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Abstract
When planning production or remanufacturing capacity, it is necessary to use forecasts. In 
the case of production, demand must be forecasted; in the case of remanufacturing, core 
supply is also uncertain. In the remanufacturing literature, there are different methods to 
forecast product returns in the long term, mostly material-flow analysis, system dynamics 
simulation, and discrete-event simulation. All methods require various assumptions to be 
taken. The effects of the assumptions are rarely studied, although every assumption adds a 
source of error. In this paper, we examine which assumptions influence long-term forecasts 
for remanufacturing capacity planning the most. This can help researchers and practitioners 
to focus on the most influencing factors and neglect those that would only add complex-
ity without adding value. We examine assumptions concerning new product sales, product 
composition, product lifetime, return rate, and return quality. Our use case are electric vehi-
cle batteries in Germany from 2022 to 2032. We find that, for the examined period, product 
quality and return rate have the greatest influence on capacity planning. Assumptions on an 
age limit for cores or a certain remaining useful life as a quality gate significantly lower the 
product return quantities and the resulting demand for remanufacturing capacity. The prod-
uct’s lifespan also influences the results, first and foremost regarding the entry point into 
remanufacturing activities. Sales forecasts affect the results minorly if the timeframe of the 
forecast and the expected product lifespan are approximately the same.
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Introduction

Opening or closing a production site and expanding or downsizing it are far-reaching, 
strategic decisions. They require a profound study of the market and the desired business 
model and have a tremendous impact on a company’s financial success. These kinds of 
decisions are not unique to manufacturing companies. Retailers decide where to operate 
stores, service providers decide in which fields they want to expand, and politicians decide 
on locations for infrastructure. What these decisions have in common is that they have a 
long planning horizon and that decision-makers need reliable forecasts to achieve good, 
sustainable results in retrospect. With growing efforts to automate remanufacturing opera-
tions or at least parts of it, like disassembly, long-term capacity planning could become 
increasingly relevant in the remanufacturing industry.

Many forecast methods in supply chain management enable long-term capacity plan-
ning [9, 12, 55]. However, they are mainly intended for new product sales and established 
products. These methods might not be suitable for remanufactured products as they do not 
account for the additional uncertainties when dealing with End-of-Life (EoL) products. 
EoL uncertainties occur, for instance, concerning core availability, quality of cores, and 
collection procedures [49]. Even fewer forecast methods consider the possibility that the 
forecasted product is not well-established yet (e.g., [57, 74]). This means that the sales fig-
ures are uncertain too.

Long-term forecasting of EoL quantities of new products is challenging and afflicted 
with various sources of uncertainty, but it is highly important. For new products like elec-
tric vehicle batteries (EVBs), it is not only about when to build remanufacturing capacity. 
Remanufacturing technology must also be developed. The questions long-term forecasts 
answer are, therefore: How fast do we have to develop remanufacturing technologies, and 
how much capacity is needed at what time? Additionally, it might help to assess when 
remanufacturing might be an economically feasible business model since quantities are 
sufficient for industrial-sized remanufacturing.

Some authors have already recognized the importance of the topic and have made long-
term forecasts by employing different methods (e.g., material flow analysis [11], or system 
dynamics simulation [70]). Since forecasts try to predict an uncertain future, it is in the 
nature of things that they rely on assumptions. It is also common that some assumptions 
are disclosed explicitly while others are made implicitly. It is not always clear why they are 
chosen for both methods and assumptions.

Our work aims to compare different assumptions in long-term forecasting of product 
returns in new markets concerning product service time, quality, and return rates. We apply 
the forecasts to EVBs in Germany ten years ahead (2032) as a case study. For that, we have 
to make some assumptions ourselves that we disclose as transparently as possible. A simple 
capacity optimization model is applied to make the impacts of different assumptions vis-
ible. This helps to identify which assumptions fundamentally influence the planning results 
and which add complexity without adding to the informative value. We contribute to the 
remanufacturing community by improving assumption-making in long-term forecasting for 
capacity planning, especially in new markets or for new products in existing markets.

The remainder of the article is as follows: The “Literature” section gives an overview 
of methods employed and assumptions made in the literature concerning core return fore-
casts. Additionally, EVB-specific assumptions taken in the literature are presented. The 
“Forecasting and capacity planning method” section discloses how we apply selected 
methods and assumptions to EVBs and describes the capacity optimization model we use 
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to compare the impacts of different assumptions. The “Results” section shows the outcome 
of the forecast application and capacity planning. The “Discussion” section debates the 
results regarding the strength of influence of the influencing factors and the approach’s 
shortcomings. Subsequently, we draw “Conclusions” in the final section.

Literature

Returns forecasts

Methods employed for forecasting product returns are manifold. Some can best be 
described as statistical time-series analyses of past returns, e.g., exponential smoothing 
[24] or ARIMA [48]. Other models are based on past sales, e.g., with Distributed Lag 
Models (DLMs) [14, 15, 41] or stocks and flows models [11, 75]. A third class, such as 
neuronal network models, combines past returns, sales, and/or other indicators like gross 
domestic product (GDP) [22, 30, 43, 50]. Krapp, Nebel, and Sahamie [41] classify fore-
casting approaches by their methodology rather than their input. They differentiate between 
causal analysis, simulation/soft-computing, and statistical methods. Krug et al. [42] base 
their classification of approaches on how uncertain parameters are handled. According to 
them, one can assume probability distributions for uncertain parameters, use fuzzy pro-
gramming, or create a set of scenarios and apply robust planning.

