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Abstract— There is no doubt that the issue of estimate 
locations for unknown sources has been mattering a lot of debate 
in recent years, in the field of communication, Radar, Navigation, 
wireless sensor networks, …etc. In this paper, the 
multidimensional scaling (MDS) based on subspace method was 
applied to solve the addressed issue in the presence of distance 
information that acquired from TOA measurements. The 
Simulation results show the significant consequences compared 
with Cramer-Rao lower bound (CRLB) as well as the modified 
version of classical Multi-dimensional scaling, it became close to 
the lower bound of variance when the signal to noise ratio 
increased. 
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I.INTRODUCTION

 Estimating positions of emitted sources either are mobile 
or static has received a lot of attention in many aspects, 
particularly after the US Federal commission has adopted 
decision to develop the Emergency 911( E-911) services by 
increasing the accuracy for a precise location of clients [1] 
 Nowadays Multidimensional scaling (MDS) [2, 3] has 
become a powerful tool in exploratory data analysis [4]. It has 
been used to find the position of mobile and static emitting 
sources in the complex environment. The MDS is started by 
construct a similarity/dissimilarity distance matrix among all 
pairs of objects, and then the double centering procedure is 
applied to it. Finally, the eigenvalue decomposition is figured 
the relative coordinate positions out. In order to get the actual 
coordinates, we must apply the translation, rotation and 
scaling to them. This step is well-known as rigid 
transformation. In many articles, the projection distance 
matrix used to recover the actual coordinates. The classical 
MDS requires a fully connected distance matrix then, the 
target positions can be obtained by exploiting the eigenvalue 
decomposition. Subspace-based methods have the main 
advantage as the resolution of parameter estimation is 
increased. 
 Generally the source position can be estimated by 
exploiting time of arrivals (TOA), angle of arrival (AOA), 

time difference of arrival (TDOA), frequency difference of 
arrivals (FDOA), and received signal strength (RSS). TOAs 
TDOAs and RSSs provide distance measurements between 
source and sensors. FDOAs provide the rate of distance 
measurements, while the AOAs are the source bearings 
relative to sensors. Distances and bearing information are 
derived from the measurements and locations for the known 
position sensors [5]. 
 Time difference of arrival can be remarked as the one way 
time of flight from the emitting source to the receiver. The 
source and corresponding sensors must be synchronized. To 
solve the localization problem by using TOA measurements, 
first it converted to range differences measurements then 
arrange it to a nonlinear equation involves the range 
information. Many iterative methods have been addressed 
such as Taylor method [6]. This method is computationally 
intensive and requires a good initial guess in order to achieve 
an accurate solution. The least squares based method attempts 
to reorganize the nonlinear equations into linear manner, then 
the position is estimated by using the least squares approach 
[7, 8]. Beside linearization the localization problem, subspace 
methods have been addressed using TOA measurements or 
range difference measurements. Wan Qun et al [9] introduced 
a noise subspace algorithm of multidimensional scaling matrix 
to localize a mobile station (MS) using three base stations 
(BS). K. W. Cheung and H. C. So [10] developed an algorithm 
of localize a MS by exploit the classical MDS. But both [9] 
and [10] do not consider the multi-target scenario. In our 
article we used subspace method to localize number of 
distributed targets in a plane. We assume the TOA information 
have been already acquired and converted to noisy distance 
measurements. The mean square position error MSPE 
compared with Cramer Rao lower bound CRLB applied to 
evaluate the performance of addressed method.  
 The rest of paper is organized as follows: the second 
section gives the Cramer-Rao lower bound (CRLB) Model 
and the model assumption that have been used in this 
experiment. The development of the proposed algorithm 
located in section three include the classical MDS review and 
the developing algorithm, while the simulation and results 
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discussion introduced in the fourth section and finally, the 
fifth section conclude the paper. 

