of pairing in the Fermi-liquid
phase. Another relevant aspect is whether hopping affects the
limit g → +∞ of Tc. These questions are addressed in the
next sections.

B. Critical temperature at weak coupling:
Disordered BCS theory

In the single-dot limit t0 = 0, since the only temperature
scale in Eq. (E1) is Tf /T [105], the transition temperature Tc

is of the order of Tf and is numerically found to be kBTc ≈
0.16ḡ2/(ω0)2; see Appendix E 1.

The quadratic dependence of Tc on coupling in the SYK-
NFL phase is dramatically altered when we cross over to
the SYK2-FL regime, by increasing hopping. In this limit,
fermion-boson coupling is relatively weak and the normal
state is a disordered Fermi liquid, as analyzed in Sec. IV B.
These situations are very similar to the standard Cooper prob-
lem in a wide-band nondisordered Fermi liquid, for which the
BCS pairing instability is triggered. In fact, as analytically
shown in Appendix E 2, in our model we do retrieve the BCS
formula for Tc

Tc = 2eγ

π

ω0

kB
e− 1

λ̄ , (35)

with γ ≈ 0.5772156649 Euler-Mascheroni constant, and
where the lattice coupling constant is

λ̄ =
√

2g2ω0

π
√

zt0
. (36)

We can directly make sense of Eq. (36) by connecting it to
BCS theory: by analogy with the latter, we can write λ̄ =
N (0)Veff , where N (0) ≡ A(0) = √

2/(π
√

zt0) is the “density
of states” at energy ω = 0—see Eq. (17)—and Veff = g2ω0 is
the effective attractive interaction. That we retrieve the BCS
pairing instability, usually derived in systems without disor-
der, in a model like (1) with fully random interactions might
seem counterintuitive. However, the argument as to why Tc is
unaffected by disordered hoppings is similar to the Anderson
theorem for static nonmagnetic impurities [175–181], which
affect neither the superconducting transition temperature nor
the zero-temperature gap. In the same way, in our model the
SYK2-FL phase is dominated by interactions that are static
and nonmagnetic, i.e., random coherent hopping between
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nearest-neighbors sites. Therefore, by a similar mechanism
as for Anderson theorem, the weak-coupling regime of our
theory is not affected by the disordered nature of the hopping,
and our theory falls into the universal class of BCS models
in such regime. As for Tc, we will later see that also the
zero-temperature, zero-energy gap �0 = limT →0 �(0) obeys
the BCS formula, but the phase stiffness does not, as the latter
is not protected by an Anderson-like argument.

In addition, although we retrieve the celebrated weak-
coupling formula (35) in our model, the origin of such
expression is not the same as in standard BCS theory. To
appreciate such a distinction, it is instructive to consider our
pairing problem from a point of view which resembles the
Thouless criterion for the pairing susceptibility [161]. Em-
ploying the normal-state Dyson equation (9) and Eq. (6), and
exploiting the even parity Z (iωn) = Z (−iωn) ∀iωn, we have
[(ωn)Z (iωn)]−2 ≡ G(iωn)G(−iωn), so that we can rewrite the
linearized gap equation (32b) as

�(iωn) = ḡ2kBT
+∞∑

m=−∞
D(iωn − iωm)

× G(iωm)G(−iωm)�(iωm)

+ zt2
0

2
�(iωn)G(iωn)G(−iωn). (37)

The form (37) highlights that there are two contributions to
the anomalous self-energy: onsite scattering of fermions off
bosons (first term) and intersite coherent hopping (second
term). We remark that the former term is essential to super-
conductivity, otherwise for g = 0 the gap equation would not
have nontrivial solutions, while the latter term is detrimental
to pairing.

Now, in the boson propagator (4b) we neglect the 	2
n term

and consider the static response, since we expect pairing at
small energies; this approximation coincides with the one
employed in the single-dot case [105]. For t2

0 ω0/ḡ2 � 1, the
fermionic propagator is approximately the SYK2-FL one (15).
Using this propagator, we realize that the many-body polar-
ization bubble (8b) is of order ḡ2kBT/[zt2

0 (ω0)2] � 1, so that
we can neglect the bosonic self-energy in the current regime.
Indeed, this is consistent with the numerical results for the
normal-state bosonic propagator in the large-hopping regime.
Hence, we have simply D(i	n) ≈ ω−2

0 . The gap equation (37)
becomes

�(iωn) = ḡ2kBT

ω2
0

+∞∑
m=−∞

G(iωm)G(−iωm)�(iωm)

+ zt2
0

2
�(iωn)G(iωn)G(−iωn). (38)

Further simplifying Eq. (38) with the help of Eq. (33) leads to

�̃(iωn) = ḡ2kBT/ω2
0

∑
m

P(iωm)

1 − zt2
0 P(ωm)/2

�̃(iωm), (39)

where P(iωm) = G(iωm)G(−iωm). If we now insert the
SYK2-FL expression (15) for G(iωn) into Eq. (39) and we
expand the sum over m for small ωm, then we realize that
the leading-order term scales as 1/ωm, which yields the loga-
rithmic infrared divergence generating the critical temperature

(35). Such instability would be absent if we still used the
propagator (15) but we neglected the t0-dependent term at
the denominator of Eq. (39): This shows that the physical
nature of the Cooper instability in the SYK2-FL regime is the
repeated coherent hopping of Cooper pairs, generated on one
lattice site, onto adjacent sites; such process occurs with a dif-
fusive dynamics, since t0 follows a statistical distribution with
zero mean. The order of magnitude of the critical temperature
(35) can also be estimated by considering Eq. (39) in the zero-
temperature limit, where the sum over m becomes an integral
over iω/(2π ), but cutting the integral extrema inferiorly by
kBTc and superiorly by ω0 [66]. Then, expanding the integrand
in the low-energy limit and performing the integration over ω,
one retrieves Tc ∼ ω0e−1/λ̄, in agreement with Eq. (35).

C. Critical temperature at strong coupling:
Asymptotic Allen-Dynes formula

Superconductivity at strong coupling is dominated by
the intradot fermion-boson interaction, while hopping is
negligible for g2/ω0 � zt2

0 in the Hamiltonian (1): this is
the impurity-like regime, analyzed in the normal state in
Sec. IV C, where the single-dot physics described in Sec. IVb
of Ref. [105] holds. In essence, fermions are fully incoherent
but are nevertheless able to precipitate in a partially coherent
superconducting state of a strongly interacting Cooper-pair
fluid. This coherence is preserved by a mechanism similar
to Anderson’s theorem [175–181], through which thermal
fluctuations of static bosons, acting similarly to nonmagnetic
impurities [182,183], deeply affect Z (iωn) and �(iωn)—see
Eq. (20)—yet their effect cancels for �(iωn) from Eq. (7).
Then, the latter pairing function is only influenced by the
much weaker quantum fluctuations of bosons, which al-
lows for the formation of time-reversal fermionic partners at
T = Tc.

The maximum critical temperature can be analytically esti-
mated in the limit g → +∞ and in the single-dot limit, using
the fact that kBTc � ωr [105] so that ωr ≈ 0 in the gap equa-
tion. Such analysis, reported in Appendix E 3 for convenience,
leads to the asymptotic value

Tc = 0.111897ω0/kB. (40)

Hence, in the large-coupling regime Tc does not depend on g
for an isolated dot coupled to bosons.

The asymptotic limit (40) continues to hold even with the
lattice embedding of the Yukawa-SYK dots. This is confirmed
both by the numerical results in Fig. 9 and by the irrelevance
of t0 in the infinite-coupling limit where the impurity-like
fixed point is stable [105]. This feature can be analytically
confirmed, as proved in Appendix E 4: for t0 > 0, the lin-
earized gap equation is (34) with �̃(iωn) in accordance with
Eq. (33); hopping also modifies the fermionic self-energy, as
in Eq. (4a), and the renormalized boson frequency, according
to Eq. (5); yet, the modifications of the gap equation and of
the fermion self-energy compensate each other in the g →
+∞ limit, while we can still approximate kBTc � ωr at finite
hopping in the impurity-like regime, as the numerics con-
firm. Therefore, the maximum Tc on the lattice, for a given
coupling g, is still given by Eq. (40). It is worth remarking
that Eq. (40) is also compatible with Allen-Dynes’ solution
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kBTc ≈ 0.1827
√

λω0 of the Eliashberg equations, if we insert
λ = 3/8 for the coupling constant [184]. The applicability
of this formula is usually confined to higher values of cou-
pling, when the boson frequency to employ in the Eliashberg
equations is the bare, unrenormalized one. However, such
applicability is enabled by the extreme softening of the bosons
for g � 1 in our model, which lowers the required coupling
to employ Allen-Dynes’ result [105]. This argument will be
shortly exploited to find an asymptotic strong-coupling value
for the zero-temperature zero-energy gap. We then proceed in
the next sections to explore the thermodynamic and spectro-
scopic properties deep into the superconducting state.

VIII. ZERO-TEMPERATURE SUPERCONDUCTING GAP

The energy gap in the single-particle spectrum is an-
other characteristic spectroscopic figure of superconductivity,
which is often invoked in the ratio with the critical temper-
ature to assess the unconventionality of a superconducting
state. In the case of our Yukawa-SYK model on the lattice,
the pairing order parameter �(iωn) = �(iωn)/Z (iωn), which
appears in the saddle-point equations (4), is the same as the
single-particle gap in the spectral function (10), which appears
in the superconducting state; see also Sec. IX. This correspon-
dence holds because the Yukawa interaction, which destroys
fermionic quasiparticles, is also responsible for Cooper pair-
ing. However, in similar models where pairing and non-Fermi
liquidness are generated by distinct interactions, the order
parameter and the spectral-function gap behave differently
from each other [102]. In our theory, the zero-temperature
and zero-energy gap follows the BCS formula in the SYK2-FL
regime, it is quadratic in coupling g in the SYK-NFL regime,
while it asymptotically reaches a constant in the impurity-like
regime for g → +∞. We proceed to discuss these results.

In general, in our model the gap function �(iωn) on the
imaginary axis, or �(ω) on the real axis, depends both on
frequency and temperature [162]. However, one can define a
quantity that is independent from both aforementioned vari-
ables, as in

�0 = lim
T →0
ω→0

�(ω). (41)

Technically, Eq. (41) refers to the real-axis gap function at
zero temperature [162]. However, one can also estimate �0

by extrapolation of the imaginary-axis solution �(iωn) at very
low temperature, down to ω = 0. �0 is the quantity that we
will refer to, in discussing the underlying physics.

In the SYK-NFL regime, reached when hopping is
negligible, the gap �0 ∝ g2. This feature mirrors the anal-
ogous dependence of kBTc ∝ 0.156g2ω0 in this regime—see
Fig. 9(a) and Appendix E 1—as the gap equation in both cases
depends on the ratio T/Tf , with 2πkBTf = c1/(2�)

1 ḡ2/ω2
0 ≈

0.1888ḡ2/ω2
0 the crossover temperature between the free-

fermion and SYK-NFL regimes for t0 = 0 [105]. More
precisely, from the numerical solution of Eqs. (4) we extract
�0 ≈ �(iω1), approximated by the imaginary-axis gap at the
first Matsubara frequency and at very low temperature T =
0.005ω0/kB. As a matter of fact, the gap function at the first
Matsubara frequency �(iω1) is often regarded as an order
parameter for superconducting calculations on the imaginary

axis [163], and it has been shown to be of particular signifi-
cance in quantum critical systems [185,186]. This procedure
yields �0 ≈ 0.5g2ω0 at small g. Therefore, in the SYK-NFL
regime the gap-to-Tc ratio results in

2�0

kBTc
≈ 6.414. (42)

The significant deviation of the ratio (42) from the BCS value
is another indication of the unconventional nature of pairing
deep in the non-Fermi-liquid state.

Conversely, in the SYK2-FL regime we can analytically
show that the zero-temperature gap follows the BCS formula

�0 = ω0

sinh(1/λ̄)
≈ 2ω0e−1/λ̄ : λ̄ � 1. (43)

Equation (43) is derived in Appendix D 1 e, and it yields a
good estimate for the zero-energy superconducting gap at very
low temperatures: it is compared in Fig. 10 with the gap
�(iω1) calculated on the imaginary axis at the first Matsub-
ara frequency ω1 = πkBT , from the full numerical solution
of the mean-field Eliashberg equations (4). We should have
�(iω1) ≈ �0 for T → 0+, and indeed the evolution of the
numerical �(iω1) with g at finite hopping is qualitatively con-
sistent with Eq. (43) in the SYK2-FL regime. From the point
of view of the gap-to-Tc ratio, the SYK2-FL state appears
conventional, as it follows the prediction of the BCS model:

2�0

kBTc
= π

eγ
≈ 3.528. (44)

As for Tc discussed in Sec. VII B, the conventionality of
Eq. (43) is rationalized by invoking a version of Anderson’s
theorem, that confirms the insensitivity of the gap to disor-
dered hoppings that act similarly to nonmagnetic impurities
[175–183]. However, although the ratio (44) is conventional
even in our fully disordered model, other thermodynamic
quantities like the phase stiffness are not protected by an
Anderson-like argument, and in fact they differ from the BCS
prediction in the SYK2-FL regime. We will return to this point
in Sec. XI.

Finally, in the impurity-like regime �0 tends to a constant
in the infinite-coupling limit, in the same way as Tc does, as
previously argued in Sec. VII C. We find [105]

lim
g→+∞ �0 ≈ 0.641, (45)

which gives a highly unconventional gap-to-Tc ratio of

2�0

kBTc
≈ 11.456. (46)

Such large values of 2�0/(kBTc) are known to occur in the
strong-coupling limit of Eliashberg theory for small phonon
frequencies [187,188].

The gap �0 is the first excitation of the fermions in the
superconducting state, so it should correspond to a spectro-
scopic gap in the single-particle density of states. Therefore,
it is interesting to compare the results just obtained with the
spectral functions calculated on the real axis, which is the
subject of the next section.
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FIG. 10. Superconducting gap �(iω1)/ω0 at the first Matsubara frequency as a function of coupling g for different hoppings t0, at
temperature T = 0.005ω0/kB, stemming from the full numerical solution of the saddle-point equations (4) in the superconducting state.
(a) Results for t0/ω0 = 2, showing the FL/NFL crossovers: the dashed orange curve is the SYK2-FL/SYK-NFL crossover energy ωc, which is
approximated at low energy by Eq. (27), while the SYK-NFL/imp.-like crossover occurs for energies of the order of g−2. �∞

0 is the asymptotic
zero-temperature zero-energy gap for g → +∞, i.e., Eq. (45). (b) Numerical results for t0/ω0 = {0, 1, 2}, and all other parameters equal to the
ones of panel (a). The dashed curves show the analytical BCS formula (43) with the coupling constant (36), for a given nonzero hopping.

IX. SUPERCONDUCTING SPECTRAL FUNCTIONS

The spectral functions in the superconducting state for
our Yukawa-SYK model (1) are obtained by solving the
saddle-point equations (4) on the real axis. While we relegate
more technical aspects of our self-consistent method to Ap-
pendix B 5, here we comment on the physical aspects of the
obtained solutions. In general, we expect a modification of the
normal-state spectral functions discussed in Sec. IV, due to the
opening of a gap in the single-particle density of states. This
modification should affect all regimes of the model, Fermi liq-
uid and non-Fermi liquid alike. In this section, we concentrate
on the crossovers between the Fermi-liquid SYK2-FL phase,
and the non-Fermi-liquid phases (SYK-NFL and impurity-
like) as a function of hopping. A complementary discussion of
the relation between the real-axis propagators and the optical
conductivity can be found in the companion paper [159].

Figure 11(a) shows the exact fermionic spectral function
(10) at g = 1 and T = 0.03ω0/kB, in the superconducting
state, for a range of hopping spanning the crossover from

the SYK-NFL to the SYK2-FL regimes. For t0 = 0 (single-
dot limit), we notice a first sharp excitation corresponding
to the spectroscopic gap, which indicates the development
of coherent Bogoliubov quasiparticle excitations, even if the
SYK-NFL normal state is incoherent [105]. The coherence
peaks are followed by consecutive high-energy structures. As
discussed in Ref. [105], these shakeoff peaks are different
from the polaronic states due to strong electron-phonon cou-
pling found in wide-band Eliashberg theory [161,162], in that
they correspond to self-trapping states of excited fermionic
quasiparticles due to the pairing field generated by the other
fermions [160,189,190]. Apart from the unconventional gap-
to-Tc ratio discussed in Sec. VIII, the shakeoff resonances
are another indication of the unconventional character of
the SYK-NFL paired state. They could be related to peak-
dip-hump features observed in angle-resolved photoemission
spectroscopy (ARPES) on cuprate superconductors [11–18],
and they could potentially be revealed through the AC
Josephson effect [105]. Similar resonances in the supercon-
ducting spectral function are retrieved in a similar disordered
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FIG. 11. Numerically exact spectral function and bosonic propagator in the superconducting state, showing the crossover from the SYK-
NFL to the SYK2-FL regimes as a function of hopping. (a) Fermionic spectral function as a function of energy ω, at temperature kBT/ω0 = 0.03
and coupling g = 1, and for different hoppings t0/ω0 = {0, 0.5, 1, 1.5, 2}. The dashed gray curve stems from the analytical approximation (47)
with g = 1, t0/ω0 = 1.5, and � ≈ 0.089ω0. (b) Imaginary part of the bosonic propagator, for the same parameters as in panel (a). The dashed
green vertical line is the zero-temperature numerical result for the renormalized boson frequency in SYK-NFL regime, and the dashed gray
vertical line is the analytical approximation (48) for the renormalized boson frequency in SYK2-FL regime, using � ≈ 0.089ω0, g = 1, and
t0 = 1.5ω0.
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model with onsite attractive Hubbard interactions, spin ex-
change, as well as single-particle and Cooper-pair hopping
[109]. As we increase hopping, we initially observe that the
spectroscopic gap around zero energy understandably de-
creases, due to the detrimental effect of t0 on the onsite
fermion-boson coupling, but also the shakeoff peaks change
and split into several structures—see orange curve for t0 =
0.5ω0 in Fig. 11(a); the alteration in shape of the peaks
makes sense, since coherent hopping competes with electron-
boson coupling, thus affecting the self-trapping pairing field.
Further increasing t0, the shakeoff resonances progressively
disappear altogether, which indicates the crossover from
strong-coupling pairing in the non-Fermi-liquid regime, to
pairing in a disordered Fermi liquid with weak electron-boson
coupling. In the SYK2-FL regime, the spectral function is well
approximated by employing the analytical expression

GR(ω) =
ω + i0+ −

√
(ω + i0+)2 + 2zt2

0 (ω+i0+ )2

�2−(ω+i0+ )2

zt2
0

, (47)

for the retarded fermionic propagator. Equation (47) yields
the dashed gray curve in Fig. 11(a) for t0 = 1.5ω0, which is
in excellent agreement with the exact numerical output for
the same hopping. Here the analytical propagator Eq. (47)
has been complemented by � ≈ �0 ≈ 0.089ω0 stemming
from the numerical solution on the imaginary axis, for g = 1
and t0 = 1.5ω0; an artificial broadening ω �→ ω + i10−2.3 has
also been introduced to simulate the temperature smearing of
the coherence peaks. Further increasing hopping, the critical
temperature of the system drops below the used value of
temperature, in accordance with Sec. VII B, until the transition
to the normal SYK2-FL state is made; see purple curve for
t0 = 2ω0 in Fig. 11(a), for which the corresponding Tc ≈
0.021ω0/kB < T . Thus, in this limit we recover the normal-
state results of Sec. IV B.

