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MedalCare-XL: 16,900 healthy 
and pathological synthetic 12 lead 
ECGs from electrophysiological 
simulations
Karli Gillette1,2,8, Matthias A. F. Gsell  1,8, Claudia Nagel3,8, Jule Bender  3, Benjamin Winkler4, 
Steven E. Williams5,6, Markus Bär4, Tobias Schäffter  4,5,7, Olaf Dössel3,8, Gernot Plank  1,2,8 ✉ 
& axel Loewe  3,8 ✉

Mechanistic cardiac electrophysiology models allow for personalized simulations of the electrical 
activity in the heart and the ensuing electrocardiogram (ECG) on the body surface. As such, synthetic 
signals possess known ground truth labels of the underlying disease and can be employed for validation 
of machine learning ECG analysis tools in addition to clinical signals. Recently, synthetic ECGs 
were used to enrich sparse clinical data or even replace them completely during training leading to 
improved performance on real-world clinical test data. We thus generated a novel synthetic database 
comprising a total of 16,900 12 lead ECGs based on electrophysiological simulations equally distributed 
into healthy control and 7 pathology classes. The pathological case of myocardial infraction had 6 
sub-classes. A comparison of extracted features between the virtual cohort and a publicly available 
clinical ECG database demonstrated that the synthetic signals represent clinical ECGs for healthy and 
pathological subpopulations with high fidelity. The ECG database is split into training, validation, and 
test folds for development and objective assessment of novel machine learning algorithms.

Background & Summary
The 12 lead ECG is a standard non-invasive clinical tool for the diagnosis and long-term monitoring of cardi-
ovascular disease. To support cardiac disease classification and interpretation of 12 lead ECGs in clinical prac-
tice, algorithms based on machine learning are increasingly utilized. Training of these algorithms requires large 
databases of 12 lead ECGs that have been labeled according to desired disease classifications with high accuracy 
and represent the target population. The most extensive publicly available database for such purpose to date is 
PTB-XL1.

Clinical 12 lead ECG databases like PTB-XL, however, have several limitations reducing efficacy of machine 
learning algorithms2. As the databases are typically attained from multiple medical centers, different filtering 
levels may be applied to reduce noise. Labeling uncertainties may arise due to differences in expertise or judg-
ment between clinicians. Patient enrollment can also lead to both gender bias3 and uneven representation of 
certain cardiac diseases4. Furthermore, such databases provide limited insight into the underlying mechanisms 
of cardiovascular disease. Databases of synthetic ECGs have the potential to either complement and enrich5,6, or 
in the long run to even replace7, clinical datasets to overcome such limitations. Currently, no sizeable and open 
synthetic ECG databases are available due to the high computational cost and limitations in modeling complete 
four-chamber cardiac electrophysiology in silico at scale.
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We thus aimed to assemble the first public database of labeled synthetic 12 lead ECGs by joining two inde-
pendent multi-scale models of atrial and ventricular electrophysiology used to compute P waves and QRS 
complexes, respectively. This approach provides a complete chain of traceability from the anatomical and elec-
trophysiological input parameters of the model to the final 12 lead ECGs. Common diseases were modeled 
mechanistically in addition to normal healthy control within the synthetic database. Within the ventricular-torso 
model, the pathologies of myocardial infarction (MI) and complete bundle branch block of both the left ven-
tricle (LBBB) and the right ventricle (RBBB) were modeled. The MI class comprised 6 sub-classes pertaining 
to the three predominant arteries of right-anterior descending (RAD), left anterior descending (LAD), and left 
circumflex (LCX)8 each with two different transmural extent. The diseases fibrotic atrial cardiomyopathy (FAM), 
complete interatrial conduction block (IAB) and left atrial enlargement (LAE) were modeled within the atria. 
Also, 1st degree AV block (AVB) was modeled as an atrio-ventricular (AV) conduction-based disease. In this 
way, the chosen pathologies cover a wide range of both atrial and ventricular diseases representing conduction 
disturbances as well as structural remodeling for which established modeling approaches published in previous 
work could be resorted to. A total of 16,900 synthetic ECGs equally distributed into the 8 groups (healthy control 
and 7 cardiac pathologies) were made publicly available in the MedalCare-XL database. This MedalCare-XL 
dataset is publicly available under the Creative Commons Attribution 4.0 International license9. Thus, we pro-
vide a large and balanced ECG dataset with precisely known ground truth labels of the underlying pathology as 
derived from the mechanistic multi-scale simulations.

Validation of the synthetic ECG database was performed using two approaches to analyze to what extent the 
synthetic ECG database could represent clinical ECG databases. First, we tested the MedalCare-XL data set of 
simulated ECGs by comparing the statistical distribution of crucial ECG features extracted from MedalCare-XL 
with the same features taken from the clinical PTB-XL1 data base for normal healthy ECGs and for different 
pathology classes. The comparison showed excellent qualitative agreement, while still exhibiting quantitative 
differences that provide a starting point for future improvement of the underlying models as well as of the qual-
ity of future simulation data bases. Second, two clinical Turing tests were also conducted to evaluate the ability 
of the generated synthetic ECG signals to represent clinical signals undergoing ECG diagnostics by cardiologists. 
The first test required trained cardiologists to determine the origin of both measured and simulated 12 lead 
ECGs under normal healthy control. The second test additionally involved pathology classification. Both tests 
were performed on a subset of 50 synthetics ECG signals extracted from the database and mixed with 50 clinical 
signals taken from PTB-XL1. Altogether, the MedalCare-XL data base provides the first example for a large-scale 
data set of physiologically-realistic simulated ECGs.

Methods
We separate the genesis of the 12 lead ECG into P waves and the QRST complex, modeled by two separate atrial 
and ventricle-torso models. Generation of the anatomical model cohorts and the simulation of electrophysi-
ology to mimic a large patient population is described for both the atrial and ventricular models. Having run 
single beat simulations for P waves and QRST complexes separately in the two independent models, both signal 
parts had to be merged in a post-processing step to obtain an ECG of a full heart cycle comprising one P wave, 
one QRS complex and one T wave. Subsequently, the single heartbeat was repeated with varying RR intervals 
to account for heart rate variability (HRV) to obtain a time series signal of 10 s length. A visual overview of 
the pipeline for generating the synthetic 12 lead ECG database is visualized in Fig. 1. The entire ECG dataset 
described in the manuscript is available online under the Creative Commons Licence CC-BY 4.09. The anatom-
ical model cohort of the atria is publicly available under the Creative Commons Licence CC-BY 4.010. Subject 
data acquired at the Medical University of Graz which were used to construct the cohort of ventricular-torso 
models can only be shared with additional IRB approval and subject consent. Requests should be directed to the 
IRB of the Medical University of Graz with reference to their vote EKNr 24–126 ex 11/12. The data utilized from 
the participants were used to generate this work but are not part of the published data set.