II. CRLB AND THE MODEL ASSUMPTION

Suppose that we have T =[x; ,Y ; f i =1,2, .... ,N where 
N>=2 be the unknown target positions in a particular field 
distributed in 2-D plane (or in 3-D straightforward). (,l stands 
for transpose factor. Assume that a set of sensors s = [xi ,y i] j =N + l,N + 2, .. M are in known position
coordinates, M is the total number of sensors. Assume that the 
TOA information has already obtained and converted to noisy 
distance measurements. Also we assume line-of-sight 
propagation between the targets and all sensors. The distance 
pairs betv.•een targets and sensors given by converting the 
TOA measurement to range differences which are given as 

(1) 

Where di,i = �( x; -x
i 
f + ( Y; -yi f 1s the real distance

and n;J' represents the range noise. The noise is sufficiently 
small, based on the assumption that it is white Gaussian noise 
with zero mean and variance equal to a-2 

The Cramer-Rao Lower bound (CRLB) of TOA 
measurements is introduced in [ 1] as 

where 

CRLB(x) = {RHQ;1Rr
1

, 

R 
= [(x-:x1)! dl

(x-xM )! dM 
(Y-Yi)ld

l l 

1 (y-yM)!dMj 

(2) 

(3) 

The corresponding CRLB of x is the summation of the 
diagonal elements of eq. (2). 

III. THE ALGORITHM DEVELOPMENTA. The MDS Analysis Review
The localization using TOA measurements is given as the

following: the matrix X could be fonned as 

x
1
-X; Yt -yi X

2
-X; Y2

-Y;
X; = (4) 

Xu-X; yM-yi 

which is Mx 2 matrix, 

After that, the multidimensional dissimilarity matrix which is 
a squared Euclidean distance matrix; denoted as D , is 
constructed as 

(5) 

The entries inside the dissimilarity matrix are given by 

[D] =0.5(d;, +d; -d;,
n
),

m ,n 
(6) 

which its rank equal d+2 and it is semi-definite symmetric 
matrix. lt is important to realize that the matrix D is a zero 
diagonal elements and only its upper/lower triangular part are 
informative. d is the noise-free version of r and d

m
,n =d

n
,m 

.The distances among sensors will be free of error. In order to 
use the noisy measurements in the previous equation, so is 
rev.•ritten as 

(7) 

The scalar product matrix B could be obtained by applying 
double centering procedure. The form ofB is 

(8) 

where J 
= 

I -M-1 (f 1) is a centering matrix, I is an M x M
identity matrix, the ones vector has length equal to M. By 
applying the eigenvalue decomposition (SVD) for B yields 

(9) 

where A = diag ( A
1

, J½, ..... , Äi,,) is the diagonal elements of

the eigenvalue matrix of D where A
i 

2 J½ 2 ..... 2 A,. 2 0 , U 
is an unitaiy matrix i.e. ur U = I , and they are canled the
eigenvectors associated to eigenvalues. 

In classical Multidimensional scaling, the coordinate 
matrix X can be recovered up to rigid motion from eq. (9) 
as. 

The result is the standai·d MDS solution. Rigid motion 
includes scaling, rotation and transformation and it can be 
achieved by Procrustes transformation 



B. The Developing Algorithm
In [9] , the least squares have been applied to estimate the

rotated version of coordinates matrix, then the recovered 
coordinate matrix translated to the original coordinate matrix 
The estimated coordinates matrix could be recovered  as the 
following 

2ˆ ˆ ˆarg min ,r T
i i i i Fx

X B X X   (11) 

 where .
F

 denotes to Frobenius norm. ˆ r
iX  is a rotated 

coordinates of estimated position this results .Noting that the 
rank of matrix is 2. We have 3 4 .... 0M . According 
to the rank property, eq. (9) could be also written as 

2, 2 2 2,
T

si i m i i mB = U U ,   (12) 

1 22 mU u u  and 1 22 2 ,diag  while the closed 

form solution could be obtained from eq(9). is the same as the 
classical solution without rigid transformation given as 

1/2
2,2 2,

ˆ r T
i i i mX U (13) 

 The relationship between the centered coordinates and the 
actual coordinates introduced in given by  

ˆ rT
i i iX = X (14) 

where  is the unknown transformation/rotation matrix; such 
that T I , it can be determined via pseudo-inverse 

1T Tr
i i i i i

r r

= X X X X (15) 

 Note that this matrix applied instead of the Procrustes 
transformation to recover the coordinates of estimated position 
matrix. The algorithm that used this kind of transformation 
matrix called the modified classical MDS 