Figure 11(b) displays the exact imaginary part of the
boson propagator, computed numerically on the real axis,
for the same parameter as in Fig. 11(a). For t0 = 0, the
renormalized boson frequency checked both with the real-
axis and imaginary-axis codes is ωSC

r ≈ 0.281ω0. This value
corresponds to the dashed green line in Fig. 11(b), but
it does not correspond to the visible peaks in the t0 =
0 yellow curve. Instead, the peaks seen there reflect the
self-trapped states previously noticed in the fermionic spec-
tral function. Thus, the bosons as well are affected by the
self-trapping pair field. We can understand the discrepancy
between ωSC

r and the lowest-energy peak in Im{DR(ω)} by
referring to the Dyson equation (4b) analytically continued
to i	n → ω + i0+: since at low energies the numerical boson
self-energy schematically reads �(ω) ≈ ω2

0 − (ωSC
r )2 + Aω2,

the boson propagator becomes DR(ω) ≈ 1/[−(1 + A)(ω +
i0+)2 + (ωSC

r )2]. This means that, while the static part of the
boson self-energy renormalizes the natural frequency to ωSC

r ,
the first peak of the boson propagator is in fact shifted to
ω ≈ ωSC

r /
√

1 + A < ωSC
r . Higher-energy peaks in �(ω) pro-

duce more resonances in Im{DR(ω)}. Increasing hopping, the
self-trapping structures move in energy, until they disappear
on the weak-coupling Fermi-liquid side of the crossover, and
a single broad boson peak appears for t0 = 2ω0 in the normal
state when Tc < T ; see corresponding curve in Fig. 4(b). One

can qualitatively estimate the stiffening of the renormalized
boson frequency in SYK2-FL regime at T = 0:

(
ωSC

r

)2 ≈ ω2
0 − 8ḡ2

6πω0zt2
0

(−3�2 + 2
√

2zω0t0). (48)

Notice that Eq. (48) consistently reduces to Eq. (18) for � =
0. It is derived in Appendix D 1 c. Using � ≈ �0 ≈ 0.089ω0,
g = 1, and t0 = 1.5ω0 in Eq. (48), we obtain the dashed gray
line in Fig. 11(b), in fairly good agreement with the very broad
peak in the numerical Im{DR(ω)} for t0 = 1.5ω0.

We now investigate the crossover at higher g between the
impurity-like and SYK2-FL regimes. Figure 12(a) shows the
evolution of the fermionic spectral function with hopping,
across the impurity-like/SYK2-FL crossover, for g = 1 and
kBT = 0.08ω0, and in the superconducting state. The curve
for t0 = 0 is consistent with Fig. 7 of Ref. [105]: The spectral
density is nonzero inside the spectroscopic gap at this temper-
ature, and at higher temperatures the gap is progressively filled
without changing the position of the lowest-energy coherence
peaks. Shakeoff features, similar to the one discussed for the
SYK-NFL phase of Fig. 11, develop at higher energies, and
their shape is less sensitive to an increase in hopping in the
impurity-like regime, compared to the SYK-NFL state. When
t0 � g2, consistently with the crossover energy ω′

c in Sec. V,
the crossover to the SYK2-FL phase occurs. The spectro-
scopic gap fills and decreases its width—see blue curve for
t0/ω0 = 20—but some remnants of the shakeoff peaks are
still visible, and the shape of the gap cannot be well approx-
imated by the BCS-like piecewise-constant expression (D2).
Therefore, the constant-gap approximation does not capture
the spectral function oscillations and the general shape of the
spectral function in the impurity-like to SYK2-FL crossover.
However, the same approximation will prove useful to un-
derstand the general trend of thermodynamic quantities like
the phase stiffness, in the impurity-like regime; see Sec. XI.
Further increasing hopping, for t0/ω0 = 30 we have T > Tc,
and the system makes the transition to the normal state: the
spectral function is the same as the corresponding normal-
state curve for t0/ω0 = 30 in Fig. 5.

Figure 12(b) reports the imaginary part of the bosonic
propagator, for the same parameters as in Fig. 12(a). When
g2ω2

0 � t2
0 , the bosons are well defined but soft and essentially

static excitations. The dashed green vertical line shows the
analytical estimation

ωSC
r = ω0

2

(
3π

8

)2 1

g2
, (49)

for g = 4, which is valid at T = 0 in the impurity-like regime;
see Appendix D 2 c and Ref. [105]. The boson peak for t0 = 0
tends to the frequency (49) in the vanishing temperature limit.
Increasing hopping, ωSC

r stiffens, in analogy to what observed
in the SYK-NFL/SYK2-FL crossover of Fig. 11. The peak for
t0/ω0 = 30 corresponds to the normal-state result in Fig. 5.

A prominent effect of hopping on the superconducting
spectral functions in Figs. 11 and 12 is the modification
of the height and shape of the coherence peaks at energies
ω ≈ ±�0, which signal the presence of coherent Bogoli-
ubov quasiparticles in the paired state. To investigate the
dependence of the coherent spectral weight on coupling and
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FIG. 12. Numerically exact spectral function and bosonic propagator in the superconducting state, showing the crossover from the
impurity-like to the SYK2-FL regimes as a function of hopping. (a) Fermionic spectral function as a function of energy ω, at temperature
kBT/ω0 = 0.08 and coupling g = 4, and for different hoppings t0/ω0 = {0, 10, 15, 20, 30}. (b) Imaginary part of the bosonic propagator, for
the same parameters as in panel (a). The dashed green vertical line is the zero-temperature analytical expression (49) for the renormalized
boson frequency in the superconducting impurity-like phase.

hopping, in the next section we focus specifically on the zero-
energy quasiparticle weight.

X. SUPERCONDUCTING QUASIPARTICLE WEIGHT

The spectral functions analyzed in Sec. IX highlight the
presence of coherence peaks, which decrease in magnitude
as the ratio g2ω0/(

√
zt0) decreases; see Figs. 11(a) and 12(a).

Therefore, hopping considerably affects quasiparticles in the
superconducting state. To further elucidate this phenomenon,
here we calculate the quasiparticle weight Zqp in the supercon-
ducting state as a function of fermion-boson coupling, in the
different regimes of our model.

To extract the quasiparticle residue Zqp, we use its defini-
tion in terms of the retarded self-energy [161]:

1

Zqp
= 1 − ∂Re
R(ω)

∂ω

∣∣∣∣
ω→0

. (50)

The quantity (50) can be directly extracted from the real-axis
solution of the Eliashberg equations (4). Moreover, an equiva-
lent estimation can be attained using the imaginary-axis code
in the T → 0+ limit, since we also have

1

Zqp
= Z (iω)|ω→0, (51)

where Z (iω) is the zero-temperature limit of the dynam-
ical weight function on the imaginary axis, defined from
Eq. (6). Since the convergence of the self-consistent loop (4)
at very low temperatures is less difficult on the imaginary axis
than on the real axis, we employ Eq. (51) and approximate
Z (iω)|ω→0 ≈ Z (iω1) at the first Matsubara frequency ω1 =
πkBT , at very low temperatures T � Tc. We checked the
consistency of this approach with the definition (50) using our
real-axis code. The method (51) is sufficiently accurate, since
we are mainly interested in qualitative trends as a function of
g and t0.

Figure 13 shows 1/Z (iω1) stemming from the exact nu-
merical solution of Eqs. (4), as a function of coupling g and
for different hoppings. In the single-dot limit (orange circles
for t0 = 0), the quasiparticle weight is a decreasing function
of coupling. However, it remains finite at all couplings in
the superconducting state. This finiteness is in contrast with
the normal-state SYK-NFL expression (25) stemming from

Eqs. (14), (6), and (51):

Zqp = lim
ω→0

(
1 + c1

∣∣∣∣ g

ω

∣∣∣∣2�
)−1

= 0. (52)

The normal-state result (52), which corresponds to the branch-
cut divergence of the real-axis SYK-NFL fermion propagator
in Fig. 4(a), shows the absence of quasiparticles in the non-
Fermi-liquid regime. In contrast, the superconducting phase
generated from the SYK-NFL regime always has a degree of
fermionic coherence signaled by a finite weight Zqp.

The results at finite hopping in the SYK2-FL and impurity-
like regimes are best discussed together, due to the formal
equivalence of the respective propagators and spectral func-
tions, pointed out in Sec. IV C for the normal state. In the
superconducting phase this equivalence persists, as derived in
Appendix D 2 a; see Eqs. (D6) and (D29). Therefore, we can
write an imaginary-axis expression that interpolates between
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FIG. 13. Quasiparticle weight Zqp deep into the superconducting
state, estimated on the imaginary axis as Zqp ≈ [Z (iω1)]−1, where
Z (iω) follows Eq. (51) and ω1 = πkBT . Data points correspond to
the numerical solution of the saddle-point equations (4), and their
values are marked on the left y axis, as indicated by arrows. The
dashed curves correspond to the FL/NFL crossover energy ωc at
given hopping from Sec. V, and their values are marked on the right
y axis, as signaled by arrows. The dotted lines correspond to the
analytical approximation (53) with the gap approximated by Eq. (43).
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the Fermi-liquid and impurity-like regimes as follows:

Z (iωn) ≈ 1

2

[
1 +

√
1 + 	̃2

ω2
n + �2

]
, (53)

where

	̃ =
√

2zt2
0 +

(
16g2ω0

3π

)2

. (54)

Here � is again approximated by Eq. (D2). We can
exploit Eq. (53) to qualitatively analyze the whole SYK2-
FL/impurity-like crossover. We will continue to employ this
qualitative analysis in Sec. XI, where we will discuss the con-
densate phase stiffness. Naturally, Eq. (53) is most inaccurate
in the SYK-NFL regime which is not captured by this expres-
sion. Using Eqs. (53) and (51), we obtain the superconducting
quasiparticle weight

Zqp = 2

1 +
√

	̃2/�2
. (55)

In the superconducting SYK2-FL regime, 	̃2 ≈ 2zt2
0 is

independent from g, while the gap follows the BCS-like ex-
pression (43) which has an inverse exponential dependence on
g2/t0 through the coupling constant (36). Therefore, we have
in Fermi-liquid regime

Zqp = 2

1 +
√(

2zt2
0

)/
(2ω0e−1/λ̄)2

. (56)

The exponential suppression of the coherent weight in the
SYK2-FL regime is consistent with the numerics in Fig. 13:
the numerical data points are in qualitative agreement with
Eq. (53), which gives the dotted curves and where the gap is
approximated by the SYK2-FL expression (43). Increasing g,
we cross over to the impurity-like regime, where the super-
conducting weight is well captured by the expression derived
from Eqs. (D34), (9), (6), and (51):

Zqp =
⎡
⎣ lim

ω→0

1

2

⎛
⎝1 +

√
1 + 	2

0

ω2
n + �2

⎞
⎠
⎤
⎦−1

= 2

1 +
√

	2
0/�

2
, (57)

where 	0 follows Eq. (19), and the gap � in Eq. (57) stems
from the frequency-independent approximation (D2). From
Eqs. (57) and (19) we see that Zqp ∝ g−2 at large g [105],
since the gap is nearly independent on g in this regime and
it approaches the constant given by Eq. (45). This evolution
is indeed seen in Fig. 13 at large coupling g, where the data
points for finite hopping collapse on the single-dot result since
hopping becomes negligible in this limit. Notice that even in
the impurity-like regime the normal-state quasiparticle weight
would be Z = 0. This is derived from Eq. (57) where the
� → 0 limit is taken before the ω → 0 limit, or equivalently
from Eq. (28). This vanishing reflects the incoherence of
the impurity-like fermions, similarly to the SYK-NFL phase.
Such incoherence is modified in the superconducting state,
and a finite quasiparticle weight (57) appears.

At finite hopping, the weight Zqp ≈ 1/Z (iω1) is maximum
around the SYK2-FL/SYK-NFL crossover energy ωc, dis-
cussed in Sec. V and marked by the dashed red and blue
curves in Fig. 13 for t0 = {1, 2}ω0 (see Fig. 6). However,
Zqp is exponentially suppressed at small coupling because
the gap is exponentially smaller in SYK2-FL regime, while
Zqp ∝ g−2 at large g because of the quadratic dependence of
	0 from Eq. (19) on coupling. Such nonmonotonic evolution
with fermion-boson interaction is reminiscent of the behav-
ior of the relative weight of the coherence peak in cuprate
superconductors with respect to doping [14,22]. Inspired by
this analogy, the question arises of whether other thermody-
namic quantities in the superconducting state share a similar
nonmonotonic dependence on coupling. In particular, one of
the most crucial observables is the phase stiffness, which
is the signature of a true superconducting ground state. Hence,
the next section is devoted to the derivation and the analysis
of the phase stiffness for our Yukawa-SYK model.

XI. PHASE STIFFNESS

A compelling question is whether the low-temperature
condensed phase of our lattice model, so far analyzed in
Secs. VII–X, possesses a finite phase stiffness, i.e., whether
such phase shows perfect diamagnetism and hence real su-
perconductivity. From a thermodynamic standpoint, the phase
stiffness of a Cooper-pair electronic condensate corresponds
to the rigidity of the system, quantified by the second deriva-
tive of the grand potential 	sc with respect to global shifts
of the phase of the condensate wave function [191–193].
However, since condensing electrons in a superconductor are
electrically charged, phase fluctuations couple to charge and
can thus be excited through external electromagnetic fields.
Hence, the phase stiffness of a superconducting state also
corresponds to the rigidity with respect to the penetration of
a static magnetic field inside the superconducting specimen:
the latter is a perfect diamagnet, i.e., it expels the applied field
from its bulk, in accordance with Meißner-Ochsenfeld effect;
the expulsion can be either complete (pure state in type-I
superconductors below the critical field, or in type-II super-
conductors below the lower critical field), or partial (mixed
state or Abrikosov lattice, between the lower and the upper
critical fields in type-II superconductors) [154].

In the following, we employ both aforementioned def-
initions of the phase stiffness, by first calculating the
low-energy action, the propagator and the total energy dif-
ference for charge-coupled phase fluctuations that perturb the
saddle-point solution of Eqs. (4)—see Appendix G—then by
coupling such phase fluctuations to a vector potential via
Peierls substitution, and finally by computing the electrody-
namic linear response at equilibrium. The latter is encoded
in the electromagnetic kernel tensor Kαβ (q, ω), which cor-
responds to the response function for a current density with
respect to an external vector potential A(q, ω):

δJα (q, ω) ≡ Jtot,α (q, ω) − Jext,α (q, ω)

= Kαβ (q, ω) Aβ (q, ω). (58)

Here δJ(q, ω) is the induced current density, which depends
on frequency ω and wave vector q. The latter is defined
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from the Fourier transform of the fluctuating lattice phase
field φ(r, t )—see Appendix G. The quantities Jtot,α (q, ω) and
Jext,α (q, ω) are the total and external currents, respectively.

Here we assume a static magnetic field B(r), to de-
rive the Meißner effect. A more general derivation of the
finite-frequency electromagnetic response leads to the optical
conductivity reported in the companion paper [159]. In the
static limit ω = 0, the intrinsic magnetic response is fully de-
termined by the magnetization via δJ(r) = ∇ × M(r), where
by definition M(r) = B(r) − μ0H (r), with B(r) and H (r)
magnetic flux density and magnetic field strength, respec-
tively. μ0 = 1.25663706212 × 10−6 N/A2 is the magnetic
permeability of vacuum (in SI units). To make contact with
Eq. (58), we Fourier-transform the magnetization to the space
of wave vectors q and frequencies ω, and we employ the con-
stitutive relation μ0H (q, ω) =∑αβ Bβ (q, ω)ûα/μβα (q, ω),
where ûα is the unit vector in the direction α, and μ(q, ω) =
{μαβ (q, ω)} constitutes the magnetic permeability tensor. For
ω = 0, we thus obtain

M(q, 0) = iq ×
⎧⎨
⎩∑

α,β

ûα

[
δβα − 1

μβα

]
Bα (q, 0)

⎫⎬
⎭, (59)

where by definition the vector potential satisfies B(q, ω) =
iq × A(q, ω). We then insert the latter relation into Eq. (59),
and we use the decomposition of vectors and tensors into
longitudinal and transverse parts with respect to the wave
vector q [194,195]: Aα (q, ω) = qα

|q|AL(q, ω) + AT,α (q, ω) and

[μαβ (q, ω)]−1 = [μL(q, ω)]−1 qαqβ

|q|2 + [μT (q, ω)]−1(δαβ −
qαqβ

|q|2 ). Tracing back to the induced current density δJα (q, ω) =
qα

|q|δJL,α (q, ω) + δJT,α (q, ω) via Eq. (59), taking the transverse
part, and going to the static limit, we finally achieve

δJT,α (q, 0) =
[

1 − μ0

μT (q, 0)

]
q2

μ0
AT,α (q, 0). (60)

Comparing to Eq. (58), it then follows for the static transverse
part of the kernel that

KT (q, 0) =
[

1 − μ0

μT (q, 0)

]
q2

μ0
. (61)

The Meißner effect corresponds to a vanishing permeability,
i.e., KT (q, 0) has to vanish slower than q2 for q → 0. Let
us analyze the macroscopic consequences of this effect from
Maxwell’s equations, and link them to the microscopically
derived kernel (61). From Ampère’s law written in terms of
the vector potential, we have [q2 − μ0KT (q, 0)]JT (q, 0) =
μ0JT,ext(q, 0), where JT,ext(q, 0) is the transverse part of the
external current density. Transforming back to the real space
of coordinates, and using Eq. (60), we obtain for the magnetic
field

B(r) = μ0

∫
dq

(2π )3

iq × JT,ext

q2 − μ0KT (q, 0)
eiq·r

= μ0

∫
dq

(2π )3

iq × JT,ext

q2 + λ2
L

eiq·r. (62)

The characteristic length scale for the decay of the magnetic
field near the system surface is therefore given by

λ−2
L = −μ0 lim

q→0
Kt (q, ω = 0) = μ0e2ρS, (63)

where e is the carrier electric charge, and ρS denotes the
superconducting phase stiffness. The latter is often written
as ρS = nS/m∗, where nS is the superfluid density and m∗
is the effective mass of the condensed particles. However,
penetration depth experiments only probe ρS , and not its in-
dividual components nS and m∗ [154,155,157]. Connecting
the electromagnetic kernel K(q, 0) to the low-energy action
for phase fluctuations, as derived in Appendix G, we arrive
at an explicit expression of the phase stiffness in terms of the
anomalous propagator F †(τ ) [196]. In SI units, we have

ρS = N zt2
0

ah̄2

∫
dτF †(τ )F (−τ ), (64)

where a is the typical microscopic distance over which the
phase field varies in space (i.e., the lattice constant of our
system), z is the coordination number, and h̄ is the reduced
Planck’s constant. One can verify that Eq. (64) has the units
of a number density divided by a mass, consistently with the
general definition of the phase stiffness. As expected ρs = 0
in the normal state, i.e., for F (τ ) = F †(τ ) = 0. The stiffness
(64) can be written through a Matsubara transform as

ρS (T ) = �Lzt2
0 kBT

∑
iωn

F †(iωn)F (iωn), (65a)

�L = N

ah̄2 , (65b)

which is amenable to numerical computation. Specifically,
Eq. (65a) is employed together with the exact numerical
solution for the anomalous propagator, stemming from the
saddle-point equations (4), to obtain the data points reported
in Figs. 14 and 15. Furthermore, notice that Eρ = ρS/�L

yields an energy scale: this is the characteristic energy scale
(or temperature scale Tρ = Eρ/kB) per fermion flavor below
which long-range phase coherence of the order parameter is
established.