Anatomical model populations. Ventricles. A cohort of anatomically-specific ventricular-torso models 
was generated for 13 healthy subjects (8 M, 5 F) ranging from 30 to 65 years of age. All subjects were part of a 
clinical study approved by ethical review board at the Medical University of Graz (EKNr: 24–126 ex 11/12). 
Written and informed consent for each subject was attained at the time of the study. Two separate MRI scans of 
the full torso and whole heart were sequentially acquired using standardized protocols at 3 T (Magnetom Skyra, 
Siemens Healthcare, Erlangen, Germany). The torso MRI (1.3 × 1.3 × 3.0 mm3) was acquired in four overlapping 
stacks using a non-ECG gated 3D T1-weighted gradient-echo sequence. The whole heart MRI (0.7 × 0.7 × 0.7 
mm3) was acquired using an ECG-gated, fat-saturated, T2-prepared, isotropic 3D gradient-echo sequence. 
Respiratory navigators were employed to gate the MR-acquisition under free-breathing to end-expiration. 
MRI-compatible electrodes for recording the 12 lead ECG of each subject were left intact during image acquisi-
tion. Intensity thresholding techniques implemented in Seg3D11 were used to segment each torso MRI into heart, 
lungs, and general torso tissue. Segmentation of the cardiac MRI was automatically performed using a two-kernel 
convolutional neural network. The network was tailored for MRIs from the original network implemented for 
computed tomography images12. Segmented structures included blood pools, ventricles, and general atrial tissue. 
To automatically register the four-chamber heart segmentation into the torso, an iterative closest point algorithm 
was utilized in Seg3D11,13. Anatomical meshes were generated automatically from the joint segmentations using 
the Tarantula software meshing package14. Target resolutions within the cardiac and torso surfaces of 1.2 and 4.0 
were prescribed, respectively. All models within the cohort were equipped with universal ventricular coordinates 
(UVCs) to allow for automated manipulation of all geometric-based entities15,16. The entire framework for the 
generation of the ventricular-torso model cohort is described in detail in Gillette et al.15. The ventricular-torso 
model cohort comprising geometries Γ ∈i, [1, 13]V i,  is visualized in Fig. 2.
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Atria. An overview of the anatomical model cohort generated for the atrial simulations is shown in Fig. 3.  
A total of 125 anatomical models Γ ∈i, [1, 80]A h i, ,  and Γ ∈i, [1, 45]A LAE i, ,  of the atrial endocardium were 
derived from a bi-atrial statistical shape model10,17. The endocardial surfaces were augmented with a homogene-
ous wall thickness of 3, rule-based myocardial fiber orientation, tags for anatomical structures and interatrial 
connections as described by Azzolin et al.18,19. Out of these 125 geometries, 80 models exhibited left and right 
atrial volumes in physiological ranges reported for healthy subjects20. In these geometries, 10 different fractions 
from 0 to 45% of the atrial myocardial tissue volume were additionally replaced by fibrotic patches as described 
previously21 to model atrial cardiomyopathy. The remaining 45 anatomical models were generated by constrain-
ing the coefficients of the statistical shape model such that left atrial volumes were increased to value ranges 
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Fig. 1 Pipeline for the generation and validation of the synthetic 12 lead ECG database using individual multi-
scale models of the atria and the ventricles.

Fig. 2 Cohort of ventricular-torso models derived from clinical MRIs. Tissues include lungs, blood pools, 
atrial tissue, ventricles, and general torso. Parameters dictating ventricular electrophysiologyfor normal healthy 
control were varied through physiological ranges. Disease conditions of BBB and MI were then modeled by 
making adaptions to the model.
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typically observed in left atrial enlargement patients20. Additionally, 25 torso geometries i, [1, 25]T i,Γ ∈  were 
obtained by modifying the coefficients of the two leading eigenmodes in the human body statistical shape model 
constructed by Pishchulin et al.22. In this way, height, weight and gender differences were represented in the 
anatomical torso model cohort. By applying random rotation angles , ,x y zα α α  and translation parameters 
t t t, ,x y z in ranges summarized in Table 4 to the atrial geometry, heart location and orientation variability were 
additionally accounted for in the virtual population.

Simulation protocol and parameters. Ventricles. Under normal healthy control, activation of the ventri-
cles was assumed to be Durrer-based23, where the His-Purkinje System was modeled assuming 5 fascicular sites of 
earliest breakthrough on a fast-conducting endocardium. Three fascicular sites were placed in the left ventricle (LV) 
on the anterior endocardium →xlv ant, , posterior endocardium →xlv post, , and the septum xlv sept,

→ . Activation of the right 
ventricle (RV) was controlled using a site corresponding to the moderator band →xrv mod, . An additional site →xrv sept,  
was also placed on the right-ventricular septum. All fascicular sites were defined in UVCs. The RV moderator band 
was placed in the middle of the RV free wall. The transmural depth of the remaining fascicular sites was assumed to 
be constant at 20% of the ventricular free wall. The fascicles were assumed to be of disc-like shape with a transmural 
thickness of 0.5% of the ventricular wall, and a radius controlled through additional parameter →r  that related to 
endocardial extent. Activation was assumed to be simultaneous, apart from a prescribed delay →tmod in the activation 
of the RV moderator band site.

To modulate the fast spread of conduction on the endocardial surface of the ventricles modulated by the 
His-Purkinje System, a fast-conducting endocardium was also included that spanned from the middle 10% to 90% 
of the ventricular mesh along the apico-basal direction. Details of the His-Purkinje representation are available in 
Gillette et al.15. An isotropic conduction velocity of 2.0 was prescribed within the fast-conducting endocardium24.

Myocardial fiber directions were applied using a rule-based method25 that assumed principal fiber directions 
rotate radially from 60.0° on the endocardium to the epicardium −60.0°26. Corresponding sheet fiber directions 
of −65.0° and 25.0° were applied, respectively26. Conduction velocity along the principal direction of myocardial 
fibers of 0.6 was applied with an off-axis conduction velocity ratio of 4:2:127. Conductivity within the myocar-
dium was set according to Roberts et al.28. All remaining conductivities within the volume conductor containing 
lungs, blood pools, atria, and general torso tissue were set according to Keller et al.29.

