KIT | KIT-Bibliothek | Impressum | Datenschutz

Using weather data in energy time series forecasting: the benefit of input data transformations

Neumann, Oliver 1; Turowski, Marian ORCID iD icon 1; Mikut, Ralf ORCID iD icon 1; Hagenmeyer, Veit ORCID iD icon 1; Ludwig, Nicole
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)

Abstract:

Renewable energy systems depend on the weather, and weather information, thus, plays a crucial role in forecasting time series within such renewable energy systems. However, while weather data are commonly used to improve forecast accuracy, it still has to be determined in which input shape this weather data benefits the forecasting models the most. In the present paper, we investigate how transformations for weather data inputs, i. e., station-based and grid-based weather data, influence the accuracy of energy time series forecasts. The selected weather data transformations are based on statistical features, dimensionality reduction, clustering, autoencoders, and interpolation. We evaluate the performance of these weather data transformations when forecasting three energy time series: electrical demand, solar power, and wind power. Additionally, we compare the best-performing weather data transformations for station-based and grid-based weather data. We show that transforming station-based or grid-based weather data improves the forecast accuracy compared to using the raw weather data between 3.7 and 5.2%, depending on the target energy time series, where statistical and dimensionality reduction data transformations are among the best.


Verlagsausgabe §
DOI: 10.5445/IR/1000163721
Veröffentlicht am 03.11.2023
Originalveröffentlichung
DOI: 10.1186/s42162-023-00299-8
Scopus
Zitationen: 1
Dimensions
Zitationen: 5
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 2520-8942
KITopen-ID: 1000163721
HGF-Programm 37.12.02 (POF IV, LK 01) Design,Operation & Digitalization of the Future Energy Grids
Erschienen in Energy Informatics
Verlag SpringerOpen
Band 6
Heft 1
Seiten Art.-Nr.: 44
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Vorab online veröffentlicht am 02.11.2023
Nachgewiesen in Dimensions
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 7 – Bezahlbare und saubere Energie
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page