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ABSTRACT Privacy-presenting for cloud computing has been concerned for several years. Public key 
encryption with equality test as a variant of keyword searchable encryption is one of the important concepts 
in this area. In order to simplify the management of certificate and optimize the scheme, an identity-based 
encryption with equality test was proposed by Wu et al. In this paper, we analyze that some binary operations 
of the encryption in the scheme are not clear so that the scheme is not more efficient than the existing 
schemes or the test of the scheme is not available when we analyze the most possible definitions of the 
binary operations in the scheme. Finally, we improve the scheme and furthermore, our improved scheme is 
fine-grained.

INDEX TERMS Identity-based encryption, binary operation, equality test, cloud computing, performance.

I. INTRODUCTION
In cloud computing era, data which are in encrypted form are 
used to storing in the cloud servers. In order to efficiently 
manage the data and utilize them in the future, some basic 
operations on the data for cloud servers are necessary, such 
as searching the keyword (encrypted form).
Boneh et al. [1] introduced an amazing notion — public 

key encryption with keyword search (PKEKS), in which 
an encrypted keyword can be searched by cloud server but 
cannot be unknown and decrypted. Later, Yang et al. [2] 
proposed a variant of it — public key encryption with equality 
test (PKEET), which utilizes the advantage of the public 
key encryption (PKE) and searchable encryption (SE). The 
PKEET scheme not only has the functionality of decryption, 
but also can test whether ciphertexts are encryptions of an 
unknown keyword even if it is encrypted by different public 
keys.

Tang proposed an extension of PKEET with fine-grained 
authorization scheme (PKEET-FG) [3] and all-or-nothing 
PKEET [4] to improve a PKEET-FG [5]. In order to simplify 
the certificate management of PKEET, Ma [7] presented 
identity-based encryption with equality test (IBEET), and

showed the scheme is one-way secure under chosen cipher-
text attack (OW-CCA). However, the scheme was proved
insecure by Liao et al. [8]. In order to improve the efficiency
of the IBEET scheme, Wu et al. [9] proposed a new one by
reducing the computational cost. Recently, A semi-generic
construction of IBEET scheme and PKEET scheme [10] was
proposed by Lee et al., but it needs to use the encryption algo-
rithm twice and a one-time signature, which aren’t efficient.
Zhang and Xu [11] proposed a scheme from lattices, which is
viewed as secure scheme under quantum computing attacks.
Chen and Liao [12] considered another properties of ABE
scheme and Mohammed et al. [13] proposed IBEET scheme
from integer factorization assumption for wireless body area
networks.

In this article, we analyze the construction of an IBEET
scheme as follows. We first analyze some binary operations
used in the IBEET scheme proposed byWu et al. according to
their construction and performance analysis, and find that the
definition of a binary operation of rM is not clear, where r ∈
Z∗p and M ∈ {0, 1}∗. Because the binary operation of rM is
viewed as a usual multiplication in Encryption algorithm and
a scalar multiplication in performance analysis, respectively.
Thenwe prove the scheme is inefficient or insecure if we view
the binary operation of rM as the usual multiplication, and the
Test algorithm cannot perform if we view the binary operation



∗
q

of rM as the scalar multiplication. Finally, we also improve 
the IBEET scheme and prove the security and performance. 
We show that our scheme is more efficient than the existing 
schemes and is fine-grained.
The article is organized as follows. In section II we intro-

duce some basic notions to be used in the paper. We then 
recall the model and security model of IBEET in section III. 
In section IV we recall the IBEET scheme proposed by 
Wu et al. and analyze it according to different definition of a 
binary operation. we improve the IBEET scheme and analyze 
it in section V. Finally, we conclude the paper in section VI.

II. PRELIMINARY
Here, we first recall some basic mathematical knowledge 
which will be used.

A. BILINEAR PAIRING
Let G be an additive group and GT be a multiplicative group, 
which have the same prime order q, Z be the multiplicative 
group of the finite field Fq. A bilinear map e : G × G → 
GT [14], which satisfies the following three properties:
• Bilinearity: For any a, b, c ∈ G,

e(a, b+ c) = e(a, b)e(a, c), and

e(a+ b, c) = e(a, c)e(b, c).

• Non-degeneracy: For any non-identity elements g1, g2 ∈
G, e(g1, g2) 6= 1GT , where 1GT is the identity element
of GT.

