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1. Introduction

We consider in one dimension the Gross–Pitaevskii equation

i∂tq + ∂xxq − 2(|q|2 − 1)q = 0, (GP)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00033-023-02089-4&domain=pdf
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where q(t, x) : R×R −→ C represents an unknown wave function, subject to the boundary condition at
infinity lim|x|→∞ |q(t, x)| = 1. In the absence of vacuum, meaning that

|q| > 0,

the Gross–Pitaevskii equation has a hydrodynamic formulation
⎧
⎨

⎩

∂tρ + 2∂x(ρv) = 0,

∂tv + ∂x(v2) + 2∂xρ = ∂x

(

∂x

(
1
2

∂xρ
ρ

)
+
(

1
2

∂xρ
ρ

)2
)

,
(hGP)

which we call the hydrodynamic Gross–Pitaevskii equations. Here the functions ρ(t, x) : R×R −→ R+

and v(t, x) : R×R −→ R may be understood as the unknown density and velocity of a quantum fluid.
The system (hGP) belongs to the class of quantum hydrodynamical models, which may be used to model
various physical phenomena such as Bose–Einstein condensation [22,27], superfluidity [21,34,35] and
quantum semiconductors [24]. We refer to [4,17,29] for more information on quantum hydrodynamical
models and their relation to nonlinear Schrödinger equations.

The relation between (GP) and (hGP) is given by the Madelung transform:

M(q) =
(

|q|2, Im
[
∂xq

q

])

, (1.1)

which formally transforms a solution q of (GP) into a solution (ρ, v) = M(q) of (hGP). Note that ρ and
v are real-valued. One immediately sees that the Madelung transform M only makes sense when |q| > 0.
In this case, we may recover q from its Madelung transform by the formula

q =
√

ρeiϕ,

where ϕ is some spatial primitive of v, i.e.

∂xϕ = v.

One furthermore sees that the inverse Madelung transform (ρ, v) �−→ q is only defined up to multiplication
with S

1, i.e., a constant rotation in phase [see (1.13) for more details]. We refer the reader to [18] for a
survey of the Madelung transform and the hydrodynamic Gross–Pitaevskii equations.

1.1. Related results for the Gross–Pitaevskii equation

Gross [28] and Pitaevskii [41] introduced the Gross–Pitaevskii equation as a model for a Bose–Einstein
condensate, a type of Boson gas at very low density and temperature. For rigorous justification of the
model, we refer to the mean-field approximation established by Erdős et al. [20], as well as references
therein. As the Gross–Pitaevskii equation is a kind of defocusing cubic nonlinear Schrödinger equation,
its well-posedness has been extensively studied. Due to the nonzero boundary condition, finite-energy
solutions to (GP) can clearly not be in traditional function spaces that require global integrability, such
as Lp(R). For integers k ≥ 1 and in any dimension n ≥ 1, Zhidkov [47] established local-in-time well-
posedness in the so-called Zhidkov space Zk(Rn), which is the closure of {u ∈ Ck

b (Rn) : ∂xu ∈ Hk−1(Rn)}
under the norm

‖u‖Zk(Rn) = ‖u‖L∞(Rn) +
∑

1≤|α|≤k

‖∂α
x u‖L2(Rn). (1.2)

This led to a first global-in-time well-posedness result in one dimension in Z1(R), as the Ginzburg–Landau
energy

E(q) =
1
2

∫

Rn

|∂xq|2 + (|q|2 − 1)2dx (1.3)
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is conserved. The Gross–Pitaevskii equation (GP) can be interpreted as the Hamiltonian evolutionary
equation associated with this energy. The well-posedness result in Zhidkov spaces was expanded to the
cases n = 2, 3 by Gallo [23]. Global-in-time well-posedness in the energy space {q ∈ H1

loc(R
n) : E(q) < ∞}

equipped with the metric

dE(q, p) = ‖q − p‖Z1(Rn)+H1(Rn) + ‖|q|2 − |p|2‖L2(Rn)

was obtained by Gérard [25,26] for n = 1, 2, 3 and for n = 4 under smallness assumptions. Later, Killip
et al. [31] established global-in-time well-posedness in the energy space for n = 4. More recently, the
problem has been studied by Antonelli et al. [7] in n = 2, 3 for general nonlinearities f satisfying a Kato-
type assumption. Local-in-time well-posedness is obtained in the energy space and extended globally in
the defocusing case under some further assumptions. Regarding the case of non-finite energy, Pecher [40]
established global-in-time well-posedness in three dimensions in 1 + Hs(R3) for s ∈ (

5
6 , 1

)
.

We are concerned with the case n = 1. For s ∈ R, we associate with solutions of (GP) the energy
functionals

Es(q) =
1
2

∥
∥∂xq

∥
∥2

Hs−1(R)
+

1
2

∥
∥|q|2 − 1

∥
∥2

Hs−1(R)
. (1.4)

Note that indeed E1 = E. Our results are consequences of a pair of papers [32,33] by Koch and Liao,
where for s ≥ 0 they proved the global-in-time well-posedness of (GP) in the complete metric space

Xs = {q ∈ Hs
loc(R) : Es(q) < ∞}/S1, (1.5)

equipped with the distance function

ds(q, p) =

⎛

⎝

∫

R

inf
λ∈S1

‖ sech(y − ·)(λq − p)‖2Hsdy

⎞

⎠

1
2

. (1.6)

We summarize several of their results, taken from [32, Theorem 1.2, 1.3, Lemma 6.1] and [33, Theorem
1.5], in the following theorem.

Theorem 1.1. (Global-in-time well-posedness of (GP) [32,33]) Let s ≥ 0. The pair (Xs, ds) is a complete
metric space, and the energy functional Es : Xs −→ R is continuous. There exists a constant C0 > 0
such that ds(1, q) ≤ C0

√
Es(q) for all q ∈ Xs.

The Gross–Pitaevskii equation (GP) is globally-in-time well-posed in the metric space (Xs, ds) in the
following sense: For any initial data q0 ∈ Xs, there exists a unique global-in-time solution q ∈ C(R;Xs)
of (GP) (see Definition 3.2). For any t ≥ 0, the Gross–Pitaevskii flow map Xs 
 q0 �→ q ∈ C([−t, t];Xs)
is continuous. There exists a constant C̃0(s,Es(q0)) such that

sup
t∈R

Es(q(t)) ≤ C̃0(s,Es(q0))Es(q0), (1.7)

and in the case s ≥ 1 the energy E(q(t)), defined in (1.3), is conserved.

1.2. Related results for the hydrodynamic Gross–Pitaevskii equations

The question of equivalence between Schrödinger equations and quantum hydrodynamical equations is
relevant for the validity of classical approaches to quantum mechanics such as de Broglie–Bohm theory [15]
and stochastic mechanics [39]. It became a topic of controversy when Wallstrom raised some objections
[44–46]. We recommend [42] for a review of these issues. The difficulty arises from possible vacuum regions,
which complicate the definition of the inverse Madelung transform. This can be resolved via an additional
“Takabayasi’s quantization condition” [14,43], which requires the winding numbers of the velocity field
on closed loops to be quantized. Note that this condition trivially holds in one dimension. Wallstrom also
raised objections regarding uniqueness [46]. There are indeed non-uniqueness results for weak solutions to
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quantum hydrodynamical systems, which are related to a change in the number of non-vacuum connected
components [36].

Nevertheless, Antonelli and Marcati [2,3] constructed weak solutions vanishing at infinity with finite
but arbitrarily large energy, meaning that vacuum may appear, in n = 2, 3 for a general quantum
hydrodynamical system. They use a polar decomposition technique in order to define the velocity field in
the vacuum regions. In collaboration with Zheng, they extended this to n = 1 via a purely hydrodynamical
approach [6,8]. An alternative approach to finite-energy weak solutions is explored in [1,5].

The well-posedness of the Euler–Korteweg system, a generalization of the compressible Euler equations
which includes capillarity effects and contains (hGP) as a special case, was studied in higher dimensions
by Audiard and Haspot [10,11]. Similar to the approach we take is a paper by Audiard [9], in which
global-in-time well-posedness of (hGP) under smallness assumptions is shown in certain spaces for n ≥ 2
by applying the Madelung transform to solutions to (GP). While they used scattering results to bound
the solution away from 0, we use a rather elementary argument that leads us to the aforementioned
energy bound E < 4

3 .
A closely related paper is a work by Mohamad [38], which in [38, Proposition 1.1] states similar

relations to our Theorem 1.6, and then uses a well-posedness result for (GP) to obtain a well-posedness
result for (hGP) in (1 + Hk+1) × Hk with k ∈ N≥0 up to the appearance of vacuum. We discuss the
similarities and differences in Remark 1.10.

1.3. Functional analytic framework

Our goal is to show a novel global-in-time well-posedness result for (hGP) with (ρ, v) ∈ (1 + Hs) × Hs−1

where s ≥ 1 and n = 1. We achieve this under the assumptions s ≥ 1 and E < 4
3 by passing the well-

posedness result for (GP) in Theorem 1.1 through the Madelung transform (1.1). The first assumption
s ≥ 1 ensures sufficient regularity for the energy E to be defined and for (hGP) to be interpretable in
the sense of distributions. As an example, consider that s ≥ 1 implies v ∈ L2(R), and so the problematic
square of a distribution v2 appearing in (hGP)2 does indeed exist. The second assumption E < 4

3 can
also be understood as a “regularity” assumption: solutions below the critical energy of 4

3 cannot have
vacuum, that is points or intervals where |q| =

√
ρ = 0 (see Corollary 1.3). As a result, singularities

are avoided in the hydrodynamic formulation. Due to conservation of energy, the absence of vacuum is
guaranteed for all times. Note that this energy assumption is sharp in the sense that the black soliton
solution q(t, x) = tanh(x) to (GP) has a zero tanh(0) = 0, while also having energy E(tanh) = 4

3 .
We collect now some results that ensure the absence of vacuum, given certain energy bounds. We start

with the following lemma.

Lemma 1.2. Consider the function b̃ : [0, 1] −→ [0, 4
3 ] defined by

b̃(δ) =
4
3

− 2δ +
2
3
δ3.

This is a strictly decreasing bijection (see Fig. 1) whose inverse we denote by δ̃(b) : [0, 4
3 ] −→ [0, 1]. We

have

b̃(δ) = min
{

E(q) : q ∈ H1
loc(R), inf

x∈R

|q(x)| ≤ δ

}

,

δ̃(b) = min
{

inf
x∈R

|q(x)| : q ∈ H1
loc(R), E(q) ≤ b

}

.

