KIT | KIT-Bibliothek | Impressum | Datenschutz

Beam trajectory control with lattice-agnostic reinforcement learning

Xu, Chenran ORCID iD icon 1; Bründermann, Erik ORCID iD icon 1; Mueller, Anke-Susanne ORCID iD icon; Santamaria Garcia, Andrea ORCID iD icon 2; Kaiser, Jan; Eichler, Annika; Assmann, Ralph [Hrsg.]; McIntosh, Peter [Hrsg.]; Fabris, Alessandro [Hrsg.]; Bisoffi, Giovanni [Hrsg.]; Andrian, Ivan [Hrsg.]; Vinicola, Giulia [Hrsg.]
1 Institut für Beschleunigerphysik und Technologie (IBPT), Karlsruher Institut für Technologie (KIT)
2 Laboratorium für Applikationen der Synchrotronstrahlung (LAS), Karlsruher Institut für Technologie (KIT)

Abstract:

In recent work, it has been shown that reinforcement learning (RL) is capable of outperforming existing methods on accelerator tuning tasks. However, RL algorithms are difficult and time-consuming to train and currently need to be retrained for every single task. This makes fast deployment in operation difficult and hinders collaborative efforts in this research area. At the same time, modern accelerators often reuse certain structures within or across facilities such as transport lines consisting of several magnets, leading to similar tuning tasks. In this contribution, we use different methods, such as domain randomization, to allow an agent trained in simulation to easily be deployed for a group of similar tasks. Preliminary results show that this training method is transferable and allows the RL agent to control the beam trajectory at similar lattice sections of two different real linear accelerators. We expect that future work in this direction will enable faster deployment of learning-based tuning routines, and lead towards the ultimate goal of autonomous operation of accelerator systems and transfer of RL methods to most accelerators.


Verlagsausgabe §
DOI: 10.5445/IR/1000163622
Veröffentlicht am 31.10.2023
Originalveröffentlichung
DOI: 10.18429/JACoW-IPAC2023-THPL029
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Beschleunigerphysik und Technologie (IBPT)
Laboratorium für Applikationen der Synchrotronstrahlung (LAS)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 26.09.2023
Sprache Englisch
Identifikator ISBN: 978-3-95450-231-8
ISSN: 2673-5490
KITopen-ID: 1000163622
HGF-Programm 54.11.11 (POF IV, LK 01) Accelerator Operation, Research and Development
Erschienen in 14th International Particle Accelerator Conference, Venedig, 7th-12th May 2023
Veranstaltung 14th International Particle Accelerator Conference (IPAC 2023), Venedig, Italien, 07.05.2023 – 12.05.2023
Verlag JACoW Publishing
Seiten 4487-4490
Schlagwörter Accelerator Physics, mc6-beam-instrumentation-controls-feedback-and-operational-aspects - MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects, mc6-a27-machine-learning-and-digital-twin-modelling - MC6.A27: Machine Learning and Digital Twin Modelling
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page