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Abstract
We prove that in a cocompact complex hyperbolic arithmetic lattice � < PU(m,1)

of the simplest type, deep enough finite index subgroups admit plenty of homomor-
phisms to Z with kernel of type Fm−1 but not of type Fm. This provides many finitely
presented non-hyperbolic subgroups of hyperbolic groups and answers an old ques-
tion of Brady. Our method also yields a proof of a special case of Singer’s conjecture
for aspherical Kähler manifolds.

1 Introduction

A classifying space for a group G, or K(G,1), is an aspherical CW-complex with
fundamental group G. Following Wall [55], we say that G is of type Fn if it has a
K(G,1) with finite n-skeleton. One usually refers to property Fn as a finiteness prop-
erty for the group G. Property F1 (resp. F2) is equivalent to being finitely generated
(resp. finitely presented). We say that G is of type F∞ if it is Fn for all n and that G

is of type F if it admits a finite K(G,1). For each integer n, there are groups of type
Fn but not of type Fn+1 [6, 51]. There are also other families of finiteness properties
for groups [5, 13]; the only one which we shall refer to below is property FPn(Q),
see [5] for its definition. If a group is of type Fn, then it is of type FPn(Q), but the
converse implication does not hold.

Using methods from complex geometry, we prove for each integer n ≥ 1 the ex-
istence of Gromov hyperbolic groups containing coabelian subgroups of type Fn but
not of type Fn+1. We now state our main results more precisely, before explaining
the historical context and motivation behind them.
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The homotopical BNSR invariants of a finitely generated group G form a sequence
(�j (G))j≥1 of open subsets of the character sphere

S(G) := H 1(G,R) − {0}/R∗+.

They were introduced by Bieri, Neumann and Strebel in [7] (for j = 1) and by Renz
in [46] (for j ≥ 2). Their definition is recalled in Sect. 2.1. We simply mention here
that they encode in some sense the finiteness properties of kernels of homomorphisms
from G to R. In what follows we write [ξ ] for the image in the sphere S(G) of a
nonzero class ξ ∈ H 1(G,R).

Theorem 1 Let m ≥ 2 and let � < PU(m,1) be a cocompact arithmetic lattice of
the simplest type. Then � has a finite index subgroup �0 with the following property.
For every finite index subgroup �1 < �0 the (m − 1)-th BNSR invariant �m−1(�1)

of �1 is dense in the character sphere S(�1). In particular, every rational class ξ ∈
H 1(�1,Q) such that [ξ ] is contained in the dense open set �m−1(�1)∩−�m−1(�1)

satisfies that ker(ξ) < �1 is a group of type Fm−1 but not of type FPm(Q).

We emphasize that it is no accident that the finiteness properties of the kernels
under consideration are closely related to the complex dimension of the ambient hy-
perbolic space: these kernels first fail to be of type Fk when k coincides with the
complex dimension m.

Arithmetic lattices of the simplest type are the lattices associated to Hermitian
forms with coefficients in a purely imaginary quadratic extension of a totally real
number field. See Sect. 3.2 for their definition. Before going further we also introduce
the following classical:

Definition 2 Two groups are said to be commensurable if they have isomorphic finite
index subgroups.

Since arithmetic lattices of the simplest type in PU(m,1) (m ≥ 2) form an infi-
nite family of commensurability classes (see Sect. 3.2), Theorem 1 has the following
consequence.

Corollary 3 Let n ≥ 2 be an integer. There exist infinitely many hyperbolic groups
(Gn,j )j≥0 and homomorphisms φn,j : Gn,j → Z such that the Gn,j ’s are pairwise
noncommensurable and such that the kernel of φn,j is of type Fn but not of type
FPn+1(Q).

We now move on to a more detailed introduction. A finitely generated group is
called hyperbolic if its Cayley graph with respect to some finite generating set is
δ-hyperbolic [16, 26]. Introduced in Gromov’s seminal essay [27], the class of hy-
perbolic groups has attracted much attention. Indeed these groups satisfy many nice
properties. For instance, they have solvable word and conjugacy problem, they do
not contain any Z

2-subgroups, they satisfy the Tits alternative and every hyperbolic
group is of type F∞ (and of type F in the torsion-free case). It is natural to look for
properties of hyperbolic groups which are satisfied by all of their subgroups. While
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some of the aforementioned properties obviously pass to all subgroups, answering
this question for others turns out to be surprisingly difficult. It is in this general con-
text that Brady asked in 1999 the following:

Question 4 (Brady [12]) For a given integer n ≥ 3, does there exist a hyperbolic group
G which has a subgroup H < G of type Fn, but not of type Fn+1?

Preceding Brady’s question, in 1982 Rips proved the existence of non-coherent
hyperbolic groups [47], i.e. the existence of subgroups of hyperbolic groups of type
F1 and not F2; many more examples have been constructed since by different au-
thors. Gersten proved that every finitely presented subgroup of a hyperbolic group of
cohomological dimension two is hyperbolic [25]. However, this result is not true for
subgroups of hyperbolic groups of higher cohomological dimension. The existence of
finitely presented non-hyperbolic subgroups of hyperbolic groups was first suggested
by Gromov in his 1987 essay [27]. In [12], Brady constructed the first example of
such a subgroup. It is of type F2 but not of type F3 (thus answering the question
above for n = 2) and arises as the fundamental group of a generic fibre of a map from
a ramified covering of a direct product of three graphs onto the circle. More examples
of subgroups of hyperbolic groups of type F2 and not F3 have been constructed since
by Lodha [40] and Kropholler [37].

Very recently the authors of the present article, together with Martelli [39] showed
the existence of subgroups of hyperbolic groups of type F3 and not F4. These exam-
ples are obtained by starting from a cusped real hyperbolic 8-manifold M8 and a map
f : M8 → S1 with ker(f∗ : π1(M

8) → Z) of type F3 and not F4 and then consid-
ering certain Dehn fillings of M8. The map f was constructed by Italiano, Martelli
and Migliorini [30]. Before [39], Italiano, Martelli and Migliorini had already built a
fibration from a cusped hyperbolic 5-manifold to the circle and from it had produced
a non-hyperbolic finitely presented subgroup of type F of a hyperbolic group [31].
This constituted fundamental progress in the area.

All of the aforementioned constructions rely on Bestvina–Brady Morse theory [5],
which requires checking some combinatorial conditions. While one may hope that
similar methods will allow one to answer Brady’s question for n ≥ 4 using e.g. cubu-
lated lattices in PO(2n,1) or right-angled Coxeter groups, we follow a different path
here. We use complex hyperbolic lattices instead of real hyperbolic lattices and apply
complex Morse theory (also known as Lefschetz theory) instead of Bestvina–Brady
Morse theory. This allows us to answer elegantly Brady’s question for all n. In this
context, the high connectivity of the kernels that we study appears as a natural con-
sequence of Lefschetz theory. For earlier uses of this theory to study finiteness prop-
erties of groups, see [21, 32, 38, 44].