This lemma is a stronger version of [13, Lemma 1]. The proof of a slightly more general Lemma A.1
is given in appendix. As a consequence of Lemma 1.2, the “energy gap” 4

3 − E(q) yields an explicit lower
bound for the distance of |q| to zero. Due to conservation of the energy E(q), we obtain the following
corollary.
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Fig. 1. Graph of b̃

Corollary 1.3. For any solution q ∈ C(R;X1) of (GP) (see Definition 3.2), we have

E(q0) < b <
4
3

=⇒ inf
(t,x)∈R2

|q(t, x)| > δ̃(b) > 0. (1.8)

We thus consider solutions q of (GP) in Xs, s ≥ 1 with energy

E(q) <
4
3
, (1.9)

recalling the definitions (1.3)–(1.6) of Xs and E. We look for solutions (ρ, v) of (hGP) in the function
space

Ys = (1 + Hs(R;R)) × Hs−1(R;R), (1.10)

equipped with the metric

θs((ρ, v), (η, w)) = ‖ρ − η‖Hs + ‖v − w‖Hs−1 . (1.11)

We define the analogous energy

E(ρ, v) = E(M−1(ρ, v)) =
1
2

∫

R

(∂xρ)2

4ρ
+ ρv2 + (ρ − 1)2dx. (1.12)

Here, the inverse Madelung transform is defined as:

M−1(ρ, v)(x) =
(√

ρ(x)eiϕ(x)
)
S
1 =

{
λ
√

ρ(x)eiϕ(x) : λ ∈ S
1
}

, (1.13)

where ϕ is any spatial primitive of v, i.e. ∂xϕ = v. Note that the energy E is indeed well-defined
on equivalence classes under multiplication by S

1, and furthermore that the space Xs consists of such
equivalence classes, and is hence a suitable domain for the Madelung transform M, given in (1.1).

In order to transform solutions of (GP) into solutions of (hGP) via the Madelung transform, we
establish an equivalence between the relevant function spaces (Xs, ds) and (Ys, θs). Specifically, we prove
a local bilipschitz equivalence between the distance functions ds and θs for all s > 1

2 . While our main
result only holds for s ≥ 1, our approach has the potential to be extended to the case 1

2 < s < 1 if one
finds a way to make sense of (hGP)2 in such a low regularity setting. For example, this may be possible
via a local smoothing result, as in [30] (see Remark 1.12). When 1

2 < s < 1, the absence of vacuum can
still be ensured by a smallness assumption of the form

Eμ(q) < ε0(μ) � 1,

where μ > 1
2 [see (1.16)]. This smallness condition can also replace E < 4

3 in the case s ≥ 1, μ ≤ s.
Specifically, we have the following Lemma 1.4 as a replacement for Lemma 1.2.
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Lemma 1.4. For δ ∈ [0, 1] and μ > 1
2 , define

Eμ
δ = inf

{

Eμ(q) : q ∈ Hμ
loc, inf

x∈R

|q(x)| ≤ δ

}

.

Then Eμ
1 = 0, the function δ �→ Eμ

δ is decreasing, and there exists a constant C̃(μ) > 0 so that

Eμ
δ ≥ (1 − δ)2

C̃(μ)
. (1.14)

This lemma is also a special case of Lemma A.1. By (1.7), there exists for any μ > 1
2 a constant

c(μ) > 0 such that

Eμ(q0) < ε =⇒ sup
t∈R

Eμ(q(t)) < c(μ) ε (1.15)

for all ε ∈ (0, 1) and any solution q ∈ C(R;Xμ) of (GP). Not attempting to obtain a sharp bound, we
state the analogous of Corollary 1.3.

Corollary 1.5. Let μ > 1
2 and define

ε0(μ) = max
{

1
2
,

1
4c(μ)C̃(μ)

}

. (1.16)

For any solution q ∈ C(R;Xμ) of (GP) (see Definition 3.2), we have

Eμ(q0) < ε < ε0(μ) =⇒ inf
(t,x)∈R2

|q(t, x)| > 1 − √
ε

√

c(μ)C̃(μ) >
1
2
. (1.17)

Proof. We prove the contrapositive. Suppose inf(t,x)∈R2 |q(t, x)| ≤ δ := 1 − √
ε
√

c(μ)C̃(μ) and note that

δ ∈ (0, 1). Using the definition of Eμ

δ̃
and (1.14), this implies that for any δ̃ > δ there exists t ∈ R with

Eμ(q(t)) ≥ Eμ

δ̃
≥ (1 − δ̃)2

C̃(μ)
.

In particular,

sup
t∈R

Eμ(q(t)) ≥ (1 − δ)2

C̃(μ)
= c(μ)ε,

so (1.15) implies Eμ(q0) ≥ ε. �

As the energies Eμ still provide a lower bound for the distance of |q| to zero, we can use the smallness
assumption Eμ < ε0(μ) as a substitute for E < 4

3 . We define for μ > 1
2 the energies

Eμ(ρ, v) = Eμ(M−1(ρ, v)). (1.18)

1.4. Main results

For both the Gross–Pitaevskii equation (GP) and its hydrodynamic formulation (hGP), there are three
key objects in our function framework: the energy, the space and the metric. We summarize the definitions
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given in Sect. 1.2 in the following diagram:

Es(q) = 1
2‖∂xq‖2Hs−1 + 1

2‖|q|2 − 1‖2Hs−1

Xs = {q ∈ Hs
loc(R;C) : Es(q) < ∞} /S1

ds(q, p) =
(
∫

R

infλ∈S1 ‖ sech(y − ·)(λq − p)‖2Hsdy

) 1
2

M
⏐
⏐
⏐
⏐
�

q =
√

ρeiϕ, ρ = |q|2, v = ∂xϕ
p =

√
ηeiψ, η = |p|2, w = ∂xψ

�
⏐
⏐
⏐
⏐

M−1

Es(ρ, v) = Es(M−1(ρ, v))
Ys = {(ρ, v) ∈ (1 + Hs(R;R)) × Hs−1(R;R)}

θs((ρ, v), (η, w)) = ‖ρ − η‖Hs + ‖v − w‖Hs−1

(1.19)

Here, the Madelung transform and its inverse

M(q) =
(

|q|2, Im
[
∂xq

q

])

M−1(ρ, v) =
(√

ρeiϕ
)
S
1, ∂xϕ = v

are given in (1.1) and (1.13), respectively. Recall also the explicit forms of the energies E and E in the
most important case s = 1:

E(q) =
1
2

∫

R

|∂xq|2 + (|q|2 − 1)2dx E(ρ, v) =
1
2

∫

R

(∂xρ)2

4ρ
+ ρv2 + (ρ − 1)2dx.

Our first main result is the following theorem, which is central to our strategy as it establishes a local
bilipschitz equivalence between the metrics ds and θs. We require s > 1

2 to use L∞ embeddings and
certain product estimates.

Theorem 1.6. (Local bilipschitz equivalence of ds and θs) Let s > 1
2 and r, δ > 0. Consider measurable

functions ρ, η, ϕ, ψ : R −→ R so that q, p ∈ S ′(R) ∩ Hs
loc(R) and |q|, |p| > δ, where q =

√
ρeiϕ and

p =
√

ηeiψ. There exist constants C1(s, δ, r), C2(s, r) > 0 so that the following hold:
(i) If ds(1, q), ds(1, p) < r, then

θs((ρ, ∂xϕ), (η, ∂xψ)) ≤ C1(s, δ, r) ds(q, p).

(ii) If θs((1, 0), (ρ, ∂xϕ)), θs((1, 0), (η, ∂xψ)) < r, then

ds(q, p) ≤ C2(s, r) θs((ρ, ∂xϕ), (η, ∂xψ)).

Corollary 1.7. Let s ≥ 1, 1
2 < μ < 1. For all b < 4

3 and ε < ε0(μ), the maps
({

q ∈ Xs : E(q) < b
}
, ds

) M−−−−−→ ({
(ρ, v) ∈ Ys : E(ρ, v) < b

}
, θs

)

and
({

q ∈ Xs : Eμ(q) < ε
}
, ds

) M−−−−−→ ({
(ρ, v) ∈ Ys : Eμ(ρ, v) < ε

}
, θs

)

are bilipschitz equivalences. Recall that a bilipschitz equivalence is a map which is bijective, Lipschitz
continuous, and has a Lipschitz continuous inverse. Here ε0(μ) is a constant defined in (1.16).

Our second main result is the global-in-time well-posedness of the hydrodynamic Gross–Pitaevskii
equations.

Definition 1.8. (Solution to (hGP)) Let s ≥ 1 and 0 ∈ I ⊂ R be an open time interval or the real line,
and let (ρ0, v0) ∈ Ys with ρ0 > 0. A solution to (hGP) with initial data (ρ0, v0) is a pair (ρ, v) ∈ C(I;Ys)
with ρ > 0, which solves (hGP) in the sense of distributions and fulfills (ρ, v)(0) = (ρ0, v0).
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Theorem 1.9. (Global-in-time well-posedness of (hGP) for s ≥ 1) Let s ≥ 1. The hydrodynamic Gross–
Pitaevskii equations (hGP) are globally-in-time well-posed in the metric space (Ys, θs) for initial data
(ρ0, v0) ∈ Ys with E(ρ0, v0) < 4

3 in the following sense:
There exists a solution (ρ, v) ∈ Cb(R;Ys) to (hGP) (see Definition 1.8). It is the unique solution that

fulfills

E(ρ(t), v(t)) = E(ρ0, v0) <
4
3

(1.20)

for all t ∈ R. For any T ≥ 0 the solution map
{

(ρ0, v0) ∈ Ys : E(ρ0, v0) <
4
3

}

−→ Cb([−T, T ];Ys)

(ρ0, v0) �−→ (ρ, v)

is continuous.
For all 1

2 < μ < 1 there exist constants c(μ), ε0(μ) > 0, defined in (1.15) and (1.16), so that if we
replace the assumption E(ρ0, v0) < 4

3 by Eμ(ρ0, v0) < ε < ε0(μ), then the above statement holds with
(1.20) replaced by Eμ(ρ(t), v(t)) < c(μ) ε.