Besides basic methodology, input values, and degree of uncertainty incorporation, 
existing forecasting models for product returns can be differentiated by many other attrib-
utes. Table  1 gives an overview of selected publications concerning product returns for 
EoL treatment. Although Table 1 is not exhaustive, it is intended to give insights into the 
broad scope of return forecasting methods and assumptions. Emphasis is put on the most 
common methods, i.e., DLMs and DLM variations (DLMv), and Material Flow Analy-
ses (MFA). Additionally, methods gaining popularity, like agent-based simulation (ABS) 
or artificial neural networks (ANN), are selected. Furthermore, classic time series meth-
ods are chosen (first order and triple exponential smoothing (1ES, 3ES)), other simula-
tion approaches (discrete event simulation (DES) and system dynamics (SD)), and less fre-
quently used approaches like Graphical Evaluation and Review Technique (GERT), fuzzy 
systems (FS), grey models (GM), scenario analysis (SA), or random sampling with a nor-
mal distribution (RN). Recent publications are preferred over older ones.

Predicting product returns is sometimes not the focus of the publications but rather a 
necessity for other investigations, e.g., inventory planning [13], developing purchasing 
strategies [14], or planning of collection and remanufacturing capacity [24]. In these cases, 
the entries in Table 1 only refer to the product return forecasting part.

Some of the attributes listed in Table  1 need further explanation. The variety of 
methods applied (column a) has already been addressed, as well as the main input the 
methods require (column b), i.e., past sales (PS), or past return data (PR), randomness 
(R), or others (O). Column c) indicates if the forecast method is mainly applicable to 
mature markets and products with stable demand (H), or if different product life cycle 
phases can be covered (A). Methods could also be intended for markets with low matu-
rity (L), or the target market maturity can be unknown (U). Column d) shows if the 
paper assumes that returned products undergo a remanufacturing step and then are sub-
stitutes for new products, i.e., return to the first-hand market, or if they are instead refur-
bished to a quality minor to that of a brand-new product. In column e), “Compound 
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product”, it is listed whether the forecast is made for a single product or whether it cov-
ers multiple components of a product. In the latter case, different failure rates or times 
to failure of the components can be considered as well as alternative reuse strategies. 

Table 1  Overview of methods and assumptions in forecasting EoL product returns

Methods: 1ES: First Order Exponential Smoothing; 3ES: Triple Exponential Smoothing; ABS: Agent-
Based Simulation; ANN: Artificial Neural Network; DES: Discrete Event Simulation; DLM(v): Distrib-
uted Lag Model (variation); FS: Fuzzy Systems; GERT: Graphical Evaluation and Review Technique; GM: 
Grey Model; MFA: Material Flow Analysis; RN: random by normal distribution; SA: Scenario analysis; 
SD: System Dynamics
Main input: O: others; PR: past returns; PS: past sales; R: randomness
Maturity of the market: A: all maturity levels; H: high; L: low; U: unclear
Product return time: DC: distributed with a continuous distribution; DD: distributed with a discrete distri-
bution; F: fixed lag; U: unclear; x-x: different lifetimes of multiple components; -: not applicable
Quality: AL: age limit up to which products are accepted as returns for remanufacturing; F: fixed rate; RUL: 
based on rest-of-useful-life of the product; -: no differentiation
Return rate: AB: based on agent/customer decision; D: distributed return probability; F: fixed share; P: 
based on past returns; -: not considered

Publication a) Method b) 
Main 
input

c) Maturity 
of the market

d) Reman 
and new 
perfect 
substitutes

e) Compound 
product

f) Product 
lifetime 
/ return 
time

g) Quality h) 
Return 
rate

[24] 1ES, SD PR A Yes No - F F
[51] ABS PS, O U - No DC - AB
[22] ANN PS, O H - No - - -
[43] ANN PR U No No - F -
[48] ARIMA, 

DLM
PS, PR H Yes No U - -

[46, 47] DES PS L Yes Yes DC, DD RUL D
[50] DES, FS, 

ANN
PS, O A - No DC - D

[15] DLM PS A No No DC - P
[14] DLM PS H Yes No DC - -
[65] DLM PS H Yes No DC - F
[13] DLMv PS U Yes No DC AL -
[41] DLMv PS A - No DC, DD AL D
[76] GERT PS U No Yes DC F -
[30] GM, 3ES, 

ANN
PR, PS H - No - - -

[2] MFA PS L No No DC F F
[11] MFA PS L Yes Yes DC-DC F F
[20] MFA PS L - Yes DD-F -
[57] MFA PS L - Yes DD-F - -
[73] MFA PS L - No DC - -
[74] MFA PS L - No DC - -
[75] MFA PS A - No DD - -
[5] RN R H Yes No - - -
[42] SA R H Yes No - F D
[70] SD PS A Yes No DC F F
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How the product lifetimes or product return times are modeled is depicted in column f). 
It is indicated if fixed (F) or distributed lifetimes are assumed (continuous distribution: 
DC; discrete distribution: DD), and if compound products have separate lifetime distri-
butions (e.g., “DD-F” for distributed lifetimes for one component and fixed lifetimes for 
the other component [57]). Product return times can also be unclear (U) or not appli-
cable (-) due to the random sampling of return numbers. Columns g) and h) indicate 
quality and return rate considerations. They are often, if at all, included similarly, either 
by fixed percentages of returns/losses and high-quality returns (F), or by distributed 
shares (D). For quality considerations, an upper limit in product age can also function 
as a quality gate (AL), or for compound products, the rest-of-useful-life of a component 
(RUL). Losses in the return process can also be modeled by agent decision in ABSs or 
by time-series analysis, based on past returns (P). Mostly, quality and return rates are 
not considered at all (-).