One may raise analogues of Question 4 for other finiteness properties of groups.
Motivated by this, we mention a relation between our work and the work of Fisher
and Kielak [23, 34, 35]. In what follows we will always denote by b

(2)
i (G) the i-th

�2-Betti number of a group G; see [14, 42] for the definition. A classical theorem of
Lück [41, Th. 3.3 (4)] implies that if G is any group, if φ : G → Z

k≥1 is a surjective
homomorphism and if b

(2)
i (G) �= 0 then the kernel of φ cannot be of type FPi (Q). See

e.g. [23] or [39, Prop. 14] for a proof of this fact. Hence the presence of nonvanishing
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�2-Betti numbers provides an “upper bound” for the finiteness properties of coabelian
normal subgroups. For RFRS groups this bound is sharp in the following sense:

Theorem 5 (Fisher, Kielak) Let G be a group which is virtually RFRS and of type
FPn(Q). Then the following conditions are equivalent:

1. there exists a finite index subgroup G1 < G and a surjective homomorphism
φ : G1 → Z whose kernel is of type FPn(Q);

2. the �2-Betti number b
(2)
i (G) vanishes for 0 ≤ i ≤ n.

We refer to [2] for the definition of RFRS groups. Kielak [34] proved the case
i = 1 of the theorem above and conjectured the higher degree version [35], which
was subsequently proved by Fisher [23]. Theorem 1 is philosophically similar to
Theorem 5. Although we deal with a specific class of groups (cocompact complex
hyperbolic arithmetic lattices of the simplest type), which are not known to be RFRS
in general,1 the conclusion is close in spirit. We prove that sufficiently deep finite
index subgroups in such lattices admit homomorphisms to Z (in fact plenty of them)
whose finiteness properties are as “good” as allowed by the �2-Betti numbers. Indeed,
it is known that the �2-Betti numbers b

(2)
i (�) of a cocompact lattice � < PU(m,1) are

all zero except for the m-th one which is nonzero [10]. The difference between the two
theorems is that we use the stronger property Fn instead of property FPn(Q). Note
also that in Theorem 1, the fact that the kernels of the rational characters lying in the
set �m−1(�1)∩−�m−1(�1) are not of type FPm(Q) can alternatively be shown by a
topological argument not relying on �2-Betti numbers, see [39, Prop. 21]. Beyond the
philosophical similarity between Theorems 1 and 5 we would also like to point out
that one of the consequences of Theorem 5 is the existence of subgroups of hyperbolic
groups of type FPn(Q), but not FPn+1(Q) for all integers n ≥ 1 [39, Prop. 19].

We now move to the complex geometric setting. We shall deduce Theorem 1 from
the following result, dealing with arbitrary closed aspherical Kähler manifolds.

Theorem 6 Let X be a closed aspherical Kähler manifold of complex dimension
m ≥ 2.

1. Let β be a holomorphic 1-form on X with finitely many zeros. Then the cohomol-
ogy class b = [Re(β)] ∈ H 1(X,R) 
 H 1(π1(X),R) lies in

�m−1(π1(X)) ∩ −�m−1(π1(X)).

If b is rational then its kernel is of type Fm−1; if furthermore the Euler character-
istic of X is nonzero, the kernel of b is not of type FPm(Q).

2. Let ψ : X → A be a holomorphic map to a complex torus. Assume that ψ is a finite
map. Let α be a holomorphic 1-form on A which does not vanish on any nontrivial
subtorus of A. Then the form ψ∗α has finitely many zeros. Consequently, the class
[Re(ψ∗α)] lies in �m−1(π1(X)) ∩ −�m−1(π1(X)).

1There is one known example of a cocompact lattice in the group PU(2,1) which is RFRS [3].
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We recall that a map f : X → Y between two topological spaces is said to be finite
if each of its fibers f −1(y) (y ∈ Y ) is a finite set.

The proof of Theorem 6 relies on the work of Simpson [49]. Note that Delzant [20]
used the same work of Simpson to give a complete description of the BNS invariant
�1 for Kähler groups. Our results can be seen as a higher degree generalization of
Delzant’s work. Of course we have to make additional hypotheses (we consider an
aspherical Kähler manifold and finite maps to complex tori) and we do not describe
completely the invariant �m−1 but just exhibit a large set contained in it.

Throughout this text, we will identify the group PU(m,1) with the group of holo-
morphic automorphisms of the unit ball B of Cm. If � < PU(m,1) is a lattice, we
will denote by X� the corresponding quotient:

X� := B/�. (1)

The link between Theorem 6 and Theorem 1 is provided by the following two facts.
Firstly, for a lattice � < PU(m,1) satisfying the hypotheses of Theorem 1, and for
a deep enough finite index subgroup �0 < �, the first Betti number of �0 is posi-
tive [33] and the Albanese map of X�0 is an immersion, thus a finite map. The latter
fact is due to Eyssidieux [22] and we give a short account of it in Sect. 3. Secondly,
keeping the notations from Theorem 6 and assuming that A is the Albanese torus
of X, the condition “α does not vanish on any nontrivial subtorus” is a condition
satisfied by a dense set of classes

a = [Re(ψ∗α)] ∈ H 1(X,R),

see Proposition 18. For the reader more familiar with hyperbolic groups than with
Kähler manifolds, we mention that the Albanese torus Alb(X) of a closed Kähler
manifold X is a complex torus of complex dimension 1

2b1(X) which comes with
a natural holomorphic map albX : X → Alb(X) inducing an isomorphism between
the first real (co)homology groups of X and Alb(X). We will recall its definition in
Sect. 3.

Our results raise the question of whether one can give a complete description of
the invariants �j (j ≥ 2) for fundamental groups of closed aspherical Kähler man-
ifolds, or at least in some specific situations. This problem is related to a question
of Kotschick [36, Question 15]. Note also that Friedl and Vidussi conjecture that
�2(π1(X)) is always empty when X is a closed aspherical Kähler surface of nonzero
Euler characteristic [24, p. 53]. So far we have seen that a result of Lück on �2-Betti
numbers gives restrictions on finiteness properties of kernels of homomorphisms to
Abelian groups. This result implies that if b

(2)
i (G) is nonzero for a group G which is

of type Fi , then �i(G) ∩ −�i(G) must be empty. In our setting, we ask:

Question 7 Let X be a closed aspherical Kähler manifold of nonzero Euler character-
istic. Let m = dimC X. Is it true that �m(π1(X)) is empty?