Remark 1.10. In [38, Theorem 1.2], the well-posedness of (hGP) until the appearance of vacuum is shown
in (1+Hk)×Hk−1 for k ∈ N≥1. Furthermore, continuity properties for the Madelung transform between
(Yk, θk) and the space

Ẽk = {q ∈ L∞(R;C) : 1 − |q|2 ∈ L2(R), ∂xq ∈ Hk−1(R)}
are established. Specifically, a strong metric

d̃k(q, p) = ‖q − p‖L∞(R) + ‖|q|2 − |p|2‖L2(R) + ‖∂xq − ∂xp‖Hk−1(R)

and a weak metric

d̃k
loc(q, p) = ‖q − p‖L∞([−1,1]) + ‖|q|2 − |p|2‖L2(R) + ‖∂xq − ∂xp‖Hk−1(R)

are considered, and the following is shown [38, Proposition 1.1]:

(Yk ∩ {ρ > 0}, θk)
(Ẽk ∩ {|q| > 0}, d̃k)

(Ẽk ∩ {|q| > 0}, d̃k
loc)

(Ẽk ∩ {|q| > 0}, d̃k)

(Ẽk ∩ {|q| > 0}, d̃k
loc)

loc. Lipschitz

not loc. Lipschitz

not cont.

cont.

There are several ways in which Theorem 1.6 improves upon [38, Theorem 1.2]. The first is that our result
covers the fractional cases as well. The second is that we obtain a full local bilipschitz equivalence

(Ys ∩ {ρ > 0}, θs)(Xs ∩ {|q| > 0}, ds) (Xs ∩ {|q| > 0}, ds)
loc. Lipschitz loc. Lipschitz

and do so down to s > 1
2 , while they have to work with two different metrics on the side of (GP) for

the two directions of estimates. Furthermore, they state well-posedness up to the appearance of vacuum,
while we use energy bounds to ensure this absence of vacuum for all times. Lastly, we find solutions which
are uniformly bounded.

Remark 1.11. Previously, Zhidkov [48, Theorem III.3.1] studied the stability of solutions in the Zhidkov
space Z1(R) [see (1.2)] near-space homogeneous solutions Φ, such as the constant solution Φ = 1, with
respect to the distance θ1. For the case s = 1 he derived similar estimates as above under smallness
assumptions, although he did not formulate a well-posedness result. Curiously, in [48, Cor. III.3.5] he
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proved furthermore that for any ball B ⊂ R, if the initial θ1-distance between the perturbed and the
space-homogeneous solution is small, then for all times also the distance

inf
λ∈S1

‖λq − Φ‖W 1,2(B)

is small. This can be interpreted as a weaker form of the estimate d1 � θ1 we derive (see Lemma 2.6 and
Remark 2.11).

Remark 1.12. As both Theorems 1.1 and 1.6 work for all s > 1
2 , it may be possible to extend Theorem 1.9

to the case 1
2 < s < 1. The problem is that for v ∈ Hs−1 �⊆ L2 the product of distributions v2 = v · v

is not necessarily defined. Nevertheless, it may be possible to find global distributional solutions. For
example, in the paper [30] by Killip and Vişan global-in-time well-posedness of the KdV equation in
H−1 is first shown in the sense that the solution map R×S −→ S extends to a continuous mapping
R×H−1 −→ H−1, and some other conditions are fulfilled. In our case, it is similarly true that for any
T ≥ 0 the solution map

{
(ρ0, v0) ∈ Y1 : Es(ρ0, v0) < ε0(s)

}
−→ Cb([−T, T ];Y1)

has a unique continuous extension to a map
{

(ρ0, v0) ∈ Ys : Es(ρ0, v0) < ε0(s)
}

−→ Cb([−T, T ];Ys).

This extension is given by the conjugation of the corresponding solution map for (GP) at regularity s
with the Madelung transform. Killip and Vişan then furthermore show a local smoothing result, which
implies that the solution map produces functions in L2

loc,t,x. As a result, the equation is indeed solved in
the sense of distributions. We do not know if such a local smoothing result holds in our case.

Organization of the paper In Sect. 2, we prove Theorem 1.6, the local bilipschitz equivalence of (Xs, ds)
and (Ys, θs). In Sect. 3, we prove Theorem 1.9, the global-in-time well-posedness of the hydrodynamic
Gross–Pitaevskii equations.

2. Local bilipschitz equivalence of (Xs, ds) and (Ys, θs)

The goal of this section is to prove Theorem 1.6. In Sect. 2.1, we introduce the necessary notations,
definitions, and basic results required for the rest of the paper. We split the proof of the two statements
(i) and (ii) of Theorem 1.6 into Sects. 2.2 and 2.3.

2.1. Notations and preliminaries

We use the notations R≥ = {r ∈ R : r ≥ 0} and R+ = {r ∈ R : r > 0}. We write C or C(. . .) for various
constants with possible dependence on other quantities. These may change from one line to the next. We
denote by D′ = D′(R) = D′(R;C) the space of distributions and by S ′ = S ′(R) = S ′(R;C) the space of
tempered distributions. In general, if for a family of function spaces, such as the Lp-spaces, we write just
“Lp”, then we mean Lp(R;C).

We write f̂ for the Fourier transform

f̂(ξ) =
1√
2π

∫

R

e−ixξf(x)dx

for a Schwartz function f ∈ S and extend the definition as usual to the tempered distributions f ∈ S ′.
Let s ∈ R. We define the Sobolev space

Hs = Hs(R) = Hs(R;C) = {f ∈ S ′(R;C) : ‖f‖Hs < ∞}
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with norm

‖f‖Hs = ‖f‖Hs(R) =
∥
∥〈ξ〉sf̂

∥
∥

L2(R)
.

Here 〈ξ〉 =
√

1 + |ξ|2. We also define the quasinorm of the homogeneous Sobolev space

‖f‖Ḣs = ‖f‖Ḣs(R) =
∥
∥|ξ|sf̂ ∥∥

L2(R)
.

Let p ∈ [1,∞). For s ≥ 0, let α ∈ [0, 1) and m ∈ Z so that s = m + α. Let B ⊂ R be a non-empty
open interval. We define the Sobolev–Slobodeckij space

W s,p(B) = {f ∈ D′(B) : ‖f‖W s,p(B) < ∞}
with norm

‖f‖W s,p(B) =

⎛

⎝
m∑

k=0

‖∂kf‖p
Lp(B) +

∫

B

∫

B

|∂mf(x) − ∂mf(y)|p
|x − y|1+αp

dxdy

⎞

⎠

1
p

.

We define W s,p
0 (B) = D(B)

W s,p(B)
. For s < 0 we define W s,p′

(B) = (W−s,p
0 (B))∗, where 1

p + 1
p′ = 1. We

refer the reader to the book [37] by McLean for a comprehensive exposition. For the convenience of the
reader, let us recall some well-known results on Sobolev spaces that may be used without mention.

2.1.1. Fractional Sobolev spaces on B and R. The only bounded domains we use are balls B, and on
those we use the Sobolev–Slobodeckij spaces W s,2(B). On the whole real line R, we use Hs = Hs(R).

Lemma 2.1. (W s,2(B) and Hs(R)) Let s ∈ R and R > 0. Let B̃ ⊂ B ⊆ R be concentric balls of radius
R
2 and R. Set Bk = B + kR and B̃k = B̃ + kR for k ∈ Z.
(i) There exists a natural isomorphism H−s ∼= (Hs)∗ (see [37, p. 76]).
(ii) Hs = W s,2(R) and

‖f‖W s,2(B) ≤ C1 min{‖F‖Hs : F
∣
∣
B

= f} ≤ C2‖f‖W s,2(B).

(see [37, p. 77, (3.23) + Theorem 3.18, 3.19]).
(iii) For s ≥ 0, there exists a bounded linear extension operator E : W s,2(B) −→ Hs with Ef

∣
∣
B

= f (see
[37, Theorem A.4]).

(iv) For s ≥ 0, there exists a constant C(s,R) so that
∑

k∈Z

‖f‖2
W s,2(B̃k)

≤ ‖f‖2Hs ≤ C(s,R)
∑

k∈Z

‖f‖2W s,2(Bk)
≤ 4C(s,R)‖f‖2Hs

and

‖f‖2H−s ≤ C(s,R)
∑

k∈Z

‖f‖2W −s,2(Bk)
.

(v) If s > 1
2 , then ‖fg‖Hs ≤ C(s)‖f‖Hs‖g‖Hs (see [12, Cor. 2.87]). By use of the extension operator,

we also have ‖fg‖W s,2(B) ≤ C(s)‖f‖W s,2(B)‖g‖W s,2(B).

Proof. We only have to prove (iv). We start with the first inequality in the sequence. The case s = 0 is
trivial, so we assume s > 0. Here the statement is trivial for the terms with integer regularity, and for
the fractional terms we estimate

∑

k∈Z

∫

B̃k

∫

B̃k

|∂mf(x) − ∂mf(y)|2
|x − y|1+2α

dxdy ≤
∑

j,k∈Z

∫

B̃j

∫

B̃k

|∂mf(x) − ∂mf(y)|2
|x − y|1+2α

dxdy

=
∫

R

∫

R

|∂mf(x) − ∂mf(y)|2
|x − y|1+2α

dxdy.
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The third inequality in the sequence follows trivially. We show the second inequality for any s ∈ R. We
can decompose f =

∑
k∈Z

ηkf , where ηk is a smooth partition of unity with supp ηk ⊂ Bk,
∑

k∈Z
ηk = 1

and ηk(x) = ηk(x + kR). Then,

〈f, f〉Hs =
∑

j,k∈Z

〈ηjf, ηkf〉Hs
(ii)
=

∑

k∈Z

〈(ηk−1 + ηk + ηk+1)f, ηkf〉W s,2(Bk)

≤ C(s,R, η0)
∑

k∈Z

‖f‖2W s,2(Bk)
.

�

2.1.2. Estimates in Hs . The following lemma states two crucial estimates. Such kinds of product esti-
mates are well-known in the literature, see for example [19, Proposition 2.7].

Lemma 2.2. Let s > 1
2 and f, g ∈ S ′. There exists a constant C(s) so that

‖fg‖Hs ≤ C(s)‖g‖Hs

(‖f‖L∞ + ‖f ′‖Hs−1

)
(2.1)

and

‖fg‖Hs−1 ≤ C(s)‖g‖Hs−1

(‖f‖L∞ + ‖f ′‖Hs−1

)
. (2.2)

Proof. See Appendix B. �

In this section, we often write f ′ for the spatial derivative ∂xf . Recall the definitions (1.19). For
notational convenience, we sometimes prefer to use the variables

A =
√

ρ and B =
√

η.

These variables are equivalent for the sake of our estimates, by which we mean specifically Lemma 2.4. In
order to prove this, we state two estimates regarding the action of a smooth function on Sobolev spaces.
They are a direct consequence of some results in [12].