Fig. 3 Anatomical model cohort for atrial simulations. 80 atrial geometries with physiological left and right atrial 
volumes were derived from a bi-atrial statistical shape model17 and served as a basis for normal healthy control 
simulations. 9 different volume fractions of these models were additionally replaced by fibrosis for simulations 
of fibrotic atrial cardiomyopathy. Interatrial conduction block signals were generated by blocking conduction 
in Bachmann’s Bundle in the same 80 geometries. Furthermore, 45 geometries with enlarged left atrial volumes 
were generated. As for the torso anatomy, 25 geometries were derived from a human body statistical shape model 
to account for height, weight and gender differences in the virtual patient cohort. Moreover, the rotation angle as 
well as the spatial position of the atria inside the torso were varied in physiological ranges.
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5Scientific Data |          (2023) 10:531  | https://doi.org/10.1038/s41597-023-02416-4

www.nature.com/scientificdatawww.nature.com/scientificdata/

Ventricular myocyte electrophysiology was modeled using the Mitchell-Schaeffer ionic model isinus
→ 30. A rest-

ing membrane voltage of −86.2 and a peak action potential voltage of 40 was assumed. Gradients in action 
potential duration (APD) within the myocardium, needed to establish physiological T waves, were generated by 
utilizing a known relationship between the closeτ  parameter and APDs. A linear combination of the UVCs 
weighted with given weights →qw

 was first computed at each node of the mesh. The weighted UVC gradients were 
mapped into a range between APDmin and APDmax to generate an APD map within the entirety of the ventricles. 
Values for the gradients and the APD are derived from the literature31–33. In total, variation in electrophysiology 
during normal healthy control was controlled through 20 variable parameters summarized in the parameter 
vector ω→qrs for the QRS complex:

{ }x x x x x t, , , , , (1)qrs lv ant lv post lv sept rv mod rv sept mod, , , , ,ω→ = → → → → → →

and ω→t for the T wave:

{ }i APD APD q, , , (2)t sinus min max wω→ =
→ → .

All geometric-based parameters could be mapped into the mesh using kD-trees implemented in meshtool34. 
Parameters relating to both the QRS complex and T wave under normal healthy control were varied in phys-
iological ranges to generate variation in the QRST complex as reported in Tables 1, 2, respectively. Sampling 
through the ranges for each of the parameters was done using Latin Hyper Cubes.

The two pathologies of BBB and MI were then modeled in the ventricles alongside normal healthy control. 
Pathologies of LBBB and RBBB were included in the ventricular-torso model. To cause a complete branch block, 
all fascicular root sites within either the LV or the RV were neglected to inhibit activation. All other relevant elec-
trophysiology parameters were allowed to vary in the same ranges as reported for normal healthy control above.

A MI stemming from occlusion of one of the three primary arteries of RAD, LAD, and LCX was inserted into 
the ventricles. For each of the arteries RAD LAD LCX{ , , }ν ∈ , a core center x mi,

→
ν  was defined using the 

apico-basal and rotational UVC coordinate values that were bounded according to recommendations of affected 
regions on the clinical 17-segment model determined by the American Heart Association (AHA)8. Namely, the 
LAD was restricted to the anterior-anteroseptal region spanning the entire apico-basal extent. Both the RAD 
and LCX extended less apically, and were confined to the lateral wall and the inferior-inferioseptal regions, 
respectively. For each artery, the infarct was either assumed to span the entirety of the ventricular wall or trans-
mural extent of 30% from the endocardium, giving rise to a transmural extent value ρn mi,  such that ∈ . .n {0 3, 1 0}. 
The outer 5% of the infarct area was allocated to be border zone (BZ), and the remaining area was defined as the 
infarct core. All scars were assumed to be left-sided, thus presenting only in LV.

From each infarct center, an Eikonal activation map was computed within the ventricular geometry assum-
ing the same conduction velocity and off-axis ratios as assigned in the general myocardium during normal 
healthy control. An infarct geometry was taken by thresholding the activation map according to the computed 
time that generated a radius of distance dco. The infarct core was assumed to be electrically inert, while the con-
duction velocity in the BZ was set to 0.15 with an off-axis ratio of 1.035. The conductivity within the BZ was set 
to the same values reported for the healthy myocardium. Parameters for the Mitchell-Schaeffer ionic model 
within the BZ →iBZ were manually adjusted using bench leading to characteristic action potential changes during 
MI36. In total, the MI class comprised 6 sub-classes. The parameters varied to induce various degrees and posi-
tions of MI ω→ν mi,  included:

{ }x d RAD LAD LCX n, : { , , }, {0 3, 1 0} (3)mi mi n mi co, ,ω ρ ν→ = → ∈ ∈ . .ν

Parameters were similarly varied using Latin Hyper Cubes through ranges based on clinical observation for 
characteristic occlusion sites and action potential changes (Table 3).

Transmembrane voltages were simulated using the efficient reaction-Eikonal method in the monodomain 
formulation without diffusion37. Electrical potentials of each electrode on the torso surface were recovered 
from transmembrane voltages using lead fields precomputed once for every model38. A ventricular 12 lead ECG 
(QRST complex) was generated by simulating a ventricular beat for 450. All simulations were run using the 
CARPentry cardiac solver39 and the openCARP simulation framework40,41 on a desktop machine with 24 cores, 
parallelized into 3 threads.

Atria. Local activation times in the atria were obtained by solving the Eikonal equation with the Fast Iterative 
Method42 and the Fast Marching Method43. Excitation was initiated at the sinoatrial node with an exit site 
located at the junction of crista terminalis and the superior vena cava. Locally heterogeneous conduction veloc-
ity CV[Region] and anisotropy ratios AR[Region] for [Region] ∈ {bulk tissue, interatrial connections, crista termina-
lis, pectinate muscles, inferior isthmus} were modeled as summarized in Table 4. The spatio-temporal 
distributions of transmembrane voltages t xTMV( , ) were subsequently derived from the computed activation 
times by shifting pre-computed Courtemanche et al. action potential templates tTMV( ) in time. Remodeling of 
cellular electrophysiology was applied in fibrotic regions as described below. For all simulations except for those 
of fibrotic atrial cardiomyopathy, the baseline parameters of the Courtemanche et al. model remained unchanged 
in all atrial regions. The atria were placed inside a torso geometry and were rotated (α α α, ,x y z) and translated 
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(t t t, ,x y z) around and along all three coordinate axes to account for additional anatomical variability in the 
cohort. The forward problem of electrocardiography was solved with the infinite volume conductor method (for 
the normal healthy control cases and fibrotic atrial cardiomyopathy) or the boundary element method (for inter-
atrial conduction block and left atrial enlargement). Single beat 12 lead ECGs of the P wave lasting 150–200 were 
subsequently extracted at standard electrode positions. In total, variation during healthy sinus rhythm simula-
tions was controlled through the parameters summarized in the following vector