Concerning the variety of methods, many methods (DLMs, Material Flow Analysis, 
Discrete Event Simulation) are based on the same principle: They take past sales as 
input and add a product lifetime to the sales. Kiesmüller and van der Laan [38] pointed 
out the dependency of returns on past demands, so using the same principle in different 
approaches seems unproblematic. In these cases, it is suspected that forecasting results 
are stronger influenced by assumptions than by the method itself. Exceptions are, for 
example, models that include customer behavior [51] or a region’s GDP [22].

From Table 1, it becomes evident that often only some aspects that potentially influ-
ence EoL return quantities are considered in the literature. For example, Elwert et  al. 
[20], Richa et al. [57], Wang et al. [73], and Wu et al. [74] base their returns estimation 
on sales forecasts, product lifetimes, and product lifetime distributions but omit quality 
and losses in the return process. However, it is uncertain whether these omitted factors 
influence the results significantly. Additionally, often only one scenario is examined, 
which means one sales forecast, one product lifetime, and one lifetime distribution are 
assumed, and no sensitivity analysis is performed [11, 20, 73, 74]. Exceptions are, for 
example, Ai et al. [2] and Richa et al. [57]. Richa et al. [57] create three scenarios from 
three sales forecasts and three product lifetime distributions. In this way, each scenario 
differs completely from the others, and we cannot determine the influence of the sales 
forecast or the lifetime distribution alone. Ai et al. [2] compare some of the assumptions 
they made. They find that the assumed lifetime and lifetime distribution only mildly 
affect the results for a short period under review [2]. Market penetration, however, influ-
ences the return quantities significantly for an extended period under review [2]. The 
effect of other assumptions remains open.

We summarize that it has not been studied extensively which factors affect the quan-
tities of EoL products for remanufacturing the most, especially for unestablished prod-
ucts. We intend to close this gap by testing different assumptions on new product sales, 
product composition, product lifetime, return rate, and return quality. This can help the 
remanufacturing community focus on the most influencing factors and neglect those that 
would add complexity without adding value.

EVB‑specific assumptions in the literature

In Table 1, the general assumptions made in forecasting models are presented. However, 
the concrete attribute values for our paper have not been addressed. As mentioned in the 
introduction, the use case of this paper are EVBs in Germany and their remanufacturing 
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potential up to the year 2032. The remainder of this paragraph summarizes the EVB-spe-
cific assumptions taken in other publications.

Sales To make long-term return forecasts, sales forecasts are needed in most of the dis-
cussed methods. EVBs are almost exclusively sold in electric vehicles (EVs). In other 
words, failed batteries are rarely replaced [73]. That is why we consider EVB sales to be 
equivalent to EV sales. EVB sales forecasts exist on different regional levels, e.g., world 
[6, 34, 58], continent (Europe: [17, 34, 66]), or country. Additionally, some sales forecasts 
contain only battery electric vehicles (BEVs). Others include (Plug-In) Hybrid Electric 
Vehicles and/or Fuel Cell Electric Vehicles [10, 31, 69]. For Germany, Fig.  1 gives an 
overview of recent BEV sales forecasts.

Remanufactured and new products as perfect substitutes To the best of our knowledge, 
remanufacturing of EVBs is not yet performed at an industrial scale. However, some com-
panies investigate options for remanufacturing or have already started at least recondition-
ing their batteries [16, 62]. For an overview, see Albertsen et  al. [3]. In all the projects 
we are aware of, remanufactured batteries are not seen as equivalents to new batteries but 
rather as spare parts for older vehicles. However, there are some publications in the litera-
ture where remanufactured batteries substitute new batteries [11, 23].

Compound product Depending on the purpose of existing papers, EVs are mainly con-
sidered as one product with a fixed time-to-failure or a single time-to-failure distribution 
for the whole EV [45, 73, 74]. However, some authors consider EVs and EVBs separately 
with separate lifetime distributions [20, 57], and others even include other components or 
materials [11, 47].

Product lifetime and distribution When regarding EVB lifetimes, it should be noted that 
battery failure does not necessarily mean that the battery does not store and release energy 
anymore. The literature often mentions a State-of-Health (SoH) of 70%—80% as a thresh-
old for an EoL EVB [2, 23, 74]. EVB warranties usually cover an SoH of 70% [1], which 
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Fig. 1  BEV sales forecasts Germany (Brokate et al. 2017: [10]; BCG and Prognos 2018: [7]; Deloitte 2020: 
[18]; Hagedorn et al. 2019: [28]; UBA 2016: [67]
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is why a threshold higher than 70% seems unrealistic. Additionally, studies have found that 
batteries could fulfill many customers’ travel needs with an SoH of much lower than 80%-
70% [59].