Lemma 2.3. [12, Theorem 2.87, Corollary 2.91] Let s > 1
2 and F ∈ C∞(R;R) with F ′(0) = F (0) = 0.

Let u, v ∈ Hs(R;R) ∩ L∞(R;R). We have the estimates

‖F ◦ u‖Hs ≤ C(s, F ′, ‖u‖L∞)‖u‖Hs (2.3)

and

‖F ◦ u − F ◦ v‖Hs ≤ C(s, F ′′, ‖u‖Hs , ‖v‖Hs)‖u − v‖Hs . (2.4)

An analysis of the proof in [12] reveals that, more precisely, the constants depend on ‖F ′‖C�s�+1(B‖u‖L∞ )

and ‖F ′′‖C�s�+1(B‖u‖L∞ ), respectively.

Lemma 2.4. Let s > 1
2 and ρ, η ∈ S ′(R;R) ∩ Hs

loc(R;R) with ρ, η > 0. Define A =
√

ρ and B =
√

η. We
have the estimates

‖ρ − η‖Hs ≤ C1

(
s, ‖A − 1‖Hs , ‖B − 1‖Hs

) ‖A − B‖Hs

and

‖A − B‖Hs ≤ C2

(
s, ‖ρ − 1‖Hs , ‖η − 1‖Hs

) ‖ρ − η‖Hs .

Proof. We apply Lemma 2.3 with F (u) = u2 and obtain

‖A2 − B2‖Hs ≤ ‖(A − 1)2 − (B − 1)2‖Hs + 2‖A − B‖Hs

≤ C
(
s, ‖A − 1‖Hs , ‖B − 1‖Hs

) ‖A − B‖Hs .
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Similarly with any function F ∈ C∞(R;R) that fulfills F (u) =
√

u + 1 − 1
2u − 1 for x ≥ 0, we obtain

‖√
ρ − √

η‖Hs ≤
∥
∥
∥
∥

(
√

(ρ − 1) + 1 − 1
2
(ρ − 1)

)

−
(
√

(η − 1) + 1 − 1
2
(η − 1)

)∥
∥
∥
∥

Hs

+
1
2
‖ρ − η‖Hs

≤ C
(
s, ‖ρ − 1‖Hs , ‖η − 1‖Hs

) ‖ρ − η‖Hs .

�

The following lemma is also a consequence of Lemma 2.3 and will be used frequently in the subsequent
section.

Lemma 2.5. Let s, δ, R > 0. There exists C(s, δ, R) > 0 such that for any ball B0 ⊂ R of radius R and all
u ∈ W s,2(B0) with |u| > δ > 0 we have

‖u−1‖W s,2(B0) ≤ C(s, δ)‖u‖W s,2(B0).

Proof. This follows by applying Lemma 2.3 with any function F ∈ C∞(R;R) so that F (0) = F ′(0) = 0
and F (x) = x−1 for |x| > δ

2 , and using the existence of an extension operator from Lemma 2.1(iii). Note
that Lemma 2.3 requires real-valued functions, so we apply it to the real and imaginary parts of u−1

separately. �

2.2. Proof of Theorem 1.6(i)

Recall the definitions (1.19), in particular q =
√

ρeiϕ and p =
√

ηeiψ, as well as A =
√

ρ and B =
√

η.
We assume s > 1

2 , ds(1, q), ds(1, p) < r and |q|, |p| > δ > 0. We have to prove that

θs((ρ, ∂xϕ), (η, ∂xψ)) ≤ C(s, δ, r) ds(q, p).

We do this by showing an estimate of the form

θs �
∑

k∈Z

ds
∗
∣
∣
Bk

� ds. (2.5)

Let us elaborate on the quantity in the middle before we start the proof. Given a ball B ⊂ R, we define
for convenience the following notations:

ds
∗
∣
∣
B

(q, p) = inf
λ∈S1

‖λq − p‖W s,2(B), (2.6)

ds
∣
∣
B

(q, p) =

⎛

⎝

∫

R

inf
λ∈S1

‖ sech(y − ·)(λq − p)‖2W s,2(B)dy

⎞

⎠

1
2

. (2.7)

Lemma 2.6. Let s > 1
2 and let B0 = {x ∈ R : |x| < R} be an open ball of radius R > 0 with center 0.

There exists C(s,R) > 0 so that

ds
∗
∣
∣
B0

(q, p) ≤ C(s,R) ds
∣
∣
B0

(q, p) (2.8)

for all q, p ∈ S ′ ∩ Hs
loc. As a consequence, for families of balls Bk = B0 + kR with k ∈ Z we have

∑

k∈Z

ds
∗
∣
∣
Bk

(q, p)2 ≤ C(s,R) ds(q, p)2. (2.9)
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Proof. As {y − x : x, y ∈ B0} ⊆ {x ∈ R : |x| < 2R}, there exists a finite constant C(s,R) > 0 such that
supy∈B0

‖ sech(y − ·)−1‖2W s,2(B0)
≤ C(s,R). The first estimate follows:

inf
λ∈S1

‖λq − p‖2W s,2(B0)
≤ C(s,R) inf

y∈B0
inf

λ∈S1
‖ sech(y − ·)(λq − p)‖2W s,2(B0)

≤ C(s,R)
∫

R

inf
λ∈S1

‖ sech(y − ·)(λq − p)‖2W s,2(B0)
dy .

Using this and Lemma 2.1(iv), we obtain the second estimate:
∑

k∈Z

ds
∗
∣
∣
Bk

(q, p)2 ≤ C(s,R)
∑

k∈Z

ds
∣
∣
Bk

(q, p)2

≤ C(s,R)
∫

R

inf
λ∈S1

∑

k∈Z

‖ sech(y − ·)(λq − p)‖2W s,2(Bk)
dy

≤ C(s,R) ds(q, p)2.

�

Proof of Theorem 1.6(i). Let B0 = {x ∈ R : |x| < 1} and observe that

‖|q|2 − |p|2‖W s,2(B0)

= inf
λ,ν∈S1

‖|λq|2 − |νp|2‖W s,2(B0)

= inf
λ,μ,ν∈S1

‖|λq − μ|2 − |νp − μ|2 + 2(Re(λμq) − Re(μνp))‖W s,2(B0).

We can estimate

‖|q|2 − |p|2‖W s,2(B0)

≤ inf
λ,μ,ν∈S1

∥
∥
∥Re

((
(λq − μ) − (νp − μ)

)(
(λq − μ) + (νp − μ)

))∥∥
∥

W s,2(B0)

+ 2‖Re(λμq − μνp)‖W s,2(B0)

≤ C(s) inf
λ,ν∈S1

‖λq − νp‖W s,2(B0) inf
μ∈S1

(‖λq − μ‖W s,2(B0) + ‖νp − μ‖W s,2(B0) + 2
)

= C(s) inf
λ∈S1

‖λq − p‖W s,2(B0) inf
μ∈S1

inf
ν∈S1

(‖λq − μ‖W s,2(B0) + ‖νp − μ‖W s,2(B0) + 2
)

≤ C(s) ds
∗
∣
∣
B0

(q, p)
(
2 + ds

∗
∣
∣
B0

(1, q) + ds
∗
∣
∣
B0

(1, p)
)

≤ C(s, r) ds
∗
∣
∣
B0

(q, p), (2.10)

where in the last line we used (2.8). Now we set Bk = B0 + k and see with Lemma 2.1(iv) and (2.9) that

‖ρ − η‖2Hs ≤ C(s)
∑

k∈Z

‖|q|2 − |p|2‖2W s,2(Bk)

≤ C(s, r)
∑

k∈Z

ds
∗
∣
∣
Bk

(q, p)2

≤ C(s, r) ds(q, p)2.

It remains to estimate ‖ϕ′ − ψ′‖Hs−1 . Applying Lemma 2.2 yields

‖(ϕ − ψ)′‖2Hs−1 = ‖(ei(ϕ−ψ))′e−i(ϕ−ψ)‖2Hs−1

≤ C(s)‖(ei(ϕ−ψ))′‖2Hs−1

(‖e−i(ϕ−ψ)‖2L∞ + ‖(e−i(ϕ−ψ))′‖2Hs−1

)

≤ C(s)‖(ei(ϕ−ψ))′‖2Hs−1

(
1 + ‖(ei(ϕ−ψ))′‖2Hs−1

)
.
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It therefore suffices to derive the estimate for the quantity ‖(ei(ϕ−ψ))′‖2Hs−1 . Observe with Lemma 2.1
(iv) that

‖(ei(ϕ−ψ))′‖2Hs−1 ≤ C(s)
∑

k∈Z

inf
λ∈S1

‖(ei(ϕ−ψ) − λ)′‖2W s−1,2(Bk)

= C(s)
∑

k∈Z

inf
θ∈R

‖ei(ϕ−ψ−θ) − 1‖2W s,2(Bk)

= C(s)
∑

k∈Z

inf
θ∈R

‖e−iψ(ei(ϕ+θ) − eiψ)‖2W s,2(Bk)
.

We now carefully introduce the amplitudes:

inf
θ∈R

‖e−iψ(ei(ϕ+θ) − eiψ)‖2W s,2(Bk)

= inf
θ∈R

∥
∥
∥
∥Be−iψ(x)B−1

(
Aei(ϕ(x)+θ) − Beiψ(x)

A
+ Beiψ(x)

(
1
A

− 1
B

))∥
∥
∥
∥

2

W 2,s(Bk)

≤ C(s)‖Be−iψ‖2W s,2(Bk)
‖B−1‖2W s,2(Bk)

×
(

inf
θ∈R

∥
∥
∥
∥

Aei(ϕ(x)+θ) − Beiψ(x)

A

∥
∥
∥
∥

2

W s,2(Bk)

+
∥
∥
∥
∥Beiψ(x)

(
1
A

− 1
B

)∥
∥
∥
∥

2

W s,2(Bk)

)

.