Figure 14 shows the temperature dependence of ρS (T )/�L

for g = 1 and different hopping. All curves are normal-
ized by zt2

0 /ω0 for a better visual comparison, so that
ω0ρS (T )/(�Lzt2

0 ) is a dimensionless quantity. The stiffness
reaches a finite constant value for T → 0. This is a funda-
mental result, as it demonstrates that the Yukawa-SYK model
(1), once embedded in a lattice, has a true superconducting
ground state at T < Tc characterized by a phase rigidity of the
order parameter and the associated diamagnetic supercurrents.
Then, the condensed phases of Refs. [104–107] can be re-
garded as a specific limit of a lattice model for t0 → 0, where
the phase stiffness per flavor is vanishingly small.

The analysis of the stiffness in SYK2-FL and impurity-
like regimes is best performed simultaneously, as for the
quasiparticle weight (55), to qualitatively describe the whole
crossover. We report the associated derivations in Appen-
dices D 1 f and D 2 f, while here we discuss the final result:

ρS (T ) = 2�Lzt2
0

	̃2
�[1 − 2 fFD(�)], (66)
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FIG. 14. Temperature dependence of the normalized phase
stiffness ω0ρS (T )/(�Lzt2

0 ), at coupling g = 1, temperature T =
0.005ω0/kB and for different hopping t0, numerically calculated from
the saddle-point equations (4) in the superconducting state. �L obeys
Eq. (65b). The normalized pairing temperature kBTc/ω0 is marked
by dashed vertical lines for each hopping, and it corresponds to
the numerical solution of the linearized gap equation, in accordance
with Fig. 9. The dashed horizontal green lines mark the analytical
estimation of the zero-temperature stiffness from Eq. (67).

where 	̃ obeys Eq. (54). Notice that at T = 0 Eq. (66) implies

ρS (0) = 2�Lzt2
0

	̃2
�. (67)

The result (67) is in contrast with the conventional expression
of BCS theory in a clean system, where the stiffness ρS (0) =
n/m with n the entire available electron density and m the
carrier mass [154,158,197,198]. On the contrary, Eq. (67) is
consistent with the expression for the stiffness in the dirty
limit: for disordered superconductors with impurity scatter-
ing rate τ−1 it holds in the limit � � τ−1 � EF, with EF

Fermi energy, that the ground-state stiffness is reduced to
ρS/(n/m) = π�τ , therefore it scales with the superconduct-
ing gap � [180]. Equation (66), together with the numerical
gap � ≈ �(iω1) from Fig. 10(b), yields the dashed dark-
green curves in Fig. 16(a), which are in good agreement with
the numerical data points for all couplings g; the latter data
points are the same as in Fig. 15(b).

In SYK2-FL regime 	̃ �→ √
2zt0, and we have

ρS (T ) = �L�[1 − 2 fFD(�)]. (68)

Therefore, the stiffness is proportional to the superconduct-
ing gap in the regime �/(kBT ) � 1. Indeed, at T = 0 using
Eq. (43) we obtain

ρS (0) = �L�0 = �L2ω0e− 1
λ̄ , (69)

with coupling constant (36), which shows that ρS (0) is expo-
nentially suppressed as g is decreased in SYK2-FL regime.
Such exponential suppression is shared by the quasiparticle
weight (56). Let us remark that the result (69) is consistent
with the dirty limit of BCS theory: there, the stiffness is
affected by nonmagnetic disorder, but the pairing temperature
and the zero-temperature gap are not. This difference is re-
flected by our findings for Tc and �0 in SYK2-FL regime—see

Eqs. (35) and (43)—which are in agreement with the respec-
tive BCS formulas.

The result (69) corresponds to the dashed light-green
curves in Fig. 16(a), and it is there compared with the same nu-
merical data points reported in Fig. 15(b). Comparing Eq. (69)
with Eqs. (43) and (35), we deduce that the ratio between the
energy scale given by the zero-temperature stiffness, and the
mean-field transition temperature kBTc, is a universal constant
in SYK2-FL regime:

ρS (T )

�LkBTc
= �0

kBTc
= π

eγ
= 0.5669329586555488, (70)

where γ is again the Euler-Mascheroni constant. A constant
ratio of the order of Eq. (70) between kBTc and stiffness is
indeed retrieved in the SYK2-FL regime, from the full nu-
merical solution of the Eliashberg equations. This is shown in
Fig. 3 of the companion paper Ref. [159], and there further
discussed.

In the impurity-like regime 	̃ �→ 	0, and Eq. (66) gives

ρS (T ) = �Lzt2
0

2[8g2ω0/(3π )]2 �[1 − 2 fFD(�)]

= �L

2
zt2

0

(
3π

8

)2 1

ω2
0g4

�[1 − 2 fFD(�)]. (71)

In particular, at T = 0 we have

ρS (0) = �L

2
zt2

0

(
3π

8

)2 1

ω2
0g4

�0. (72)

In the impurity-like regime, the gap asymptotically reaches
a constant in the infinite-interaction limit, in accordance with
Eq. (45). Therefore, Eqs. (72) and (45) tell us that the stiffness
goes like ρS (0) ∝ ḡ−4 at large interaction g � 1. We can also
make sense of this conclusion by realizing that Z (iωn) ∝ ḡ2

in the impurity-like regime [105], and the stiffness contains
[Z (iωn)]−2 ∝ ḡ−4 as seen from Eq. (65a). Therefore, Eq. (72)
predicts that the normalized quantity ρS (0)/(�Lzt2

0 ) is inde-
pendent of hopping in impurity-like regime: this is exactly
what we see in Fig. 16(b), where the numerical data points
for t0 = {1, 2}ω0 (red squares and light-blue circles) collapse
onto the t0 = 0 single-dot results (golden triangles) at large g.

In summary, we find that the low-temperature phase stiff-
ness is controlled by the dependence of Z (iωn) and �0 on
coupling: in the Fermi-liquid SYK2-FL regime, ρS (0) ∝ �0

is exponentially diminished as we decrease g, because �0

follows the BCS formula; in the impurity-like regime, ρS (0) ∝∑
iωn

[Z (iωn)]−2 ∝ g−4, because the gap �0 is approximately
constant and the imaginary-axis weight Z (iωn) ∝ g2. In the in-
termediate coupling regime, the stiffness reaches a maximum.
In fact, this maximum occurs precisely at the SYK2-FL/SYK-
NFL crossover energy ωc, previously found in Sec. V and
marked by the red and blue arrows in Fig. 15(b) for t0 =
{1, 2}ω0. This is the second fundamental result of this section:
the phase stiffness is maximum at the crossover between the
SYK-NFL phase (non-Fermi liquid) and the SYK2-FL regime
(disordered Fermi liquid). Such nonmonotonic evolution is
reminiscent of the doping evolution of the superfluid den-
sity extracted from muon relaxation experiments in cuprate
high-temperature superconductors [14,22]. In the same exper-
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FIG. 15. Normalized superconducting stiffness ρS (T )/(�Lω0) as a function of coupling g for different hoppings t0, where �L obeys
Eq. (65b). (a) Summary of regimes for the stiffness: Data points correspond to the numerical solution of the saddle-point equations (4) in the
superconducting state, for temperature T = 0.005ω0/kB and hopping t0/ω0 = 2. The maximum stiffness is found at the SYK2-FL/SYK-NFL
crossover energy ωc, marked by the dashed gray line and corresponding to the estimation in Sec. V. (b) Comparison of results for different
hoppings t0/ω0 = {1, 2}, with all other parameters as in panel (a). The arrows mark the coupling g at which the SYK2-FL/SYK-NFL crossover
occurs for a given hopping.

imental works [14,22], a correlation between the superfluid
density and the condensation energy, extracted from calori-
metric measurements, was discovered. In the same spirit, in
the next section we conclude our investigation of the super-
conducting properties of our model (1) with a discussion of
the grand potential and the condensation energy in the paired
phase.

XII. CONDENSATION ENERGY

The superconducting transition in the Yukawa-SYK model
entails a lowering of the total energy of the system, expressed
by the grand potential 	, with respect to the normal-state
grand potential (30). In a strict sense is the condensation

energy an ill-defined concept, as the rigorous solution of a
statistical mechanics problem for a superconductor knows
nothing about the behavior of the unstable normal state. The
exception may be a normal state stabilized by a magnetic
field, which may however dramatically alter the system on
its own right. However, the condensation energy can be well-
defined and is physically insightful within mean-field theory.
Thus, keeping the formal caveat in mind we will, in what
follows, analyze the energy gain of superconducting solutions
if compared to the corresponding normal-state case. In the
single-dot limit, such condensation energy was analyzed in
Ref. [105]. To calculate the same quantity on the lattice, we
have to derive an expression for the grand potential 	sc for
T < Tc, that takes into account the presence of the anomalous

SYK2-FL
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FIG. 16. Analysis of the phase stiffness as a function of coupling g, at temperature T = 0.005ω0/kB and for different hopping t0, where the
data points are numerically calculated from the saddle-point equations (4) in the superconducting state. (a) Normalized stiffness ρS (T )/(�Lω0)
as a function of coupling g, for hoppings t0/ω0 = {1, 2}. The dashed light-green curves show the analytical estimation (69) in SYK2-FL regime.
The dark green curves are the analytical approximation (67), which interpolates between the SYK2-FL and impurity-like regimes, and where
the gap �0 ≈ �(iω1) is calculated at each g from the self-consistent imaginary-axis solution at the first Matsubara frequency; see Fig. 10.
(b) Example of scaling collapse of ω0ρS (T )/(�Lω0zt2

0 ) ∝ g−4 as a function of g in the strong-coupling limit: the curves for t0 = {0, 1, 2} all
collapse to the single-dot result at large g. All other parameters are the same as in panel (a).
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FIG. 17. Grand potential and condensation energy as a function of coupling g for different hoppings t0, numerically computed from
Eqs. (73) and (30). (a) Normalized grand potential 	/(N ω0) in the normal state (circles) and in the superconducting state (squares) at
temperature kBT = 0.01ω0, for hopping t0/ω0 = {0, 1, 2}. (b) Condensation energy �	/(N ω0), evaluated from the difference between the
normal-state and superconducting-state grand potentials in panel (a), with values reported on the left y axis, as indicated by arrows. The dashed
lines are the SYK2-FL/SYK-NFL crossover energies ωc/ω0 at a given hopping, according to Sec. V, with values shown on the right y axis, as
indicated by arrows.

propagator and self-energy. We report the technical derivation
in Appendix F 2, while the final result is quoted here below:

	sc

N
= kBT

∑
iωn

{
2 log

[√
G2(iωn) − F †(iωn)F (iωn)

G0(iωn)

]

− zt2
0

2
[G2(iωn) − F †(iωn)F (iωn)]

}

− kBT
∑
i	n

{
1

2
log

[
D(i	n)

D0(i	n)

]
+ D(i	n)�(i	n)

}

− 2kBT log
[
1 + eμ/(kBT )

]− ω0

4

− kBT

2
log
[
1 − e−ω0/(kBT )

]
. (73)

As in the normal-state case, the grand potentials of free
fermions and bosons have been simultaneously added and
subtracted in Eq. (73), to improve the numerical convergence
of the Matsubara sums. Figure 17(a) shows the grand poten-
tial in the superconducting state (colored squares) and in the
normal state (colored circles), as a function of coupling and at
kBT = 0.01ω0, for different hoppings. The data points are nu-
merically calculated from Eqs. (73) and (30), respectively, and
using the saddle-point propagators self-consistently evaluated
from the saddle-point equations (4). We see that the difference
between the normal-state and the condensed-state results is
very small on the scale of the grand potentials themselves.

Subtracting the normal-state result (30) from the supercon-
ducting grand potential (73) gives the condensation energy:

�	

N
= 	sc

N
− 	ns

N
. (74)

Equation (74) is employed together with the grand poten-
tials in Fig. 17(a), to obtain the numerical results shown
in Fig. 17(b). We observe that the almost linear evolution
�	 ∝ g at small g, in the single-dot case (golden circles) and
in the SYK-NFL phase, is replaced by an exponential sup-
pression of the condensation energy in the SYK2-FL regime
(red and light-blue circles), for finite hopping. Indeed, �	

starts to significantly increase in magnitude only for cou-

plings above the SYK2-FL/SYK-NFL crossover, signaled by
ωc; see Sec. V. The crossover energy ωc is marked by the
dashed red and blue curves for hopping t0 = {1, 2}ω0, respec-
tively. Therefore, the non-Fermi-liquid phase is characterized
by a significantly higher condensation energy than the dis-
ordered Fermi-liquid regime; such phenomenon might bear
observable consequences for the specific-heat jump at the su-
perconducting transition in non-Fermi-liquid superconductors
[199–201].

However, the data points in the impurity-like regime at
finite hopping are superimposed to the single-dot results, since
zt2

0 � g2ω2
0 and hopping is an irrelevant perturbation. Then,

we find the same slow decrease of �	 with increasing g as
found in the single-dot limit [105].

Notice that the exponential-like suppression of �	 in
the SYK2-FL phase, as well as the decrease with g in the
impurity-like state, remarkably correlate with the coupling
evolution of the quasiparticle weight and of the stiffness, as
summarized in Fig. 2. This is the fundamental result of the
present section: in our Yukawa-SYK superconductor on a
lattice, the superfluid stiffness, the condensation energy, and
the quasiparticle weight are all correlated with each other
and share similar behaviors as functions of fermion-boson
coupling. Given the analogy with the experimental findings
on cuprate superconductors [14,22], the qualitative trends
proposed in the present model may transcend the specific
aspects of SYK physics, and be generic for non-Fermi-liquid
superconductors. We discuss these speculations, together with
future useful extensions of our lattice model, in the conclusive
remarks.

XIII. CONCLUSIONS AND PERSPECTIVES

In summary, we formulated and solved a model for spin-
ful fermions with multiple flavors, interacting at local sites
through all-to-all random couplings to many Einstein phonon
modes and through a random coherent single-particle hop-
ping between nearest-neighbor sites. This forms a lattice of
Yukawa-SYK dots. Both couplings and hoppings follow a
distribution function with zero mean and finite variance. Our
mean-field equations on the saddle point of the disorder-
averaged action (2) are exact in the limit of a large number of
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fermion and boson flavors; they assume a diagonal structure
in replica space for the disordered interactions, an equal num-
ber of fermions and boson, and particle-hole symmetry (zero
chemical potential). They are equivalent to self-consistent
Eliashberg equations, where fermion-boson interaction is at
once responsible for the destruction of fermionic quasipar-
ticles (NFL state), the softening of the renormalized boson
frequency to criticality, and a superconducting state at low
temperatures if every disorder realization of the couplings
preserves time-reversal symmetry.

In the normal state, the competition between coupling and
hopping leads to crossovers between FL and NFL phases.
In addition to the high-temperature classical-gas phase, the
low-temperature SYK-NFL phase, and the intermediate-
temperature impurity-like phase, all identified and studied in
the single-dot limit in Refs. [105–107], we find crossovers to
a disordered Fermi liquid, the SYK2-FL state, when hoppings
prevail over onsite coupling. The characteristic crossover
energies, estimated in Sec. V, are decreasing functions of
coupling at fixed hopping, and they correspond to observable
changes in the fermionic and bosonic spectral functions: in the
SYK-NFL phase, the fermion and boson propagators follow a
power-law form governed by the exponent �, and by increas-
ing hopping this evolves into the semicircular Wigner spectral
function of SYK2-FL fermions with bandwidth controlled by
hopping, with almost free bosons and weak fermion-boson
coupling. The crossover from the impurity-like regime is more
subtle, as here the fermions are also broadened into a Wigner
spectral function controlled by coupling, but bosons behave
like static impurities, with a sharp but soft renormalized fre-
quency. This frequency stiffens toward the SYK2-FL regime.
The crossovers leave qualitative differences in the normal-
state entropy, which is finite at T = 0 in the single-dot limit
of negligible hopping (SYK-NFL and imp.-like phases), and
vanishes for any finite hopping. Superconductivity emerges
at low temperature in all regimes. The critical temperature
saturates to a fraction of the bare boson frequency ω0, kBTc ∼
0.11ω0 [202,203], in the strong-coupling imp.-like regime
where fermions are fully incoherent [105,106]. Conversely,
in the weak-coupling SYK2-FL phase we retrieve a disor-
dered version of BCS theory, where Tc and the gap at zero
temperature and energy follow the BCS formulas with a cou-
pling constant λ̄ ∝ g2ω0/t0 that depends on both coupling and
hopping. The tell-tale signature of the crossovers in the su-
perconducting spectral functions is the alteration and eventual
suppression of peak-dip-hump features, in the SYK-NFL and
imp.-like states, with increasing hopping toward the SYK2-FL
regime. Such resonances are self-trapping bound states of the
interacting Cooper-pair fluid [105].