Vehicle and battery lifetimes are often modeled as normal or Weibull distributions [32, 
45, 54, 57, 73, 74]. For example, Li et al. [45] assume a normal distribution for EVBs with 
a mean of 8 years and a standard deviation of 0.5, and Richa et al. [57] vary the mean in 
normal distributions from 8–10 years with an estimated standard deviation of 2. Wu et al. 
[74] and Ai et  al. [2] employ Weibull distributions with shape parameters of 3.5, which 
results in a shape similar to a normal distribution. The assumptions concerning the mean 
of battery lifetimes vary significantly. Estimations of 5.5–12.5 years [2], 8 years [19], 8.5–
13 years [27], or 25 years [60] can be found. Similarly, assumed mean vehicle lifespans 
range from 10 to 23 years [29, 52–54, 64]. These vehicle lifespans refer to Internal Com-
bustion Engine Vehicle (ICEVs), but EVs are potentially more durable than ICEVs [33], 
so the stated vehicle lifetimes can be seen as lower bounds for EV lifetimes. Exceptions of 
vehicle lifetimes being modeled as distributions can be found, for example, in Richa et al. 
[57] and Elwert et al. [20]. In their EoL EVB forecasts, battery lifetimes are distributed, 
while EV lifetimes are fixed.

Return rate When investigating product returns, it can be problematic that customers are 
not driven to return their EoL products immediately or at all after failure [51]. This seems 
less relevant for EVBs since, presumably, only very few people keep a non-functioning 
EV, let alone an EVB without the vehicle. For EoL vehicles, German law obliges custom-
ers to return their cars to certified facilities [4]. Still, it is conceivable that not all EVBs 
return since EV(B)s can leave the system boundaries, e.g., be exported to other countries. 
Currently, only about 15% of the vehicles (mainly ICEVs) first registered in Germany are 
scrapped in Germany [68]. However, many of the exported vehicles are exported within 
Europe and not out of reach for the market. In the literature, little information can be found 
on the assumed return rate of EVBs. Ai et al. [2] provide sensitivity analyses with collec-
tion rates of 50%, 75%, and 100%. This is in line with the opinions some experts shared 
with the authors, where most experts estimated an EVB return rate of more than 50% in the 
future.

Quality The quality of returning EVBs is often neglected in EVB return forecasts since 
many forecasts assume the batteries to be recycled after return [20, 57, 72, 74]. When it is 
considered, it is in the form of a fixed share of remanufacturable cells (68%, [51]) or reus-
able share of remaining capacity (100%, 90%, 80%, [2]), or in the form of remaining useful 
life [47]. The remaining useful life of the battery or its components can only be determined 
if multiple components with different lifetimes are regarded separately.

Forecasting and capacity planning method

The methods employed in this paper are twofold. First, we want to estimate quantities of 
EVBs available for remanufacturing when assumptions are varied. Therefore, we need a 
model that takes attribute assumptions as input, and delivers EVB quantities for remanu-
facturing. Such a model is presented in the following, including an overview of the assump-
tions we take as model input. Second, we aim to estimate the economic effects of the return 
quantities resulting from different assumptions about the future. To do so, we develop a 
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capacity expansion model that maximizes profit. This way, we can evaluate whether uncer-
tain return quantities affect remanufacturing capacity planning.

Application of various assumptions in forecasting

As pointed out in the literature section, the basic principle of most of the methods used in 
long-term forecasting is the same. Sales data or forecasts are used as input, and a lifetime 
distribution is added. Additionally, some other parameters diminish the resulting numbers 
of returns. Therefore, the focus below is on the assumptions rather than the method.

Appropriate methods to test the assumptions of the influential aspects laid out in the 
literature section could be Material Flow Analysis, System Dynamics, or Discrete Event 
Simulation. DES seems best suitable to enable assumptions that require tracking of sin-
gle entities’ characteristics. Entities would be batteries and vehicles, and a characteristic 
could be the “remaining useful life,” which could be a quality criterion (cf. Table 1). 
The general process scheme and the points where the assumptions come into effect are 
illustrated in Fig. 2.

The DES is implemented in the multi-method simulation software AnyLogic 8.7.9 
University. For all non-deterministic model configurations, i.e., when probability distri-
butions are included, 30 replications are performed to receive statistically comparable 
results of the simulation.

The model starts with producing batteries and vehicles according to predefined, 
assumed sales data. The simulated timeframe is 2015–2032. Afterward, the EVs are in 
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Fig. 2  Process scheme of the DES used to test the assumptions
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use. If an EV is regarded as a unit that fails as a whole (non-compound product), the use 
phase of an EV ends when the battery life expires. If EVs are regarded as a compound 
of a vehicle and a battery with separate lifetimes, the use phase ends when either the 
battery or the vehicle life expires. After the end of the use phase, return losses can occur 
when an EV is not returned within the system boundaries. A quality gate then grades 
the returning battery as suitable or non-suitable for remanufacturing. The non-suitable 
batteries are assumed to undergo a recycling treatment or be repurposed. The return 
flows graded as suitable for remanufacturing are the main output of the model. They are 
aggregated on an annual level. When multiple replications of the model are performed 
due to non-deterministic characteristics of the model parameters, the return numbers of 
the same year are averaged. The averaging is done after the model execution in a data 
processing program and is not part of the simulation.

The tested assumptions derive from the literature section:

Main input As most methods listed in Table 1 use sales data as inputs, we also use sales 
as input data. We consider 20% of the German BEV market up to the year 2032, repre-
senting Volkswagen’s (VW) market share [40]. This amount was chosen to represent one 
potential market player for remanufacturing better, namely, an OEM. We will test two sales 
forecasts: the forecast with the highest BEV sales in 2032 [18] and the one with the lowest 
BEV sales [7] in Fig. 1. In the following these sales assumptions are denoted as follows:

• SH: Sales high
• SL: Sales low

Compound product Some publications regard an EV and an EVB as a unit with a single 
failure probability, and others regard an EV and an EVB as separate components (cf. sec-
tion “EVB-specific assumptions in the literature”). Therefore, both cases will be tested. 
The notation will be as follows:

• 1P: EV and EVB are a unit with a shared time-to-failure.
• 2P: EV and EVB have separate lifetimes.