As A,B > δ > 0, we can apply Lemma 2.5. Together with (2.10), we obtain

‖A−1‖2W s,2(Bk)
≤ C(s, δ)‖A‖2W s,2(Bk)

≤ C(s, δ, r)
(

inf
λ∈S1

‖A − λ‖2W s,2(Bk)
+ |Bk|

)

≤ C(s, δ, r),

and similarly ‖B±1‖W s,2(Bk), ‖q±1‖W s,2(Bk), ‖p±1‖W s,2(Bk) ≤ C(s, δ, r). We conclude again by reducing
the situation to an application of Lemma 2.6 and the previously shown estimate (2.10):

‖(ei(ϕ−ψ))′‖2Hs−1 ≤ C(s)
∑

k∈Z

‖p‖2W s,2(Bk)
‖B−1‖2W s,2(Bk)

×
(

inf
λ∈S1

‖λq − p‖2W s,2(Bk)
‖A−1‖2W s,2(Bk)

+ ‖A − B‖2W s,2(Bk)
‖p‖2W s,2(Bk)

‖A−1‖2W s,2(Bk)
‖B−1‖2W s,2(Bk)

)

≤ C(s, δ, r)
∑

k∈Z

ds
∗
∣
∣
Bk

(q, p)2

≤ C(s, δ, r) ds(q, p)2.

�

2.3. Proof of Theorem 1.6(ii)

We assume

θs((1, 0), (ρ, ∂xϕ)), θs((1, 0), (η, ∂xψ)) < r,

and
√

ρ,
√

η > δ > 0. We have to prove that

ds(q, p) ≤ C(s, r) θs((ρ, ∂xϕ), (η, ∂xψ)).
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As mentioned above, due to Lemma 2.4 it suffices to prove this with ρ, η replaced by A =
√

ρ and B =
√

η.
Recall the definitions (1.19). We define

d̃s(q, p) =

⎛

⎝

∫

R

inf
λ∈S1

‖
√

sech(y − ·)(λq − p)‖2Hsdy

⎞

⎠

1
2

,

where we have replaced the sech in the definition of ds with
√

sech. Some of the hard work for this
direction has already been done in the proof of Lemma 2.7. This was proven for ds in [32, Lemma 6.1],
but the proof is identical for d̃s as

√
sech is positive and still has sufficiently fast decay.

Lemma 2.7. [32, Lemma 6.1] For all s ≥ 0, the energy Es : Xs −→ R≥ is continuous with respect to ds,
and there exists C(s) > 0 so that

ds(1, q) ≤ C(s)
√

Es(q) and d̃s(1, q) ≤ C(s)
√

Es(q)

for all q ∈ Xs.

Remark 2.8. The appearance of the square root is explained by a clash of notation: the energies Es as
defined in [32] correspond to

√
2Es in our notation.

We first prove two Lemmas.

Lemma 2.9. Let s > 1
2 . There exists a constant C(s) > 0 so that for all ϕ ∈ S ′ ∩ Hs

loc we have

‖(eiϕ)′‖Hs−1 ≤ C(s)(1 + ‖ϕ′‖Hs−1)γ‖ϕ′‖Hs−1 ,

where γ = 2s − 2 if s ≥ 1 and γ = 1−s
s− 1

2
if s < 1.

Proof. We assume ‖ϕ′‖Hs−1 �= 0. By Lemma 2.2, there exists a constant C(s) so that

‖ϕ′eiϕ‖Hs−1 ≤ C(s)‖ϕ′‖Hs−1

(‖eiϕ‖L∞ + ‖(eiϕ)′‖Hs−1

)
. (2.11)

For ε ∈ (0, 1) and f ∈ Hs
loc define fε(x) = f(εx). This has the scaling estimates

min{εs− 1
2 , ε

1
2 }‖f ′‖Hs−1 ≤ ‖(fε)′‖Hs−1 ≤ max{εs− 1

2 , ε
1
2 }‖f ′‖Hs−1 . (2.12)

Define smin ≤ smax so that {smin, smax} = {s − 1
2 , 1

2}. Then we can rewrite the above as

εsmax‖f ′‖Hs−1 ≤ ‖(fε)′‖Hs−1 ≤ εsmin‖f ′‖Hs−1 . (2.13)

We choose ε = (1 + 2C(s)‖ϕ′‖Hs−1)− 1
smin so that

‖(ϕε)′‖Hs−1 ≤ εsmin‖ϕ′‖Hs−1 =
‖ϕ′‖Hs−1

1 + 2C(s)‖ϕ′‖Hs−1
≤ 1

2C(s)
.

Combining this with (2.11) yields

‖(eiϕε)′‖Hs−1 ≤ C(s)‖(ϕε)′‖Hs−1 +
1
2
‖(eiϕε)′‖Hs−1 ,

so we obtain

‖(eiϕε)′‖Hs−1 ≤ 2C(s)‖(ϕε)′‖Hs−1 .

We conclude with the scaling estimates (2.12) that

‖(eiϕ)′‖Hs−1 ≤ ε−smax‖(eiϕε)′‖Hs−1 ≤ 2C(s)ε−smax‖(ϕε)′‖Hs−1 ≤ 2C(s)εsmin−smax‖ϕ′‖Hs−1 .

Lastly, note that

εsmin−smax =
(
1 + 2C(s)‖ϕ′‖Hs−1

) |s−1|
smin =

(
1 + 2C(s)‖ϕ′‖Hs−1

)γ
.

�
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Lemma 2.10. Let s > 1
2 and r > 0. There exists C(s, r) > 0 so that for all q = Aeiϕ ∈ S ′ ∩ Hs

loc with
θs((1, 0), (A,ϕ′)) < r we have

Es(q) ≤ C(s, r) θs((1, 0), (A,ϕ′))2.

Proof. For the amplitudinal part of the energy, we know from Lemma 2.4 that

‖|q|2 − 1‖Hs−1 ≤ ‖A2 − 1‖Hs ≤ C(s, r)‖A − 1‖Hs .

For the remainder, we use Lemma 2.2:

‖q′‖Hs−1 ≤ ‖A′eiϕ‖Hs−1 + ‖A(eiϕ)′‖Hs−1

≤ C(s)‖A′‖Hs−1

(‖eiϕ‖L∞ + ‖(eiϕ)′‖Hs−1

)

+ ‖(eiϕ)′‖Hs−1

(‖A − 1‖L∞ + 1 + ‖A′‖Hs−1

)
.

We now conclude by estimating both appearances of ‖(eiϕ)′‖Hs−1 with Lemma 2.9. �

Proof of Theorem 1.6(ii). We split the distance ds(q, p) into two parts:

ds(q, p)2 ≤ 2
∫

R

inf
θ∈R

‖ sech(y − ·)A(ei(ϕ+θ) − eiψ)‖2Hsdy

+ 2
∫

R

‖ sech(y − ·)(B − A)eiψ‖2Hsdy

= (I) + (II).

We use the algebra property of Hs and Lemma 2.7 to estimate

(I) ≤ C(s) sup
y∈R

∥
∥
∥
√

sech(y − ·)Aeiψ
∥
∥
∥
2

Hs
d̃s(1, ei(ϕ−ψ))2

≤ C(s, r)
(‖A − 1‖2Hs + 1

)
sup
y∈R

∥
∥
∥
√

sech(y − ·)eiψ
∥
∥
∥

Hs
Es(ei(ϕ−ψ)).

With Lemma 2.10, we can estimate Es(ei(ϕ−ψ)) by ‖ϕ′ − ψ′‖2Hs−1 , and Lemma 2.2 yields

sup
y∈R

∥
∥
∥
√

sech(y − ·)eiψ
∥
∥
∥

Hs
≤ C(s) sup

y∈R

∥
∥
∥
√

sech(y − ·)
∥
∥
∥

Hs
(‖eiψ‖L∞ + ‖(eiψ)′‖Hs−1) ≤ C(s, r).

It follows that

(I) ≤ C(s, r) θs((A,ϕ′), (B,ψ′))2.

Note that

(II) ≤ C(s)
∫

R

∥
∥
∥
√

sech(y − ·)(A − B)
∥
∥
∥
2

Hs

(

1 + inf
λ∈S1

∥
∥
∥
√

sech(y − ·)(eiψ − λ)
∥
∥
∥
2

Hs

)

dy

≤ C(s)

⎛

⎝

∫

R

∥
∥
∥
√

sech(y − ·)(A − B)
∥
∥
∥
2

Hs
dy +

∥
∥
√

sech
∥
∥2

Hs‖A − B‖2Hs d̃s(1, eiψ)2

⎞

⎠ .
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We can deal with the second term as before. For the first one, we use Lemma 2.1(iv) and Young’s
convolution inequality:

∫

R

∥
∥
∥
√

sech(y − ·)(A − B)
∥
∥
∥
2

Hs
dy ≤

∑

k∈Z

sup
y∈[k,k+1]

∑

j∈Z

∥
∥
∥
√

sech(y − ·)(A − B)
∥
∥
∥
2

W s,2([j,j+3])

≤
∑

j,k∈Z

∥
∥
√

sech
∥
∥2

C�s�+1([k−j−3,k−j+1]))
‖A − B‖2W s,2([j,j+3])

≤
∑

k∈Z

∥
∥
√

sech
∥
∥2

C�s�+1([k−3,k+1]))

∑

j∈Z

‖A − B‖2W s,2([j,j+3])

≤ C(s)‖A − B‖2Hs .

Therefore,

(II) ≤ C(s, r) θs((A,ϕ), (B,ψ))2.

To conclude, we have shown that

ds(q, p)2 ≤ (I) + (II) ≤ C(s, r) θs((A,ϕ), (B,ψ))2.

�

Remark 2.11. Recall the definition of ds
∗
∣
∣
B

[see (2.6)]. We have shown in particular that there exist
constants such that

(
∑

k∈Z

ds
∗
∣
∣
Bk

(q, p)2
) 1

2

≤ C(s, r) ds(q, p) ≤ C(s, δ, r)

(
∑

k∈Z

ds
∗
∣
∣
Bk

(q, p)2
) 1

2

for all q, p ∈ Xs with |q|, |p| > δ > 0 and ds(1, q), ds(1, p) < r. Here the first estimate is Lemma 2.6, while
the second estimate actually follows from (ii) together with the fact that we showed (i) by proving (2.5).

Let us say a few words on how Corollary 1.7 follows from Theorem 1.6.

Proof of Corollary 1.7. The Madelung transform is well-defined on equivalence classes under multiplica-
tion by S

1, as v = ϕ′ ignores changes by a constant in the phase ϕ. Note also that s ≥ 1, and so for any
(ρ, v) ∈ Ys we have v ∈ L2 ⊂ L1

loc. Therefore we can define

ϕ(x) =

x∫

0

v(y)dy.

Recall that b < 4
3 and ε < ε0(μ) [see (1.16)]. Due to (1.17) and (1.8), there exists δ > 0 such that |q| > δ

for all q ∈ Xs with E(q) < b or Eμ(q) < ε. With Lemma 2.7, we find some r = r(s, ε, b) > 0 such that
ds(1, q) < r. Then Theorem 1.6 establishes the bilipschitz estimates. �

3. Proof of Theorem 1.9

Given that Theorem 1.6 establishes an equivalence between the relevant function spaces (Xs, ds) and
(Ys, θs), the proof of Theorem 1.9 is now primarily a matter of carefully carrying over the results of
Theorem 1.1. This is straightforward for the existence and continuity results. Uniqueness requires a
further Lemma.

