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Abstract. Despite the increasing relevance of explainable AI, assessing
the quality of explanations remains a challenging issue. Due to the high
costs associated with human-subject experiments, various proxy metrics
are often used to approximately quantify explanation quality. Generally,
one possible interpretation of the quality of an explanation is its inher-
ent value for teaching a related concept to a student. In this work, we
extend artificial simulatability studies to the domain of graph neural net-
works. Instead of costly human trials, we use explanation-supervisable
graph neural networks to perform simulatability studies to quantify the
inherent usefulness of attributional graph explanations. We perform an
extensive ablation study to investigate the conditions under which the
proposed analyses are most meaningful. We additionally validate our
method’s applicability on real-world graph classification and regression
datasets. We find that relevant explanations can significantly boost the
sample efficiency of graph neural networks and analyze the robustness
towards noise and bias in the explanations. We believe that the notion
of usefulness obtained from our proposed simulatability analysis pro-
vides a dimension of explanation quality that is largely orthogonal to
the common practice of faithfulness and has great potential to expand
the toolbox of explanation quality assessments, specifically for graph
explanations.

Keywords: Graph Neural Networks · Explainable AI · Explanation
Quality · Simulatability Study

1 Introduction

Explainable AI (XAI) methods are meant to provide explanations alongside a
complex model’s predictions to make its inner workings more transparent to
human operators to improve trust and reliability, provide tools for retrospective
model analysis, as well as to comply with anti-discrimination laws [6]. Despite
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recent developments and a growing corpus of XAI methods, a recurring challenge
remains the question of how to assess the quality of the generated explanations.

Since explainability methods aim to improve human understanding of com-
plex models, Doshi-Velez and Kim [6] argue that ultimately the quality of expla-
nations has to be assessed in a human context. To accomplish this, the authors
propose the idea of simulatability studies. In that context, human subjects are
tasked to simulate the behavior of a machine-learning model given different
amounts of information. While a control group of participants receives only the
model input-output information, the test group additionally receives the expla-
nations in question. If, in that case, the test group performs significantly better
at simulating the behavior, the explanations can be assumed to contain informa-
tion useful to human understanding of the task. However, human trials such as
this are costly and time-consuming, especially considering the number of partici-
pants required to obtain a statistically significant result. Therefore, the majority
of XAI research is centered around more easily available proxy metrics such as
explanation sparsity and faithfulness.

While proxy metrics are an integral part of the XAI evaluation pipeline,
we argue that the quantification of usefulness obtained through simulatability
studies is an important next step toward comparing XAI methods and thus
increasing the impact of explainable AI. Recently, Pruthi et al. [21] introduce
the concept of artificial simulatability studies as a trade-off between cost and
meaningfulness. Instead of using human subjects, the authors use explanation-
supervisable neural networks as participants to conduct simulatability studies
for natural language processing tasks.

In this work, we extend the concept of artificial simulatability studies to
the domain of graph neural networks and specifically node and edge attribu-
tional explanations thereof. This application has only been enabled through the
recent development of sufficiently explanation-supervisable graph neural network
approaches [26]. We will henceforth refer to this artificial simulatability app-
roach as the student-teacher analysis of explanation quality: The explanations
in question are considered to be the “teachers” that are evaluated on their effec-
tiveness of communicating additional task-related information to explanation-
supervisable “student” models. We show that, under the right circumstances,
explanation supervision leads to significantly improved main task prediction per-
formance w.r.t. to a reference. We first conduct an extensive ablation study on
a specifically designed synthetic dataset to highlight the conditions under which
this effect can be optimally observed. Most importantly, we find that the under-
lying student model architecture has to be sufficiently capable to learn explana-
tions during explanation-supervised training. Our experiments show, that this
is especially the case for the self-explaining MEGAN architecture, which was
recently introduced by Teufel et al. [26].

Additionally, we find that the target prediction problem needs to be suf-
ficiently challenging to the student models to see a significant effect. We can
furthermore show that while ground truth explanations cause an increase in
performance, deterministically incorrect/adversarial explanations cause a signif-
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icant decrease in performance. In the same context, random explanation noise
merely diminishes the benefit of explanations, but neither causes a significant
advantage nor a disadvantage.

Finally, we validate the applicability of our method on explanations for one
real-world molecular classification and one molecular regression dataset.