This question generalizes the conjecture by Friedl and Vidussi. In this direction
we prove:
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Theorem 8 Let X be a closed aspherical Kähler manifold of nonzero Euler char-
acteristic. Let m = dimC X. Assume that the Albanese map of X is finite. Then
�m(π1(X)) is empty.

Combined with the properties of the Albanese map of arithmetic ball quotients
alluded to above, Theorem 8 has the following consequence.

Corollary 9 Let � < PU(m,1) be a torsion-free cocompact arithmetic lattice of the
simplest type. Then �m(�) is empty.

Finally, we also observe that our results naturally imply a special case of the Singer
conjecture [50], in the context of Kähler manifolds. This conjecture states that a
closed aspherical n-dimensional manifold M satisfies b

(2)
i (M) = 0 if 2i is distinct

from the dimension of M . See [42] for a survey of known cases. In the context of
Kähler manifolds, the most important result is Gromov’s theorem [29] stating that
a Kähler hyperbolic manifold satisfies the Singer conjecture (without the aspheric-
ity hypothesis). Consider now a closed Kähler manifold X admitting a holomorphic
1-form with finitely many zeros. This implies that the top Chern number of T ∗X is
nonnegative, hence

(−1)mχ(X) ≥ 0, (2)

where m = dimC X and χ(X) is the Euler characteristic. In other words, X satisfies
the conclusion of the Hopf-Chern-Thurston conjecture (see [17, Ch. 16]). Recall that
this conjecture states that Equation (2) holds for all real aspherical 2m-dimensional
closed manifolds and is implied by Singer’s conjecture. Assuming that X is aspheri-
cal, our methods naturally yield the following stronger conclusion.

Theorem 10 Let X be a closed aspherical Kähler manifold. Assume that X carries
a holomorphic 1-form α with finitely many zeros. Then X satisfies the Singer conjec-
ture.

The article is organized as follows. In Sect. 2, we recall the definition of the BNSR
invariants of a group G and then prove Theorems 6, 8 and 10. In Sect. 3, we study the
Albanese map of arithmetic quotients of complex hyperbolic space, then we recall the
definition of arithmetic lattices of the simplest type, and finally we prove Theorem 1
and Corollaries 3 and 9.

2 Lefschetz theory and finiteness properties

2.1 The BNSR invariants

We recall here the definition of the BNSR invariants of a finitely generated group
G [7, 46]. As in the introduction, we set

S(G) := H 1(G,R) − {0}/R∗+
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where R∗+ acts by scalar multiplication on H 1(G,R). The set S(G) is called the char-
acter sphere of G. The BNSR invariants form a decreasing family of open subsets

�k(G) ⊂ · · · ⊂ �2(G) ⊂ �1(G) ⊂ S(G)

of the character sphere of G. The invariant �m(G) is defined for groups of type
Fm only. Here we will focus on groups which are fundamental groups of closed
aspherical manifolds, hence this condition will be automatically satisfied.

So let M be a closed aspherical manifold with fundamental group G and universal
cover π : ̂M → M . Let χ : G → R be a nonzero character. We pick a closed 1-form
u on M representing χ and write π∗u = df for some smooth function f : ̂M → R.
We let ̂Md = f −1([d,∞)).

Definition 11 We say that ̂Md is essentially m-connected if there exists a real number
r ≥ 0 such that the inclusion map ̂Md → ̂Md−r induces the zero map πi( ̂Md) →
πi( ̂Md−r ) on homotopy groups for i ≤ m (for i = 0, this means by convention that
the image of the map on π0 is a singleton).

One can easily prove that ̂Md is essentially m-connected for some real number d

if and only if it is essentially m-connected for all d . Moreover, the fact that ̂Md is
essentially m-connected only depends on the ray [χ] ∈ S(G), i.e. it does not depend
on the choice of u and f and is unaffected if we multiply χ by a positive real number.
We can thus introduce the following:

Definition 12 The set �m(G) ⊂ S(G) consists of the rays [χ] such that ̂Md is essen-
tially (m − 1)-connected for some d ∈ R.

When m = 1, one can also define �1(G) by studying the connectivity of a certain
subgraph of a Cayley graph of G, see e.g. [34, Def. 3.9]. A proof of the fact that
the definition given in [34] is equivalent to Definition 12 (for m = 1) can be found
in [9]. In general, the definition of �m(G) is given using a CW-complex Q which is a
K(G,1) (instead of our manifold M), Q being assumed to have finite m-skeleton, and
working with a function F from the universal cover of Q to R which is χ -equivariant
(i.e. satisfies F(g · x) = F(x) + χ(g)). The definition is then formulated in terms of
the homotopical properties of the sets {F ≥ d} as above, see e.g. [8, Remark 6.5]
or [46]. Assuming that G is the fundamental group of a closed aspherical manifold,
one checks readily that our definition is equivalent to the original one [9, Prop. B2.1].

We close this short presentation by mentioning two results about the invariants
�m(G). First, they are open subsets of the sphere S(G), see [9] and [46, §IV.2].
Second, we have the following [46, §V.2]:

Theorem 13 Let [χ] ∈ S(G) be a rational point. Then the kernel of χ is of type Fm

if and only if [χ] ∈ �m(G) ∩ −�m(G).

When dealing with certain rational cohomology classes below, we will propose
two proofs of the fact that their kernels are of type Fm. One is based on Theorem 13,
the other is based on a direct complex Morse theory argument going back to [21].
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2.2 A higher dimensional version of Delzant’s theorem

In this section we prove Theorem 6. For the moment we keep its notations and asump-
tions, except for one thing: we do not assume yet that X is aspherical. We first deal
with the second point. It reduces to the first, thanks to the following proposition,
which already appears in [49]. It is at this point that we rely on the fact that we have
a finite holomorphic map to a torus; the key points being that the image of a posi-
tive dimensional analytic set under a finite map is a positive dimensional analytic set
and the fact that a positive dimensional analytic set in a complex torus generates a
nontrivial complex subtorus.

Proposition 14 Under the assumptions of Theorem 6, the form ψ∗α has only finitely
many zeros on X.