Product lifetime Since product lifetimes are highly uncertain and many different assump-
tions have been taken (cf. section “EVB-specific assumptions in the literature”), some vari-
ation is necessary. We have to differentiate between the 1P and 2P cases since only one 
product lifetime has to be assigned in the former, while in the latter, two are required. For 
battery lifetimes, mean values of 10 years and 12 years are chosen [2, 57], while for EVs 
only a mean of 12 years is considered [39]. This allows us to compare the case where vehi-
cles, on average, outlast batteries with the case where batteries and vehicles have the same 
life expectancy. Different combinations of fixed and distributed values are created:

• 1P:

– BF10 (BF12): The EVB lifetimes are fixed at 10 (12) years. In this way, there is a 
reference value for cases incorporating distributed lifetimes.

– BD10: EVB lifetimes follow a normal distribution with a mean of 10 years and a 
standard deviation of 2 years (cf. [57]). This case can easily be compared to BF10.
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• 2P:

– BD10/VF12: EVB lifetimes follow a normal distribution with a mean of 10 years 
and a standard deviation of 2 years (cf. [57]). Vehicle lifetimes are fixed at 12 years.

– BD10/VD12: EVB lifetimes follow a normal distribution with a mean of 10 years 
and a standard deviation of 2 years (cf. [57]). Vehicle lifetimes follow a normal dis-
tribution, too, with a mean of 12 years and the same standard deviation of 2 years.

Quality From Table 1, it seems as if there was no standard for quality incorporation into 
forecasting yet. Therefore, different ways to include it are tested:

• QF70, QF100: Fixed shares of remanufacturability are tested (70%, 100%). Approx. 70% 
are in line with Kampker et al. [37], and 100% are assumed in almost all other publications.

• QD70: A uniformly distributed quality rate is assumed with a mean of 70% 
(U(60%, 80%)). This loosely refers to distributed qualities listed in Table 1.

• QR0: The remaining useful life of the battery is used as a quality criterion here, 
as did Liang et al. [46]. For simplicity, all batteries with a remaining useful life of 
more than zero years are considered suitable for remanufacturing; that includes all 
cases in which the vehicle failed first.

• QA8: Additionally, the age of the EVB at failure is chosen as a quality criterion, as 
it is sometimes done in other approaches listed in Table 1. The standard warranty 
time of 8 years is selected as an upper age limit.

Return rate Return rates are expected to influence the amount of returned EVBs signifi-
cantly. For lack of other information, the fixed collection rates of Ai et al. [2] are chosen for 
assumption testing. Additionally, a distributed return rate is tested, as it has been applied in 
some of the publications listed in Table 1:

• RF50, RF75, RF100: Fixed return rates of 50%, 75% and 100%
• RD75: A uniformly distributed return rate is assumed with a mean of 75% (U(65%, 85%)).

The tested assumptions are summarized in Fig. 3 and add up to 200 combinations.

Capacity Planning

A generic capacity optimization model is applied to monetarily evaluate the resulting 
return numbers. It does not claim to mirror reality precisely. Instead, we intend to give a 
general impression of the consequences of different return numbers resulting from various 
assumptions. The parameters of the capacity planning module are fixed so that uncertain 
estimates like the cost for expanding remanufacturing capacity have the same effect in all 
return forecast scenarios. The mathematical formulation of the capacity optimization is as 
follows:

(1)Max

T
∑

t

I
∑

i

(Revtxit − VCitxit − FCityit)
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Sets
T Set of discrete time periods with t = 1,2,…T
I Set of different remanufacturing capacity modules i = 1,2
Parameters
Revt Revenue per remanufactured EVB in period t
VCit Variable cost of remanufacturing one EVB with remanufacturing capacity module i 

in period t
FCit Fixed cost per period per utilized remanufacturing capacity module i in period t
st Supply of EoL EVBs in period t
Ci Maximum capacity limit of a remanufacturing capacity module size i
Decision Variables
xit Amount of remanufactured EVBs with capacity module of type i in period t
yit Number of installed capacity modules of type i in period t

Our capacity planning module aims to maximize profit over all periods t, represent-
ing the years 2022–2032. We include revenues and fixed and variable costs in the objec-
tive function (1). Every remanufactured unit is assumed to generate revenue, or, in other 
words, there is always demand. This assumption is in line with, e.g., Foster et al. [23]. 
The main output of the optimization model is the number and capacity of remanufac-
turing facilities to achieve the goal of maximum profit. For the sake of simplicity, we 
introduce two capacity modules I, small and large, of which whole multiples yit can 
be opened to fulfill remanufacturing tasks (6). There is no capacity contraction, which 
means that a capacity module cannot be built back (4). Additionally, the number of bat-
teries to be remanufactured per period, xit , is a decision variable. That means there is 
no obligation to remanufacture a part if it is not economically viable. This assumption 
is chosen because otherwise, overcapacity would be built into the model by default. As 
Fleischmann 2001 (as cited in [25]) pointed out, overcapacity is a common remanufac-
turing problem. There is no storage between periods, so the maximum number of batter-
ies to be remanufactured per period is limited by the battery supply (2) and the installed 
capacity in that period (3).