• Computability: For any elements g1, g2 ∈ G, there is a
polynomial-time algorithm to compute e(g1, g2).

Definition 1: Computational Diffie-Hellman problem
(CDH problem). Let G be an additive group above. Given
(P, aP, bP) ∈ G3 for some a, b ∈ Z∗q, to compute abP.

B. MODEL OF IBEET
Three parties are in an IBEET as follows, the key genera-
tor center (KGC), user and the cloud server, which are in
FIGURE 1. The KGC produces the user’s private key. The
user produces the trapdoor of the private keys and ciphertexts.
The cloud server can store the data of users which are in
encrypted form and run the test algorithmwhen it receives the
cihpertext’s trapdoors. The user can get its private key over a
secure channel. The cloud server can get data (ciphertexts)
and trapdoors over open channels.

An IBEET scheme [9] consists of six algorithms as
follows.
• Setup(k): It produces public parameters PKT and a
master key msk for the input a security parameter k.

• Extract(msk, ID): It produces a private key skID of
an identity ID for the input msk and the identity
ID ∈ {0, 1}∗.

• Enc(ID,M ): It produces a ciphertextC ∈ C for the input
ID ∈ {0, 1}∗ and a messageM ∈M. WhereM andC are
the plaintext space and ciphertext space, respectively.

• Dec(skID,C): It produces a plaintext M ∈ M for a
ciphertext C ∈ C and a private key skID.

FIGURE 1. Model of IBEET.

• Trapdoor(skIDA ,C): It produces a trapdoor tdA for a
user A’s private key skIDA and a ciphertext C which is
encrypted by using IDA. It produces the same trapdoor
tdA for all ciphertext if C is an empty string.

• Test(CA, tdA,CB, tdB) : It outputs ‘‘1’’ if the plaintext of
CA and CB are the same; Otherwise it outputs ‘‘0’’.

If the trapdoors for the ciphertexts are different, we call the
IBEET scheme is fine-grained.

C. SECURITY MODEL OF IBEET
We recall the definition of one-way against chosen ciphertext
security (OW-ID-CCA) for IBEET scheme [9].
• Setup: The challenger C runs the Setup algorithm to
produce the public parameters PKT andmaster keymsk.
Then it sends PKT to the adversary A.

• The Phase 1
– Private-key-query. C runs the Extract algorithm to

produce the private key ski of an identity IDi. Then
it sends the private key ski as a response of IDi’s
query to adversary A.

– Trapdoor-query TDi. C runs the above private-key-
query to produce the trapdoor tdi at any time, and
then sends it to A.

– Decryption-query (IDi,Ci). C runs the decryp-
tion oracle to decrypt the ciphertext Ci, and then
sends an output of the decryption oracle, Mi, to
adversary A.

• Challenge: A submits a challenge identity ID∗ which
didn’t appear in the private-key-query in the phase 1.
Then C picks a plaintext M∗ ∈M randomly and sends
C∗ = Enc(ID∗,M∗) to A as a challenge ciphertext.

• The Phase 2. All queries are the same as them in the
Phase 1, except
– IDi 6= ID∗ in the Private-key-query.
– (IDi,Ci) 6= (ID∗,C∗) in the Decryption-query.

• Guess: A submits a guessM ′ ∈M.
A is called a OW-ID-CCA adversary in the above game [9].
The OW-ID-CCA adversary’s advantage is the probability
which A wins the game, i.e.,

AdvOW−ID−CCAIBEET,A (k) = Pr[M = M ′].



Definition 2: We call an IBEET scheme to be OW-ID-
CCA secure if AdvOW−ID−CCAIBEET,A (k) is negligible in k for all
OW-ID-CCA adversaries.

III. CRYPTANALYSIS OF AN IBEET SCHEME
In this section, we recall the IBEET scheme proposed by 
Wu et al. [9] before we analyze it.