Proof Let Z be a connected component of the set of zeros of ψ∗α. If ψ(Z) is positive
dimensional, it generates a nontrivial subtorus B of A (see [18, VIII.1]). The tangent
space to B at the origin is generated by the subspaces

Tqψ(Z)

where q varies over the smooth points of ψ(Z) (see Lemma 1.2 page 102 in [18]).
Since α vanishes on each space Tqψ(Z), it must vanish on B . This is a contradiction.
Hence ψ(Z) must be zero dimensional and thus a point. Since ψ is finite, this implies
that Z is a point. �

We now deal with the first point of Theorem 6. Since β and −β both have finitely
many zeros, it is enough to show that b = [Re(β)] ∈ �m−1(π1(X)). We then have
the following result due to Simpson [49].

Theorem 15 Let Y be a compact Kähler manifold of complex dimension m ≥ 2 and β

be a holomorphic 1-form on Y with finitely many zeros. Let ̂Y be the universal cover
of Y and f : ̂Y →R be a primitive of the lift to ̂Y of the form Re(β). Then for all real
numbers c, d such that c ≤ d , the inclusion

f −1([d,∞)) ⊂ f −1([c,∞))

induces an isomorphism on πi for i ≤ m − 2 and a surjection on πm−1.

This result is essentially contained in Theorem 17 and the subsequent remark
from [49]. However, in [49] Simpson deals with a more general situation: he con-
siders the homotopical properties of the level sets of the primitive of (the lift to ̂X of)
either a harmonic form or a holomorphic form and he also allows the case where one
works on a covering space of a quasi-projective variety (with extra assumptions). This
makes the proof more involved. Let us comment on Simpson’s assumption in Theo-
rem 17 from [49]: he considers small Milnor tubes around each zero of β (denoted
by N∗

i in his paper2) and a regular level set Ei ⊂ N∗
i for the real part of the local

2In our context Ni and N∗
i

coincide. They only differ when one works with quasi-projective or quasi-
Kähler manifolds, as Simpson does.
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primitive of β . The assumption of Simpson is that the pair (N∗
i ,Ei) is k-connected.

This assumption is satisfied in our situation for k = m − 1, thanks to Lefschetz’s the-
ory. One can then conclude as in the remark after Simpson’s Theorem 17 that the pair
(

f −1([c,∞)), f −1([d,∞))
)

is (m − 1)-connected.
To make this text more self-contained, we shall give a quick proof of Theorem 15

in Sect. 2.3, following Simpson’s approach.
We now explain how to conclude the proof of the first item of Theorem 6, using

Theorem 15. Assume that X is aspherical. Let ̂X be the universal cover of X and
let f : ̂X → R be a primitive of the lift of β to ̂X. We set ̂Xd = f −1([d,∞)), as in
Sect. 2.1. We shall prove that

πi(̂Xd) = 0 (3)

for i ≤ m − 2 and every real number d ; this obviously implies that ̂Xd is essen-
tially (m − 2)-connected. Theorem 15 implies that ̂Xd is path-connected for all d .
So let 1 ≤ i ≤ m − 2 and ξ : Si → ̂Xd be a continuous map representing a class in
πi(̂Xd). Since ̂X is contractible, ξ extends to a continuous map ξ : Bi+1 → ̂X. If
c := min{d, infBi+1f ◦ ξ}, the class of ξ vanishes in πi(̂Xc). Since by Theorem 15
the inclusion ̂Xd ⊂ ̂Xc induces an isomorphism on πi , we see that [ξ ] = 0 in πi(̂Xd).
Hence πi(̂Xd) = 0. This proves that the class b = [Re(β)] belongs to �m−1(π1(X))

(hence to −�m(π1(X)) as well).
The fact that the kernel of b is of type Fm−1 if b is rational follows from Theo-

rem 13. Let us also provide a more direct argument for this result. If b is rational,
the image of the integration morphism π1(X) → R associated to b is cyclic. Con-
sider the associated infinite cyclic covering space X0 → X and let g : X0 → R be a
primitive of the lift to X0 of the form Re(β). Rationality of b implies that the criti-
cal values of g are discrete. The map g being proper, each critical level set contains
only finitely many critical points. Let c be a regular value of g. We can choose an
ascending sequence of compact intervals

I0 = {c}� I1 � · · ·� Ij � . . .

such that
⋃

j≥0 Ij = R and Ij \ Ij−1 contains a single critical value of g. Since

the critical points of g are isolated, Lefschetz theory implies that g−1(Ij ) has the
homotopy type of g−1(Ij−1) with finitely many m-cells attached to it. Thus, X0 has
the homotopy type of a space obtained from g−1(c) by attaching (possibly infinitely
many) m-cells. Since g−1(c) is a compact manifold and X0 is a K(ker(b),1), we
deduce that ker(b) is Fm−1.

Remark 16 Without assuming X aspherical, the above argument also shows that the
inclusion g−1(c) ↪→ X0 is (m − 1)-connected, i.e. induces an isomorphism on πi for
i < m − 1 and a surjection on πm−1. The proof of Theorem 15 is nothing else than
a refinement of this line of argument, taking into account that the cohomology class
need not be rational. This means that the set of singular values of f need no longer be
discrete. However, the key point is that the set of critical points of f remains discrete
in ̂X, hence we can still apply Lefschetz theory to reconstruct f −1([c,∞)) from
f −1([d,∞)) up to homotopy by attaching cells of dimension m. We will explain this
in more detail in Sect. 2.3.
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To complete the proof of Theorem 6 we need to show that if X has non-trivial
Euler characteristic and b is rational, its kernel is not of type FPm(Q). The following
result shows this.

Lemma 17 Let Y be a 2m-dimensional closed aspherical real manifold and let [χ] ∈
S(π1(Y )) be a character with kernel of type Fm−1. Then b

(2)
i (π1(Y )) = 0 for 2i �=

m. In particular, Singer’s conjecture holds for Y . If moreover b
(2)
m (π1(Y )) �= 0, then

ker(χ) is not of type FPm(Q).

Proof Since the kernel of χ is of type Fm−1, the �2-Betti numbers
(b

(2)
j (π1(Y )))0≤j≤m−1 vanish (see [23] or [39, Prop. 14], this is a consequence of

Lück’s work [41]). By Poincaré duality, the �2-Betti numbers (b
(2)
j (π1(Y )))m+1≤j≤2m

must also vanish. This proves the first two assertions. If b
(2)
m (π1(Y )) �= 0, it then fol-

lows from another application of [39, Proposition 14] that ker(χ) is not FPm(Q). �

Note that one can provide a direct proof that the kernel of b is not of type
FPm(Q) using either complex Morse theory arguments as in [44] or homology of
cyclic coverings as in [39, Prop. 21]. Both arguments provide the stronger result that
Hm(ker(b),Q) is not finite dimensional.

Before stating our next proposition, we recall that a Gδ is by definition a countable
intersection of open sets.