The main input parameters of the optimization model are the supply quantities of EoL 
battery systems per period st . They are the results of the return forecasts described in the 
previous section. We use literature values and the VW ID.3 battery specifications as a 
guideline for estimating the other parameter values.

(2)s.t. st ≥
I
∑

i

xit ∀t ∈ T

(3)xit ≤ Ciyit ∀t ∈ T , i ∈ I

(4)yit−1 ≤ yit ∀t ∈ T ∶ t > 1, i ∈ I

(5)xit ≥ 0 ∀t ∈ T , i ∈ I

(6)yit ∈ ℤ
≥0
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The size of the large and the small capacity units should reflect that we intend to 
regard industrial-sized remanufacturing (cf. Introduction). Sommerville et al. find recy-
cling companies in Europe to be beyond the pilot stage starting from 2000 t/year and 
more [61]. If the same capacity threshold is applied to remanufacturing, and the weight 
of a 77 kWh ID.3 battery of 514 kg is assumed [35], a small capacity unit C1 of approx. 
4,000 EVBs/year results. The large capacity unit C2 is set to double the value, i.e., 8,000 
EVBs/year.

Revenues and costs are estimated at today’s level and discounted with a moderate 
discount rate of 3%. For revenues, 50% of the new sales price is assumed [56]. With 
118  $/kWh for new BEV batteries today [8], 77  kWh per battery [71], and 0.89 €/$ 
[21], that makes a non-discounted revenue of approx. 4,000 € per remanufactured bat-
tery. Fixed cost comprises annualized capacity unit costs. Li et al. [45] assume opening 
costs of 650,000 $ per 1,500 EVBs capacity, Standridge et  al. [63] 25 million $ per 
30,000 EVBs capacity. With a 20-year payback-period, fixed cost per year before dis-
counting ( FC11 ) of 100,000 € per small capacity unit (4000 EVBs/year) is between the 
abovementioned studies. With moderate economies of scale [44], the fixed cost of the 
large capacity unit is 160,000 €/year ( FC21 ). Variable cost is assumed to be equal for 
both capacity modules and takes on the value of 3000 €/battery ( VCi1 ) [36, 45].

Sales data (S)

Battery 

lifetime (B)

Vehicle 

lifetime (V)

Compound 

product (P)

Return rate (R)

Quality (Q)

SH: high sales numbers SL: low sales numbers

1P: vehicle and battery as a single 

entity
2P: compound of vehicle and battery

BF10: fixed lifetime of 10 years

BF12: fixed lifetime of 12 years

BD10: normally distributed lifetime with 

mean of 10 years, standard deviation of 

2 years

VF12: fixed lifetime of 12 years

VD12: normally distributed lifetime with 

mean of 12 years, standard deviation of 

2 years

QF70: a core is remanufacturable with 

probability 70%

QF100: a core is remanufacturable with 

probability 100%

QD70: a core is remanufacturable with 

probability U(60%, 80%)

QR0: a core is remanufacturable if 

remaining useful life >0 years

QA8: a core is remanufacturable if it is 

younger than 8 years

RF50: a core returns with probability 

50%

RF75: a core returns with probability 

75%

RF100: a core returns with probability 

100%

RD75: a core is remanufacturable with 

probability U(65%, 85%)

Further notation: “sales-compound product-battery lifetime/vehicle lifetime-quality-return rate”, 

e.g. “SH-2P-BF10/VF12-QF70-RD75”. 

Variation of one aspect is denoted by an “x”, e.g., “[…]-QF70-x”

Fig. 3  Summary of assumptions with abbreviations
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Results

We first present the results concerning the expected EVB quantities for remanufacturing 
when varying the assumptions. In the following section, we show the results of the capac-
ity optimization tool when inputting the EVB return amounts.

Battery returns for remanufacturing

In Fig. 4a, the EV sales data are depicted for comparison with our EoL battery forecasts. 
The sales scenarios overlap until about 2025 and then diverge into high and low sales 
numbers.

Figure 4b-f summarizes the results of forecasting EVB returns with our forecast model 
and different assumptions. Figure 4b gives an overview of the span of results concerning 
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Fig. 4  Results of BEV return forecasts for remanufacturing up to 2032 under different attribute assumptions
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EVB returns for remanufacturing in 2032. The highest return number of about 48,500 
EVBs results from assuming high sales numbers, fixed battery lifetimes of 10 years, no sep-
arate vehicle lifetimes, 100% of cores are suitable for reman, and 100% return rate (SH-1P-
BF10-QF100-RF100). The lowest reman numbers are zero and result from assumption 
combinations that inevitably lead to no cores, e.g., combining the one-product case 1P with 
the quality criterion QR0, i.e., remaining life greater than zero. Other than that, the lowest 
return number in 2032 is approx. 3000 EVBs (SL-2P-BD10/VF12-QR0-RF50). On aver-
age, approx. 15,000 cores, including cases with zero returns, and 19,000 cores, excluding 
cases with zero returns, can be expected in 2032 for our modeled market player.