Lemma 3.1. Let I 
 0 be an open time interval and q0 ∈ L∞ ∩ Ḣ1. Suppose

q1, q2 ∈ C(I;L2
loc) ∩ L∞(I;L∞ ∩ Ḣ1)

are two distributional solutions to (GP) with q1(0) = q2(0) = q0. Then q1 = q2.



194 Page 18 of 29 R. Wegner ZAMP

Proof. See Appendix C. �

This result is necessary because Theorem 1.1, in the way it is stated in [32], only yields uniqueness
for the following class of solutions, which for the case s ≥ 1 is a priori smaller.

Definition 3.2. (Solutions to (GP) [32]) Let s ≥ 0. We say that q ∈ C(I;Xs) is a solution of the
Gross–Pitaevskii equation (GP) with initial data q0 ∈ Xs on the open time interval I 
 0 if there exists
q̃ : I −→ Hs

loc such that the following hold:

(i) q̃ solves (GP) in the sense of distributions on I × R.
(ii) q̃ projects to q, which means that q̃S1 = q.
(iii) We have

[
t �→ q̃(t) − q̃(0)

] ∈ C(I;L2(R)).

(iv) For all compact intervals [a, b] ⊂ I and for some (and hence for all) regularized initial data q̃∗
0 of

q̃(0) we have
[
t �→ q̃(t) − q̃∗

0

] ∈ L4([a, b] × R).

The uniqueness result in Theorem 1.1 for s ≥ 1 is therefore weaker than the one in Lemma 3.1. The
proofs, however, are almost identical: in [32] uniqueness is shown by a classical argument with an energy
estimate and Grönwall’s inequality. We extend this argument for s ≥ 1 to gain Lemma 3.1.

Remark 3.3. If p̃ ∈ C(I;L2
loc) ∩ L∞(I;L∞ ∩ Ḣ1) is a distributional solution to (GP), as in Lemma 3.1,

with initial data p̃(0)S1 ∈ X1, then p̃S1 is also a solution in the sense of Definition 3.2. The reason is
that by Theorem 1.1 there exists a solution q ∈ C(I;X1) in the sense of Definition 3.2 with initial data
q(0) = p̃(0)S1. One can see that this has a representative q̃ ∈ C(I;L2

loc) ∩ L∞(I;L∞ ∩ Ḣ1) which solves
(GP) in distribution, so Lemma 3.1 implies q̃ = p̃.

Theorem 1.9 states that (hGP) is globally-in-time well-posed, meaning that there exist solutions, they
are unique, and the flow map is continuous. The structure of the proof is to transfer the existence and
continuity result for (GP) from Theorem 1.1 via the Madelung transform over to (hGP). This requires
the absence of vacuum, which we obtain by the energy assumptions E < 4

3 or Eμ < ε0(μ) [see (1.17) and
(1.8)]. Uniqueness for (hGP) is similarly inferred from the uniqueness result for (GP) in Lemma 3.1.

Recall that by Lemma 2.7 the energy functionals Es : Xs −→ R≥ are continuous. Recall furthermore
the definitions (1.19).

Proof of Theorem 1.9. Existence. We are given an initial data (ρ0, v0) ∈ Ys which fulfills one of the
bounds E(ρ0, v0) < 4

3 or Eμ(ρ0, v0) < ε0(μ). We define q0 = M−1(ρ0, v0) and obtain via Theorem 1.1 a
solution q ∈ Cb(R;Xs) of (GP) in the sense of Definition 3.2. Our solution q has a special representative
q̃ ∈ S ′(R×R). In both cases E(q0) < 4

3 and Eμ(q0) < ε0(μ), we obtain either (1.8) or (1.17), so there
exists some δ > 0 depending on the initial data such that |q̃| > δ > 0. Now Corollary 1.7 implies
(ρ, v) = M(q̃) ∈ Cb(R;Ys).

(ρ0, v0) (ρ, v)(t)

q0 q(t)

(hGP)

M−1

(GP)

M
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We show that (ρ, v) is a distributional solution of (hGP) in the sense of Definition 1.8. We fix a ball B0 ⊂ R

and a time interval J = (a, b) ⊂ R with 0 ∈ J . It suffices to verify that (hGP) holds in distribution, i.e.
when tested against any test function f ∈ D(J × B0).

On regularity. Due to Lemmas 2.5 and 2.6 for s ≥ 1, we know that q̃, q̃−1 ∈ L∞(J ;W 1,2(B0)). From
these considerations ∂xxq̃ ∈ L∞(J ;W−1,2(B0)) and (|q̃|2 − 1)q̃ ∈ L∞(J ;W 1,2(B0)) directly follow. Then
∂tq̃ ∈ L∞(J ;W−1,2(B0)) holds because q̃ solves (GP ) in the sense of distributions.

As a consequence of duality and the algebra property of H1, one obtains the product estimate
‖fg‖H−1 ≤ C‖f‖H1‖g‖H−1 . From this, we obtain some regularity for some of the more difficult terms
appearing in the subsequent calculations, for example ∂tq̃q̃, ∂xxq̃q̃ ∈ L∞(J ;W−1,2(B0)). We now present
approximation arguments that derive (hGP)1 and (hGP)2 from (GP).

Obtaining (hGP)1 from (GP). Set q̃ε = ηε ∗ q̃ for a standard mollifier (ηε)ε>0, i.e. some ηε(x) =
η(ε−1(ε−1x)) where η ∈ C∞

c (R;R≥) with
∫

ηdx = 1. Note that |q̃| > δ implies |q̃ε| > δ
2 for sufficiently

small ε > 0 as we have sufficient regularity. We define ρε = |q̃ε|2 and vε = Im
[

∂xq̃ε

q̃ε

]
. Note furthermore

the identity ∂xq̃ε

q̃ε
= 1

2
∂xρε

ρε
+ ivε, which we use below. Equation (hGP)1 can be obtained by multiplying

(GP) for q̃ε with q̃ε, taking the imaginary part, and then the limit:

0 = Im
(
q̃ (GP)

) ε→0←−−− Im
[
i∂tq̃εq̃ε + ∂xxq̃εq̃ε − 2q̃ε(|q̃ε|2 − 1)q̃ε

]

= Re
[
∂tq̃εq̃ε

]
+ ∂x Im

[
∂xq̃ε

q̃ε
q̃εq̃ε

]

− Im
[
∂xq̃ε∂xq̃ε

]− Im
[
2|q̃ε|2(|q̃ε|2 − 1)

]

=
1
2
∂t(|q̃ε|2) + ∂x

(

|q̃ε|2 Im
[
∂xq̃ε

q̃ε

])

=
1
2
∂tρε + ∂x(ρεvε)

ε→0−−−→ 1
2
∂tρ + ∂x(ρv).

We have to justify the limits in distribution on both sides. Observe that
∣
∣
∣
∣
∣
∣

∫

J

∫

B0

(∂tq̃εq̃ε − ∂tq̃q̃)f

∣
∣
∣
∣
∣
∣
� ‖∂tq̃ε − ∂tq̃‖L∞(J;W −1,2(B0))‖q̃ε‖L∞(J;W 1,2(B0))‖f‖L∞(J;W 1,2(B0))

+ ‖∂tq̃‖L∞(J;W −1,2(B0))‖q̃ε − q̃‖L∞(J;W 1,2(B0))‖f‖L∞(J;W 1,2(B0))

ε→0−−−→ 0.

With the same estimates, we can take the limit of the distribution ∂xxq̃εq̃ε. The convergence of the
nonlinear term follows similarly. We have shown that

i∂tq̃εq̃ε + ∂xxq̃εq̃ε − 2q̃ε(|q̃ε|2 − 1)q̃ε
ε→0−−−→ q̃

(
i∂tq̃ + ∂xxq̃ − 2q̃(|q̃|2 − 1)

)
= 0

in distribution on J × B0. As
∣
∣
∣
∣
∣
∣

∫

J

∫

B0

(ρεvε − ρv)∂xfdxdt

∣
∣
∣
∣
∣
∣

�
(‖q̃‖L∞(J×B0) + ‖q̃ε‖L∞(J×B0)

)‖q̃ε − q̃‖L∞(J×B0)‖v‖L∞(J;L2(B0))‖∂xf‖L2(J×B0)

+
(‖q̃‖L∞(J×B0) + ‖q̃ε‖L∞(J×B0)

)‖q̃ε‖L∞(J×B0)‖vε − v‖L∞(J;L2(B0))‖∂xf‖L2(J×B0)
ε→0−−−→ 0,

and we can similarly show ∂tρε
ε→0−−−→ ∂tρ, we have
1
2
∂tρε + ∂x(ρεvε)

ε→0−−−→ 1
2
∂tρ + ∂x(ρv)
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in distribution on J × B0.
Obtaining (hGP)2 from (GP). We now repeat these arguments for the second equation (hGP)2. Here

we divide (GP) for q̃ε by q̃ε, take a further derivative, the real part, and then the limit:

0 = Re ∂x

(
(GP)

q̃

)
ε→0←−−− Re

[

∂x

(
i∂tq̃ε

q̃ε
+

∂xxq̃ε

q̃ε
− 2(|q̃ε|2 − 1)

)]

= − Im [∂x∂t(ln q̃ε)] + Re

[

∂x

(

∂x

(
∂xq̃ε

q̃ε

)

+
(

∂xq̃ε

q̃ε

)2
)]

− 2∂x(|q̃ε|2)

= −∂tvε − ∂x(v2
ε) − 2∂xρε + ∂x

(

∂x

(
1
2

∂xρε

ρε

)

+
(

1
2

∂xρε

ρε

)2
)

ε→0−−−→ −∂tv − ∂x(v2) − 2∂xρ + ∂x

(

∂x

(
1
2

∂xρ

ρ

)

+
(

1
2

∂xρ

ρ

)2
)

.