Proposition 18 Let A be a complex torus. Let U ⊂ H 0(A,�1
A) be the set of holo-

morphic 1-forms which do not vanish on any nontrivial subtorus. Then U contains a
dense symmetric Gδ . Consequently, the set

O = {a ∈ H 1(A,R)|a = [Re(α)]withα ∈ U}
contains a dense symmetric Gδ of H 1(A,R).

Proof We identify A with C
n/� where n = dimC A and � < C

n is a lattice. The
space H 0(A,�1

A) is then identified with the dual space (Cn)∗. We define:

U0 = {φ ∈ (Cn)∗ | φ(γ ) �= 0,∀γ ∈ � − {0}}.
The set U0 is obviously a Gδ and we shall check that U0 ⊂ U . Let φ ∈ (Cn)∗ be
a holomorphic 1-form on A which vanishes on a subtorus T ⊂ A ∼= C

n/� of posi-
tive dimension. Then the inverse image of T in C

n is a linear subspace V such that
φ(V ) = 0 and V ∩ � < V is a lattice. This implies that φ vanishes on a nontrivial
element of �, hence φ /∈ U0. This concludes the proof. �

Proposition 18 will be used in Sect. 3.2, to prove Theorem 1. Observe that if
the torus A in Proposition 18 is a direct product A = A1 × · · · × Ar of pairwise
nonisogenous simple tori Ai , then it contains only finitely many distinct complex
subtori. Thus, in this case the set U is open.

We now turn to the proofs of Theorems 8 and 10.
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Proof of Theorem 8 Let X be as in the statement of the theorem. For m = 1, X is a
closed Riemann surface and the assertion is well-known. So we assume that m ≥ 2
and, by contradiction, that �m(π1(X)) is nonempty. Since this set is open, Propo-
sitions 14 and 18 imply that there exists a holomorphic 1-form with finitely many
zeros on X such that the cohomology class [Re(α)] lies in �m(π1(X)). We let
χ : π1(X) → R be the induced character.

To make our argument more transparent, we shall consider a perturbation α′ of α

constructed as follows. For each point p ∈ X such that αp = 0 we pick two small balls
Vp ⊂ Vp ⊂ Up centered at p (in some chart) such that the Up’s are pairwise disjoint.
By adding a small generic complex linear form to α in Up we obtain a perturbation
with only nondegenerate singularities. This form on Up can be perturbed in Up − Vp

in a C∞ way to coincide with α near the boundary of Up . This allows us to construct
a form α′ close to α (and cohomologous to it), which is holomorphic everywhere
except in the set

⋃

p,αp=0

Up − Vp,

and whose zeros are nondegenerate and contained in the union of the Vp’s. The con-
clusion of Theorem 15 still applies to the perturbation α′ of α. Indeed, our proof
of Theorem 15 in Sect. 2.3 only uses that the 1-form is holomorphic in a neigh-
bourhood of each of its critical points, meaning that the arguments apply verba-
tim to the form α′. Since α and α′ define the same cohomology class, we have
[Re(α′)] ∈ �m(π1(X)).

Let now ̂X be the universal cover of X and let f : ̂X → R be a primitive of the lift
of the form Re(α′) to ̂X. As before, for a real number d , we write

̂Xd := f −1([d,∞)).

We first claim that the (m − 1)-th homotopy group of ̂Xd vanishes for every real
number d . By the definition of the m-th BNSR invariant, there exists a real number
r ≥ 0 such that the map

πi(̂X0) → πi(̂X−r ) (4)

has a one point image for i ≤ m−1. Let ξ ∈ πm−1(̂X−r ). According to Theorem 15, ξ
lies in the image of the map (4). Since this map is trivial, ξ = 0 and thus πm−1(̂X−r )

is trivial. It follows that for every element g ∈ π1(X), g(̂X−r ) = ̂Xχ(g)−r also has
trivial πm−1. Given an arbitrary real number d , there is an element g ∈ π1(X) such
that χ(g) − r > d . Theorem 15 implies that the inclusion

̂Xχ(g)−r ⊂ ̂Xd

induces a surjection on πm−1, hence πm−1(̂Xd) = 0. This proves the claim.
We will now finish the proof by an argument which is very similar in spirit to ar-

guments appearing in [32, 44]. Since the Euler characteristic of X is nonzero, we can
pick two real numbers c > d such that there exists at least one zero of α′ in the open
set {d < f < c}. The proof of Theorem 15 shows that ̂Xd has the homotopy type of a
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space Wc obtained from ̂Xc by gluing some m-dimensional balls (Bi)i∈I along a non-
empty family of disjoint spheres (Si)i∈I contained in the set {f = c}. We pick one
of these spheres, say Si0 , and consider the corresponding ball Bi0 . Since πm−1(̂Xc) is
trivial, there exists a map v : Bm → ̂Xc such that the restriction of v to the boundary
of Bm is a homeomorphism onto Si0 . By “gluing” v and a parametrization of the ball
Bi0 , we obtain a map

v1 : Sm → Wc

from the m-dimensional sphere to the space Wc. Writing Wc as the union of ̂Xc and
some m-dimensional balls and using the Mayer-Vietoris exact sequence we see that
v1 defines a nontrivial homology class v1∗([Sm]) in Hm(Wc,Q). Applying the proof
of Theorem 15 again, we see that ̂X is obtained from ̂Xd by gluing successively some
m-dimensional balls. In particular the map

Hm(̂Xd,Q) → Hm(̂X,Q)

is injective. Since ̂Xd has the same homotopy type as Wc, the existence of the non-
trivial element v1∗([Sm]) of Hm(Wc,Q) thus contradicts the asphericity of ̂X. This
concludes the proof. �

As a side remark, we state the following proposition, which follows easily from
Gromov’s theorem characterizing Kähler groups with nonzero first �2-Betti num-
ber [4, 28].

Proposition 19 Let X be a closed aspherical Kähler manifold with dimC X ≥ 2. Then
the first �2-Betti number of π1(X) is zero.

Proof We assume by contradiction that X has positive first �2-Betti number. A result
of Gromov [28] then implies that there exists a finite covering space X1 → X and a
holomorphic map with connected fibers

p : X1 → �

onto a closed hyperbolic Riemann surface such that the fundamental group of every
smooth fiber of p has finite image in π1(X1). Indeed, the non-vanishing of the first �2-
Betti number of X is equivalent to the non-vanishing of the first reduced cohomology
group of π1(X) with values in �2(π1(X)). One can thus apply Theorem 4.1 from [4,
Ch. 4] (see also the two paragraphs following Theorem 4.1 in loc. cit. for a more
precise statement). Another exposition of Gromov’s result can also be found in [45,
§7.2.2].