Figure 4c shows the average annual EVB returns for all cases that incorporate high and 
low sales (SH and SL). As expected, the SH cases, on average, lead to more EVB returns. 
However, the difference in 2032 is only 18% of the lower case. Depending on the assump-
tions, the difference can increase to approx. 53% (1P-BF10) or even lower to approx. 0% 
(1P-BF12). This can be explained by the shape of the sales Figs. 4a. In the 1P-BF10 cases, 
the returns in 2032 equal the sales in 2022 (= 2032–10 years) minus reductions for quality 
and return losses; In 2022 the sales numbers of BEVs were higher in the SH scenario than 
in the SL scenario, which reflects in the return quantities. In the 1P-BF12 cases, however, 
basically the sales of 2020 (= 2032–12 years) are depicted, and up to 2020 real-world sales 
data were used; That means, in 2020 the SL and the SH scenario are the sameand no dif-
ference between the scenarios can be detected. In general, it becomes evident that for long-
living products and a planning horizon of approximately the lifespan of a product, the sales 
forecasts are probably less important since future returns mainly depend on present sales.

Figure 4d also shows that the 1P-BF10 and 1P-BF12 cases mirror the sales of 2022 and 
2020. While the fixed lifetime cases follow the sales figures sharply, the distributed cases 
smooth out extreme values. The 1P-BD10 case, therefore, leads to fewer returns in 2032 
than the 1P-BF10 case, although they have the same mean value for battery lifetimes. If 
vehicles can also lead to a system failure and, therefore, to battery returns, EVBs return 
slightly earlier. The only slight difference is probably due to the distribution parameters, 
where most batteries will fail before the vehicles do. There are a few more (i.e., earlier) 
battery returns when vehicle lifetimes are also distributed.

Quality and return rate, as shown in Figs. 4e and f, seem to influence EVB returns the 
most. Naturally, from QF100 to QF70 (RF100 to RF75 and RF50), there is a 30% (25% and 
50%) decline. Notably, the uniform quality and return rate distributions do not affect the 
return quantities (QF70≈QD70; RF75≈RD75). The mean seems to be the determining value 
here. For quality, however, two unusual criteria were tested as well, namely QR0 (remaining 
useful life greater than zero) and QA8 (failure age less or equal to 8 years). These reduce 
the number of cores for remanufacturing significantly; still, they are seldom used in litera-
ture (cf. section “EVB-specific assumptions in the literature”). Here, the thresholds of zero 
and eight, respectively, are chosen more or less randomly (cf. section “Application of vari-
ous assumptions in forecasting”). It seems as if these criteria should gain more attention in 
remanufacturing forecasting, especially since they include information that intuitively might 
be more relevant than fixed shares. Whether that holds remains to be examined.

Remanufacturing capacity

As described in the “Capacity Planning” section, capacity planning based on a linear opti-
mization model is performed with the return numbers resulting from the simulation. As a 
result, we obtain the installed capacity per period with small and large capacity units and 
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the potential cost and revenues. Figure 5 illustrates the results for (a) the scenarios with the 
highest and the lowest return numbers in 2032 (cf. Fig. 4b) and (b) for the altered assump-
tions concerning the quality determination. The different return numbers lead to substan-
tially different optimal capacity expansions and different associated costs. While return 
forecasts like those that lead to the highest return numbers in 2032 (Fig. 5a) indicate that 
EVB remanufacturing capacity is needed only from 2025 onwards and on a larger scale 
only from 2030 onwards (“Highest” case), others indicate that investing in remanufactur-
ing capacity much earlier would be beneficial (Fig. 5b). For the SH-2P-BD10/VD12-QR0-
RF100 case (denoted as QR0), investment in a large capacity unit of 8000 EVBs/year 
would be beneficial from 2022 onwards. All other quality metrics with the otherwise same 
assumptions suggest little EVB remanufacturing capacity from 2023 onwards.

Similar results concerning expansion timings can be obtained from the lifetime and 
product composition variation (Fig. 5c). Here, the slowest capacity expansion is suggested 
for the 1-product, fixed lifetime at 12 years case (1P-BF12), following the low return num-
bers of that case (Fig. 4d). The higher the number of early failures due to distributed life-
times of one or both components, the earlier capacity expansion would be beneficial. How-
ever, at the end of the period under examination, in 2032, the total installed capacity is 
almost identical for all lifetime distributions.

Discussion

We showed that applying common assumptions in EVB returns forecasting leads to a wide 
range of core quantities. We then used the core quantities as inputs for a model that opti-
mizes remanufacturing capacity costs. The resulting capacity expansion plans differed 
majorly regarding the time when capacity should be first built and the final size. All of the 
attributes under examination seem to affect return quantities and optimal remanufacturing 
capacity. However, the effects are not equally severe. Sales numbers, for example, are not 
as influential as we expected. This is probably because the planning horizon of 10 years 
ahead is equal to or less than the assumed product lifetime, and, therefore, most EVBs 
returning in 2032 are registered today. Concerning product lifetime, the battery life turned 
out to be more important than the vehicle lifetime. Quality and return rates also signifi-
cantly influence the number of cores for remanufacturing and the necessary capacity. How-
ever, they are probably most uncertain in new markets.