Of course, the limits have to be justified again. For the left-hand side, we can proceed just as before

since q̃−1 ∈ L∞(J ;W 1,2(B0)). On the right-hand side, the difficult terms are v2 and
(

1
2

∂xρ
ρ

)2

, as here

the square of a distribution in Hs−1 is taken. The situation would be much more difficult if we did not
assume s ≥ 1. In our case, we indeed have v, ∂xρ

ρ ∈ C(J ;L2(B0)), which implies that the squares are
trivially defined. Furthermore,

∣
∣
∣
∣
∣
∣

∫

J

∫

B0

(v2
ε − v2)∂xfdx

∣
∣
∣
∣
∣
∣

≤ ‖vε − v‖L∞(J;L2(B0))

(‖vε‖L∞(J;L2(B0)) + ‖v‖L∞(J;L2(B0))

)‖∂xf‖L∞(J×B0)
ε→0−−−→ 0,

and the same estimate works for
(

1
2

∂xρ
ρ

)2

. The remaining terms are strictly easier to deal with.

Uniqueness. Let 0 ∈ I ⊂ R be a bounded open interval and let (ρ1, v1), (ρ2, v2) ∈ C(I;Ys) be two
solutions to (hGP) in the sense of the theorem, both with initial data (ρ0, v0) ∈ Ys. In particular, they
satisfy one of the energy bounds E < b < 4

3 or Eμ < c(μ)ε < c(μ)ε0(μ) (see (1.15) and (1.16)). As before,
this implies that there exists a δ > 0 so that

√
ρk > δ, where k ∈ {0, 1, 2}. Since vk ∈ L2 ⊂ L1

loc, we can

define ϕk(x) =
x∫

0

vk(y)dy and q̃k =
√

ρkeiϕk . Note that q̃k having uniformly bounded energy E1 implies

q̃k ∈ L∞(I;L∞ ∩ Ḣ1). We now fix j ∈ {1, 2}. Writing qj = q̃jS
1 for the equivalence class, we know from

Corollary 1.7 that qj ∈ C(I;Xs).
Just as in the existence part of the proof, one can show that (ρj , vj) solving (hGP) implies that for

the quantity

Qj = i∂tq̃j + ∂xxq̃j − 2q̃j(|q̃j |2 − 1) (3.1)

we have

Im
[
Qj q̃j

]
= 0 and ∂x Re

[
Qj

q̃j

]

= 0 (3.2)

in the sense of distributions. We sketch the argument that follows with a diagram.
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(ρ1, v1)(t)

q̃1(t)

(ρ0, v0) (ρ2, v2)(t)

q̃0 q̃2(t)

p0 p2(t)p1(t)

(hGP)(hGP)

M−1M−1 M−1

(3.1) - (3.2)(3.1) - (3.2)

·eiG1(t) ·eiG2(t)

(GP) (GP)

Lemma 3.1

Due to (3.2), we have in particular

Im
[
Qj

q̃j

]

= Im
[
Qj q̃j

|q̃j |2
]

=
Im[Qj q̃j ]

|q̃j |2 = 0,

and hence for every t ∈ I there exists a gj(t) ∈ R so that

gj(t) =
Qj

q̃j
.

We see that, in fact, q̃j does not necessarily solve (GP). The reason is that for each time t ∈ I we had to
make an arbitrary choice of a constant-in-space phase rotation, as this information is lost in the Madelung

transform. This choice was the arbitrary lower limit 0 in the integral ϕ(t) =
t∫

0

v(s)ds. In order to find

solutions to (GP), we would now like to define

pj(t) = eiGj(t)q̃j(t) where Gj(t) =

t∫

0

gj(s)ds.

Then,

i∂tpj + ∂xxpj − 2pj(|pj |2 − 1) = Qj − G′(t)q̃j = 0.

This argument requires gj : I −→ R to be locally integrable. We show that gj ∈ C(I;R) by verifying that
Qj ∈ C(I;W−1,2(B0)) for any ball B0 ⊂ R. With the same reasoning as in the existence part of the proof,
ρj ∈ C(I;W 1,2(B0)) and vj ∈ C(I;L2(B0)) solving (hGP) in distribution implies ρj ∈ C1(I;W−1,2(B0))
and vj ∈ C1(I;W−1,1(B0)). In particular, we have ∂tϕj ∈ C(I;L1(B0)). Observe that

Qj = i
∂tρj

ρj
q̃j + i(∂tϕj)q̃j + ∂xxq̃j − 2q̃j(|q̃j |2 − 1).

Verifying the products of distributions, each term can now be seen to be in C(I;W−1,2(B0)). We have
shown that for any bounded interval I 
 0, both p1 and p2 are distributional solutions to (GP) with
initial data p1(0) = p2(0) = q̃0. At the same time, pj ∈ C(I;L2

loc) ∩ L∞(I;L∞
t,x ∩ Ḣ1). Therefore, Lemma

3.1 implies p1 = p2, from which q1 = q2 in C(I;Xs) and (ρ1, v1) = (ρ2, v2) follow.
Continuity. This is a direct consequence of the continuity result for (GP) from Theorem 1.1, the

continuity of the energy functionals from Lemma 2.7, and the local bilipschitz equivalence from Theorem
1.6. �
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Appendix A: Absence of vacuum for small energies

Lemma A.1. For δ ∈ [0, 1] and s ∈ (
1
2 , 1

]
, define

Es
δ = inf

{

Es(q) : q ∈ Hs
loc, inf

x∈R

|q(x)| ≤ δ

}

.

Then Es
1 = 0, the function δ �→ Es

δ is decreasing, and there exists a constant C̃(s) > 0 so that

Es
δ ≥ (1 − δ)2

C̃(s)
. (A.1)

Assume s = 1 and write Eδ = E1
δ . Set q0 = tanh, q1 = 1, and for δ ∈ (0, 1) define

qδ(x) = tanh
(|x| + tanh−1(δ)

)
. (A.2)

We have

Eδ = E(qδ) =
4
3

− 2δ +
2
3
δ3.

There exists a strictly decreasing inverse function δ̃ : [0, 4
3 ] −→ [0, 1] with δ̃(0) = 1, δ̃( 43 ) = 0 and

δ̃(b) = inf
{

inf
x∈R

|q(x)| : q ∈ H1
loc, E(q) ≤ b

}

.

http://creativecommons.org/licenses/by/4.0/
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Proof. We see that Es
1 = 0 by choosing q = 1. Clearly the set over which the infimum is taken increases

with δ, and hence, the infimum is decreasing. Recall that Lemma 2.6 implies

inf
λ∈S1

‖q − λ‖W s,2(Bk) ≤ C(s) ds(1, q),

where Bk = B0 + k, k ∈ Z are balls of radius 1. Estimating with Lemma 2.7 on the right and the Sobolev
embedding W 1,2(Bk) ↪−→ L∞ on the left, we obtain

1 − δ ≤ sup
k∈Z

inf
λ∈S1

‖q − λ‖L∞(Bk) ≤ C(s)
√

Es(q)

for every q ∈ Hs
loc with infx∈R |q(x)| ≤ δ. This proves (A.1).

Now we assume s = 1. We first rewrite the problem as Eδ = infν∈[0,δ] Ẽν with

Ẽν = inf{E(q) : q ∈ H1
loc, inf

x∈R

|q(x)| = ν}, ν ∈ [0, δ].

Of course we expect that Ẽν is decreasing in ν and hence Eδ = Ẽδ. This will be verified once we
have calculated Ẽν . Using invariance under translations, phase rotations, and mirror symmetry, we can
equivalently consider the minimization problem

Ẽν = 2 inf

⎧
⎨

⎩

1
2

∞∫

0

|∂xq|2 + (|q|2 − 1)2dx : q ∈ H1
loc(R≥), q(0) = ν

⎫
⎬

⎭
.

We now follow the same arguments as in [13, Lemma 1] to find a minimizer. Consider a minimizing
sequence (qn)n∈N. As Es(qn) is uniformly bounded, so is ‖∂xqn‖L2(R≥). The Banach–Alaoglu theorem
then implies, up to a subsequence, that ∂xqn −→ p′

ν for some p′
ν ∈ L2(R≥). Furthermore as qn(0) = ν is

fixed, we have a Poincare inequality ‖qn‖W 1,2(B0) ≤ C(s,B) ‖∂xqn‖L2(B0) on any finite interval B0 ⊂ R≥.
Then we can use compactness of the Sobolev embedding H1 ↪−→ L∞ to find, up to a subsequence, that
qn −→ pν in L∞

loc(R≥) for some pν ∈ H1
loc(R≥), with p′

ν indeed being its distributional derivative. Now
we can conclude with Fatou’s lemma that pν is a minimizer for Ẽν :

∞∫

0

(|p0|2 − 1)2 + |p′
0|2dx =

∞∫

0

lim inf
n

(|qn|2 − 1)2 + lim inf
n

|q′
n|2dx

≤ lim inf
n

∞∫

0

(|qn|2 − 1)2 + lim inf
n

|q′
n|2dx

= Eν .

For the case ν = 0, we obtain the Euler–Lagrange equation

p′′
0 − 2p0(1 − |p0|2) = 0.

Then as p0(0) = 0 and E(p0) < ∞, [13, Theorem 1] implies that p0 = tanh is the unique solution.
Consequently, it must be the case that for a > 0 the function pν(x) = tanh(x + a) is a minimizer for
the problem with ν = tanh(a), as otherwise one could modify p0 on [r,∞) to find an admissible function
with strictly smaller energy for the minimization problem of Ẽ0. This implies that the qδ defined in (A.2)
are minimizers for Ẽν .

With a = tanh−1(ν), and noting the identities

cosh(a) =
1√

1 − ν2
, cosh(2a) = −1 + ν2

1 − ν2
, sech2(a) = 1 − ν2,
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we compute

E(qν) = 2 · 1
2

∞∫

a

(tanh(x)′)2 + (tanh(x)2 − 1)2dx

=

∞∫

a

sech4(x) + sech4(x)dx .

Evaluating the integral yields

E(qν) =
[
2
3
(cosh(2x) + 2) tanh(x) sech2(x)

]∞

r

=
2
3

(

2 − ν(1 − ν2)
(

2 +
1 + ν2

1 − ν2

))

=
4
3

− 2ν +
2
3
ν3.

�

Appendix B: Littlewood–Paley theory and proof of Lemma 2.2

The proof uses the Bony decomposition

fg = Tfg + R(f, g) + Tgf,

which Bony introduced in his 1981 paper [16]. It relies on the Littlewood–Paley theory, for which we refer
the reader to [12, Chp. 2]. We give a brief introduction below, always only considering the one-dimensional
case.

Let ϕ ∈ C∞
c ({ξ : 3

4 < |ξ| < 8
3} and χ ∈ C∞

c ({ξ : |ξ| < 4
3}) be non-negative functions on R so that

χ(ξ) +
∞∑

j=0

ϕ(2−j) = 1.