Let F be a smooth fiber of p. Since the image

Im(π1(F ) → π1(X1))

is finite, there exists a finite covering space F1 → F such that F1 can be lifted to the
universal cover ̂X of X. Since X is Kähler, the image of this lift defines a nontrivial
homology class in ̂X. This contradicts the asphericity of X and finishes the proof. �
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As a consequence of this proposition we have:

Corollary 20 Let X be a closed aspherical Kähler surface. Then X satisfies Singer’s
conjecture.

Proof According to Proposition 19, we have b
(2)
1 (π1(X)) = 0. By Poincaré duality,

b
(2)
3 (π1(X)) = 0, hence X satisfies Singer’s conjecture. �

Using Theorem 13 and Lemma 17 one sees easily that if X is as in the corollary
and has nonzero Euler characteristic, the intersection �2(π1(X)) ∩ −�2(π1(X)) is
empty. This was already observed by different means by Friedl and Vidussi [24], see
Proposition 3.4 there and the remark following it. However, one has actually that

�k(π1(M)) ∩ −�k(π1(M)) = ∅
for any aspherical closed 2k-manifold M of nonzero Euler characteristic. This fol-
lows easily from Milnor’s work [43] and from [39, Prop. 21].

Proof of Theorem 10 Let X and α be as in the statement of the theorem. According to
Theorem 6, the cohomology class a of the real 1-form Re(α) lies in

�m−1(π1(X)) ∩ −�m−1(π1(X)).

In particular �m−1(π1(X)) ∩ −�m−1(π1(X)) is non-empty. Since this set is open,
we can pick a rational class a0 in it. According to Theorem 13 the kernel of a0 is then
of type Fm−1 and Lemma 17 implies Singer’s conjecture for X. �

2.3 Simpson’s theorem

For the reader’s convenience, we include a brief account of Simpson’s work [49]
in this section, providing a proof of Theorem 15. We restrict ourselves to the situa-
tion required in our work, although Simpson’s results are stated in greater generality.
Moreover, we assume that β has only nondegenerate singularities. The general case
follows by a simple perturbation argument, see e.g. [44, §2].

Let {p1, . . . , pr} be the set of zeros of β . We choose disjoint open sets (Oi)1≤i≤r in
Y such that pi ∈ Oi and such that for each i ∈ {1, . . . r}, there exists a biholomorphic
map

φi : Oi → B(0,2) ⊂ C
m

which takes pi to 0. We denote by hi : Oi → C the primitive of β on Oi such that
hi(pi) = 0 and let fi = hi ◦ φ−1

i . Standard arguments from the study of Milnor fi-
brations show that there exists ε > 0 such that for each i ∈ {1, . . . , r} the restriction
of fi to the boundary of the ball B(0,1) is a submersion at each point of the set
{|Refi | ≤ ε}. We now state two lemmas whose proofs are left to the reader. The
first one follows from standard arguments from Morse or Lefschetz theory [54, Ch.
14]; the second follows easily from the fact that fi |∂B(0,1) is a submersion along
∂B(0,1) ∩ {|Refi | ≤ ε}. From now on we fix a positive number δ ≤ ε.
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If N is a closed manifold with boundary endowed with a submersion p : N → I

where I = [s1, s2] is a closed interval of R, each trivialization � : N → p−1(s2) × I

of p provides a canonical retraction by deformation of N onto p−1(s2) given (in the
trivialization) by the map (x, s) �→ x. We shall say that this retraction is induced by
the trivialization �.

Lemma 21 For all real numbers μ and λ such that −δ ≤ μ ≤ 0 < λ ≤ δ the
set B(0,1) ∩ {μ ≤ Re(fi) ≤ λ} deformation retracts onto the union of the level
set B(0,1) ∩ {Re(fi) = λ} and a ball of dimension m glued along an (m − 1)-
dimensional sphere contained in B(0,1) ∩ {Re(fi) = λ}.

This retraction can be chosen to coincide on ∂B(0,1) ∩ {μ ≤ Re(fi) ≤ λ} with
the retraction induced by any trivialization of the bundle

∂B(0,1) ∩ {μ ≤ Re(fi) ≤ λ} → [μ,λ].

In the lemma below we write for −δ ≤ u ≤ u′ ≤ δ,

Ui,u,u′ = φ−1
i (B(0,1)) ∩ {u ≤ Re(hi) ≤ u′}, (5)

and denote by Int(Ui,u,u′) the interior of Ui,u,u′ .

Lemma 22 There exists a smooth vector field V on Y such that 0 ≤ Re(β)(V ) ≤ 1
on Y , Re(β)(V ) = 1 outside of

∪r
i=1Int(Ui,− δ

10 , δ
10

)

and such that V is tangent to φ−1
i (∂B(0,1)) along φ−1

i (∂B(0,1)) ∩ {|Re(fi)| ≤ δ}.

Let π : ̂Y → Y be the projection, h : ̂Y → C be a primitive of the lift of β to ̂Y

and let f = Re(h). Let ̂V be the lift to ̂Y of the vector field V from Lemma 22. If
x ∈ ̂Y is a critical point of h, the image of x in Y equals one of the zeros of β , say
pi . If −δ ≤ u ≤ u′ ≤ δ, we let Ux,u,u′ be the component of the preimage by π of
Ui,u,u′ containing x. Since π identifies Ux,u,u′ and Ui,u,u′ as well as h and hi (up
to translation) we can apply Lemma 21 to the map h : Ux,u,u′ → C. Note that using
our convention (5), we have u ≤ f − f (x) ≤ u′ on Ux,u,u′ since f and Re(hi) ◦ π

differ by the constant f (x) on Ux,u,u′ . Let c be a real number and let �c be the set of
critical points x of h such that

[c, c + δ

10
] ∩ [f (x) − δ

10
, f (x) + δ

10
]

is nonempty. We now define a continuous map

F : {f ≥ c} → {f ≥ c}
whose image will be the union of {f ≥ c + δ

10 } together with countably many m-
dimensional cells glued to {f ≥ c + δ

10 } along their boundary. The map F will be a
retraction by deformation onto its image. This implies the conclusion of Theorem 15
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whenever c ≤ d ≤ ε
10 . The general case follows by applying this step finitely many

times. Note that ε is fixed once and for all and only depends on Y and β .
The map F is built as follows. If a point z does not belong to the set

⋃

x∈�c

Ux,c−f (x),c−f (x)+ δ
10

, (6)

one follows the flow line of ̂V starting from z until one reaches a point of the level
set f = c + δ

10 . This defines F(z). If z belongs to the set (6), one constructs F as
follows, noting that by Lemma 22 we have the necessary freedom to define it so
that it is continuous on {f ≥ c}. If z ∈ Ux,c−f (x),c−f (x)+ δ

10
and c ≤ f (x) < c + δ

10 ,
one applies Lemma 21 to build a retraction of Ux,c−f (x),c−f (x)+ δ

10
onto the union of

Ux,c−f (x),c−f (x)+ δ
10

∩ {f = c + δ
10 } with an m-dimensional ball. If f (x) = c + δ

10 ,

one can retract Ux,c−f (x),c−f (x)+ δ
10

onto Ux,c−f (x),c−f (x)+ δ
10

∩ {f = c + δ
10 }. The

case where f (x) /∈ [c, c + δ
10 ] is even simpler since the map Ux,c−f (x),c−f (x)+ δ

10
→

[c, c + δ
10 ] is a locally trivial fibration in this case. This completes the proof of The-

orem 15.

