KIT | KIT-Bibliothek | Impressum | Datenschutz

MEGAN: Multi-explanation Graph Attention Network

Teufel, Jonas ORCID iD icon 1; Torresi, Luca 1; Reiser, Patrick 1; Friederich, Pascal ORCID iD icon 1
1 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)

Abstract:

We propose a multi-explanation graph attention network (MEGAN). Unlike existing graph explainability methods, our network can produce node and edge attributional explanations along multiple channels, the number of which is independent of task specifications. This proves crucial to improve the interpretability of graph regression predictions, as explanations can be split into positive and negative evidence w.r.t to a reference value. Additionally, our attention-based network is fully differentiable and explanations can actively be trained in an explanation-supervised manner. We first validate our model on a synthetic graph regression dataset with known ground-truth explanations. Our network outperforms existing baseline explainability methods for the single- as well as the multi-explanation case, achieving near-perfect explanation accuracy during explanation supervision. Finally, we demonstrate our model's capabilities on multiple real-world datasets. We find that our model produces sparse high-fidelity explanations consistent with human intuition about those tasks.


Verlagsausgabe §
DOI: 10.5445/IR/1000163743
Veröffentlicht am 03.11.2023
Originalveröffentlichung
DOI: 10.1007/978-3-031-44067-0_18
Scopus
Zitationen: 2
Dimensions
Zitationen: 4
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theoretische Informatik (ITI)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2023
Sprache Englisch
Identifikator ISBN: 978-3-031-44066-3
ISSN: 1865-0929
KITopen-ID: 1000163743
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Explainable Artificial Intelligence. Ed.: L. Longo. Proceedings. Part 2
Veranstaltung 1st World Conference On eXplainable Artificial Intelligence (xAI 2023), Lissabon, Portugal, 26.07.2023 – 28.07.2023
Verlag Springer Nature Switzerland
Seiten 338–360
Serie Communications in Computer and Information Science ; 1902
Vorab online veröffentlicht am 21.10.2023
Nachgewiesen in Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page