Our most essential result is that the superconducting state
of our model has a finite phase stiffness. The latter is cal-
culated through the electromagnetic linear response function
to an external vector potential, which couples to phase fluc-
tuations of the order parameter away from the saddle-point
through electric charge. At vanishing temperature and weak
coupling (SYK2-FL regime), the stiffness follows the expo-
nential evolution of the gap with coupling λ̄, so that the
ratio between Tc and the stiffness corresponds to the “uni-
versal” BCS ratio π/eγ ≈ 0.567. On the contrary, at strong
coupling (imp.-like phase) the gap saturates, but the stiffness

decreases as the inverse fourth power of coupling due to the
decrease of the quasiparticle weight. Remarkably, we find a
correlation in the evolution with coupling of the stiffness,
the quasiparticle weight, and the condensation energy. Their
magnitudes all peak at the crossover between NFL and FL
behavior. Such correlation is reminiscent of the experimental
measurements of the same quantities in cuprate supercon-
ductors [14,22]. More generally, our results demonstrate that
the low-temperature condensed phase of the Yukawa-SYK
model is indeed superconducting, as it exhibits perfect dia-
magnetism according to the Meißner effect. Therefore, our
calculations offer a suitable platform to compare the behavior
of the stiffness within similar SYK-derived models, as well as
in different classes of models for quantum-critical supercon-
ductors [66,67,76,185,203–211]. For the Yukawa-SYK model
in particular, the single-dot limit corresponds to a supercon-
ductor with negligible interdot hopping and vanishingly small
stiffness per flavor, which represents a special case of our
lattice embedding.

The difference between a saturating mean-field Tc and a
decreasing stiffness at strong coupling, as well as a decreas-
ing condensation energy in the same regime, suggest strong
superconducting phase fluctuations in the system [19,105].
If we assume that phase fluctuations are the driving cause
of the disappearance of superconducting coherence, then the
phase stiffness obtained in our theory would suggest that
the fluctuation-corrected transition temperature T� vanishes
as T� ∼ g−4 for g → +∞. However, performing a quantita-
tive analysis of superconducting phase fluctuations requires
to include 1/N corrections with respect to our saddle-point
results, which hold for N → +∞. The effect of such correc-
tions has recently been studied in an SYK-type system which
superconducts due to an attractive local Hubbard interaction:
the 1/N terms corresponding to phase fluctuations lead to
a pseudogap behavior [132]. A similar phenomenon, that has
been pointed out in various microscopic models for quantum
critical superconductors [66,99], could also be revealed at
order 1/N in our model. In this respect, the mean-field Tc

calculated in this work would not be the real superconduct-
ing temperature where zero resistivity appears, but rather a
pseudogap temperature. A future analysis of such pseudogap
phase is in order, in the light of the analogous phenomenon
found in strange metals [10]. Since the stiffness is connected
to the electrodynamic response, it is interesting to investigate
whether the evolution of the stiffness with coupling and hop-
ping leaves distinctive traces in the long-wavelength optical
conductivity σ (ω) of our lattice model in the superconducting
state as a function of frequency ω. This is the subject of a
companion paper [159], in which we demonstrate that the
removed spectral weight for energies ω < 2�S , where �S is
the spectroscopic gap, is a direct signature of the different
behavior of the stiffness in the SYK2-FL, SYK-NFL and
imp.-like regimes. Moreover, the Cooper-pair bound states,
appearing in the spectral functions of the SYK-NFL and
imp.-like phases, are reflected in resonances of σ (ω), which
disappear in the crossover toward the SYK2-FL regime. Then,
it is crucial to compare our results with optical spectroscopy
measurements in strongly correlated superconductors such as
cuprates, which show a Planckian-like power-law behavior of
the conductivity in energy and temperature [212–216].
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Numerous future developments and generalizations of our
theory could provide further connections with experiments
and with complementary theoretical perspectives.

A thermodynamic quantity which is equally found to cor-
relate with the stiffness in cuprate superconductors is the
heat-capacity jump at Tc [14,22]. This quantity can be com-
puted within our formalism, from the second derivative of the
condensation energy at T = Tc, and if the correlation with
the stiffness persists in our model, the latter would see its
position strengthen as a suitable effective toy model for quan-
tum critical superconductors and strange metals. Nevertheless,
other ingredients related to strange-metal behavior, such as
Mott-insulator physics [217], are not included in our model.
In this respect, it would be interesting to quantitatively com-
pare predictions for the superfluid density evolution stemming
from Mott-based pictures with our SYK-based approach.

Concerning the still unexplored parameter space, it would
be interesting to extend the lattice calculations, in particular
for Tc, the gap, and the phase stiffness, at finite chemi-
cal potential μ �= 0. A thorough study of this kind in the
single-dot limit became recently available [107], and could
serve as a springboard reference to assess whether our found
correlation among stiffness, quasiparticle weight and conden-
sation energy persists as a function of μ. Indeed, valence
transitions were found by varying μ in the Yukawa-SYK
dot [104,153] and in purely fermionic versions of the SYK
model [218–221]. These phenomena could serve as an ideal
playground for comparison of the thermodynamic and optical
observables of the Yukawa-SYK lattice model with experi-
ments on the one hand, and with numerical methods such
as functional renormalization group (FRG) [221] and DMFT
[141,142], on the other hand. Even more precisely, a self-
consistent calculation of the chemical potential [222–225], Tc,
and the stiffness at fixed density Q ∈ [0, 1] per fermion flavor
[153] would allow one to explore the phase diagram as a func-
tion of Q, which is analogous to chemical doping; this explo-
ration would permit a direct comparison of our theoretical re-
sults with the observed experimental correlations among ther-
modynamic and spectroscopic data in cuprates [14,22]. An-
other insightful additional variable to tune is the pair-breaking
parameter α ∈ (0, 1), which permits a continuous interpola-
tion between complex and real fermion-boson coupling con-
stants, that violate or preserve time-reversal symmetry, respec-
tively [106,119,226]. Specifically as a function of hopping,
how the crossover between FL and NFL physics affects the
QCP, where Tc(α) → 0 with BKT-like evolution, remains an
open question. The numerical results for thermodynamic and
dynamical observables as a function of α also offer a direct
comparison with the AdS/CFT correspondence: recently, a
holographic dual of the Yukawa-SYK model in the single-dot
limit was explicitly constructed, and shown to be equivalent
to the Eliashberg formulation of the same model in the regime

Tc(α) → 0 [119]. The comparison of quantities like the pair-
ing susceptibility, computed from the numerical saddle-point
solution and from holography, could extend the newly found
proof of the correspondence between the dual theories [119].

Another crucial generalization of our formalism involves
the extension to anisotropic pairing symmetries, for instance
through coupling with a spin-1 boson φk [105]. Anisotropic
pairing is also relevant for dispersive fermions, for instance
Dirac fermions which could model quasiparticles in flat-band
systems like graphene [227–230] at the charge neutrality
point, or nodal quasiparticles in cuprate superconductors
[231].

The foundational assumptions on which our results rest
also necessitate further clarification, in particular the replica-
diagonal ansatz for disorder-averages assumed in the large-N
limit [232]. For instance, in a bosonic variant of the SYK
model it was shown that anharmonic boson-boson interactions
are able to break the replica symmetry and give rise to a glassy
phase [233,234].

Finally, since our results are valid on the saddle point
and at equilibrium, nonequilibrium numerical studies of the
Yukawa-SYK model are crucial to assess the boundaries in
parameter space where our results apply, and viceversa where
new physics arises, e.g., for the electrodynamic response and
the pairing susceptibility [134,235–238].

All in all, our lattice theory offers an exactly solvable and
analytically controlled scenario to study the interplay between
NFL and FL phases, the thermodynamics, and the electromag-
netic response in quantum-critical superconducting systems.
It represents a platform based on the Eliashberg formalism,
to incorporate fluctuations beyond the mean-field level and to
investigate the properties of unconventional superconductors.
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APPENDIX A: DISORDER-AVERAGED EFFECTIVE ACTION FOR THE SYK MODEL

In this Appendix we derive the disorder-averaged effective action of the SYK model, Eq. (1). The partition function of the
m-replicated system is given by

Z m =
∫

D�e−∑a S0[�]
∫

dgi j,k�(gi j,k )e−∑a Sg[�]
∫

dti j,xx′�(ti j,xx′ )e−∑a St [�], (A1)
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where � = {ĉiσax, ĉ†
iσax, φkax} denotes the fields of the model and a = {1 · · · m} is the replica index. The coupling constants

g and t are drawn from the Gaussian orthogonal ensemble, with probability distribution functions �(g) and �(t ) defined in

terms of the second moments gi j,kgi′ j′,k′ = ḡ2

2N 2 δkk′ (δii′δ j j′ + δi j′δ ji′ ) and ti j,xx′ti′ j′,yy′ = t2
0

2N (δii′δ j j′δxyδx′y′ + δi j′δ ji′δxy′δx′y). The
imaginary-time action is given by

S0 =
∑
iσx

∫
dτ ĉ†

iσax(τ )(∂τ − μ)ĉiσax(τ ) + 1

2

∑
iax

∫
dτφiax(τ )

(− ∂2
τ + m0

)
φiax(τ ), (A2a)

Sg =
∑

σx;i jk

∫
dτ [gi j,k + g�

ji,k]ĉ†
iσax(τ )ĉ jσax(τ )φkax(τ ), (A2b)

St =
∑
〈x,x′〉
i jσ

∫
dτ ti j,xx′ ĉ†

jσx′a(τ )ĉiσxa(τ ), (A2c)

where angled brackets denote the sum over nearest-neighbor sites. Performing the Gaussian integration over the coupling
constants g and t—see Sec. 6.1 and Appendices C1–C3 of Ref. [226]—yields the disorder-averaged effective action

S eff =
∑
iσax

∫
dτ ĉ†

iσax(τ )(∂τ − μ)ĉiσax(τ ) + 1

2

∑
iax

∫
dτφiax(τ )

(− ∂2
τ + m0

)
φiax(τ )

− ḡ2

2N

∑
i jk

∑
abσσ ′x

∫
ττ ′

[
ĉ†

jσax(τ )ĉ†
jσ ′bx(τ ′) ĉiσ ′bx(τ ′)ĉiσax(τ ) − ĉ†

jσax(τ )ĉ jσ ′bx(τ ′) ĉ†
iσ ′bx(τ ′)ĉiσax(τ )

]
φkax(τ )φkbx(τ ′)

− zt2
0

4N

∑
i j

∑
〈x,x′〉
abσσ ′

∫
ττ ′

[
ĉ†

jσx′a(τ )ĉiσxa(τ )ĉ†
jσ ′x′b(τ ′)ĉiσ ′xb(τ ′) + ĉ†

jσx′a(τ )ĉiσ ′xb(τ ′)ĉ†
iσxa(τ )ĉ jσ ′x′b(τ ′)

]
, (A3)

where
∫
ττ ′ ≡ ∫ dτ

∫
dτ ′. We now introduce the following collective bilocal fields:

Gab
σσ ′,x(τ, τ ′) = 1

N

∑
i

ĉ†
iσ ′bx(τ ′)ĉiσax(τ ), F ab

σσ ′,x(τ, τ ′) = 1

N

∑
i

ĉiσ ′bx(τ ′)ĉiσax(τ ), (A4a)

Dab
x (τ, τ ′) = 1

N

∑
k

φkbx(τ ′)φkax(τ ). (A4b)

To insert such variables into the action we make use of the following identity:

1 =
∫

DG
∏

abττ ′
σσ ′x

δ

[
N Gba

σ ′σ,x(τ ′, τ ) −
∑

i

ĉ†
iσax(τ )ĉiσ ′bx(τ ′)

]
=
∫

DGD
e[N Gba
σσ ′ ,x(τ ′,τ )−∑i ĉ†

iσax(τ )ĉiσ ′bx(τ ′ )] 
ab
σσ ′,x(τ,τ ′ )

, (A5)

where in the second equality we have introduced the Lagrange-multiplier 
 of the field G and the sum over repeated indices is
kept implicit. Alternatively, one can introduce such fields through a Hubbard-Stratonovich transformation—see Refs. [169,226].
Similarly, for the other fields we use

1 =
∫

DF †D�e
1
2 [N F †ba

σ ′σ,x
(τ ′,τ )−∑i ĉ†

iσax(τ ) c†
iσ ′bx(τ ′ )] �ab

σσ ′,x(τ,τ ′ )
, (A6a)

1 =
∫

DFD�†e
1
2 [N F ba

σ ′σ,x
(τ ′,τ )−∑i ĉiσax(τ ) ĉiσ ′bx(τ ′ )] �

†ab
σσ ′,x(τ,τ ′ )

, (A6b)

1 =
∫

DDD�e
1
2 [N Dba

x (τ ′,τ )−∑i φiax(τ ) φibx(τ ′ )] �ab
x (τ,τ ′ ). (A6c)

The partition function Eq. (A1) then becomes Z m = ∫ DGD
DFD�DF †D�†DcDc†Dφ e−S eff
with action

S eff =
∑

iabσσ ′x

∫
ττ ′

ĉ†
iσax(τ )

[
(∂τ − μ)δabδσσ ′δ(τ − τ ′) + 
ab

σσ ′,x(τ, τ ′)
]

ĉiσ ′bx(τ ′)

+ 1

2

∑
iabx

∫
ττ ′

φiax(τ )
[(−∂2

τ + m0
)
δabδ(τ − τ ′) − �ab(τ, τ ′)

]
φibx(τ ′)

+ 1

2

∑
iabσσ ′x

∫
ττ ′

[
ĉ†

iσax(τ ) �ab
σσ ′,x(τ, τ ′)ĉ†

iσ ′bx(τ ′) + ĉiσax(τ ) �
†ab
σσ ′,x(τ, τ ′) ĉiσ ′bx(τ ′)

]
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−N
∑

abσσ ′x

∫
ττ ′

Gba
σ ′σ,x(τ ′, τ )
ab

σσ ′,x(τ, τ ′) + N

2

∫
ττ ′

Dba
x (τ ′, τ )�ab

x (τ, τ ′)

− N

2

∑
abσσ ′x

∫
ττ ′

[
F ba

σ ′σ,x(τ ′τ )�†ab
σσ ′,x(τ, τ ′) + F †ba

σ ′σ,x(τ ′τ )�ab
σσ ′,x(τ, τ ′)

]

+ ḡ2

2
N

∑
abσσ ′x

∫
ττ ′

[
Gba

σ ′σ,x(τ, τ ′)Gab
σσ ′,x(τ ′, τ ) − F †ba

σ ′σ,x(τ, τ ′)F ab
σσ ′,x(τ ′, τ )

]
Dab

x (τ, τ ′)

+ zt2
0

4
N

∑
〈x,x′〉

abσσ ′x

∫
ττ ′

[
Gba

σ ′σ,x′ (τ, τ ′)Gab
σσ ′,x(τ ′, τ ) − F †ba

σ ′σ,x′ (τ, τ ′)F ab
σσ ′,x(τ ′, τ )

]
. (A7)

The fermionic part can be reorganized in the Nambu representation as

Sferm = −1

2

∑
iab

∫
ττ ′

ψ̄
†
ia(τ )

[
Ḡ−1

0,ab(τ, τ ′) − 
̄ab(τ, τ ′)
]
ψ̄ib(τ ′), (A8)

with Nambu-spinor ψ̄ia(τ ) = (ĉi↑a(τ ), ĉi↓a(τ ), ĉ†
i↑a(τ ), ĉ†

i↓a(τ ))T . Bars denote 4 × 4 matrices in Nambu space:

Ḡ−1
0 (τ, τ ′) =

(
Ĝ−1

0 (τ, τ ′) 0
0 − ˆ̃G−1

0 (τ ′, τ )

)
, 
̄(τ, τ ′) =

(

̂(τ, τ ′) �̂(τ, τ ′)
�̂†(τ, τ ′) −
̂(τ ′, τ )

)
. (A9)

Hats denote 2 × 2 matrices in the spin subspace. The bare propagator is given by Ĝ−1
0 (τ, τ ′) = −(∂τ − μ)δ(τ −

τ ′) σ̂0,
ˆ̃G−1

0 (τ, τ ′) = (∂τ + μ)δ(τ − τ ′) σ̂0, with σ̂0 the identity matrix in the 2 dimensional spin subspace. We now perform
the Grassmann integral over the Nambu-fermions ψ̄ and the Gaussian one over the bosons φ, and obtain

S eff

N
= −1

2
Tr log

(
Ḡ−1

0 − 
̄
)+ 1

2
Tr log

(
D−1

0 − �
)−

∑
abσσ ′x

∫
ττ ′

Gba
σ ′σ,x(τ ′, τ )
ab

σσ ′,x(τ, τ ′)

+ 1

2

∫
ττ ′

Dba
x (τ ′, τ )�ab

x (τ, τ ′) − 1

2

∑
abσσ ′x

∫
ττ ′

[
F ba

σ ′σ,x(τ ′τ )�†ab
σσ ′,x(τ, τ ′) + F †ba

σ ′σ,x(τ ′τ )�ab
σσ ′,x(τ, τ ′)

]

+ ḡ2

2

∑
abσσ ′x

∫
ττ ′

[
Gba

σ ′σ,x(τ, τ ′)Gab
σσ ′,x(τ ′, τ ) − F †ba

σ ′σ,x(τ, τ ′)F ab
σσ ′,x(τ ′, τ )

]
Dab

x (τ, τ ′)

+ zt2
0

4

∑
〈x,x′〉

abσσ ′x

∫
ττ ′

[
Gba

σ ′σ,x′ (τ, τ ′)Gab
σσ ′,x(τ ′, τ ) − F †ba

σ ′σ,x′ (τ, τ ′)F ab
σσ ′,x(τ ′, τ )

]
. (A10)

In addition, we work within the spin-singlet and replica-diagonal ansatz

Gab
σσ ′,x(τ, τ ′) = Gx(τ, τ ′)σ̂0δab, 
ab

σσ ′,x(τ, τ ′) = 
x(τ, τ ′)σ̂0δab,

F ab
σσ ′,x(τ, τ ′) = Fx(τ, τ ′) iσ̂2δab, �ab

σσ ′,x(τ, τ ′) = �x(τ, τ ′) iσ̂2δab,

F †ab
σσ ′,x(τ, τ ′) = −F †

x (τ, τ ′) iσ̂2δab, �†ab
σσ ′,x(τ, τ ′) = −�†

x(τ, τ ′) iσ̂2δab, (A11)

with Pauli matrices σ̂i. Noting that Trlog(Ḡ−1
0 − 
̄) = 2Trlog(Ĝ−1

0 − 
̂), we finally get Eq. (2) of the main text.