3 Arithmetic lattices of the simplest type and Albanese maps

We start this section by defining the Albanese map of a compact Kähler manifold and
studying it for arithmetic quotients of complex balls in Sect. 3.1. After that we turn to
the definition of arithmetic lattices of the simplest type and to the proof of Theorem 1
and Corollaries 3 and 9 in Sect. 3.2.

3.1 Albanese maps are virtually immersions

Let X be a closed Kähler manifold and let H 0(X,�1
X) be the space of holomorphic

1-forms on X. If θ : [0,1] → X is a path in X we denote by i(θ) ∈ (H 0(X,�1
X))∗

the linear map on H 0(X,�1
X) taking a form α to the integral

∫

θ

α.

Since holomorphic forms on X are closed, this only depends on the homotopy class
of θ relative to its endpoints. Thus, one can also define i(u) for u ∈ H1(X,Z). The
kernel of the map

i : H1(X,Z) → (H 0(X,�1
X))∗

is the torsion subgroup of H1(X,Z) and its image is a lattice in (H 0(X,�1
X))∗. The

Albanese torus of X is defined as

Alb(X) := (H 0(X,�1
X))∗/i(H1(X,Z)). (7)
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For a fixed point x0 ∈ X we define a map

albX : X → Alb(X)

by setting albX(x) = i(θx)mod i(H1(X,Z)), where θx is any continuous path going
from x0 to x. This does not depend on the choice of θx . The resulting map albX is
holomorphic. We refer the reader to [54, §12.1.3] for more details on these notions.
By construction the differential of the map albX at a point x ∈ X is the evaluation
map

TxX → (H 0(X,�1
X))∗

v �→ (α �→ αx(v)).

Hence we have:

Lemma 23 Let x ∈ X. The linear map dalbX(x) is injective if and only if the evalua-
tion map

H 0(X,�1
X) → (TxX)∗

α �→ αx

is onto.

We now turn to the study of the Albanese map in the case of a quotient of the unit
ball B ⊂ C

m by an arithmetic lattice. Let � < PU(m,1) be a cocompact torsionfree
lattice. We recall that the commensurator of � is defined as follows:

Comm(�) = {g ∈ PU(m,1) | � ∩ g�g−1has finite index in both � and g�g−1}.
This is a subgroup of � and a well-known theorem of Margulis states that � is arith-
metic if and only if Comm(�) is a dense subgroup of PU(m,1). Below we will make
the assumption that � is arithmetic but this hypothesis will only play a role through
the density of the commensurator of � so that the reader can take the conclusion of
Margulis’ theorem as a definition of arithmeticity if they so desire.

We assume that b1(�) > 0 and that � is arithmetic. In that case it is well-known
that the virtual first Betti number of � must be infinite [1, 53]. The following theorem
relies on similar ideas and gives a geometric application.

Theorem 24 (Eyssidieux) Assume that � is arithmetic and has positive first Betti
number. Then there exists a finite index subgroup �0 < � with the property that the
Albanese map of X�0 is an immersion.

This result appears in [22]. More precisely, in that work the author proves Theo-
rem 24 for non-uniform lattices and gives applications of this result to the Shafarevich
conjecture of holomorphic convexity for certain toroidal compactifications. The co-
compact case is analogous. Since the proof is quite simple, we include it here for the
reader’s convenience. We also note that part of Eyssidieux’s arguments are identical
to the ones in [1].
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In what follows we shall say that two lattices �1,�2 < PU(m,1) are commensu-
rable if �1 ∩�2 has finite index in both �1 and �2. When using the abstract notion of
commensurability from Definition 2, we shall say it explicitly.

We fix � < PU(m,1) as in Theorem 24. Let �1
B be the space of all holomorphic

1-forms on B . For a lattice � < PU(m,1), let �1
B,� ⊂ �1

B be the subspace of �-

invariant forms. We define a subset L ⊂ �1
B as follows. A holomorphic 1-form α on

B belongs to L if and only if there exists a cocompact lattice � < PU(m,1) such
that � is commensurable to � and α is invariant under �. Following Agol [1] and
Eyssidieux [22], we consider the linear subspace

V0 ⊂ �1
B

spanned by L and let V be the closure of V0 for the topology of uniform conver-
gence on compact sets. We first observe that the set L is invariant under the action
of Comm(�). Indeed, if α ∈ L is invariant under a lattice � commensurable with
�, and if g ∈ Comm(�), then (g−1)∗α is invariant under the lattice g�g−1 which
is still commensurable with �. Hence g(L) = L and consequently g(V0) = V0 and
g(V ) = V for all g ∈ Comm(�). The density of Comm(�) in PU(m,1) then implies
that the space V is PU(m,1)-invariant.

Since the intersection of finitely many lattices commensurable with � is again a
lattice commensurable with �, the following lemma is clear.

Lemma 25 Let W ⊂ V0 be a finite dimensional vector subspace. Then there exists a
lattice � < PU(m,1) commensurable with � such that γ ∗α = α for all α ∈ W and
γ ∈ �.

Lemma 26 Let p ∈ B . Let evp : V → (Cm)∗ be the evaluation map at p, which takes
a holomorphic 1-form α = ∑m

j=1 fj (z)dzj to α(p) = ∑m
j=1 fj (p)dzj . Then evp is

onto.