A. REVIEW OF THE IBEET SCHEME
• Setup: On the input a security parameter k ∈ Z+,
the algorithm generates the following system public
parameters K . G and GT are an additive group and a
multiplicative group with the same prime order p ∈ Z+
respectively. Let e : G × G → GT be a bilinear map,
and P be a generator of group G. Set g = e(P,P). H :
GT→ G, h1 : {0, 1}∗→ {0, 1}∗ and h2 : GT→ {0, 1}∗

are three hash functions. The algorithm then randomly
picks two numbers s, s′ ∈ Z∗p, and computes Ppub = sP,
P′pub = s′P. Finally, it publishes

K = (q,G,GT,P, e, g,Ppub,P′pub,H , h1, h2)

as public parameters and (s, s′) as the master key.
• Extract: On input an identity ID ∈ {0, 1}∗, the algorithm
computes hID = h1(ID) and private key skID = (sk1,ID
sk2,ID) = ( 1

hID+s
P, 1

hID+s′
P).

• Enc: On input an identity ID ∈ {0, 1}∗ and a plaintext
M ∈ {0, 1}∗, the algorithm randomly picks two num-
bers r1, r2 ∈ Z∗p, and computes the ciphertext C =
(C1,C2,C3,C4), where

C1 = r1(hIDP+ P′pub),

C2 = (r1 M )⊕ H (gr1 ),

C3 = r2(hIDP+ Ppub),

C4 = (M ||r1)⊕ h2(gr2 ).

• Dec: On input ciphertext C = (C1,C2,C3,C4) and the
private key skID = ( 1

hID+s
P, 1

hID+s′
P) of the identity ID,

the algorithm computes

C4 ⊕ h2(e(
1

hID + s
P,C3)) = M ||r1,

then it verifies

C1 = r1(hIDP+ P′pub)

and

C2 ⊕ r1M = H (e(
1

hID + s′
P,C1)).

If both equations hold, then the algorithm outputsM .
• Trapdoor: On input an identity ID ∈ {0, 1}∗, the algo-
rithm computes the trapdoor tdID = sk2,ID = 1

hID+s′
P.

• Test: On input (CA, tdIDA ,CB, tdIDB ), where

CA = (C1,A,C2,A,C3,A,C4,A) = Encrypt(IDA,MA),

CB = (C1,B,C2,B,C3,B,C4,B) = Encrypt(IDB,MB)

tdIDA =
1

hIDA + s′
P and tdIDB =

1
hIDB + s′

P,

The algorithm computes

EA = e(tdIDA ,C1,A) = e(
1

hIDA + s′
P,C1,A),

XA = C2,A ⊕ H (EA)

EB = e(tdIDB ,C1,B) = e(
1

hIDB + s′
P,C1,B),

XB = C2,B ⊕ H (EB)

and verifies

(EA)XB = (EB)XA .

If the above equation holds, thenMA = MB.

B. ANALYSIS OF THE SCHEME
The definition of a binary operation of rM wasn’t clear in [9].
On the one hand, the binary operation of rM can be viewed as
the normal multiplication of two fixed size numbers (strings)
from the construction of the Enc algorithm, where r ∈ Z∗p and
M ∈ {0, 1}∗. On the other hand, the binary operation of rM
had be viewed as a scalar multiplication in the performance
in [9] (They countered that there are 5 scalar multiplications
in the Enc algorithm). At the same time, rM had be viewed as
a scalar multiplication in almost all other PKEET and IBEET
schemes [2], [6], [7]. Next, we analyze the IBEET scheme
from the two possible definitions of the binary operation,
i.e., a binary operation of rM is an integer multiplication and
a scalar multiplication, respectively.

1) BINARY OPERATION OF rM IS AN INTEGER
MULTIPLICATION
If the definition of the binary operation of rM is viewed
as multiplication of two integers (strings), then the scheme
will produce inefficiency, and furthermore it will cause some
security problem. We analyze it as follows.

One of contribution of the scheme [9] is that the scheme
was efficient and available to mobile computing (in subsec-
tion 1.1 of [9]). They claimed their scheme was more effi-
cient than the IBEET scheme proposed by Ma [7]. However,
we analyze their scheme and find this advantage is not correct
if we take into account the usual multiplication of rM . From
the game of the definition 2, any adversary can make trapdoor
query to obtain trapdoor td of the challenge ciphertext. Thus,
the adversary has

r∗1M
∗
= C∗2 ⊕ H (e(td,C∗1 )).