Electrophysiological Parameters of QRS Complex Simulations

Entity Parameter Value Unit Reference

Geometry i, [1, 13]V i,λ ∈ [1,13] — Gillette et al.15

Fascicular Sites

→xrv mod,

{ρ = 0.2, —

Durrer et al.23,
Gillette et al.15

φ = [0, 1.0], —

z = [0.1, 0.6], —

r = [0.2, 0.8], —

t = [0, 10]} ms

→xrv sept,

{ρ = 0.8, —

φ = [−1.5, 1.5], —

r = 0.4, —

z = [0.2, 0.4], —

t = 10} ms

xlv sept,
→

{ρ = 0.2, —

φ = [−1.5, 1.5], —

r = [0.05, 0.4], —

z = [0.3, 0.7], —

t = 10} ms

→xlv ant,

{ρ = 0.2, —

φ = [1.0, π], —

r = [0.05, 0.4], —

z = [0.2, 0.8], —

t = 10} ms

xlv post,
→

{ρ = 0.2, —

φ = [-π, −1.0], —

r = [0.05, 0.4], —

z = [0.2, 0.7], —

t = 10} ms

Conduction Velocity

cvendo 2.0 ms−1 Kassebaum et al.24

cvendo r, 1.0 — Gillette et al.59

cvmyo 0.6 ms−1 Taggart et al.27

cvmyo r, 4:2:1 — Taggart et al.27

Myocardial Fiber Orientations

endoα 60.0 °

αepi −60.0 ° Bayer et al.25

βendo −65.0 ° Streeter et al.26

epiβ 25.0 °

Heart Conductivity

ilσ 0.34 Sm−1

Roberts et al.28

σin 0.06 Sm−1

σit 0.06 Sm−1

elσ 0.12 Sm−1

σen 0.08 Sm−1

σet 0.08 Sm−1

Volume-Conductor Conductivities

σtorso 0.22 Sm−1

Keller et al.29
σatria 0.0537 Sm−1

σlungs 0.0389 Sm−1

bloodσ 0.7 Sm−1

Table 1. Model parameters for the electrophysiology within the ventricular simulations generating QRS 
simulations. Positioning, sizing, and timing of the 5 sites of fascicular breakthrough representing the His-
Purkinje System within the ventricles provide variation in the QRS complex. Fixed parameters were held 
constant at physiological values across all simulations as indicated.
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ω α α α λ λ=
→ → →

.{ }t t tCV , , , , , , , , , (4)P Region x y z x y z T i A i[ ] , ,

For simulations of fibrotic atrial cardiomyopathy, nine different fractions from 5% to 45% of the healthy atrial 
myocardial volume were replaced by fibrotic tissue as described in detail by Nagel et al.21 in the same 80 atrial 
anatomical models that were employed for the healthy control simulations. In fibrotic patches, 50% of the cells 
were modeled as passive conduction barriers by removing the affected elements from the volumetric meshes. 
In the remaining 50% of the fibrotic cells, conduction velocity was reduced by a factor of 0.2 and 0.5 compared 
to the healthy baseline values in Table 4 in transversal and longitudinal fiber direction, respectively. In this way, 
anisotropy ratios were increased by a factor of 2.5, which typically facilitates functional reentry in patients with 
atrial fibrillation. To account for paracrine cytokine remodeling effects in fibrotic regions, maximum ionic con-
ductances of the Courtemanche et al. cell model were rescaled (0.6×gNa, 0.5×gK1, 0.5×gCaL).

Electrophysiological Parameters of T Wave Simulations

Entity Parameter Value Unit Reference

Ionic Model isinus
→

{Vgate = 0.13, —

Mitchell & 
Schaeffer30

Vmin = −86.2, mV

Vmax = 40.0, mV

τin = 0.3, —

τout = 5.4, —

τopen = 80.0} —

Repolarization Gradients

APDmin [150, 175] ms

Opthof et al.31. 
Opthof et al.32, 
Keller et al.33

APDmax [225, 250] ms

qw
→ {ρ = [−0.6, 0.0], —

v = [0.1, 0.15], —

φ = 0, —

z = [0.9, 1.0]} —

Table 2. Model parameters for the electrophysiology within the ventricular simulations generating T waves 
simulations. Base parameters of the action potential were held constant, but variations in action potential 
duration are prescribed using weighted gradients.

Electrophysiological Parameters of Myocardial Infarction

Entity Parameter Value Unit Reference

Sizing of Infarct dco [0, 1.0] Sm−1 Keller et al.29

Infarct Center xLAD mi,
→ {φ = [0.0,2.0], —

AHA et al.8

z = [0.1, 1.0]} —

—
→xRAD mi, {φ = [−2.0, 0.0], —

z = [0.2,1.0]} —

—

xLCX mi,
→ {φ = [2.0, —

3.14] ∪ —

[−3.14, −2.0], —

z =[0.2, 1.0]} —

Infarct Transmurality ρν mi,
{0.3, 1.0} —

Conduction Velocity cvBZ 0.15 ms−1

Mendonca et al.35

cvBZ r, 1.0 —

Mitchell Schaeffer →iBZ {Vgate = 0.13, —

Mitchell, Schaeffer30, 
Loewe et al.36

Ionic Model Vmin = −73.1, mV

Vmax = 12.5, mV

τin = 0.45, —

τout = 3.6, —

τopen = 44.0} —

Table 3. Additional parameters were included to define infarct zones within the ventricular-torso model. 
Variations in the locations of the occlusion of the 3 primary arteries (LCA, LCX, and RCA) are based on clinical 
observations. Two different transmuralities are modeled. Fixed parameters comprise conductivity, conduction 
velocity, and the cellular settings.
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For left atrial enlargement simulations, 45 additional atrial geometries were derived from the bi-atrial statis-
tical shape model. Constraints were applied to the coefficients of the leading eigenmodes to generate anatomical 
atrial models with systematically increasing left atrial volumes6. Different rotation angle combinations and con-
duction velocity variations were applied for the simulations as reported in Table 4.

Complete interatrial conduction block was modeled by inhibiting conduction propagation through the 
elements in Bachmann’s bundle at the junction between the left and the right atrium in the same 80 bi-atrial 
geometries that were used for the control simulations. Different combinations of rotation angles and spatial 
translations of the atria within the torso were applied for the ECG calculations.

Synthesization of complete ECGs. Signal components were synthesized to a full ECG using a heart rate 
variability (HRV) model to obtain 10 s recordings in accordance with the standard clinical 12 lead ECG. As atrial 
and ventricular ECGs were carried out using different forward calculation methods, the amplitudes of QRST 
complexes were scaled according to the P waves prior to concatenation to ensure that signal amplitudes of single 
waveforms were consistent within one heartbeat. Thus, maximum P wave and R peak amplitudes were extracted 
in lead II of all clinical recordings from healthy subjects in PTB-XL1 using ECGdeli44. Based on these values, a 
multi-variate normal distribution was set up representing the relation between P wave and R peak amplitudes 
in clinical ECGs. In this way, the simulated QRST complex could be scaled with a factor sampled from this 
multi-variate probability distribution to match the corresponding amplitude of the simulated P wave. A PQ inter-
val complying with the simulated P wave duration was selected like-wise by drawing from a multi-variate normal 
distribution generated from clinical P wave duration and PQ interval values. Finally, the P waves and the scaled 
QRST complexes were concatenated using a sigmoid shaped segment of a length determined by the difference 
of PQ interval and P wave duration. When synthesizing ECG segments for the 1st degree AV block class, the PQ 
interval was sampled from the range > 200 ms.