APPENDIX B: NUMERICAL METHODS

This Appendix sketches the numerical algorithms em-
ployed throughout this work to exactly solve the large-N
saddle-point Eliashberg equations (4) on the imaginary axis,
in the normal and superconducting states. The propagators
for fermions and bosons G(iωn), F (iωn), and D(i	n), and
their associated self-energies 
(iωn), �(iωn), and �(i	n),
are written in terms of fermionic and bosonic Matsubara fre-
quencies, ωn and 	n, respectively. These quantities can be
transformed to imaginary time τ ∈ [0, β] with β = (kBT )−1,
which is especially useful for convolutions like the ones con-
tained in Eqs. (4a) or (4c), since in the τ -representation such

convolutions become simple products between the convolved
functions.

1. Matsubara Fourier transforms on the imaginary axis

Numerically, we discretize the imaginary-time interval in
equal steps according to τl = l/(2Nf kBT ) with l ∈ [0, 2Nf −
1], such that the discretized Matsubara frequencies are ωn =
(2n + 1)πkBT and 	n = 2nπkBT , with n ∈ [−Nf , Nf − 1].
Nf is the high-frequency cutoff, that must be chosen to lie well
into the ultraviolet regime of the theory where the propagators
have already decayed from their low-frequency behav-
ior. Then, the propagators and self-energies become finite

043007-28



CORRELATION BETWEEN PHASE STIFFNESS AND … PHYSICAL REVIEW RESEARCH 5, 043007 (2023)

discrete lists of values. After algebraic manipulations (circ-
shifts) of these lists, the FFT protocol lends itself to the built-
in implementation provided by the optimized Fourier[] and
InverseFourier[] functions of Mathematica. Such imple-
mentation is similar to many other self-consistent loops used
to solve Shwinger-Dyson saddle-point equations of SYK-like
models [81,88,94,102,132,134,218–221,239].

2. Self-consistent loops for the saddle-point
equations on the imaginary axis

At the first iteration j = 0, our self-consistent loop to
solve Eqs. (4) starts with a guess on 
(iωn), which for g2 <

kBT/ω0 < 1/g2 is assumed to be given by the NFL-SYK
low-energy solution (11), while for kBT/ω0 > 1/g2 we adopt
the impurity-like solution (20). We find these guesses to be
sufficiently accurate that the loop converges both in the nor-
mal and superconducting states, although one could refine the
algorithm to assume more accurate low-energy solutions in
the superconducting state, such as Eq. (D34) for the fermionic
propagator in the SYK2-FL and impurity-like regimes. At
the end of the current iteration j > 0, the list of the normal
self-energy 
 j (iωn) is updated with a weighted sum of the
solution 
̄ j (iωn) of Eq. (4a) and the solution 
 j−1(iωn) at the
previous iteration j − 1, according to


 j (iωn) = αs
̄ j (iωn) + (1 − αs)
 j−1(iωn). (B1)

The mixing factor αs ∈ (0, 1) helps to stabilize the con-
vergence of the self-consistent loop [134]. We heuristically
choose αs ∈ (0.004, 0.1) depending on the values of parame-
ters like g2/(zt2

0 ω0). In practice, we find that smaller values
of αs are required in the superconducting state, and espe-
cially at strong coupling (impurity-like regime). The error
between the current iteration j > 0 and the previous one j − 1
is monitored by the sum over the normal self-energy ε
 =∑

iωn
|
 j (iωn) − 
 j−1(iωn)|. Convergence is reached when

ε
 falls below a user-imposed threshold. In the supercon-
ducting state, the gap function � j (iωn) is also weighted and
summed to its value at the previous iteration:

� j (iωn) = αd� j (iωn) + (1 − αd )� j−1(iωn), (B2)

where αd ∈ (0.004, 0.5) is another heuristically chosen
weighting factor, which may be different from αs. We em-
pirically find that the lowest values of αd are required in the
strong coupling, impurity-like regime.

3. Self-consistent calculation of the critical temperature

To find the superconducting critical temperature Tc, we
solve the linearized gap equation (34). Here we define Tc at
the mean-field, gap-closing temperature at which �(iωn) →
0 ∀ωn. As described in Sec. XI, the superconducting transi-
tion temperature is further decreased by phase fluctuations at
finite N . Finding Tc requires us to know the saddle-point
normal-state converged lists for G(iωn), 
(iωn), D(i	n),
and �(i	n), that we obtain through the self-consistent loop
previously sketched in Appendix B 2. Indeed, after lineariza-
tion of the Eliashberg equations, G(iωn) does not depend
on �(iωn), so it coincides with the normal-state solu-
tion. Then, the gap equation (34) has the structure of an

infinite-dimensional eigenvalue problem for the anomalous
self-energy �̃(iωn), which can be written schematically as
�̃(iωn) =∑m Anm�̃(iωm), where A = {Anm} is the kernel ma-
trix which depends on D(i	n), Z (iωn), and temperature T .
The dimensionality of A is truncated to 2Nf × 2Nf due to
the high-frequency cutoff of the Matsubara propagators. At
T < Tc, the largest eigenvalue of A is greater than one, and
consequently the self-consistent loop tends to increase the
value of �̃(iωm). Conversely, at T > Tc the self-consistency
drives �̃(iωm) to zero and all eigenvalues of A are therefore
smaller than one. At T = Tc, the largest eigenvalue of A is uni-
tary [134,161,223]. Monitoring the T -dependent eigenvalues
of A is implemented by a root-finding loop on temperature,
which allows us to find Tc. The accuracy on the final Tc value
is set to dT = 10−7.

4. Estimation of the quasiparticle residue

To extract the quasiparticle residue Zqp, we use its defini-
tion (50) on the real axis and its relation to the imaginary-axis
quantity Z (iωn). From the Kramers-Kronig relation we have

Re
R(ω) = − 1

π
P

∫ +∞

−∞
dω′ Im
R(ω′)

ω − ω′ , (B3)

which in the ω → 0 limit yields (P stands for the principal
part of the integral)

∂Re
R(ω)

∂ω

∣∣∣∣
ω→0

= P

∫ +∞

−∞

dω′

π

Im
R(ω′)
(ω′)2

. (B4)

However, from the spectral representation


(iωn) =
∫ +∞

−∞

dε

π

Im
R(ε)

ε − iωn
. (B5)

In the T → 0 limit, and taking the imaginary part of Eq. (B5)
we have

Im
(iω) =
∫ +∞

−∞

dε

π

Im
R(ε)ω

ε2 + ω2
. (B6)

Combining equations (B6) and (B4), we have

1

Zqp
= 1 − Im
(iω)

ω

∣∣∣∣
ω→0

. (B7)

Using the relation (6) valid for our model on the imaginary
axis, we finally achieve Eq. (51). Therefore, the real-axis
zero-energy quasiparticle weight can be estimated through
Eq. (51) by the inverse of the imaginary axis quantity Z (iω), in
the zero-temperature limit. In practice, we use the imaginary-
axis code described in Appendix B 2 at temperatures T � Tc

to approximate Eq. (51). As a consistency check, we also
evaluate Zqp for selected couplings and hoppings through the
definition (50) using the real-axis code described in Appendix
B 5, which allows us to go to the zero-energy limit but still
requires finite temperatures.

5. Saddle-point equations on the real axis

Our numerical solution of the saddle-point equations (4) on
the real axis is based on the spectral (Lehmann) representation
of the fermionic and bosonic propagators [161], which can be
implemented through Laplace transforms [240]. In essence, if
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FIG. 18. (a) Numerical solution for the fermionic propagator on the imaginary axis, showing the crossover from the SYK-NFL phase to the
SYK2-FL regime, at temperature T = 0.002ω0/kB, coupling g = 1, coordination number z = 1, and for different hoppings t0. The dashed and
dotted gray lines are given by the low-energy expansions of Eqs. (11) and (15), respectively. (b) Numerical solution for the bosonic propagator,
for the same parameters as in panel (a). The dashed gray line stems from Eq. (12).

we have to perform a convolution on the imaginary axis of the
form

α(i	n) = −kBT
+∞∑

m=−∞
g1(iωm + i	n)g2(iωm), (B8)

then on the real axis it follows that

α(ω) =
∫ +∞

−∞

dε

π
fFD(ε)[g1(ω + ε)Im{g2(ε)}

+ Im{g1(ε)}g∗
2(ε − ω)]. (B9)

Defining the Laplace transform α(t ) as

α(ω) =
∫ +∞

0
dtα(t )eiωt , (B10)

Eq. (B9) translates as

α(t ) = i(2π )2[ρ1(t )a∗
2(t ) − ρ∗

2 (t )a1(t )], (B11)

where

ρi(t ) = −
∫ +∞

−∞

dε

2π

Im{gi(ε)}
π

e−iεt (B12)

and

ai(t ) = −
∫ +∞

−∞

dε

2π
fFD(ε)

Im{gi(ε)}
π

e−iεt . (B13)

Employing Eq. (B11), one can transform convolutions of the
form (B9) on the real axis into simpler products between the
functions (B12) and (B13). Then, an inverse Laplace trans-
form of the resulting α(t ) yields α(ω) as a function of real
frequency ω. We apply the above approach to the fermionic
self-energy (4a), the anomalous self-energy (4d), and the bo-
son self-energy (4c), written on the real axis by the means
of the spectral representation (B9). The respective Laplace
transforms 
R(t ), �R(t ), and �R(t ), where the superscript
R denotes the retarded quantities, are complemented by the
Dyson equations

GR(ω) = ω + iγ − 
R(ω)

[ω + iγ − 
R(ω)]2 − [�R(ω)]2 , (B14)

F R(ω) = �R(ω)

[ω + iγ − 
R(ω)]2 − [�R(ω)]2 , (B15)

and

DR(ω) = 1

ω2
0 − (ω + iγ )2 − �R(ω)

, (B16)

where γ = i0+, and iterated self-consistently starting from
either a BCS-like solution of the form [241]

GR(ω) = ω + iγ

(ω + iγ )2 − �2
, (B17a)

F R(ω) = �

(ω + iγ )2 − �2
, (B17b)

or from the results of a previously converged self-consistent
loop. In practice, we employ a finite damping γ = 10−5ω0.
The fermionic self-energy 
(ω) is weighted at each self-
consistent iteration with the result of the previous iteration,
similarly to Eq. (B1), with a mixing factor αs ∈ (0, 1). The
error between the current iteration j > 0 and the previous one
j − 1 is monitored by the sum over the normal self-energy
ε
 =∑ω |
R

j (ω) − 
R
j−1(ω)|: when ε
 decreases below a

user-imposed value, convergence is reached.

APPENDIX C: DERIVATION OF THE NORMAL-STATE
RESULTS

1. Fermion and boson propagators on the imaginary axis

In this section, for completeness we report the graphs of
the normal-state fermion G(iωn) and boson D(i	n) propa-
gators on the imaginary axis. These propagators stem from
the self-consistent solution of the saddle-point equations (8),
obtained with the methods described in Appendix B 2. No-
tice that, on the imaginary axis, G(iωn) and D(i	n) are
purely imaginary and purely real, respectively, as deduced
from Eqs. (8) and (6). Figure 18(a) shows the results for
−g2Im{G(iωn)} across the SYK-NFL/SYK2-FL crossover, at
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FIG. 19. (a) Numerical solution for the fermionic propagator on the imaginary axis, showing the crossover from the impurity-like phase to
the SYK2-FL regime, at temperature T = 0.05ω0/kB, coupling g = 4, coordination number z = 1, and for different hoppings t0. The dashed
curve and dotted gray line are given by Eq. (20) and by the low-energy expansion of Eq. (15), respectively. (b) Numerical solution for the
bosonic propagator, for the same parameters as in panel (a). The dashed gray line is generated by Eqs. (21) and (22).

temperature T = 0.002ω0/kB, coupling g = 1, coordination
number z = 1, and for different hoppings t0. At the lowest
values of t0, the fermionic propagator displays the power-law
dependence (11) at small energies, which is characteristic of
the SYK-NFL regime, and is indicated by the dashed gray
line. The crossover to the disordered FL regime is realized
as higher hoppings, with visible differences in the propagator
appearing for t0 ≈ ω0, consistently with the crossover energy
ωc estimated in Sec. V and with the spectral functions on the
real axis in Fig. 4(c). In the SYK2-FL regime, the low-energy
part of the propagator tends to the constant

√
2/(

√
zt0) (the

additional factor of g2 is due to the normalization of the y
axis in the figure), as deduced from Eq. (15) at small ωn;
this behavior is shown by the dotted gray line. Figure 18(b)
reports the results for D(i	n), for the same parameters as
in panel (a). In the SYK-NFL regime, i.e., at low hopping,
we recognize the power-law scaling of Eq. (12), which is
highlighted by the dashed gray line. Such scaling evolves
into almost free bosons in the high-hopping SYK2-FL regime,
since the boson self-energy becomes negligible when hopping
dominates over fermion-boson coupling; this stiffening of the
renormalized boson frequency toward ωr ≈ ω0 is consistent
with the analogous trend of the imaginary part of the real-axis
boson propagator, shown in Fig. 4(d).

The results for −g2Im{G(iωn)} across the impurity-
like/SYK2-FL crossover are shown in Fig. 19(a), at temper-
ature T = 0.05ω0/kB, coupling g = 4, coordination number
z = 1, and for different hoppings. At low hopping, the curves
follow the analytical result (20), proper of the impurity-like
regime, and indicated by the dashed gray curve. Increasing
hopping, we cross over to the SYK2-FL regime, and the
low-energy part of the propagator approaches

√
2/(

√
zt0), as

marked by the dotted gray line. The crossover of fermions
to the disordered FL regime occurs at t0 ≈ 19ω0 at T =
0.05kB/ω0, consistently with the criterion (29) in Sec. V,
and with the real-axis spectral functions shown in Fig. 5(c).
Figure 19(b) shows the boson propagator, which is consistent
with the impurity-like solution given by Eqs. (21) and (22) at
low hoppings. At the highest value t0 = 30ω0, there are mod-
ifications which appear at low frequency, due to the stiffening
of the renormalized boson frequency. These features are most

easily seen by looking at the analogous real-axis calculations
in Fig. 5(d).

2. Normal-state renormalized boson frequency

The renormalized boson frequency is given by Eq. (5),
while the boson self-energy in the normal state follows
Eq. (8b). We first present the full numerical results stemming
from Eqs. (8), and then report the derivations of analytical
approximations. Figure 20 shows ω2

r /ω
2
0 as a function of

normalized temperature kBT/(ω0g2), for different hopping
parameters and different couplings. In the single-dot limit
t0 = 0, all curves follow the power-law scaling (13) found in
SYK-NFL regime. Increasing hopping at fixed coupling, we
cross over to the SYK2-FL regime and ω2

r stiffens because the
static boson self-energy is negligible for g2ω2

0 � zt2
0 , as seen

from Eq. (18). The latter analytical expression, valid at T = 0
and derived in Appendix C 2 a, yields the values indicated by
arrows in Fig. 20. Figure 21 displays ω2

r /ω
2
0 as a function

of normalized temperature kBT/(ω0g2), for g = 4 and differ-
ent hoppings. The single-dot curve t0 = 0 is consistent with
Eq. (22), characteristic of the impurity-like regime: the bosons
are critical at zero temperature. As in Fig. 20, the crossover
to the SYK2-FL regime is realized by increasing hopping,
which makes ω2

r stiffen: the bosons are no longer critical in
the disordered FL phase.

We now derive analytical expressions for ωr at T = 0 in
the SYK2-FL and impurity-like regimes.

a. Fermi-liquid SY K2-FL regime

In the SYK2-FL regime, for ḡ2/ω0 � zt2
0 , the dynamical

quasiparticle weight is approximately given by Eq. (26), i.e.,

Z (iωn) = 1

2

(
1 +

√
1 + 2zt2

0

ω2
n

)
(C1)

in the normal state, a result which follows from Eq. (15) and
the normal-state Dyson equation (9). Let us first calculate the
normal-state polarization bubble at zero boson frequency and
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FIG. 20. Normal-state squared renormalized boson frequency ω2
r /ω

2
0 as a function of normalized temperature kBT/(ω0g2) and fermion

hopping parameter t0, calculated from the full numerical solution of the Yukawa-SYK Eliashberg equations in accordance with Eq. (5). The
dashed gray line is the power-law solution ω2

r /ω
2
0 ∼ [(kBT )/(ω0g2)]4�−1 found in the SYK-NFL regime of the single Yukawa-SYK dot [105].

Panels (a), (b), and (c) show the numerical results for g = {0.25, 0.5, 1}, respectively, for different hopping parameters t0/ω0 = {0, 0.5, 1}.
Arrows indicate the analytical estimation (18) of the zero-temperature value for ω2

r /ω
2
0 in the SYK2-FL regime, for the same parameters as the

corresponding numerical data points of the same color.

at T = 0. Using Eqs. (8b) and (C1), we have

�(0) = 2ḡ2kBT
+∞∑

m=−∞

1

ω2
m

1

[Z (iωm)]2

≈ 2ḡ2kBT
+∞∑

m=−∞

1

ω2
m

4[
1 +

√
1 + 2zt2

0
ω2

m

]2
= 8ḡ2kBT

+∞∑
m=−∞

1[
ωm +

√
ω2

m + 2zt2
0

]2 . (C2)

(3π/8)2kBT/(ω0g
2)

10−3 10−2 10−1 100 101

kBT/(ω0g
2)

10−3

10−2

10−1

100

ω
2 r
/ω

2 0

t0 = 0

t0 = 10ω0

t0 = 20ω0

t0 = 30ω0

g = 4, z = 1

FIG. 21. Normal-state squared renormalized boson frequency
ω2

r /ω
2
0 as a function of normalized temperature kBT/(ω0g2), for cou-

pling g = 4 and for different hoppings t0. Data points are calculated
from the full numerical solution of the Yukawa-SYK Eliashberg
equations Eq. (5). The dashed gray line is the power-law solution
(22) found in the impurity-like regime of the single Yukawa-SYK
dot [105].