On the one hand, we analyze the efficiency of their IBEET
scheme. For the security perspective, the length of r∗1M

∗

must be more than 1024 bits (For RSA scheme, the security
parameter is at least 1024 bits), that implies the groupG over
a finite field Z∗p is more than 512 bits. But a secure IBEET
scheme [8] which are improved from the IBEET scheme
proposed by Ma [7] is secure over a finite field Z∗p about
160 bits. We know that computational cost of schemes over
elliptic curve of 512 bits are much less than it of schemes over
elliptic curve of 160 bits. Thus, their scheme [9] is much less



efficient than the Ma’s IBEET scheme if viewing the binary
operation of rM as the usual integer multiplication.
On the other hand, r∗1 ∈ Z∗p and M∗ ∈ {0, 1}∗ are random

but not prime, and there exists risk of factorizing r∗1M
∗ even

the length of r∗1M
∗ is more than 1024 bits. Once the adversary

factorizes it, it can get r∗1 from testing the equation

C∗1 = r ′1(hIDP+ P
′
pub),

where r ′1 is an element of set of all possible divisors of r∗1M
∗.

That implies r ′1 = r∗1 . Then the adversary can compute

M∗ = r
′
−1
1 r∗1M

∗.

Thus, the scheme maybe not satisfy the definition 2, one-
way security if viewing the binary operation of rM as the
usual integer multiplication. Its security relies on the choice
of r and M . Additionally, it will produce an additional cost
(encodingM ) if the scheme requires that the ‘keyword’M is
prime.

2) BINARY OPERATION OF rM IS A SCALAR MULTIPLICATION
In this subsection, the binary operation of rM is taken into
account as the scalar multiplication, which was used in the
Test algorithm of the IBEET scheme and viewed as a scalar
multiplication in the performance [9].

Suppose that G is an additive group of some elliptic curve
and M ∈ G is a point of the elliptic curve, which is defined
in Section II. Let Z+ be the set of positive integers. Thus, for
a random number r ∈ Z+, we have

r ·M
Def
= M + · · · +M︸ ︷︷ ︸

r

.

Here, the multiplication is the scalar multiplication over the
group G.

However, the point M ′ in G and the number r ′ ∈ Z∗p are
viewed as bit strings in the IBEET scheme [7], [9] and the
PKEET scheme [2], [4]. Because the coordinates of M ′ (set
M ′ = (m1,m2)) are elements of a finite field, which can
be viewed as a concatenation of two bit strings, i.e. m1||m2.

Thus, the definition of the multiplication over two bit strings
is described as follows.

r ′ •M ′
Def
= r ′ ×M ′

where the symbol ‘‘×’’ is the multiplication symbol of the
usual multiplication on the integer set Z.
Next, we take into account the following equality which

was used in [9].

r ′ • (r ·M ) ?
= r • (r ′ ·M ).

Obviously, although M is an element of G and G is an
abelian group, the binary operations • and · are not the same
operations, the ‘associative’ law and the ‘commutative’ law
do not hold. That is to say,

r ′ • (r ·M ) 6= r • (r ′ ·M ).

In order to explain the above inequality clearly, we give the
following example to show it is correct.
Let EC : y2 = x3 + 7x be an elliptic curve over a finite

fieldZ13. It is easy to verify (3, 3) is a point of order 3 over the
elliptic curveEC . Suppose that r = 1, r ′ = 2 andM = (3, 3).
We have

r ′ • (r ·M ) = 2 • (1 · (3, 3)) = 2 • (3, 3) = 30,

r • (r ′ ·M ) = 1 • (2 · (3, 3)) = 1 • (3, 10) = 58.

where we encode 3 as a bit string 11 and encode 10 as a bit
string 1010. So (3,3) is 1111, (3,10) is 111010.

Thus, we have r ′ • (r ·M ) 6= r • (r ′ ·M ).
Maybe there are another encoding algorithm to encode a

point in G. However, if we define the bilinear pairing ê with
two multiplicative groups G and GT with the same order q,

ê : G×G→ GT .

r ′ • (r ·M ) should be written as r ′ •M r , it is obvious that

r ′ •M r
6= r •M r ′ .

In fact, the IBEET scheme proposed by Wu et al. had
misused these two binary operations in their Test algorithm.

Analysis of Their IBEET Scheme
Next, we will show that the construction of the IBEET

scheme is not rational, which causes the Test algorithm can-
not be performed.