To account for heart rate variability in the simulated 10 s ECGs, we refrained from simply repeating the concat-
enated single heart beat multiple times. Instead, the heart rate variability model developed by Kantelhardt et al.45  
was used to generate a series of RR intervals for an average heart rate within physiological ranges (50–90 bpm) 
determined from the QT interval of the respective simulation run using the multi-variate normal distribution. 
For each heart beat holding a different RR interval, the signal was shrunk or stretched in the [QRSoff, Toff] inter-
val, again by sampling values from a multi-variate normal distribution derived from clinical QRS duration, 
QT- and RR interval values. After adding a sigmoidal shaped TP segment to connect subsequent heart beats in 
the defined RR interval, we obtained the final 10 s 12 lead ECG. The raw ECG signal was superimposed with 
realistic ECG noise that mimics the effects of electrode movement, baseline wander, and motion artefacts, as 
reported by Petranas et al.46. The amplitudes of the noise vectors were scaled based on a chosen signal to noise 
ratio between 15 and 20 dB.

Data Records
The MedalCare-XL dataset is publicly available on Zenodo9 under the Creative Commons Attribution 4.0 
International license. Approximately 1,300 ECGs of 10 s length for each disease class are stored in csv format. Rows 
1–12 contain the 12 leads of each ECG following the order I, II, III, aVR, aVL, aVF, V1-V6. All signals are sam-
pled at 500 Hz, amplitudes are in mV. Each signal is available in three different versions: ‘*_raw.csv’ contains the 
noise-free synthesized ECG, ‘*_noise.csv’ contains the synthesized ECG with superimposed realistic ECG noise46, 
‘*_filtered.csv’ contains the bandpass filtered version (Butterworth filters of order 3, cut off frequencies of 0.5 Hz 
(highpass) and 150 Hz (lowpass)) of the synthesized ECGs with superimposed noise. For meaningful machine 
learning approaches, the signals are split in suggested subsets for training, validation and testing depending on the 
atrial and ventricular anatomical models the single simulation runs were based on to make sure each anatomical 
model is only contained in one of the subsets. A detailed description of the structure of the MedalCare XL dataset 
is shown in Table 5. Example ECGs of lead II for each disease are shown in Fig. 4(A). In Fig. 4(B), exemplary ECGs 
for each MI pathology class are shown corresponding to different occlusion sites and degrees of transmurality.

Technical Validation
We have employed two different approaches for the technical validation of the MedalCare-XL dataset of simu-
lated, synthetic 12 lead ECGs as described in the following. For a validation of the complete dataset, the statis-
tical distribution of ECG features extracted separately for each class (healthy control and specific pathologies) 
from the records in the MedalCare-XL database9 were compared to the distributions of the corresponding fea-
tures extracted from the clinical PTB-XL that were recently summarized in the PTB-XL + dataset47. In addition, 
we performed several so-called clinical Turing tests, where the ability of expert cardiologists to distinguish the 
simulated ECGs from clinical ECGs was evaluated again with representative samples from the MedalCare-XL 
and PTB-XL databases as described in detail below.

Feature distribution. To validate the simulated data against the statistical properties of clinically recorded 
ECGs, interval and amplitude features were extracted from the synthetic dataset and from PTB-XL using 
ECGdeli44 and compared to one another. Figure 5 shows the probability density functions for 6 timing and 5 
amplitude features extracted from lead II of all ECGs in the healthy clinical and virtual cohort. Except for the 
T wave amplitudes, the feature values for the synthetic signals lie within the clinical and physiological ranges. 
However, the feature distributions from the healthy and the virtual data do only coincide for the QRS duration. All 
other simulated timing and amplitude features only cover a subset of the clinically observed ranges. In Figs. 5, 6,  
a comparison of feature distributions for healthy and pathological ECGs in the virtual cohort (top panel) and the 
clinical cohort (bottom panel) is visualized for timing or amplitude features that are clinically considered for a 
diagnosis of the respective disease.
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Clinical turing tests. We aimed to ensure that the synthetic ECG signals correspond to the clinically meas-
ured signals with respect to ECG features which are characteristic for healthy cases. If cardiologists are not able 
to distinguish between measured and simulated ECG signals, this will increase confidence in the in-silico model 
as a surrogate for real clinical data. Therefore such a test can be considered as a clinical Turing test. For this, 
cardiologists were asked to perform an online Turing test to evaluate and to provide feedback on both healthy 
and pathological ECGs. A first clinical Turing test was conducted to determine the ability of the synthetic 12 
lead ECGs within the database to pass as real clinical signals. In a second test, cardiologists were asked to deter-
mine the pathology of the signals as conducted routinely in ECG diagnostics. Under all clinical Turing tests, the 

Structure of the MedalCare-XL dataset on Zenodo9

Class Folder Disease Folder Subset Folder Case Folder Data File

WP2_largeDataset_Noisei sinus training run_S62 *_raw.csvi

WP2_largeDataset_ParameterFilesii avblock test run_S63 *_noise.csvi

lbbb validation run_S64 *_filtered.csvi

rbbb run_S65 *_AtrialParameters.txtii

lae run_S66 *_VentricularParameters.txtii

fam run_S67

iab run_S68

mi/LAD_0.3 run_S69

mi/LAD_1.0 run_S70

mi/LCX_0.3_ant run_S71

mi/LCX_0.3_post run_S72

mi/LCX_1.0_ant run_S73

mi/LCX_1.0_post run_S74

mi/RCA_0.3

mi/RCA_1.0

Table 5. In the MedalCare-XL dataset two classes are available: (i) the WP2_largeDataset_Noise class, which 
contains the simulated ECG signals, and (ii) the WP2_largeDataset_ParameterFiles class, which contains all 
the parameter files used to run the simulations. In both classes there are subfolders for all pathological cases 
as well as for the healthy sinus rhythm case, each containing a training folder, a test folder and a validation 
folder. A subset of the 13 cases is distributed to the three subsets where each case contains ECG signals (i) or 
corresponding parameter files (ii), depending on the class they belong.