For the research community, several implications can be drawn. First, for long-living 
products, it is less relevant which sales forecast is used for core forecasting since the return 
numbers in the foreseeable future mainly depend on past sales. That means return estimates 
in the literature that only used one sales projection as an input rightfully did so (e.g., [11, 
20]). Ai et al. [2] come to a different conclusion. In their study, the EV market penetration 
influences product returns significantly. However, their study covers a broader time frame 
(2000 – 2040) and uses estimates from 2017 onwards. That means they cover a time frame 
which is far broader than the average product lifespan. Our study does not allow statements 
about such an extended period. One exemption from the unimportance of sales forecasts 
occurs when fixed product lifespans are assumed because the return forecast then shadows 
the sales projection precisely. Only a minority of researchers made this assumption (cf. 
Table 1), and we do not recommend it. Other than in the fixed lifespan cases, the lifespan 
and the distribution do not seem to have a large effect. This is in line with the literature [2].
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Another research implication comes from the multi-component cases. Multi-compo-
nent products with individual failure times are interesting for several reasons. E.g., they 
enable more elaborate quality criteria and single entity tracking. Nonetheless, if the only 
research goal is to quantify core numbers for remanufacturing, early failures of a second 
component only slightly influence the overall results. This holds for the lifespan values 
we tested. That means putting effort into detailed component modeling should be evalu-
ated based on the use case.

Most attention should be paid to the modeling and parameterization of return rate 
and quality criteria. We showed that these have a significant effect on the results. How-
ever, they are seldomly incorporated into forecasting models (cf. Table 1). Making no 
assumption about these criteria means assuming a return and quality rate of 100%. We 
recommend that quality and return rate assumptions are evaluated and justified more 
carefully in the future. Additionally, we suggest collaboration with practitioners to gain 
more knowledge about good quality criteria that can be beneficially incorporated into 
long-term forecasts.

We already mentioned that our statements are only valid for a limited timeframe 
compared to the product’s lifespan. Besides that, we are also bound by the other param-
eter values we chose. We tried to justify these values in the methods section. However, 
we cannot guarantee that the results would have been the same with other values. This 
holds not only for the assumed parameter values but also for the method. We argued that 
with a discrete event simulation, we could include all relevant assumption categories 
and that it would include the main elements of a DLM or a MFA. However, verify-
ing that claim remains open. Additionally, we performed the forecasting and the capac-
ity planning with static input values. Future research could test the effect of dynamic 
parameters on forecasting and capacity optimization.

For the industry, the broad results span is problematic since trusting one forecast that 
indicates a large number of early returns might lead to malinvestments in remanufac-
turing capacity. If another forecast turns out to be accurate, this capacity might not be 
needed so soon and, therefore, only causes cost but little revenue. Similarly, late invest-
ments indicated by other forecasts might lead to lost profit if EVBs return earlier than 
anticipated. Of course, a capacity expansion plan ten years ahead is not static for the 
whole planning period but is constantly adjusted to reality and newly available informa-
tion. Nevertheless, early decisions on if and when to open a remanufacturing facility, in 
combination with the decision if and when to engage in remanufacturing R&D activities 
of a new product, can affect future success. Therefore, the applied generic optimization 
model might be altered and could potentially be used as a stochastic model.

Our approach compared different assumptions in remanufacturing quantity forecast-
ing found in the literature. Forecasting in business, however, might differ from that. 
During our research, informal communication with remanufacturers has disclosed that 
personal experience and internal planning tools support the planning process. How-
ever, it was also confirmed that there are still many unknown parameters for forecast-
ing core quantities and understanding the interrelations between the influencing factors 
and stakeholders. Future research could, therefore, extend the sales- and lifespan-based 
approach by including more perspectives that might influence return rates and qualities, 
e.g.:

• Politics/legislation: Legislation can support remanufacturing by implementing reman-
friendly regulation or even force remanufacturing, or hinder it by, e.g., setting high 
market entrance barriers or favoring other EoL options.
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• Remanufacturers’ characteristics: Core accessibility and quality of these cores might 
differ if the forecast is done for an OEM in contrast to an independent remanufacturer. 
An OEM has access to contract workshops as sources for cores and potential selling 
points of remanufactured products. Therefore, the recipient of the forecast should be 
considered more closely.

• Further stakeholders, like workshops, scrapyards, and core brokers: It could be exam-
ined which contract models favor a core return and how deposits and buyback prices 
influence return rates.

Furthermore, the demand side should not be neglected. Some approaches already 
include demand, e.g., by assuming a demand distribution [5], by linking it to new product 
demand by “net demand” forecasting [26], or by assuming known and stationary demand 
[70]. However, when assuming that demand for remanufactured products mainly comes 
from the aftermarket, more research should be done on aftermarket customers, e.g., con-
cerning their intentions to replace faulty components and their acceptance of remanufac-
tured spare parts. We, therefore, suggest extending research concerning agent behavior and 
external conditions to improve forecasting in remanufacturing.

Conclusions

In this article, we examined how different assumptions in product return forecasting for 
remanufacturing affect long-term remanufacturing capacity planning for the case of elec-
tric vehicle batteries. Grounded in literature, we assumed two different sales forecasts, 
a single and a compound product case, five lifetime combinations for the single or com-
pound product, five ways to determine the quality of returning products, and four return 
rates. Afterward, we applied an optimization model to determine remanufacturing capac-
ity expansion plans. We found that battery lifetime, quality determination, and return rate 
had the greatest influence on product return quantities and, therefore, on capacity plan-
ning for the chosen assumptions. We also found that the assumptions led to substantially 
differing optimal entry points into remanufacturing activities and unequal expectations 
about the total market size for EVB remanufacturing in the coming decade. All in all, it 
seems as if not all factors influencing product returns for remanufacturing are known, or 
they are known in business but have not reached the scientific community yet. Because of 
the importance of this knowledge concerning R&D activities and profitability of potential 
businesses, we suggest investigating the influential factors more closely, e.g., examining 
the stakeholders’ behavior.
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