This is called a dyadic partition of unity. We define for j ∈ Z the operators

Δj : S ′ −→ S ′

f �−→ Δjf =

⎧
⎪⎨

⎪⎩

ϕ(2−j ·)f̂ , j ≥ 0
χf̂ , j = −1
0, j ≤ −2

and Sj =
∑

j′<j Δj′ . These operators have nice properties such as ‖Sjf‖Lp ≤ C(p)‖f‖Lp , p ∈ [1,∞]. At
least formally, we have the decomposition

Id = lim
j→∞

Sj =
∑

j

Δj .

The Bony decomposition is given by

fg =
∑

j,k

ΔjfΔkg = Tfg + R(f, g) + Tgf,

where we define

Tfg =
∑

j

Sj−1fΔjg R(f, g) =
∑

j

∑

|ν|≤1

Δj+νfΔjg.
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In the Littlewood–Paley setting, it is easy to define the Besov spaces Bs
p,q for 1 ≤ p, r ≤ ∞, s ∈ R by

Bs
p,q =

{
f ∈ S ′(R;C) : ‖f‖Bs

p,q
< ∞}

,

where

‖f‖Bs
p,q

=
∥
∥
(
2js‖Δjf‖Lp

)

j∈Z

∥
∥

�r .

It is evident that

Bs
2,2 = {f ∈ S ′(R;C) : ‖〈ξ〉sf̂‖L2(R) < ∞} = Hs(R;C).

Proof of Lemma 2.2. We only prove (2.2) as the proof of (2.1) is analogous and strictly simpler. Consider
the decomposition fg = gS0f + g(1 − S0)f . Since S0f is spectrally supported in a fixed ball there exists
a constant N ∈ N so that Δk(S0fΔjg) = 0 unless |k − j| ≤ N . Consequently,

‖gS0f‖2Hs−1 =
∑

j∈Z

22j(s−1)

∥
∥
∥
∥
∥
∥

∑

|ν|≤N

Δj(S0fΔj+νg)

∥
∥
∥
∥
∥
∥

2

L2

≤ C(N)‖S0f‖2L∞
∑

j∈Z

22j(s−1)‖Δkg‖2L2

= C(N)‖S0f‖2L∞‖g‖2Hs−1 .

It remains to estimate ‖g(1−S0)f‖Hs−1 . To simplify notation, we now write f for (1−S0)f and derive
an estimate by ‖f‖Hs . Note that Sj−1fΔjg is only nonzero if j ≥ 1, and in that case it is a convolution of
a ball with an annulus of much larger radius. As a result, there exists an annulus C so that F [Sj−1fΔjg]
is supported in 2jC, and so [12, Lemma 2.69] implies

‖Tfg‖Hs−1 �
∥
∥2j(s−1)‖Sj−1fΔjg‖L2

∥
∥

�2(Z)
.

Since

‖Sj−1fΔjg‖L2 ≤ ‖Sj−1f‖L∞‖Δjg‖L2 ≤ ‖f‖L∞‖Δjg‖L2 ,

this implies

‖Tfg‖Hs−1 � ‖g‖Hs−1‖f‖L∞ .

For the same reason as before, we have

‖Tgf‖Hs−1 �
∥
∥2j(s−1)‖Sj−1gΔjf‖L2

∥
∥

�2
.

Here we consider two cases. If s ≤ 1, then we use the Bernstein inequality [12, Lemma 2.1]. It states that

supp û ⊂ λB =⇒ ‖u‖L∞ ≤ C(B)λ
1
2 ‖u‖L2

for any fixed ball B. This yields

2j(s−1)‖Sj−1gΔjf‖L2 ≤ 2j(s−1)‖Sj−1g‖L2‖Δjf‖L∞

� ‖Sj−1g‖Hs−12
j
2 ‖Δjf‖L2

� ‖g‖Hs−12
j
2 ‖Δjf‖L2 .

Here we have used

22j(s−1)‖Sj−1g‖2L2 =
∑

j′<j−1

22(j−j′)(s−1)
︸ ︷︷ ︸

≤1

22j′(s−1)‖Δj′g‖2L2 ≤ ‖Sj−1g‖2Hs−1 ≤ ‖g‖2Hs−1 .

We see that

‖Tgf‖Hs−1 � ‖g‖Hs−1‖f‖
H

1
2
.
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For the case s > 1, we estimate

2j(s−1)‖Sj−1gΔjf‖L2 ≤ 2j(s−1)‖Sj−1g‖L∞‖Δjf‖L2

� ‖2−jSj−1g‖H12js‖Δjf‖L2

� ‖g‖L22js‖Δjf‖L2

and obtain

‖Tgf‖Hs−1 � ‖g‖Hs−1‖f‖Hs .

It remains to estimate the remainder terms R(f, g). Here let it be noted that there exists an integer
N > 0, independent of j, so that

∑
|ν|≤1 Δj−νfΔjg is spectrally supported in a ball of radius 2j+N−1.

In this case, we know by [12, Lemma 2.84] that

‖R(f, g)‖Bs̃
p,r

≤ C(p, r, s̃)
∥
∥
∥2js̃

∥
∥
∑

|ν|=1

Δj−νgΔjf
∥
∥

Lp

∥
∥
∥

�r(Z)
(B.1)

for s̃ > 0. This does not work in general if s̃ < 0. Therefore, we use the embedding

‖R(f, g)‖Hs−1 ≤ C(s)‖R(f, g)‖
B

s− 1
2

1,1

in order to apply (B.1) with s̃ = s − 1
2 > 0 and p, r = 1. Now we can conclude via Hölder’s and Young’s

inequalities for sequences:
∥
∥
∥
∥
∥
∥
2j(s− 1

2 )

∥
∥
∥
∥
∥
∥

∑

|ν|=1

Δj−νfΔjg

∥
∥
∥
∥
∥
∥

L1

∥
∥
∥
∥
∥
∥

�1(Z)

�
∑

|ν|≤1

2
ν
2

∥
∥
∥2

j−ν
2 ‖Δj−νf‖L2

∥
∥
∥

�2(Z)

∥
∥2j(s−1)‖Δjg‖L2

∥
∥

�2(Z)

� ‖g‖Hs−1‖f‖
H

1
2
.

�

Appendix C: Uniqueness for the Gross–Pitaevskii equation

Proof of Lemma 3.1. Recall that q1, q2 ∈ C(I;L2
loc) ∩ L∞(I;L∞ ∩ Ḣ1) are two distributional solutions of

(GP) on an open interval I 
 0 with the same initial data q0. It follows that q1, q2 ∈ L∞(I;W 1,2(B)) for
any arbitrary ball B ⊂ R. We define b = q1 − q2 and compute that it solves in distribution the following
equation:

i∂tb + ∂xxb = 2q1(|q1|2 − 1) − 2q2(|q2|2 − 1)

= 2b(|q1|2 − 1) + 2b(|q2|2 − 1) + 2q2(|q1|2 − 1) − 2q1(|q2|2 − 1)

= 2b(|q1|2 + |q2|2 − 2 + 1) + 2(q2|q1|2 − q1|q2|2)
= 2b((b + q2)(b + q2) + |q2|2 − 1) + 2(q2|b + q2|2 − (b + q2)|q2|2)
= 2b(|b|2 + bq2 + bq2 + 2|q2|2 − 1)

+ 2(q2|b|2 + b|q2|2 + bq22 + q2|q2|2 − b|q2|2 − q2|q2|2)
= 2b(|b|2 + bq2 + bq2 + 2|q2|2 − 1) + 2(q2|b|2 + bq22)

= 2|b|2b + 4|b|2q2 + 2b2q2 + 2b(2|q2|2 − 1) + 2bq22 .

We know that ∂xxb ∈ L∞(I;W−1,2(B)). Then b solving the equation implies ∂tb ∈ L∞(I;W−1,2(B)).
Using duality and the algebra property of W 1,2(B), we find that also b ∂tb, ∂t(|b|2) ∈ L∞(I;W−1,2(B)).
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Let ϕn(x) = ϕ( x
n ) where ϕ ∈ C∞

c ([−2, 2]; [0, 1]) and ϕ
∣
∣
[−1,1]

= 1. One may choose ϕ in such a way
that there exists K > 0 with |∂xϕ| ≤ K

√
ϕ and in particular |∂xϕn| ≤ Kn−1√ϕn. We test the above

with bϕn and take the imaginary part. On the left-hand side, we have
∫

R

Im[i(∂tb)bϕn] + Im[(∂xxb)bϕn]dx =
∫

R

1
2
ϕn∂t(|b|2) − Im[(∂xb)b∂xϕn]dx.

Therefore for a fixed time t ∈ I,
1
2

d

dt

∫

R

ϕn|b|2dx =
∫

R

Im[(∂xb)b∂xϕn]dx

+
∫

R

(
2|b|4 + 4|b|2bq2 + 2|b|2bq2 + 2|b|2(2|q2|2 − 1) + 2b

2
q22
)
ϕndx

= (I) + (II).

We estimate

(I) ≤ ‖∂xb‖L2
x
‖b∂xϕn‖L2

x
≤ (‖q1‖L∞

t Ḣ1
x

+ ‖q2‖L∞
t Ḣ1

x

)
Kn−1

∥
∥b

√
ϕn

∥
∥

L2
x

and

(II) ≤ C
∥
∥b

√
ϕn‖2L2

x

∥
∥
∥
∥|b|2 + |b||q2| + |q2|2 + 1

∥
∥

L∞
t,x

≤ C
∥
∥b

√
ϕn

∥
∥2

L2
x

(
1 + ‖q1‖2L∞

t,x
+ ‖q2‖2L∞

t,x

)
.

We have shown that there exists some C > 0, depending on q1, q2 but independent of time, such that

1
2

d

dt

(‖b
√

ϕn‖2L2
x

) ≤ C

(
1√
n

‖b
√

ϕn‖L2
x

+ ‖b
√

ϕn‖2L2
x

)

.

In particular

d

dt
‖b

√
ϕn‖L2

x
≤ C

(
1√
n

+ ‖b
√

ϕn‖L2
x

)

.

Now Grönwall’s inequality implies for any fixed t > 0 that

‖b(t)‖L2
x

n→∞←−−−− ‖b(t)√ϕn‖L2
x

≤
⎛

⎝‖b(0)
√

ϕn‖L2
x︸ ︷︷ ︸

=0

+ C
t√
n

⎞

⎠ eCt n→∞−−−−→ 0,

hence q1 = q2 for positive times. The argument for negative times is analogous. �
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