Electrophysiological Parameters of P wave simulations

Entity Parameter Value Unit Reference

Geometry
λ ∈i, [1, 24]A i, [−3, 3] — Nagel et al.17

λ ∈i, [1, 2]T i, [−2, 2] — Pishchulin et al.22

Atrial rotation

ax [−20, 20] °

Odille et al.60αy [−20, 20] °

αz [−20, 20] °

Atrial translation

tx [−10, 10] mm

Odille et al.60ty [−10, 10] mm

tz [−10, 10] mm

Transversal Conduction CVbulk tissue [0.57, 0.85] ms−1

Loewe et al.61

Velocities

CVinteratrial connections [0.46, 0.70] ms−1

CVcrista terminalis [0.57, 0.85] ms−1

CVpectinate muscles [0.62, 0.92] ms−1

CVinferior isthmus [0.57, 0.85] ms−1

Anisotropy ratios

ARbulk tissue 1.94 —

Loewe et al.61

ARinteratrial connections 3 —

ARcrista terminalis 2.56 —

ARpectinate muscles 3.24 —

ARinferior isthmus 1 —

Torso conductivity σtorso 0.22 Sm−1 Keller et al.29

Table 4. Model parameters for atrial simulations. Values were varied randomly following a uniform 
distribution in the specified intervals. Fixed parameters comprise anisotropy ratios and torso conductivity, 
which were defined as indicated in the respective column.
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PTB-XL1 database served as the basis for the measured signals and the simulated database described above was 
used for the synthetically generated signals.

Development of online platform for clinical turing test. In order to conduct clinical Turing tests, an online solu-
tion provided by the Know-Center (https://www.know-center.at), a research center for data science and artificial 
intelligence located in Graz, was used. The Know-Center extended its TimeFuse (https://ecgviewer.timefuse.
io/public/login/turing) online signal data platform to include a survey feature and a plotter to visualize 12 lead 
ECG signals. The ECG plotter was designed specifically to present 12 lead ECGs in a typical visualization as seen 
by cardiologists in the clinic on chart paper. Namely, horizontal lines on the pink background correspond to  
0.4 and vertical lines correspond to 0.1. The platform was also designed for hosting of multiple clinical Turing 
tests. Clinical Turing tests of either healthy signals or pathological signals could then be organized and con-
ducted separately.

Conducting tests. In a first iteration, Turing tests were performed with normal healthy control ECGs to better 
understand the ability of signals to pass as clinical signals under normal healthy. For this purpose, five groups 
with 20 signals each were created, resulting in a total of 100 signals. For the measured ECGs, 50 signals were 
randomly selected from a subset of the PTB-XL database, which contained only signals annotated as 100% 
healthy. For the generated ECGs, 50 signals under healthy sinus rhythm were randomly taken from the synthetic 
database described above. After pre-processing and filtering the 100 signals, the five groups were uploaded to the 
online platform and assigned to the survey participants. Within the test, expert cardiologists were required to 
evaluate whether each ECG test case from the total 100 was measured or generated. Clinicians were also allowed 
to refrain from answering, but a lack of a statement was taken as a false classification. All clinicians were also 
asked to provide reasoning behind the classification. A total of 6 clinicians performed the test.

A similar test was also performed with pathological conditions to demonstrate that the synthetic ECGs of the 
various modeled pathological cases would be classified by expert clinicans at the same accuracy as real clinical 
signals and could not be distinguished from clinically measured ECGs taken from the PTB-XL database. The 
cases included myocardial infraction (MI), left bundle branch block (LBBB), right bundle branch block (RBBB), 
first degree AV block (1AVB), and left atrial overload/enlargement (LAO/LAE). Conditions of fibrotic atrial 
cardiomyopathy (FAM) and complete interatrial conduction block (IAB) were neglected as such diseases were 
not present within PTB-XL. Examples of the disease are provided in Fig. 4(A,B).
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Fig. 4 (A) Exemplary 10 s ECGs (lead II) of each pathology class and a normal healthy control in the virtual 
cohort. (B) Exemplary 10 s ECGs (lead II) of each MI pathology class for different occlusion sites and degrees of 
transmurality.
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Similar to the healthy Turing test, 50 generated ECG signals were taken from the synthetic database such that 
each of the five pathological classes is represented by 10 ECGs. The 50 measured ECGs were randomly selected 
from five subsets of the PTB-XL database, 10 cases per subset, where each subset only contained signals labeled 
as 100% pathological according to the 5 classes. Clinicians could choose from a list of 11 labels. Clinicians were 
asked to make at least one annotation for each of the 100 pathological 12 lead ECG signals from a list of 11 
pathologies as listed below:

Fig. 5 Comparison of features in the healthy clinical and virtual cohort. Probability density functions are shown 
for timing features (left column, from top to bottom: P wave duration, QRS duration, T wave duration, PQ 
interval, QTinterval, RR interval) and amplitude features (right column, from top to bottom: P wave amplitude, 
Q/R/S peak amplitude, T wave amplitude). Blue and red curves represent the distributions calculated based on 
the clinical and the simulated data, respectively. The centered vertical lines highlight the mean value μ and the 
filled areas indicate the interval [μ − σ, μ + σ] with standard deviation σ.
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•	 1AVB
•	 atrial fibrillation (AFIB)
•	 FAM
•	 IAB
•	 LAO
•	 LBBB
•	 MI
•	 normal healthy control (NORM)
•	 right atrial overload/enlargement (RAO/RAE)
•	 RBBB
•	 Wolf-Parkinson-White syndrome (WPW)

A total of two cardiologists responded.
Within the normal healthy control clinical Turing Test, the six clinicians correctly classified 464 of the 600 

cases, which corresponds to an accuracy of 77.33%. On the other side, 136 signals (22.67%) could not be cor-
rectly classified, including 62 (10.34%) synthetic and 74 (12.33%) measured ECGs, see Fig. 7(B). A detailed sum-
mary is given in Fig. 7(A,C). Primary ECG features leading to classification as simulated included fractionation 
or improper R wave propagation in the QRS complex, a spiking or biphasic T wave, and a lack of physiological 
noise in the signals.

Within the clinical Turing test on pathological ECGs, the two clinicians correctly classified the signals as 
either measured or clinical in 166 of the 200 cases, which corresponds to an overall accuracy of 83%. On the 
other side, the type of 34 signals (17%) could not be correctly classified, including 10 (5%) synthetic and 24 (12%) 
measured ECGs, see Fig. 7(E). A detailed summary is given in Fig. 7(D,F). Regarding the correct classification of 
pathological cases, only 101 of the 200 (50.5%) overall cases including both simulated and clinical signals were 
classified correctly by both clinicians. Namely, 38 measured ECGs were classified as the wrong pathology by 
experts resulting in an accuracy of 62%. Inversely, simulated pathologies were correctly classified at only 39%, 
with 61 signals being classified incorrectly. A detailed summary is given in Fig. 8(A,B). The actual pathology and 
the diagnoses given by each clinician within the pathological clinical Turing test is provided in Fig. 8(C).