At T = 0, the sums over Matsubara frequencies become inte-
grals, so that

�(0) = 8ḡ2
∫ +∞

−∞

dω

2π

1(
ω +

√
ω2 + 2zt2

0

)2 = 8
√

2ḡ2

3π
√

zt0
.

(C3)

The renormalized boson frequency thus has an analytical ex-
pression at T = 0, which stems from Eqs. (5) and (C3): it is
Eq. (18). Of course Eq. (18) is valid only as long as ωr (0) >

0, which means at sufficiently low interaction ḡ2/ω2
0 �

3π
√

zt0/(8
√

2). The estimation (18) favorably compares with
the full numerical solution of the Eliashberg equations in the
SYK2-FL regime, as shown by the arrows in Fig. 20.

b. Strong-coupling impurity-like regime

For the dynamical weight Z (iωn) in the impurity-like
regime we can employ the parametrization (D30) that interpo-
lates between the SYK2-FL and impurity-like regions of the
phase diagram:

Z (iωn) ≈ 1

2

[
1 +

√
1 + 	̃2

(ωn)2

]
, (C4)

where 	̃ follows Eq. (54): it is a characteristic frequency
which interpolates between the SYK2-FL and impurity-like
regimes.

Using Eqs. (8b) and (C4), we achieve

�(0) = 2ḡ2kBT
+∞∑

m=−∞

1

ω2
m

1

[Z (iωm)]2

≈ 2ḡ2kBT
+∞∑

m=−∞

1

ω2
m

4[
1 +

√
1 + 	̃2

ω2
m

]2
= 8ḡ2kBT

+∞∑
m=−∞

1

ω2
m

1[
1 +

√
1 + 	̃2/ω2

m

]2 . (C5)
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At T = 0, the sum over Matsubara frequencies becomes an
integral, therefore

�(0) = 8ḡ2
∫ +∞

−∞

dω

2π

1

ω2

1

(1 +
√

1 + 	̃2/ω2)2

= 16ḡ2

3π	̃
. (C6)

The renormalized boson frequency stems from Eqs. (5) and
(C6):

[ωr (0)]2 ≈ ω2
0 − 16ḡ2

3π	̃

= ω2
0 − 16ḡ2

3π

[
2zt2

0 + 4

(
8g2ω0

3π

)2
]− 1

2

. (C7)

In the SYK2-FL limit ḡ2/ω2
0 � √

zt0, we retrieve Eq. (18)
from the just obtained result (C7). However, in the impurity-
like regime ḡ2/ω2

0 � √
zt0, neglecting hopping altogether

yields

[ωr (0)]2 ≈ ω2
0 − 16ḡ2

3π

3πω2
0

16ḡ2
= 0, (C8)

which is consistent with Eq. (22): the bosons are fully mass-
less at zero temperature in the limit of zero hopping.

APPENDIX D: DERIVATION OF THE
SUPERCONDUCTING-STATE RESULTS

In this Appendix, we show that analytical results are reach-
able for various quantities in the superconducting state, in both
the Fermi-liquid and impurity-like regimes. The general strat-
egy in the SYK2-FL regime involves approximating D(i	n)
with the propagator for free bosons,

D(i	n) ≈ 1

ω2
0

, (D1)

since the boson self-energy is negligible in such regime, where
g2ω2

0 � zt2
0 . Furthermore, in both the SYK2-FL and impurity-

like regimes, a useful approximation for the gap function
�(iωn) is the piecewise-constant

�(iωn) =
{
� : |ωn| � ω0,

0 : |ωn| > ω0.
(D2)

In the impurity-like regime, the rather crude approxima-
tion (D2) neglects all strong-coupling retardation effects on
the gap �(iωn), which manifest themselves in the oscilla-
tions observed in the superconducting spectral functions of
the interacting Cooper-pair fluid; see Fig. 12. Nevertheless,
Eq. (D2) is sufficient to achieve qualitatively valid expres-
sions for thermodynamic quantities even in the impurity-like
regime, knowing the zero-energy gap �0 as a function of
coupling and hopping. One example of such quantities is the
phase stiffness, analyzed in Sec. XI. Given the above assump-
tions, we proceed with the analysis of the superconducting
state in the SYK2-FL and impurity-like regimes.

1. Weak-coupling disordered Fermi liquid: the SYK2-FL regime

a. Dynamical quasiparticle weight

In the SYK2-FL regime, we can assume the bosons to obey
Eq. (D1), i.e., for a negligible boson self-energy �(i	n) ≈ 0
and in the static limit, as verified with a full numerical solution
of the Eliashberg equations for ḡ2/ω0 � zt2

0 . Using Eqs. (4a)
and (6) in this regime, where we can neglect the term in

(iωn) that depends on fermion-boson coupling, we find

Z (iωn) ≈ 1 + zt2
0

2

1

Z (iωn)
{
ω2

m + [�(iωm)]2
} . (D3)

We now make the assumption (D2) of a constant gap up to
ω0, which is numerically confirmed by the full self-consistent
solution of the lattice-SYK Eliashberg equations. Then, at low
energies |iωn| � ω0, we can write

Z (iωn) ≈ 1 + zt2
0

2

1

Z (iωn)
(
ω2

m + �2
) . (D4)

The solution to the quadratic equation (D4) is

Z (iωn) = 1

2

(
1 ±

√
1 + 2zt2

0

�2 + ω2
n

)
, (D5)

where we have to take the positive root in order for Z (ω) to
have physically sound asymptotics, as in the normal state.
We thus conclude that in the superconducting state, for
ḡ2/ω0 � zt2

0 ,

Z (iωn) = 1

2

(
1 +

√
1 + 2zt2

0

�2 + ω2
n

)
. (D6)

In the normal state, � → 0 and we retrieve the quasiparticle
weight of the SYK2-FL model, stemming from Eq. (15): it is
given by Eq. (C1).

b. Fermion propagators and self-energies in the
superconducting state

Using Eq. (6), we can calculate the fermion self-energy
from the previously obtained dynamical quasiparticle weight
(D6) in the superconducting state:


(iω) = 1

2

[
iωn − isign(ωn)

√
ω2

n + 2zt2
0 ω2

n

ω2
n + �2

]
. (D7)

In the normal state, i.e., for � → 0, Eq. (D7) correctly yields
the SYK2-FL self-energy stemming from Eqs. (15) and (16).
The fermion propagator results from the normal-state Dyson
equation (16), which is also approximately valid in the SYK2-
FL superconducting regime, since fermion-boson coupling is
negligible with respect to hopping in such regime. We thus
achieve

G(iωn) = 1

zt2
0

[
iωn − isign(ωn)

√
ω2

n + 2zt2
0 ω2

n

ω2
n + �2

]
. (D8)

In the normal state we consequently obtain the SYK2-FL
propagator (15). Performing the analytic continuation iωn →
ω + i0+ on Eq. (D8), we arrive at the (retarded) fermion
propagator on the real axis: Eq. (47). In the superconducting
phase, the anomalous propagator F (iωn) appears as well, in
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accordance with Eq. (4f). Combining the latter with Eq. (7),
we obtain

F (iωn) = − �(iωn)

Z (iωn)
{
ω2

n + [�(iωn)]2
} . (D9)

Making the assumption (D2) of an energy-independent gap
in the SYK2-FL state, and using the previously determined
dynamical weight (D6), we arrive at

F (iωn) = − 2�[
ω2

n + �2
][

1 +
√

1 + 2zt2
0

ω2
n+�

2] . (D10)

The real-axis retarded anomalous propagator stems from set-
ting iωn → ω + i0+ in Eq. (D10):

F R(ω) = − 2�

�2 − (ω + i0+)2

1

1 +
√

1 + 2zt2
0

�2−(ω+i0+ )2

.

(D11)

c. Superconducting-state renormalized boson frequency

In the superconducting state, the boson frequency (5) is
altered with respect to the normal-state result (18), due to the
opening of the gap �(iωn) in the spectral function. The boson
self-energy follows Eq. (4c), which can be recast in terms of
the dynamical quasiparticle weight Z (iωn) by the means of
Eqs. (6) and (9):

�(i	n) = −2ḡ2kBT
+∞∑

m=−∞

+∞∑
m=−∞

[
1

iωmZ (iωm)

× 1

(iωm + i	n)Z (iωm + i	n)

− F (iωm)F (iωm + i	n)

]
. (D12)

We now approximate the dynamical weight Z (iωn) by
Eq. (D6) in the superconducting state, with the piecewise-
constant gap (D2). One can verify both numerically and
analytically that the Z (iωn)-dependent term in Eq. (D12) dom-
inates over the F (iωn)-dependent term for � � 1. Therefore,
in the following we neglect the F (iωn)-dependent term in
Eq. (D12). Using Eqs. (D12) and (D6), and going to the T = 0
limit, we are left with

�(0) = 2ḡ2

⎧⎪⎨
⎪⎩
∫ −ω0

−∞

dω

2π

1

ω2

4[
1 +

√
1 + 2zt2

0
ω2

]2
+
∫ +∞

ω0

dω

2π

1

ω2

4[
1 +

√
1 + 2zt2

0
ω2

]2
+
∫ ω0

−ω0

dω

2π

1

ω2

4[
1 +

√
1 + 2zt2

0
ω2+�2

]2
⎫⎪⎬
⎪⎭. (D13)

The three integrations in Eq. (D13) can be performed analyt-
ically, with the latter one yielding a rather lengthy expression
in terms of incomplete elliptic integrals of the second kind.

Expanding the explicit result of Eq. (D13) at leading order for
zt2

0 → +∞, we achieve

�(0) ≈ 8ḡ2

6πω0zt2
0

(−3�2 + 2
√

2ω0
√

zt0). (D14)

Notice that the normal-state limit of Eq. (D14), i.e., � →
0, consistently yields Eq. (C3). Using the definition (5)
and Eq. (D14), the renormalized boson frequency becomes
Eq. (48).

d. Gap equation

The gap equation stems from Eq. (4d) for the anomalous
self-energy �(iωn). Here we assume to be in the SYK2-FL
regime, where ḡ2/ω0 � zt2

0 . For the boson propagator, we
neglect the boson self-energy �(i	n) ≈ 0 ∀iωn altogether,
which nevertheless yields a satisfactory agreement of the en-
suing analytical expressions, for the transition temperature
and the zero-temperature gap at vanishing energy, with the full
numerical solutions of the model. Hence, we assume Eq. (D1)
in the present regime. Using Eqs. (6) and (7), together with
Eq. (D1), the gap equation (4d) becomes

Z (iωn)�(iωn)

{
1 − zt2

0

2

1

[Z (iωn)]2
{
ω2

n + [�(iωn)]2
}
}

= ḡ2kBT

ω2
0

+∞∑
m=−∞

Z (iωm)�(iωm)

× 1

[Z (iωm)]2
{
ω2

m + [�(iωm)]2
} . (D15)

Further approximating the gap function with Eq. (D2), and
using the SYK2-FL result (D6) for the dynamical weight in
the superconducting state, the left-hand side of Eq. (D15)
simplifies to �, and we are left with

� = ḡ2kBT

ω2
0

+∞∑
n=−∞

2�
1(

1 +
√

1 + 2zt2
0

ω2
n+�2

)(
ω2

n + �2
) . (D16)

In the large-hopping regime, we can approximate 1 +√
1 + (2zt2

0 )/(ω2
n + �2) ≈ √

2zt0/
√

ω2
n + �2, so that

1 =
√

2ḡ2kBT

ω2
0

√
zt0

+∞∑
n=−∞

1√
ω2

n + �2
. (D17)

Eq. (D17) has now assumed the form of a BCS-like gap
equation [172–174], which we can employ to find the criti-
cal temperature and the zero-temperature zero-energy gap in
Fermi-liquid regime.

e. Zero-temperature gap: BCS formula

In the T = 0 limit, where the Matsubara sums become
continuous integrals, the gap equation (D17) in SYK2-FL
regime translates as

1 =
√

2ḡ2

πω2
0

√
zt0

∫ +∞

−∞

dω

2

1√
ω2 + �2

. (D18)

We use a ultraviolet cutoff ω0 for the integral in Eq. (D18),
since pairing occurs at much lower energies than the bare

043007-34



CORRELATION BETWEEN PHASE STIFFNESS AND … PHYSICAL REVIEW RESEARCH 5, 043007 (2023)

boson energy ω0; this feature is completely analogous to BCS
theory [172–174]. Then we have

1

λ̄
=
∫ +ω0

−ω0

dω

2

1√
ω2 + �2

= arcsinh
(ω0

�

)
, (D19)

where we retrieve the superconducting coupling constant (36).
Equation (D19) is the BCS formula (43).

f. Superfluid phase stiffness

Approximating the gap to a constant with Eq. (D2), and
using the superconducting dynamical weight (D6) in SYK2-
FL regime, together with Eq. (7), Eq. (65a) becomes

ρS (T ) = �Lzt2
0 kBT

∑
iωn

4�2

[Z (iωn)]2
(
ω2

n + �2
)2

= �Lzt2
0 kBT

∑
iωn

1(
ω2

n + �2
)2 4�2(

1 +
√

1 + 2zt2
0

�2+ω2
n

)2 .

(D20)

For zt2
0 � |ω2

n + �2|, we can expand as

ρS (T ) ≈ 2�L�2kBT kBT
∑
iωn

1

ω2
n + �2

. (D21)

Using the Matsubara sum

kBT
∑
iωn

1

ω2
n + E 2

= 1

2E
[1 − 2 fFD(E )] (D22)

with E ≡ � in Eq. (D21), we finally achieve Eq. (68).

2. Strong-coupling non-Fermi liquid: The impurity-like regime

a. Dynamical quasiparticle weight

To analyze the dynamical quasiparticle weight in the
impurity-like regime ḡ2/ω0 � zt2

0 , we start again from the
normal self-energy (4a) written in terms of Z (iωn), using
Eq. (6). We now employ the Eliashberg equation (4e) for
G(iωn), and we approximate the boson propagator with its
impurity-like expression in the superconducting state [105]

D(iωn − iωm) ≈ 1

(ωn − ωm)2 + (ωSC
r

)2 , (D23)

with the finite renormalized boson frequency (49). The latter
appears as an in-line equation before Eq. (40) in Ref. [105].
We also use Eq. (7) for �(iωn), with the result

Z (iωn) = 1 + ḡ2kBT

ω2
0

+∞∑
m=−∞

1

(ωn − ωm)2 + (ωSC
r

)2 ωm

ωn

× 1

Z (iωn)
{
ω2

m + [�(iωm)]2
}

+ zt2
0

2

1

Z (iωn)
{
ω2

m + [�(iωm)]2
} . (D24)

In the impurity-like regime, the t0-dependent term in
Eq. (D24) is negligible with respect to the fermion-boson term
that depends on ḡ2. However, as we will see in the following,

we can obtain an analytical result for Z (iωn) even at finite hop-
ping, i.e., retaining the t0-dependent part of Eq. (D24). While
formally valid for ḡ2/ω0 � zt2

0 , the resulting expression—
see Eqs. (D29) and (53), at zero and finite temperature,
respectively—allows us to smoothly interpolate between the
SYK2-FL and impurity-like regimes, which occurs because
the two regimes essentially share the same physics: fermions
randomly interacting with static scattering centers. At T = 0,
we convert the Matsubara sum in Eq. (D24) into an integral
and we achieve

Z (iω) = 1 + ḡ2

ω2
0

∫ +∞

−∞

dω′

2π

1

(ω − ω′)2 + (ωSC
r

)2 ω′

ω

× 1

Z (iω′){(ω′)2 + [�(iω′)]2}

+ zt2
0

2

1

Z (iω){ω2 + [�(iω)]2} . (D25)

Now, in the impurity-like regime, we have ωSC
r � kBT . Then,

the term depending on ωSC
r in Eq. (D25) behaves like a Dirac

δ function [105],

lim
ωSC

r →0

1

(ω − ω′)2 + (ωSC
r

)2 ≈ π

ωSC
r

δ(ω − ω′). (D26)

Inserting Eq. (D26) into the quasiparticle weight (D25) yields

Z (iω) = 1 + ḡ2

ω2
0ω

SC
r

∫ +∞

−∞

dω′

2π
πδ(ω − ω′)

× 1

Z (iω′){(ω′)2 + [�(iω′)]2}

+ zt2
0

2

1

Z (iω){ω2 + [�(iω)]2}

= 1 +
[(

8g2ω0

3π

)2

+ zt2
0

2

]
1

Z (iω){ω2 + [�(iω)]2} ,

(D27)

where we used g2 = ḡ2/ω3
0. Therefore, Eq. (D27) gives the

solutions

Z (iω) = 1

2

[
1 ±

√
1 + 	̃2

ω2 + [�(iω)]2

]
. (D28)

To comply with the normal-state result, we choose the positive
root of Eq. (D28). Actually, one can numerically confirm that
the gap �(iω) can be approximated by a constant at low
energies, as in Eq. (D2), also in the impurity-like regime.
Therefore, we can write

Z (iω) = 1

2

[
1 +

√
1 + 	̃2

ω2 + �2

]

≈ 1

2

(
1 +

√
1 + [16g2ω0/(3π )]2

ω2 + �2

)
, (D29)

where the last step is valid for ḡ2/ω0 � zt2
0 .
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At low but nonzero temperatures, we can substitute iω �→
iωn in Eq. (D29), which gives Eq. (53).