Proof of Lemma 26 Since V is PU(m,1)-invariant, it is enough to prove the lemma
for p = o, the origin of the ball. If the image evo(V ) ⊂ (Cm)∗ is equal to 0, then
evp would be equal to 0 for each point p ∈ B and V would be reduced to zero. This
is impossible since b1(�) > 0. Hence the image of evo is nonzero. Since evo(V ) ⊂
(Cm)∗ is invariant under the natural action of U(m), we must have evo(V ) = (Cm)∗.
This concludes the proof. �

For a lattice � < PU(m,1), we now define the following subset of the ball:

Z� = {x ∈ B | dalbX� is not injective at x mod �}. (8)

We make the following observations. Given a point p ∈ B , Lemma 26 implies that
there exist elements α1, . . . , αm in V such that the evaluations (αi(p))1≤i≤m generate
(Cm)∗. Since this is an open condition, we can actually assume that α1, . . . , αm be-
long to V0. Note that the evaluations α1(q), . . . , αm(q) will then be linearly indepen-
dent for q in a neighborhood of p. This implies that for each compact subset M ⊂ B ,
there exists a finite dimensional subspace W ⊂ V0 such that evp(W) = (Cm)∗ for
each point p ∈ M . According to Lemma 25, there exists a lattice � commensurable
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with � such that W ⊂ �1
B,�. Thanks to Lemma 23, this implies that

M ∩ Z� = ∅. (9)

In other words, we have proved:

Proposition 27 For each compact subset M ⊂ B , there exists a lattice � < PU(m,1)

commensurable with � such that Z� does not intersect M .

We now pick a compact fundamental domain K ⊂ B for the action of � on B .
According to Proposition 27, there exists a lattice � < PU(m,1) commensurable
with � and such that Z� ∩K = ∅. Let �0 �� be a normal finite index subgroup such
that �0 ⊂ � ∩ �. Since �0 < � we must have

Z�0 ⊂ Z�.

Hence Z�0 does not intersect K . But Z�0 is �-invariant since �0 � �. If x ∈ Z�0 ,
there exists γ ∈ � such that γ · x ∈ K . But γ · x also lies in Z�0 . We thus obtain a
contradiction. This shows that Z�0 = ∅, implying that the Albanese map of X�0 is an
immersion. This concludes the proof of Theorem 24.

Remark 28 We shall describe below a class of arithmetic lattices in PU(m,1) which
are known to have positive virtual first Betti number. Note though that there are other
classes of arithmetic lattices for which we currently don’t know if they have positive
virtual first Betti number. This includes a class for which the first Betti number is
known to vanish on all congruence subgroups, while the existence of noncongruence
finite index subgroups is open [15]. We emphasize that all the results from this paper
which are stated for arithmetic lattices of the simplest type in fact hold for all arith-
metic lattices in PU(m,1) with positive first Betti number. Indeed our proofs only use
the arithmeticity, not the specific arithmetic construction.

3.2 Conclusion of the proofs

In this section, we prove Theorem 1 and Corollaries 3 and 9. We start by recalling the
definition of arithmetic lattices of the simplest type in the group PU(m,1). Let F ⊂ R

be a totally real number field and E ⊂ C be a purely imaginary quadratic extension
of F . Let V = Em+1 and let H : V × V → E be a Hermitian form. We assume
that the extension of H to V ⊗C has signature (m,1) and that for every embedding
σ : E → C with σ |F distinct from the identity of F , the twisted Hermitian form Hσ

has signature (m + 1,0) over C. Let OE be the ring of integers of E and U(H,OE)

be the group of (m + 1) × (m + 1) matrices with coefficients in OE which preserve
the Hermitian form H . The group U(H,OE) is a lattice in the group U(V ⊗ C,H)

of automorphisms of the space (V ⊗ C,H), which is cocompact if and only if F

is distinct from Q. It is these lattices and the ones commensurable to them that are
usually called “of the simplest type”. See [11, §VIII.5] for more details.

A result of Kazhdan [33] states that when F �= Q, the group U(H,OE) always
admits congruence subgroups with positive first Betti number. This result is also ex-
posed in [11] and has been extended by Shimura to the noncocompact case [48].
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Proof of Theorem 1 Let � < PU(m,1) be a cocompact arithmetic lattice of the sim-
plest type. Applying Kazhdan’s result and then Theorem 24, we obtain a torsion-free
finite index subgroup �0 < � such that the Albanese map of the manifold

X�0 = B/�0

is an immersion. Fix a finite index subgroup �1 < �0. The Albanese map of X�1 is
also an immersion since there is a natural commutative square

X�1 Alb(X�1)

X�0 Alb(X�0).

Theorem 6 implies that if α is a holomorphic 1-form on Alb(X�1) which does not
vanish on any nontrivial subtorus, the class

a = [Re(alb∗
X�1

α)]

lies in �m−1(�1). Since the set of such classes is dense by Proposition 18, this con-
cludes the proof of the first statement of the theorem. The affirmation about rational
classes follows from Theorem 13 and Lemma 17, together with the fact that B/�1
has nonzero Euler characteristic. Again, we could also have appealed to [39, Prop.
21]. �

Proof of Corollary 3 The following arguments are classical. We will show that arith-
metic lattices of the simplest type in PU(m,1) form infinitely many commensurabil-
ity classes in the sense of Definition 2. We recall that the adjoint trace field of a lattice
� < PU(m,1) is the field generated by the traces of the transformations

Ad(γ ) : Lie(PU(m,1)) → Lie(PU(m,1)) (γ ∈ �).

We now observe that if �1 and �2 are two lattices in the group PU(m,1) (m ≥ 2)
which are commensurable in the sense of Definition 2, Mostow’s rigidity theorem
implies that there exists an element g ∈ PU(m,1) such that the intersection

g�1g
−1 ∩ �2

has finite index in both g�1g
−1 and �2. This implies that �1 and �2 have the same ad-

joint trace field [19, Prop. 12.2.1]. But the adjoint trace field of the lattice U(H,OE)

built above is known to be the field F [19, 12.2.5]. Since there are infinitely many
possibilites for F , this proves the corollary. �

Proof of Corollary 9 Let �1 < � be a finite index subgroup such that the Albanese
map of the manifold X�1 is an immersion. We denote by i : �1 → � the inclusion.
If χ ∈ H 1(�,R) − {0} is such that [χ] ∈ �m(�), then [χ ◦ i] ∈ �m(�1); this follows
directly from the definition of �m. But �m(�1) is empty by Theorem 8. This forces
�m(�) to be empty and finishes the proof. �
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Remark 29 Let � < PU(m,1) be a cocompact arithmetic lattice of the simplest type.
Theorem 1 improves on Stover’s work [52] who proved that the invariant �1 of deep
enough finite index subgroups of � is nonempty. In particular, for m = 2, Theorem 1
is a consequence of [20, 52]. Indeed, Delzant’s work shows that the invariant �1 of
a Kähler group, when nonempty, is the complement of the union of finitely many
proper subspheres of the character sphere.
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