Usage Notes
Separate models of atrial and ventricular electrophysiology that are individually more detailed and steerable 
were joined together to capture the P wave and the QRST complex within the 12 lead ECG, respectively. Cohorts 
of four chamber models of cardiac electrophysiology48 could also be used for such a purpose and offer distinct 
advantages for modeling certain pathologies with atrio-ventricular dependencies. Such four-chamber cohorts, 
however, are not yet well suited for the generation of large ECG databases due limited anatomical variation. While 
statistical shape models of the four chamber heart have been generated to encode such anatomical variation, these 
models still lack controllable electrophysiology needed to generate realistic signals. For example, repolarization 

Fig. 6 Comparison of features extracted from healthy (solid lines) and pathological (dotted line) ECGs in the 
clinical (blue curves, bottom panel) and virtual (red curve, top panel) cohorts. Probability density functions 
are shown for selected timing or amplitude features that are clinically evaluated for a diagnosis of the displayed 
disease (from left to right: RBBB, LBBB, MI, 1AVB, LAO, IAB and FAM).
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in the ventricles has volumetric gradients (both transmural and apico-basal) that are needed for realistic T waves. 
Using a cohort of volumetric ventricular model for the QRST complex in combination with a statistical shape 
model in the atria overcomes such limitations. Furthermore, using both atrial and ventricular shape models does 
not necessarily mean that the two systems may be linked, which may lead to unphysiological configurations.

Fig. 7 (Type classification) Healthy cases: (A) Classification results for each of the six expert clinicians for the five 
Turing tests and percentage of correct assessments. In summary, 62 of 300 assessments of the synthetic ECGs and 
74 of 300 assessments of the measured ECGs could not be correctly classified by the experts. (B) Type classification 
matrix across all 600 assessments. (C) Results of the clinical Turing tests performed by 6 clinicians. Each row 
corresponds to a clinical Turing test and each square belongs to one of the 20 ECGs per test. Shown is the relative 
number of clinicians who correctly classified the corresponding signal. Pathological cases: (D) Type classification 
results for each of the two expert clinicians for the five Turing tests and percentage of correct assessments. In 
summary, 10 of 100 assessments of the synthetic ECGs and 24 of 100 assessments of the measured ECGs could 
not be correctly classified by the experts. (E) Type classification matrix across all 100 assessments. (F) Results of 
the clinical Turing tests performed by 2 clinicians. Each row corresponds to a clinical Turing test and each square 
belongs to one of the 20 ECGs per test. Shown is the relative number of clinicians who correctly classified the type 
of the corresponding signal.
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The feature analysis showed that the synthetic signals exhibit interval and amplitude features that are mostly 
in line with feature ranges reported in PTB-XL for the healthy and the pathological cohorts. From Fig. 6, it is 
apparent that the change in feature values extracted from healthy and diseased ECGs is consistent between the 
simulated and the clinical data even though absolute feature ranges sometimes deviate. However, they neither 
cover the full range of feature values that occur in clinical practice nor are they characterized by accurately 
coinciding distributions. This could be attributed to the fact that the atrial model population was parameter-
ized using ECG biomarker ranges for P wave amplitudes and durations reported for extensive clinical cohorts 

Fig. 8 (Pathology classification) (A) Pathology classification results for each of the two expert clinicians for the 
five Turing tests and percentage of correct assessments. In summary, 61 of 100 assessments of the synthetic ECGs 
and 38 of 100 assessments of the measured ECGs could not be correctly classified by the experts. (B) Pathology 
classification matrix across all 100 assessments. (C) (Clinician-based). Shown are the classifications for both 
clinicians of all ECG Signals. For each ECG signal designated by a s quare, the top entries are the correct pathology 
and the bottom entries are the pathology actually selected by the user. Each row corresponds to a clinical Turing 
test and each square belongs to one of the 20 ECGs per test. (D) Confusion Matrices.
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partially comprising > 200,000 subjects49,50 which might lead to slightly different feature distributions compared 
to those extractable from PTB-XL. The QRST complexes were also parameterized according to experimental 
data or clinical data conducted on smaller model cohorts that may not be representative of the entire population 
especially in terms of age (covered range: 30–65 years) and comborbidities (healthy subjects). Some parameters 
were also estimated as no direct clinical or experimental data is available for these entities. One such example is 
the heightened T wave amplitudes, which stem from repolarization gradients in the ventricles that generate large 
cardiac source. While the occurrence of repolarization gradients are known31,32, the exact nature of such gra-
dients are not well understood and thus hard to parameterize for a patient population. Therefore, the synthetic 
signals are not fully representative for an entire population, such as the one in PTB-XL.

The feature distributions in the synthetic cohort are however consistent in themselves, i.e., unrealistic com-
binations of different features are unlikely to occur. For example, the upper limit of RR intervals in the simulated 
healthy cohort does not exceed 1000 ms, while simultaneously, the QT interval also only covers lower ranges of 
the clinical QT interval values (compare Fig. 5 and Table 6). This is due to the fact that multi-variate normal dis-
tributions were used during the synthesization procedure ensuring that clinically reported correlations between 
ECG biomarkers (such as P wave duration and PQ interval or QT duration and RR intervals) are taken into 
account. This is also advantageous as is is possible to account for physiological responses that include alterations 
in the QT duration or PQ interval. In the case of exercise, for example, an increase in heart rate outside of the 
reported physiological range of 67–100 bpm can be accounted for by shortening the QT interval. Furthermore, 
detailed mechanistic electrophysiological models of the heart were employed and simulation parameters in rea-
sonable ranges reported in literature were chosen leading to realistic single beat P waves and QRST complexes in 
most cases. It must be noted that PTB-XL lacks clinical data for fibrotic atrial cardiomyopathy and for interatrial 
conduction block. Thus, fidelity assessment of ECG features within these two classes by means of a comparison 
to clinical data was not possible using the same clinical ECG resources. However, we already showed in previous 
work that the simulated P waves reproduce characteristic changes in key diagnostic ECG markers21,51. These 
include a prolongation of the P wave duration compared to the control simulations due to delayed depolar-
ization in fibrotic patches as well as a retrograde activation of the left atrium through interatrial conduction 
pathways on the posterior wall. Moreover, as shown in Fig. 6, in interatrial conduction block patients, the mor-
phology and therefore the P wave amplitude is markedly changed in lead aVL compared to the healthy cohort. 
In patients with fibrotic atrial cardiomyopathy, the most pronounced decrease in P wave amplitude due to scar 
tissue not contributing to the overall source distribution in the atria occurs in the lateral leads (compare Fig. 6).