The normal-state limit of Eq. (53) is obtained by taking
� → 0, with the result

Z (iωn) ≈ 1

2

[
1 +

√
1 + 	̃2

ω2
n

]
. (D30)

At low frequencies |ωn| → 0+, we have

Z (iωn) ≈ 	̃

2|ωn| ≈ 8g2ω0/(3π )

|ωn| , (D31)

The last step of Eq. (D31), again valid for ḡ2/ω0 � zt2
0 , is

consistent with Eq. (26) of Ref. [105], through Eq. (6).

b. Fermion propagators and self-energies
in the superconducting state

In the superconducting state, in general from Eqs. (D29)
and (6) we have


(iω) = iω

2

⎛
⎝1 −

√
1 + 	̃

ω2 + �2

⎞
⎠ (D32)

at T = 0. Instead, at finite temperature we can employ


(iωn) = iωn

2

⎛
⎝1 −

√
1 + 	̃

ω2
n + �2

⎞
⎠. (D33)

The fermion propagator which corresponds to the self-energy
(D33) is

G(iωn) = 2

iωn + isign(ωn)
√

ω2
n + ω2

n
ω2

n+�2 	̃2
, (D34)

which reduces to Eq. (20) in the normal state, where � =
0. Performing the analytic continuation iωn → ω + i0+ on
Eq. (D34), we obtain the (retarded) fermion propagator on the
real axis:

GR(ω) = 2

(ω + i0+)
[
1 +

√
1 + 	̃2

�2−(ω+i0+ )2

] . (D35)

In addition, in the superconducting state the anomalous prop-
agator (4f) emerges. Performing the same steps leading to
Eq. (D10), but now substituting the impurity-like dynamical
weight (53) in Eq. (4f), we obtain

F (iωn) = − 2�

(ω2
n + �2)

(
1 +

√
1 + 	̃2

ω2
n+�2

) , (D36)

where 	̃ satisfies Eq. (54). The retarded anomalous propaga-
tor is obtained from the analytic continuation of Eq. (D36),
and it reads

F R(ω) = − 2�

[�2 − (ω + i0+)2]
[
1 +

√
1 + 	̃2

�2−(ω+i0+ )2

] .
(D37)

Notice that, in the limit ḡ2/ω0 � zt2
0 , we directly retrieve the

SYK2-FL result (D11) from Eq. (D37).

c. Superconducting-state renormalized boson frequency

In the impurity-like superconducting state, the renormal-
ized boson frequency does not vanish at T = 0 as would
be predicted by the normal-state result (C8), due to the
gapped nature of the bosons at T < Tc [105]. Instead, at
kBT � ω0g2 we have Eq. (49). The latter can be obtained
from the high-energy behavior of the spectral function in the
superconducting state [105]. More precisely, we exploit the
approximate Dirac-δ form (D26) of the bosonic propagator
(D23) in the impurity-like regime, and we insert it in Eq. (4a)
for the fermionic self-energy in the T = 0 limit. Due to the
Dirac-δ sampling only the 	 = 0 component of the bosonic
propagator D(i	), the integral over bosonic energy 	 yields


(iω) = ḡ2

2π

π

ωSC
r (0)

G(iω) + zt2
0

2
G(iω). (D38)

Assuming 
(ω) ≈ −1/G(iω) in Eq. (D38) leaves a relation
between ωSC

r and G(iω). Using G(iω) = 1/[iωZ (iω)] and the
high-energy leading-order expansion of the dynamical weight
(D29), which gives

|ω|Z (iω) ≈ 	̃

2
(D39)

even in the superconducting state (the gap does not contribute
at leading order for ω → +∞), we finally achieve

ωSC
r (0) ≈ − ḡ2[G(iω)]2

2 + zt2
0 [G(iω)]2

= ω0

2

(
3π

8g

)2

. (D40)

Equation (D40) is consistent with Eq. (49). Notice that
Eq. (D40) has been derived in the impurity-like regime, but in
the presence of small hopping zt2

0 � ḡ2/ω0. This means that
small hopping perturbations with respect to fermion-boson
coupling are not expected to significantly alter the renormal-
ized boson frequency. This is indeed observed in Fig. 11(b).

d. Gap equation

We consider again Eq. (4d) for the anomalous self-energy,
with the anomalous propagator (4f), in the impurity-like
regime where ḡ2/ω0 � zt2

0 . The boson propagator can be
approximated by Eq. (D23). Then, using Eqs. (6) and (7), and
approximating the gap function with Eq. (D2), we translate
Eq. (4d) into

Z (iωn)

{
1 − zt2

0

2

1

[Z (iωn)]2
(
ω2

n + �2
)
}

= ḡ2kBT
+∞∑

m=−∞

1

(ωn − ωm)2 + (ωSC
r

)2 1

Z (iωm)
(
ω2

m + �2
) .

(D41)
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e. Zero-temperature gap: Asymptotic strong-coupling limit

Let us consider the gap equation (D41) at T = 0. Then, the
Matsubara sum becomes an integral and

Z (iω)

{
1 − zt2

0

2

1

[Z (iω)]2(ω2 + �2)

}

= ḡ2
∫ +∞

−∞

dω′

2π

1

(ω − ω′)2 + (ωSC
r

)2 1

Z (iω)(ω2 + �2)
.

(D42)

Let us analyze Eq. (D42) in the single-dot limit t0 → 0. In
such limit, Eq. (D42) for the dispersionless Yukawa-SYK
model can be formally brought into the same form as the
Eliashberg equation for a wide-band system interacting with
an Einstein phonon of frequency 	E in the asymptotic strong-
coupling limit [187]—see also the discussion after Eq. (32)
in Ref. [105]. We can then borrow the asymptotic results for
the gap and the quasiparticle weight from strong-coupling
Eliashberg theory, as follows. Labeling �0 as in Eq. (41), we
employ Eq. (53) and for the quasiparticle weight, in the very
large-coupling limit g → +∞, we obtain explicitly

Z (ω) ≈ 8g2ω0

(3π )
√

ω2 + �2
. (D43)

However, the dynamical quasiparticle weight satisfies
Eq. (D25), where we can neglect the t0-dependent term deep
in the impurity-like regime. Hence, inserting the result (D43)
into Eq. (D25), we have

Z (iω) = 1 + g2ω0

2πω

∫ +∞

−∞
dω′ 1

(ω − ω′)2 + (ωSC
r

)2
× ω′

Z (iω′)[(ω′)2 + �2]

= 1 + 3πω2
0

8

1

2πω

∫ +∞

−∞
dω′ 1

(ω − ω′)2 + (ωSC
r

)2
× ω′√

(ω′)2 + �2
. (D44)

Equation (D44) yields an expression for the weight Z (ω)|ω≈0

[187]:

Z (ω)|ω≈0 = 1 + 2
3ω2

0

16ωSC
r

d

dωSC
r

[(
ωSC

r

)2
J
(
ωSC

r

)]
+ 3ω2

0

16

1

2�2
0

, (D45)

where

J
(
ωSC

r

) =
∫ 2�0

0

dω′

(ω′)2 + (ωSC
r

)2 1√
(ω′)2 + �2

0

. (D46)

In the same way, using Eq. (D46) the gap equation (D42) for
t0 = 0 reduces to

Z (ω)|ω≈0 = 2
3ω2

0

16
J
(
ωSC

r

)
. (D47)

Therefore, we now have Eqs. (D45) and (D47) for the qua-
sistatic weight, which constitute a closed problem for the

gap �0. To obtain the latter analytically, we use the series
expansion of Eq. (D46),

J
(
ωSC

r

) ≈ 1

ωSC
r �0

[
π

2
−

√
5

2

ωSC
r

ω0
−

√
5

24

(
ωSC

r

ω0

)3
]
,

(D48)

into Eqs. (D45) and (D47). Solving the latter system for �0,
we finally achieve

�0 ≈
√

−1 + 2
√

5

2

√
3

16
ω0 ≈ 0.5705372431149527ω0.

(D49)

An analogous calculation for Tc in the asymptotic limit g →
+∞ would lead to [187]

kBTc = 1

2π

√
3

8
ω0 ≈ 0.09746210015420952ω0, (D50)

so that the gap to Tc ratio would be

2�0

kBTc
≈ 11.708, (D51)

in good agreement with Eq. (46) obtained from the numerical
solution of the Eliashberg equations (4), and with Eq. (38) in
Ref. [105]. Actually, the approximated analytical expressions
(D49) and (D50) underestimate the gap and Tc by a factor
C−1 ≈ 1/1.1481028752388993, so that more accurate results
are

�0 ≈
√

−1 + 2
√

5

2

√
3

16
Cω0 ≈ 0.6550354492511521ω0

(D52)

and

kBTc = 1

2π

√
3

8
Cω0 ≈ 0.111897ω0. (D53)

Equations (D52) and (D53) are in good agreement with
the gap value quoted above Eq. (38) and with Eq. (30) in
Ref. [105]. Notice that, even with the correction C, the gap
to Tc ratio still has the value (D51).

f. Superfluid phase stiffness

Recognizing the formal equivalence between the results for
the dynamical weight Z (iωn) in the SYK2-FL and impurity-
like regimes, in accordance with Eqs. (D6) and (53), we
can readily calculate the phase stiffness in the impurity-like
regime as well, employing the results of Appendix D 1 f. Start-
ing from Eq. (65a), the derivation is exactly the same upon
mapping 2zt2

0 → 	̃2 in Z (iωn), in accordance with Eq. (54).
We then have

ρS = �Lzt2
0 kBT

∑
iωn

4�2(
1 +

√
1 + 	̃2

ω2
n+�2

)2
(ω2

n + �2)2
.

(D54)
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In the regime where 	̃2 � ω2
n + �2, we can write

ρS = 4�L�2zt2
0

	̃2
kBT

∑
iωn

1

ω2
n + �2

. (D55)

Using Eq. (D22) for the Matsubara sum, we are left with
Eq. (66).

APPENDIX E: ANALYSIS OF THE CRITICAL
TEMPERATURE

1. Weak-coupling single-dot limit: The NFL-SYK regime

To analyze the weak-coupling limit in the single dot,
we start from the linearized gap equation (32c). For the
SYK-NFL fixed point, the fermionic and bosonic low-energy
propagators are given by Eqs. (11) and (12), respectively, with
the renormalized boson frequency (13).

With Eqs. (11) and (12), neglecting the term 	2
n in Eq. (12)

at weak coupling [105], and using the relation (7), the lin-
earized gap equation (32c) becomes

�(iωn) = a0

+∞∑
m=−∞

(Tf /T )2�sign(ωm)

× 1

(Tf /T )−2�|m + 1/2| + |m + 1/2|1−2�

×
[
�(iωm)

iωm
− �(iωn)

iωn

]
1

m0 + |n − m|4�−1 , (E1)

where m0 = c2/[c3(2π )4�−1], a0 = 1/[2π (c1)2c2], and
2πkBTf = c1/(2�)

1 ḡ2/ω2
0 ≈ 0.1888ḡ2/ω2

0. Since the only
temperature scale in Eq. (E1) is Tf /T , the transition
temperature Tc is of the order of Tf and is numerically
found to be kBTc ≈ 0.16ḡ2/ω2

0 [105].

2. Weak-coupling BCS formula from a disordered Fermi liquid:
The SYK2-FL regime

Let us consider the SYK2-FL regime at T = Tc. Then the
gap equation (D17) for � → 0 becomes

1 =
√

2ḡ2kBT

ω2
0

√
zt0

+∞∑
m=−∞

1

|ωn| . (E2)

The result (E2) is also consistent with the series expansion of
the summation term in Eq. (39) at leading order in small ωm.
At this point, we can exploit the analogy with standard BCS
theory, and write Eq. (E2) in analogy with its BCS counterpart
[172–174], using the result

+∞∑
m=−∞

1

|ωn| ≈ ln

(
	̄

kBT

2eγ

π

)
, (E3)

where 	̄ is an appropriate UV cutoff energy and γ ≈
0.5772156649 is the Euler-Mascheroni constant. The approx-
imation (E3) is valid for 	̄ � kBT . The proper cutoff energy
of the Yukawa-SYK problem is 	̄ = ω0, so in the SYK2-FL
regime we use Eqs. (E2) and (E3) to achieve

1

λ̄
= ln

(
ω0

kBT

2eγ

π

)
, (E4)

t0 = 0.2ω0

t0 = 2ω0

t0 = 0.5ω0
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c
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FIG. 22. Comparison between the numerical solution of the lin-
earized Eliashberg equations (32) for the Yukawa-SYK model on
a lattice (point markers) and the BCS-like formula (35) with the
coupling constant (36) (dashed lines) as a function of dimensionless
interaction g, for different hopping parameters t0.

which is an effective BCS equation for the critical temperature
in the Fermi-liquid regime, with the coupling constant (36).
Inverting Eq. (E4), we find the critical temperature (35).

We find good agreement between Eq. (35) and the numer-
ics for Tc, employing the full-fledged linearized Eliashberg
equations (32), as shown Fig. 22.

3. Strong-coupling single-dot limit: The impurity-like regime

For completeness, we start by reviewing the strong-
coupling analysis in the single-dot limit, i.e., t0 = 0, reported
in Ref. [105]. We will exploit this derivation to deduce the
same infinite-coupling limit on the lattice. Using the func-
tions (6) and (7), the gap equation (4d) can be equivalently
rewritten as

Z (iωn)�(iωn) = ḡ2kBT
∑

m

D(ωn − ωm)�(iωm)

Z (iωm){(ωm)2 + [�(iωm)]2} .

(E5)

However, the self-energy equation (4a) for t0 = 0 translates as

Z (iωn) = 1 + ḡ2kBT
∑

m

D(ωn − ωm)

Z (iωm){(ωm)2 + [�(iωm)]2}
ωm

ωn
.

(E6)

Combining Eqs. (E5) and (E6) gives [105,106]

�(iωn) = ḡ2kBT
∑

m

D(ωn − ωm)

Z (iωm)
√

(ωm)2 + [�(iωm)]2

× 1√
(ωm)2 + [�(iωm)]2

[
�(iωm) − ωm

ωn
�(iωn)

]
.

(E7)

The linearized version of Eq. (E7) is

�(iωn) = ḡ2kBT
∑

m

D(ωn − ωm)

Z (iωm)(ωm)2

[
�(iωm) − ωm

ωn
�(iωn)

]
.

(E8)
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Using the normal-state boson propagator (21) and the low-frequency strong-coupling quasiparticle residue |ωn|Z (iωn) ≈
8ḡ2/(3πω2

0 ), which results from Eqs. (23) and (6), we obtain

�(iωn) = 3πω2
0kBT

8

∑
m

1

(ωn − ωm)2 + (ωr )2

[
�(iωm)

ωm
− �(iωn)

ωn

]
sign(ωm). (E9)

Since kBT � ωr in the strong-coupling limit, and since the zeroth Matsubara frequency does not participate to pairing [105], we
set ωr = 0 in Eq. (E9). Hence, as the fermionic Matsubara frequencies are ωn = (2n + 1)πkBT , Eq. (E9) becomes

�(iωn) = 3ω2
0

8(πkBT )2

∑
m �=n

1

[2n + 1 − (2m + 1)]2

[
�(iωm)

2m + 1
− �(iωn)

2n + 1

]
sign

(
m + 1

2

)
. (E10)

Now, we can rewrite ∑
m �=n

1

[2n + 1 − (2m + 1)]2

[
�(iωm)

�(iωn)

1

2m + 1
− 1

2n + 1

]
sign

(
m + 1

2

)

=
∑
m �=n

1

[2n + 1 − (2m + 1)]2

[
�(iωm)

�(iωn)

1

|2m + 1| − sign
(
m + 1

2

)
2n + 1

]

=
∑
m �=n

1

[2n + 1 − (2m + 1)]2

[
rmn

|2m + 1| − rnn

2n + 1
sign

(
m + 1

2

)]
, (E11)

where rmn = �(iωm)/�(iωn). Hence, Eq. (E10) is an eigenvalue problem for the ratios rmn. Additionally, in Eq. (E10) we have

−
∑
m �=n

1

[2n + 1 − (2m + 1)]2

sign
(
m + 1

2

)
2n + 1

= 1

2n + 1

⎧⎨
⎩

−1∑
m=−∞

1

[2n + 1 − (2m + 1)]2 −
n−1∑
m=0

1

[2n + 1 − (2m + 1)]2 −
+∞∑

m=n+1

1

[2n + 1 − (2m + 1)]2

⎫⎬
⎭

= 1

2n + 1

[
ψ (1 + n)

4
− π2

24
+ ψ (1 + n)

4
− π2

24

]
=
[
−π2

12
+ ψ (1 + n)

2

]
1

2n + 1
, (E12)

where ψ (z) = limM→+∞[ln M −∑M
n=0 1/(n + z)] is the digamma function. Therefore,

1 = α

{∑
m �=n

1

[2n + 1 − (2m + 1)]2

rmn

|2m + 1| +
[
−π2

12
+ ψ (1 + n)

2

]
rnn

2n + 1︸ ︷︷ ︸∑
n,m �mnrmn

}
, (E13)

with α = 3ω2
0/[8(πkBT )2] and rnn = 1 ∀n. The strategy to

solve Eq. (E13) is to diagonalize the matrix � formed by the
coefficients of the ratios rmn: at T = Tc, the largest eigenvalue
of α� has to be unitary. Of course, this is the same criterion
we adopt to numerically find Tc for the full linearized problem
(34), as described in Appendix B 3. Without loss of generality,
we take 0 � n < +∞ and 0 � m < +∞, and the diagonal
matrix elements can be written as

�nn = 1

2n + 1

1

22(2n + 1)2
+
[
−π2

12
+ ψ (1 + n)

2

]
1

2n + 1
,

(E14)

where the first term comes from m = −n − 1 in Eq. (E13),
when we rewrite the sum

∑
m �=n with −∞ < m < ∞ as a

sum
∑

m �=n with m > 0 exploiting the even parity of |2m + 1|
and of rnm under the exchange m �→ −n − 1. The off-diagonal

matrix elements are

�mn = 1

2n + 1

{
1

[2n + 1 − (2m + 1)]2

+ 1

[2n + 1 + (2m + 1)]2

}
, (E15)

where the first term comes from m > 0 and the second term
from m < 0. The largest eigenvalue of the matrix � is

λ� = 0.32953505303295694. (E16)

Therefore, the Tc equation amounts to

1 = αcλ�, αc = 3(ω0)2

8(πkBT )2
. (E17)

043007-39



VALENTINIS, INKOF, AND SCHMALIAN PHYSICAL REVIEW RESEARCH 5, 043007 (2023)

Equation (E17) is solved for Tc > 0, to finally give with rea-
sonable accuracy

kBTc =
√

αc

π

√
3

8
= 0.18272624777228844

√
3

8
ω0

= 0.11189651741386951ω0, (E18)

which is Eq. (40). Hence, in the strong-coupling regime Tc

does not depend on ḡ2 for an isolated dot coupled to an Ein-
stein boson. Notice that Eq. (40) is in satisfactory agreement
with the analytical estimation (D53).