From equations (11) , (14) and(15), the orthogonal
rotation matrix can be proved through the following steps 

1/2 1/2 1 1/2
1:2,1:2 1:2,1: 1:2,1: 1:2,1:2 1:2,1:

1 1/2
1:2,1:2 1:2,1:

1/2
1:2,1:2 1:2,1:

T T
i i i m i m i i m

T
i i m

T
i i m

-

-

= ( U U ) U X

= ( ) U X

= U X

(16) 

From eq. (16) and eq.(14) we can get  

1:2,1: 1:2,1: ,T
i ii m i mX U U X   (17) 

which indicates that could be obtained from the subspace 
eigenvector. Note that eq.(17) is an approximate relation. The 
term 1:2,1:mU is the signal subspace sU .  To drive the position 

estimate, we could rewrite X  as 

X Y 1Z (18) 

1 1

2 2

. .

. .

M M

x y
x y

x y

Y (19) 

  It is noteworthy that the linear equation could be solved by 
exploit the least squares (LS) method to estimate the positions 
of targets, but here we carry out the positions of targets using 
noise subspace method. From the relationship between the 
signal subspace and noise subspace we have 

,T T
M s s n nI U U U U (20) 

where nU  corresponds to the noise subspace, for multi-targets 
estimation we can use the following equation 

,T T T
n n M i n nU U 1 z U U Y (21) 

where ; 1,2,...,i i ix y i Nz and is the number of 

targets, M1  stands for 1M  vector which has  all entries 
equal to one. 

  In order to estimate positions of targets we use the linear 
least square approach so, 

†

, , , ,ˆ ,T T
i n i n i M n i n iz U U 1 U U Y (22) 

while the subscript notation †. stands for the pseudo-inverse 

operation.  

IV. . SIMULATION AND RESULTS

Computer simulation has been done through Matlab 
platform. Our proposed scheme is executed to evaluate the 
performance. the minimum square position errors  MSPEs 
have been applied to evaluate the proposed method and 
modified multidimensional scaling (modified MDS) that 
introduced in [3]. In addition, the average of Cramer-Rao 
Lower bound CRLB has been considered too. All the results 
are averaged from 1000 independent trials. 



The model of noise that used in our work is white Gaussian 

noise with zero mean and variance equals to a
2 

, the range 
measurements acquired after converting the TOA 
measurements. The SNR in each measurement were specified 

as SNR = d; / <7;
2 

. 

In the first scenario; the impact of increasing SNR versus 
minimum square position enors has been shown in the second 
plotted figure. The targets located at 

[ -4000 4000] , [ 4000 - 4000] , [ -4000 - 4000] and

[ 4000 4000] longitude units, the sensors located at 

coordinates [ 0 0], [ 0 6000], [ 0 - 6000], [ 6000 0], [-6000 0] 

[ -6000 - 6000] , [ 6000 -6000] , [ -6000 6000] and 

[ 6000 6000]. Figure (1) shows the configuration of sensors 

and targets in 2-dimensional space. Figure (2) shows the 
improvement of mean square of position enors (MSPE) with 
different value of SNR for each target and taking the average 
of MSPEs. The SNR is changed fi:om -5dB to 60dB. The 
mean square position eITors is defined as 

The perfonnance is better than modified MDS method 
when SNR increases. Subspace methods are considered as 
suboptimal estimators that could not achieve the CRLB bound 
but it become close to the lower bound v.iith increasing SNR. 

The second scenario includes the effect of increasing 
number of sensors with fixed SNR; we set the SNR equal to 
10 dB. The number of sensor varying fi:om four to nine. 
Figure (3) shows that the perfonnance becomes better when 
the number of sensor increases. Comparing to the modified 
classical MDS, the subspace approach remain close to lower 
bound while the modified MDS looks far fi:om the lower 
bound, overall speaking the proposed method has better 
perfonnance than the modified version of classical MDS. 

V. CONCLUSION

In this paper the distributed sources localization were 
investigated by introducing MDS analysis supported by 
subspace method, the estimation of positions of targets have 
been localized, moreover with increasing SNR and number of 
sensors a better estimation of position could be achieved 
which it improves the performance, the results are verified by 
computer simulations 
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Figure (1) the configuration ofthe experiment 
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