KIT | KIT-Bibliothek | Impressum | Datenschutz

Fully Printed Electrolyte‐Gated Transistor Formed in a 3D Polymer Reservoir with Laser Printed Drain/Source Electrodes

Cadilha Marques, Gabriel 1; Yang, Liang 1,2; Liu, Yan 1; Wollersen, Vanessa 1; Scherer, Torsten 1; Breitung, Ben ORCID iD icon 1; Wegener, Martin 1,2; Aghassi-Hagmann, Jasmin ORCID iD icon 1
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
2 Institut für Angewandte Physik (APH), Karlsruher Institut für Technologie (KIT)

Abstract:

In solution processed electronic devices it is crucial that the deposited inks are properly aligned and that all post-processing steps are compliant with each other. Moreover, shorter channel lengths are highly beneficial to increase the device performance. Herein, laser printing of metals and polymer reservoirs allows to print sub-micrometer sized channel lengths while confining functional inks into these small gaps. Therefore, a manufacturing concept and optimized material stack, suitable for combined inkjet and laser printing are proposed. A nanoparticulate indium oxide (In$_2$O$_3$) semiconductor is inkjet printed into and constrained by a 3D laser written polymer (pentaerythritol triacrylate, PETA) reservoir. Inside the 3D printed polymer reservoir, platinum (Pt) electrodes, that are further routed over the reservoir walls, are laser printed by a metal reduction process. The transistor fabrication is completed by a second inkjet printed layer of composite solid polymer electrolyte and an organic top-gate layer (PEDOT:PSS). This concept does not exceed annealing temperatures higher than 100°C, and is compatible with a range of substrates. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000163646
Veröffentlicht am 31.10.2023
Originalveröffentlichung
DOI: 10.1002/admt.202300893
Scopus
Zitationen: 3
Web of Science
Zitationen: 1
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Physik (APH)
Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 2365-709X
KITopen-ID: 1000163646
HGF-Programm 43.31.02 (POF IV, LK 01) Devices and Applications
Erschienen in Advanced Materials Technologies
Verlag John Wiley and Sons
Band 8
Heft 22
Seiten Art.-Nr.: 2300893
Vorab online veröffentlicht am 06.10.2023
Schlagwörter 3D polymer reservoirs, electrolyte-gated field-effect transistors, fully printed transistors, inkjet printing, laser printing, multi-photon polymerization, oxide electronics
Nachgewiesen in Dimensions
Web of Science
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 9 – Industrie, Innovation und Infrastruktur
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page