The clinical Turing tests aimed to investigate the ability of the 12 lead ECG signal to exhibit morphological fea-
tures in accordance with clinical diagnostic criteria as routinely assessed by clinicians under both normal healthy 
control and pathological conditions. Within the clinical Turing test performed for normal healthy control, it can 
be observed that accuracy in identifying whether a signal was simulated or clinical was 77% accurate. Primary 
ECG features leading to identification as a synthetic signal included fractionation and R wave progression of the 
QRS complex under certain diseases conditions. Before scaling of the QRS complex according to the P wave, 
identification of synthetic signls was common based on improper matching of amplitudes under normal hearth 
rhythm. Spiked T waves with high amplitudes or biphasic T waves could also be observed. Real ECG signals 
tended to also exhibit a certain noise types not accounted for, including electrical disturbances and large baseline 
wander, that must either be modulated within simulated data or removed during the clinical Turing test. Within 
the clinical Turing test to diagnose pathological ECGs, the accuracy of type classification increased to 83%, indi-
cating type classification was easier with synthetic pathological data. Misdiagnosis was common across both 
signal types as pathologies were only diagnosed correctly by the two expert cardiologists in 51% of cases. More 
clinicians should perform the clinical Turing test on pathology classification to give a better indication of the true 
accuracy of ECG diagnosis on both simulated and clinical signals. Furthermore, the clinical Turing test must be 
conducted on a larger number signals beyond the 100 analyzed, ideally, for the entire ECG synthetic database.

Regardless, it can be observed that clinicians had varying performance on clinical-based 12 lead ECG signals 
in comparison to those taken from the synthetic ECG database. This is highlighted by the confusion matrices 
constructed for all pathological cases from the results for both measured and simulated signals (Fig. 8(D)). 
Clinical signals were classified with the correct pathology at an accuracy of 62%. Within clinical signals, the 
pathological cases of LAO, 1AVB, and MI were commonly mistaken as a 12 lead ECG in normal sinus rhythm by 
both clinicians.Simulated signals, on the other side, were classified correctly for the underlying disease pathol-
ogy at only 39%. None of the modeled pathological cases could be diagnosed with 100% accuracy by either 
clinicians using standard guidelines for ECG diagnostics across both simulated and clinical signals.

Largest differences in diagnostic outcomes between simulated and clinical data sets is observed for LBBB and 
RBBB. Within simulated ECGs, LBBB and RBBB were commonly mistaken for MI.This stems from the fact that 
some morphological features in these signals are characteristics of infarction or aneurysm within the heart. In 
some RBBB signals, for example, V1 is predominantly negative and in combination with large Q waves in I and 
aVL could indicate an anterior infarction. LAO within both clinical and simulated data experienced the highest 
level of misdiagnosis and resulted in similar performance. This could be attributed to the fact that LAO mani-
fests only within the P wave, where morphological deviations are harder to detect due to a substantially lower 
amplitude than the QRS complex. Misdiagnosis was also high among the diseases of LBBB and RBBB within the 
simulated data set. Differences in outcome between the clinical and synthetic signals may stem from the inability 
of the synthetic ECG database to manifest the full complexity of the underlying diseases. For example, remode-
ling within the ventricles under such conditions may lead to slower conduction properties and alternative wave 
morphology. Furthermore, only complete LBBB or RBBB was modeled. In clinical practice, however, there are 
varying degrees of conduction block. A lower reported diagnostic accuracy for MI and 1AVB is seen for the 
clinical signals in comparison to the simulated ECGs, which could also stem from a lack of complexity within 
the simulated setup easing diagnosis.
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Some results from the Turing test of pathological cases indicate that standard protocols for ECG classifica-
tion by clinicians are not sufficient. Machine learning algorithms may offer a means to aide in ECG diagnosis 
to improve reliability of clinical decisions. Therefore it is important to provide reference data to test such algo-
rithms. An earlier benchmark study demonstrated this with the large data set of clinical ECGs in PTB-XL52. 
In this work, deep learning algorithms were e. g. found to exhibit diagnosis success rates in the range of 80–95 
percent depending on the used metric. The clinical PTB-XL data set was also instrumental in demonstrating the 
clear improvement of algorithms based on self-supervised learning53. Nevertheless, clinical data bases strongly 
depend on the quality and the terminology used to label the ECG data. In addition large sets of publicly available 
clinical data sets are still rare and limited in number. Here is where benchmarking ML algorithm with validated 
simulated data sets can become an important tool in the development and benchmarking of new algorithm for 
ECG classification. Machine learning algorithms could then also be trained and tested on real and synthetic 
data in different combinations. Data bases of simulated ECGs like the MedalCare-XL set presented in this paper 
provide also an important link of the growing knowledge developed in the cardiac modelling community and 
practical development of algorithm for data analysis.

To lower the mismatch in performance between clinical and synthetic signals, further parameter tuning is 
needed. Iterative clinical Turing tests would be beneficial to update parameters ranges to mitigate the prevalence 
of undesirable ECG features within the entire database. Refinement could also be guided by sensitivity analysis 
that provides more information on the relationship of model parameters and the morphological traits of simu-
lated signals as determined by clinicians. However, this requires a large investment due to the variety in clinical 
pathological classes, and the lack of known electrophysiology in such conditions. Certain important ECG fea-
tures may also be detected by machine learning analysis52 to provide insight into the refined sub-classification of 
pathological cases beyond current routine diagnoses.

When using the synthetic ECGs as an input data source for machine learning applications, samples that were 
generated based on the same anatomical model should explicitly belong to only one of the training, testing or 
validation sets. As the main variation in morphology of the P waves and QRST complexes stem predominantly 
from anatomical differences in the model cohort54, splitting the data in the described fashion thus helps to pre-
vent overfitting to similar or almost identical samples that were already seen during training55.

When applying the simulated data for extending or replacing small or imbalanced clinical datasets, the user 
is advised to refer to the signals with superimposed realistic ECG noise instead of the raw signal traces. In this 
way, the simulated signals exhibit characteristics due to noise interference that are also observable in clinical 
ECGs. Thus, possible domain gaps can be reduced eventually leading to an improved classification outcome on 
actual clinical data.

Code availability
Code for solving the Eikonal equation and the forward problem of electrocardiography using the boundary 
element method as used for the atrial simulations is openly available (Stenroos et al.56, Schuler et al.57). The 
electrophysiology of the ventricular-torso model was simulated using the proprietary CARPentry-Pro software 
(NumeriCor, Graz, Austria). Similar simulations can also be carried out with the publicly available openCARP 
simulation framework40,41. Python code for synthesizing single beat P waves and QRST complexes to a 10 s time 
series using multi-variate normal distributions for amplitude scaling and interval selection is publicly available58.
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