4. Impurity-like regime on the lattice

The estimation of the asymptotic limit for Tc on the lattice
closely follows the developments in Appendix E 3, modulo
the alterations to the fermion self-energy, the gap equation,
and the renormalized boson frequency due to hopping. The
gap equation becomes Eq. (32c), while the normal part of the
self-energy follows Eq. (4a). However, combining Eqs. (32c)
and (4a), together with Eqs. (6) and (7), we realize that the
hopping-dependent part disappears from the resulting gap
equation. Then, using the low-frequency quasiparticle residue
|ωn|Z (iωn) ≈

√
zt2

0 /2 + [8ḡ2/(3πω2
0 )]2 , which results from

Eqs. (D34) and (6), neglecting the t0-dependent part of Z (iωn)
in the g → +∞ limit, we retrieve the single-dot Eq. (E9).
One can confirm that even on the lattice, in the impurity-
like regime we can approximate ωr ≈ 0, which yields again
Eq. (E10). Therefore, the limit limg→+∞ Tc on the lattice is
the same as the one in the single dot, namely, Eq. (40).

APPENDIX F: DERIVATION OF THE LATTICE
GRAND POTENTIAL

1. Normal-state grand potential

The grand potential in the normal state stems from the
disorder-averaged Yukawa-SYK action (2), where the anoma-
lous propagator F (iωn) and self-energy �(iωn) are both null.
Assuming translation invariance in time and space after the
disorder average, the effective action per lattice site x in imag-
inary time is given by

S

N
= − Tr log

{(
Ĝ−1

0 − 
̂
)}+ 1

2
Tr log

{(
D−1

0 − �
)}

− 2
∫

τ12τ21

G(τ21)
(τ12) + 1

2

∫
τ12τ21

D(τ21)�(τ12)

+ ḡ2
∫

τ12τ21

G(τ12)G(τ21)D(τ12)

+ zt2
0

2

∫
τ12τ21

G(τ12)G(τ21). (F1)

Here 
̂(iεn) = diag{
(iεn),−
(−iεn)}, while Ĝ−1
0 (τ, τ ′) =

−(∂τ − μ)δ(τ − τ ′) σ̂0—see also Appendix A.
On the normal-state saddle point the fields are homoge-

neous in time and space and are given by

Ĝ−1(iωn) = Ĝ−1
0 (iεn) − 
̂(iεn), (F2a)

D−1(i	n) = D−1
0 (i	n) − �(i	n), (F2b)


(τ ) = ḡ2G(τ )D(τ ) + zt2
0

2
G(τ ), (F2c)

�(τ ) = −2ḡ2G(τ )G(−τ ). (F2d)

We now go on-shell and insert Eqs. (F2) into the action (F1).
Focusing on the integrands in the last two lines of the effective
action, and using Eqs. (F2c) and (F2d), we obtain

− 2G(τ21)
(τ12) + 1

2
D(τ21)�(τ12)

+ ḡ2G(τ12)G(τ21)D(τ12) + zt2
0

2
G(τ12)G(τ21)

≡ D(τ21)�(τ12) − zt2
0

2
G(τ12)G(τ21). (F3)

The trace-log term can be written in Matsubara space as

−Tr log(Ĝ−1) =
∑
iωn

TrN log{Ĝ(iωn)/β}, (F4)

where TrN denotes the trace over the Nambu subspace. Using
also the Dyson equations (F2a) and (F2b), we end up with

S sp

N
=
∑

n

TrN log{Ĝ(iωn)/β} − 1

2

∑
n

log{D(	n)/β2}

+
∫

τ12τ21

D(τ21)�x(τ12) − zt2
0

2

∫
τ12τ21

G(τ12)G(τ21).

(F5)

The fermionic trace-log term can be simplified by using the
explicit expression of the Nambu propagator:

TrN log{Ĝ(iωn)/β}

= log detN

(
G(iωn)/β 0

0 −G(−iωn)/β

)

= 2 log[G(iωn)/β], (F6)

where we have used the odd parity of normal-state fermionic
propagator with respect to ωn. We Matsubara-transform the
terms depending on τ12 in Eq. (F5), then we add and subtract
the grand potential density (per flavor N ) for free fermions
and bosons in equilibrium:

β	(0)
c

N
= − ln(1 + eβμ)

=
∑
iωn

log [G0(iωn)/β], (F7a)

β	
(0)
b

N
= βω0

2
+ log(1 − e−βω0 )

=
∑
i	n

log[D0(i	n)/β2], (F7b)

with bare propagators G−1
0 (iωn) = iωn + μ and D−1

0 (i	n) =
	2

n + ω2
0. Inserting Eqs. (F7) in the Matsubara-transformed

version of the action (F5) gives Eq. (30).

2. Superconducting-state grand potential

To calculate the grand potential in the superconducting
state, we have to consider the full Yukawa-SYK action (2),
including the anomalous Green’s function and self-energy.

043007-40



CORRELATION BETWEEN PHASE STIFFNESS AND … PHYSICAL REVIEW RESEARCH 5, 043007 (2023)

Working within the spin-singlet ansatz, and assuming trans-
lation invariance in time and space, the effective action per
lattice site x is given by

S

N
= − Tr log

(
Ĝ−1

0 − 
̂
)+ 1

2
Tr log

(
D−1

0 − �
)

− 2
∫

τ12τ21

G(τ21)
(τ12) + 1

2

∫
τ12τ21

D(τ21)�(τ12)

−
∫

τ12τ21

[F (τ21)�†(τ12) + F †(τ21)�(τ12)]

+ ḡ2
∫

τ12τ21

[G(τ12)G(τ21) − F †(τ12)F (τ21)]D(τ12)

+ zt2
0

2

∫
τ12τ21

[G(τ12)G(τ21) − F †(τ12)F (τ21)]. (F8)

The saddle-point equations (4), entirely written in imaginary
time, are

Ĝ(τ ) = [
Ĝ−1

0 (τ ) − 
̂(τ )
]−1

, (F9a)

D(τ ) = [
D−1

0 (τ ) − �(τ )
]−1

, (F9b)


(τ ) = ḡ2G(τ )D(τ ) + zt2
0

2
G(τ ), (F9c)

�(τ ) = −ḡ2F (τ )D(τ ) − zt2
0

2
F (τ ), (F9d)

�(τ ) = −2ḡ2[G(τ )G(−τ ) − F †(τ )F (−τ )]. (F9e)

Introducing the saddle-point equations (F9) in Eq. (F8), we
find the on-shell action
S sp

N
= −Tr log(Ĝ−1) + 1

2
Tr log(D−1)

− 2ḡ2
∫

τ12τ21

[G(τ21)G(τ12) − F †(τ21)F (τ12)]D(τ12)

− zt2
0

2

∫
τ12τ21

[G(τ12)G(τ21) − F †(τ12)F (τ21)], (F10)

where we have used the notation τ12 = τ1 − τ2. Now, if we
further use Eq. (F9), then we can rewrite the second line in
terms of the boson self-energy:

S sp

N
= −Tr log(Ĝ−1) + 1

2
Tr log(D−1) +

∫
τ12τ21

�(τ21)D(τ12)

− zt2
0

2

∫
τ12τ21

[G(τ12)G(τ21) − F †(τ12)F (τ21)]. (F11)

Let us manipulate the fermionic trace-log term. In analogy
with the normal-state calculation, we go to Matsubara space
and employ Eq. (F4), where now the trace is performed in
Nambu subspace. We recall that, in our conventions, Ĝ is a
2 × 2 matrix. We have

log

[
1

β2
detN{Ĝ(iωn)}

]

= log

[
1

β2
detN

(
G(iωn) F (iωn)

F †(iωn) G(iωn)

)]

= log

{
1

β2
[G2(iωn) − F †(iωn)F (iωn)]

}
. (F12)

Using Eq. (F12) in the on-shell action (F10), we obtain

S sp

N
=
∑
iωn

log

{
1

β2
[G2(iωn) − F †(iωn)F (iωn)]

}

− 1

2

∑
i	n

log[D(i	n)/β2] +
∑
i	n

D(i	n)�(i	n)

− zt2
0

2

∑
iωn

[G2(iωn) − F †(iωn)F (iωn)]. (F13)

Setting F (iωn) = F †(iωn) = 0 in Eq. (F13), we retrieve
Eq. (30), consistently with the normal-state calculations. For
numerical reasons we normalize the log terms as follows:

S sp

Nt
=
∑
iωn

⎧⎨
⎩ log

[
G2(iωn) − F †(iωn)F (iωn)

G2
0(iωn)

]

− 1

2

∑
i	n

log

[
D(i	n)

D0(i	n)

]
+
∑
i	n

D(i	n)�(i	n)

− zt2
0

2

∑
iωn

[G2(iωn) − F †(iωn)F (iωn)]

⎫⎬
⎭

+ 2
∑
iωn

log[G0(iωn)/β] − 1

2

∑
i	n

log[D0(i	n)/β2],

(F14)

with the bare propagators G−1
0 (iωn) and D−1

0 (i	n) defined
in Eq. (F7). Using Eq. (F7), 	sc/N = S sp/(βN ) and
Eq. (F14), we finally find Eq. (73).

APPENDIX G: ACTION FOR CHARGE FLUCTUATIONS
AND SUPERCONDUCTING KERNEL

In this Appendix we analyze phase fluctuations around the
solution to the stationary equations (4). At low energies, a
generic solution can be easily generated from the time and
space translation-invariant one {Ĝs(τ ), 
̂s(τ )} through a U (1)
transformation [226]:

Ĝx(τ1, τ2) = eiϕx(τ1 )σ̂3 Ĝs(τ1 − τ2)e−iϕx(τ2 )σ̂3 ,


̂x(τ1, τ2) = eiϕx(τ1 )σ̂3
̂s(τ1 − τ2)e−iϕx(τ2 )σ̂3 . (G1)

Hats denote 2 × 2 matrices in Nambu space, and ϕx(τ ) is
a U (1) phase field conjugated to charge fluctuations of the
system [94,133]. Away from the IR limit, the equations are no
longer invariant under the map Eq. (G1) and the U (1) sym-
metry is broken. The associated Goldstone mode is precisely
given by the field ϕx(τ ), and in the following we derive the
corresponding low-energy effective action.

Let us insert Eq. (G1) into the disorder-averaged SYK
action (2) and focus on the phase degrees of freedom only. The
terms which are not invariant under the U (1) transformation
are the trace-log and hopping ones. This leads to the following
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expression:

S [ϕ]

N
= −

∑
x

Trlog{[(μ − i∂τϕ)σ̂3 − σ̂0∂τ ]δ(τ1 − τ2) − 
̂x(τ1, τ2)} + t2
0

2

∑
〈x,x′〉

∫
τ1τ2

[
Gs(τ1 − τ2)Gs(τ2 − τ1)

× ei[∂xϕ(τ1 )−∂xϕ(τ2 )]·a − F †
s (τ1 − τ2)Fs(τ2 − τ1) e−i[∂xϕ(τ1 )+∂xϕ(τ2 )]·a], (G2)

with σ̂0 and σ̂3 Pauli matrices. Angled brackets denote the sum
over nearest-neighbor sites on the lattice. Space gradients are
defined via

a · ∂xϕ(τ ) = ϕx(τ ) − ϕx′ (τ ), (G3)

where a = x − x′ gives the spacing between nearest-neighbor
sites, which we have assumed to be the same for any pairs
of sites. Time gradients enter the action by shifting the
chemical potential as μ �→ μ − i∂τϕ. This is consequence
of a gauge transformation of the fermion fields ĉi,x,↑(τ ) �→
e−iϕx(τ )ĉi,x,↑(τ ), ĉ†

i,x,↓(τ ) �→ eiϕx(τ )ĉ†
i,x,↓(τ ) that eliminates

phase factors from the self-energy term [226].
Expanding the action Eq. (G2) to quadratic order in phase

gradients, and ignoring contributions independent of ϕ, yields
the Gaussian action:

S [ϕ]

N
= − kBT

a3

∑
p,i	n

ϕ−p(i	n)

× [	2
n�̄(i	n) + ε(p)�(i	n)

]
ϕp(−i	n), (G4)

which is the lowest-order effective theory for phase fluctua-
tions. Here we have used the double Fourier transform of the
phase field to the space of momenta p and bosonic Matsubara
frequencies 	n:

ϕx(τ ) = kBT

a3

∑
p,i	n

ϕp(i	n)ei(p·x−	nτ ), (G5)

where a3 is the volume of a unit cell, which enters into
the definition of the spatial Fourier transform x �→ p. The
dispersion relation of the phase fluctuations in the action
(G4) is given by ε(p) = 1

2

∑
〈x,x′〉(p · a)2. In the case of

isotropic Bravais lattices with spacing |a| = a, the disper-
sion is simply ε(p) = z a2 p2/2, where p = |p| and z is the
coordination number. The latter form of the dispersion ε(p)
will be assumed from now on. Here �̄(i	n) is the Mat-
subara transform of �̄(τ ) = �G(τ ) − �F (τ ), with standard
and anomalous bubbles �G(τ ) = G(τ )G(−τ ) and �F (τ ) =
F †(τ )F (−τ ). Moreover, 2�(i	n) = t2

0 [�G(0) − �G(i	n) −
�F (0) − �F (i	n)].

In the following we analyze the effects of an external
electromagnetic field and compute the superconducting kernel
(58). To introduce a vector potential A, we perform a Peierls
substitution [242,243] of the fermions

ĉi,x,σ (τ ) �→ ĉi,x,σ (τ )e−ie
∫ x

x0
dy·A(y,τ )

, (G6)

with e the fermion electric charge and x0 a reference location.
Only the non-local-in-x hopping term of the SYK ac-

tion Eq. (2) is affected by the transformation (G6). As a
consequence, space gradients in Eq. (G2) are shifted as
a · ∂xϕ(τ ) �→ a · ∂xϕ(τ ) − e

∫ x
x′ dy · A(y, τ ). Furthermore, for

slowly varying-in-space vector fields we can approximate

∫ x
x′ dy · A(y, τ ) ≈ a · A(x, τ ). The effective theory in the pres-

ence of an external vector potential then simply follows
from Eq. (G4) via the minimal substitution ipϕp(i	n) �→
ipϕp(i	n) − a e Ap(i	n). The change in the action with re-
spect to its unperturbed counterpart (G2), due to the presence
of the vector potential, is given by

�S [ϕ, A]

N
= 1

2

kBT

a3

∑
p,i	n

∑
α,β

Aα (p,−i	n)

× mαβ (p, i	n)Aβ (−p, i	n)

− kBT

a3

∑
p,i	n

∑
α

jα (p,−i	n)Aα (−p, i	n),

(G7)

where α and β label the spatial directions. The mass and
source terms are given by

mαβ (p, i	n) = −N e2za2�(i	n)δαβ, (G8a)

jα (p,−i	n) = −iN eza2�(i	n)ϕp(−i	n), (G8b)

where we have used �(−i	n) = �(i	n), which enters into
the propagator for phase fluctuations that we defined in
Eq. (G4). The partition function, including the effect of the
vector potential A, is Z = ∫ Dϕe−(S [ϕ]+�S [ϕ,A]). The func-
tional derivative of the partition function with respect to the
vector potential gives the total current Jtot(q, ω) of the system
[158,226], which comprises the external current as well as the
induced internal current, in accordance with Eq. (58) upon
the analytic continuation i	n → ω + i0+ [174,194]. For-
mally, a3/(kBT )Jtot,α (p,−i	n) = δ log Z /δAα (−p, i	n) =
〈 jα (p,−i	n)〉|A − mαβ (p, i	n)Aα (p,−i	n). Here the brack-
ets 〈(· · · )〉A = Z −1

∫
Dϕ(· · · )e−(S [ϕ]+�S [ϕ,A]). Then, the

electromagnetic kernel is defined as the ratio between the
total current Jtot,α (p,−i	n) and the imposed vector poten-
tial Aβ (p,−i	n), evaluated in the vanishing vector-potential
limit—see Eq. (58). This additional derivative yields two
terms: one involves the product between two one-point func-
tions 〈 jα (−p, i	n)〉A〈 jα (p,−i	n)〉A, which is assumed to be
null in the absence of the external source (in the unper-
turbed system, with A = 0); the second term is the correlator
〈 jα (p,−i	n) jβ (−p, i	n)〉A. Employing Eq. (G8b), we thus
obtain for the kernel

Kαβ (p, i	n)

= 1

kBT

δ2 logZ
δAβ (p,−i	n)δAα (−p, i	n)

∣∣∣
A=0

= N e2 z�(i	n)

a

[
δαβ + za2�(i	n)pα pβ

	2
n�̄(i	n) + za2 p2�(i	n)/2

]
.

(G9)
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We immediately see that (minus) the static, zero-momentum
limit of the kernel (G9) corresponds to the phase stiffness
of the system, consistently with Eq. (63): It is proportional
to −�(0), which can be equivalently obtained from the
phase action (G4), written in real space of coordinates, by
deriving the logarithm of Zϕ = ∫ Dϕe−S [ϕ] twice with re-
spect to spatial gradients ∇ϕ(r, τ ) of the phase. Hence,
the long-wavelength static electromagnetic response function
probes the rigidity of the system, i.e., the second derivative
of the grand potential, with respect to global phase twists
[158,191–193]. As such, the stiffness has units [E L2−d ],
where E is an energy, L is a length, and d is the system
dimensionality. We rapidly comment on the modifications to
the various quantities in this section, when we employ SI
units instead: in this case, in the Peierls-substitution formula
(G6) we have ie �→ ie/h̄, with h̄ reduced Planck’s constant;
this constant propagates to Eqs. (G8), where mαβ (p, i	n) �→
mαβ (p, i	n)/h̄2 and Jα (p,−i	n) �→ Jα (p,−i	n)/h̄2, and fi-
nally to the kernel Kαβ (p, i	n) �→ Kαβ (p, i	n)/h̄2. Going to
the i	n = 0 and q → 0 limit of Eq. (G9), and employing

Eq. (63), finally yields Eq. (64) for the superconducting phase
stiffness.

The electromagnetic kernel (G9) allows us to calculate
the conductivity tensor of the Yukawa-SYK lattice through
[158,174,194]

σαβ (p, ω) = −i
Kαβ (p, ω)

ω + i0+ , (G10)

where we have analytically continued the kernel to real
frequencies as Kαβ (p, ω) = limi	n→ω+i0+ Kαβ (p, i	n). Tak-
ing the longitudinal part KL(p, ω) of the kernel—see
discussion after Eq. (59)—and going to the p → 0 limit
[226], we obtain the zero-momentum conductivity σ (ω) ≡
−i limp→0 KL(p, ω)/(ω + i0+). At T > Tc (normal state) the
conductivity only depends on the retarded normal propaga-
tor GR(ω) through �(ω), while for T < Tc (superconducting
state) there is an additional contribution to the conductivity
stemming from F R(ω); see also Appendix B 5. An analysis of
the conductivity in the normal and superconducting states is
reported in the companion paper [159].
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