Since the Test algorithm needs to verify the equality

(EA)XB = (EB)XA ,

where EA = gr1,A ∈ G, EB = gr1,B ∈ G, XA = r1,AMA and
XB = r1,BMB. That means that the Test algorithm needs to
verify the equality

gr1,A(r1,BMB) = gr1,B(r1,AMA)

to determine if thatMA = MB holds or not. That is to say,

r1,A(r1,BMB) = r1,B(r1,AMA) mod p

holds if and only ifMA = MB.
However, as we discuss in previous subsection, this equal-

ity doesn’t hold. Because for r1,A, r1,B ∈ Z∗p and MA,

MB ∈ G, in the above equality the binary operation of
r1,BM and r1,AM is the scalar multiplicative operation over
G, but the binary operation of r1,A and (r1,BM ), r1,B and
(r1,AM ) is the multiplicative operation over Z∗p. On the one
hand, r1M is not r1 • M defining in the subsection A of
this section. If r1M is r1 • M , the Enc algorithm cannot
control the length of r1M , and which causes the operation
of C2 = (r1 M ) ⊕ H (gr1 ) cannot run. On the other hand,
the equality (EA)XB = (EB)XA in the Test algorithm means
that XA,XB are viewed as numbers, but not elements of G.

Thus these two ‘‘multiplications’’ are not the same binary
operations, and the associative law and the commutative law
do not hold. Thus, even though the equalityMA = MB holds,
the inequality

gr1,A(r1,BMB) 6= gr1,B(r1,AMA)

holds.



IV. OUR IMPROVED SCHEME
In this section, we will improve the IBEET scheme proposed
by Wu et al. as follows. Where we view the binary operation
of rM as the scalar multiplication for r ∈ Zp and M ∈ G.

A. OUR CONSTRUCTION
We do not change Setup, Extract and Decrypt algorithms of
their IBEET scheme, almost not change the Enc algorithm
except that M ∈ G and hash functions H : GT → G, h1 :
{0, 1}∗ → Zq and h2 : GT → {0, 1}|G|+|q| are required.
We describe the other algorithms of the IBEET scheme as
follows.
• Enc: On input an identity ID ∈ {0, 1}∗ and a plain-
text M ∈ G, the algorithm randomly picks two num-
bers r1, r2 ∈ Z∗p, and computes the ciphertext C =
(C1,C2,C3,C4), where

C1 = r1(hIDP+ P′pub),

C2 = (r1 M )⊕ H (gr1 ),

C3 = r2(hIDP+ Ppub),

C4 = (M ||r1)⊕ h2(gr2 ).

• Trapdoor: On input an identity ID ∈ {0, 1}∗ and its
private key (sk1,ID, sk2,ID), the algorithm computes

C4 ⊕ h2(e(sk1,ID,C3)) = M ||r1,

and then outputs the trapdoor tdID = (td1,ID, td2,ID) =
( 1
hID+s′

P, r1P).
• Test: On input (CA, tdIDA ,CB, tdIDB ), where

CA = (C1,A,C2,A,C3,A,C4,A)=Encrypt(IDA,MA),

CB = (C1,B,C2,B,C3,B,C4,B)=Encrypt(IDB,MB),

td1,IDA =
1

hIDA+s′
P and td1,IDB =

1
hIDB+s′

P,

the algorithm computes

EA = e(td1,IDA ,C1,A) = e(
1

hIDA + s′
P,C1,A),

XA = C2,A ⊕ H (EA),

EB = e(td1,IDB ,C1,B) = e(
1

hIDB + s′
P,C1,B),

XB = C2,B ⊕ H (EB)

and verifies

B. SECURITY ANALYSIS OF OUR IMPROVED IBEET
SCHEME
We first show the Correctness of the improve scheme.
On input the trapdoors tdIDA , tdIDB and the ciphertexts CA,
CB, the algorithm Test can compute:

XA = C2,A ⊕ H (EA) = C2,A ⊕ H (e(td1,IDA ,C1,A))

= C2,A ⊕ H (gr1,A ) = r1,AMA,

and

XB = C2,B ⊕ H (EB) = C2,B ⊕ H (e(td1,IDB ,C1,B))

= C2,B ⊕ H (gr1,B ) = r1,BMB.

We have

e(td2,IDA ,XB) = e(r1,AP, r1,BMB) = e(P,MB)r1,Ar1,B ,

e(td2,IDB ,XA) = e(r1,BP, r1,AMA) = e(P,MA)r1,Ar1,B .

Thus, the equality

e(td2,IDA ,XB) = e(td2,IDB ,XA)

holds if and only ifMA = MB.

Our improved scheme is based on the IBEET scheme
proposed by Wu et al., and we do not change Setup, Extract,
Encrypt and Decrypt algorithms of their scheme. But in order
to perform the equality test, we improve the Trapdoor algo-
rithm and Test algorithm. The trapdoor td2 is the one and
only if the Encrypt algorithm had generated the ciphertext
(C1,C2,C3,C4) of some plaintext M . At the same time,
td2 does not reveal any information on the plaintext M and
the random numbers r1 and r2. That means these modifies do
not change the security of the IBEET scheme. Thus, we get
the following Theorem 1, which can be proved by using the
same method in [9].
Theorem 1: Suppose a OW-ID-CCA adversary A has

advantage ε(k) against our improved IBEET scheme, then
there also exists an algorithm that can solve the CDH problem
in group G with advantage of at least

ε(k)
(qH + qh2 + qdec)e(qsk + qtd + qdec + 1)

−
qdecqH

2l1 (qH + qh2 + qdec)

+ (
1

2l1+l2
+

1
2l1
+

1
2l2

)
(qH + qh2 )qdec
qH + qh2 + qdec

.

where qH , qh2 , qdec, qsk and qtd denote the number of
hash function H queries, hash function h2 queries, decryp-
tion queries, private key queries and trapdoor queries,
respectively.

Since the proof of the above theorem is almost the same as
the proof in [9], we omit it here.

C. PERFORMANCE AND COMPARISON
Because we do not modify the Setup, Extract, Encrypt
and Decrypt algorithms of the IBEET scheme proposed by
Wu et al., it is easy to know that the computation cost of the

e(td2,IDA , XB) = e(td2,IDB , XA).

If the above equation holds, then MA = MB.

Our Test algorithm is distinct to it in [7]. In order to run 
the Test algorithm, our Trapdoor algorithm should generate 
a corresponding trapdoor for every ciphertext.



TABLE 1. Comparison of IBEET Schemes.

encryption algorithm and the decryption algorithm of ours
is the same as that of their IBEET scheme. Therefore, it is
more efficient than the Ma’s IBEET scheme. The ciphertext
of ours and it of the IBEET scheme proposed byWu et al. are
same. Therefore, the length of the ciphertext is less than that
of the Ma’s IBEET scheme. However, the computation cost
of our Trapdoor algorithm is less efficient than the other two
schemes, and the length of the trapdoor tdID is longer than
that of the other two IBEET schemes. Because the trapdoor
of the other two schemes is only a part of the private key
of the identity, but that in our improved scheme includes an
element r1P (inG) besides a part of the identity’s private key.
The computation cost of our improved scheme is almost the
same as that of Ma’s IBEET scheme and there is only a bit
insignificantly different between these two IBEET schemes.
Becausewe use exclusive-OR operation instead of an additive
operation in group G once. Compared with 4 times bilinear
pairing operations, this almost is not optimized. If we use
some test result for the execution time of basic operations
which is in table 1 in paper [9], the computation cost dif-
ference of the Test algorithm of two schemes were only
0.012 ms.

Since the scheme proposed by Lee et al. was a semi-generic
construction, we compare their Boneh-Franklin version [10]
with other schemes in TABLE 1. Our improved scheme is a
bit more efficient than it of their scheme [10] on computation
cost of encryption and decryption, and the length of the
master key and ciphertext. However, their computation cost of
test is more efficient than it of other schemes. However, only
our scheme performs the fine-grained trapdoor [5], which
depends on the ciphertext and user’s private key. The detailed
is in the TABLE 1.

V. CONCLUSION
PKEET and IBEET are two important notions to solve key-
words searchable in cloud computing. They have the func-
tionality of decryption and comparison of plaintext equality.

In this paper, we firstly proved that some binary operation 
used in the IBEET scheme proposed by Wu et al. was not 
reasonable, which caused the scheme less efficient or inse-
cure or non-available according to different definitions. Then 
we improved the scheme and constructed a secure and effi-
cient IBEET scheme which is fine-grained.
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