2 Related Work

Simulatability Studies. Doshi-Velez and Kim [6] introduce the concept of
simulatability studies, in which human participants are asked to simulate the
forward predictive behavior of a given model. Explanations about the model
behavior should be considered useful if a group of participants with access to
these explanations performs significantly better than a control group without
them. Such studies are only rarely found in the growing corpus of XAI literature
due to the high effort and cost associated with them. Nonetheless, some exam-
ples of such studies can be found. Chandrasekaran et al. [4] for example conduct
a simulatability study for a visual question answering (VQA) task. The authors
investigate the effect of several different XAI methods such as GradCAM and
attention among other aspects. They find no significant performance difference
for participants when providing explanations. Hase and Bansal [10] conduct a
simulatability study for a sentiment classification task. They can only report
significant improvements for a small subset of explanation methods. Lai et al.
[13,14] conduct a simulatability study for a deception detection task. Unlike
previously mentioned studies, the authors ask participants to predict ground
truth labels instead of simulating a model’s predictions. Among different expla-
nation methods, they also investigate the effects of other assistive methods on
human performance, such as procedurally generated pre-task tutorials and real-
time feedback. The study shows that real-time feedback is crucial to improve
human performance. In regard to explanations, the authors find that especially
simplistic explanations methods seem to be more useful than more complicated
deep-learning-based ones and that providing the polarity of attributional expla-
nations is essential.

Beyond the cost and effort associated with human trials, previous studies
report various additional challenges when working with human subjects. One
issue seems to be the limited working memory of humans, where participants
report forgetting previously seen relevant examples along the way. Another issue
is the heterogeneity of participants’ abilities, which causes a higher variance
in performance results, necessitating larger sample sizes to obtain statistically
significant results. Overall, various factors contribute to such studies either not
observing any effect at all or reporting only on marginal explanation benefits.

One possible way to address this is proposed by Arora et al. [2], who argue
to rethink the concept of simulatability studies itself. In their work, instead of
merely using human subjects as passive predictors, the participants are encour-
aged to interactively engage with the system. In addition to guessing the model
prediction, participants are asked to make subsequent single edits to the input
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text with the goal of maximizing the difference in model confidence. The metric
of the average confidence deviation per edit can then also be seen as a measure
of human understanding of the model’s inner workings. The authors argue that
such an explorative and interactive study design is generally more suited to the
strengths of human subjects and avoids their respective weaknesses.

Another approach is represented by the emergent idea of artificial simulatabil-
ity studies, which generally aim to substitute human participants in these kinds
of studies with machine learning models that are able to learn from explanations
in a similar manner. There exist early variations of this basic idea [11,27], for
which conceptional problems have been pointed out [21]. Most notably, some
methods expose explanations during test time, which may cause label leakage.
Recently, Pruthi et al. [21] devise a method that does not expose explanations
during test time by leveraging explanation-supervised model training. They are
able to show a statistically significant test performance benefit for various expla-
nation methods, as well as for explanations derived from human experts in nat-
ural language processing tasks. In our work, we build on the basic methodology
proposed by Pruthi et al. and use explanation-supervisable student models to
avoid the label-leakage problem. Furthermore, we extend their basic approach
toward a more rigorous method. The authors consider the absolute performance
of the explanation supervised student by itself as an indicator of simulatability.
We argue that, due to the stochastic nature of neural network training, potential
simulatability benefits should only be considered on a statistical level obtained
through multiple independent repetitions, only relative to a direct reference, and
verified by tests of statistical significance.

Explanation Supervision for GNNs. Artificial simulatability studies, as
previously discussed, require student models which are capable of explanation
supervision. This means that it should be possible to directly train the generated
explanations to match some given ground truth explanations during the model
training phase. Explanation supervision has already been successfully applied
in the domains of image processing [16] and natural language processing [3].
However, only recently was the practice successfully adapted to the domain of
graph neural networks as well. First, Gao et al. [8] propose the GNES framework,
which aims to use the differentiable nature of various existing post-hoc expla-
nation methods such as GradCAM and LRP to perform explanation supervised
training. Teufel et al. [26] on the other hand introduce the MEGAN architec-
ture which is a specialized attention-based architecture showing especially high
potential for explanation-supervision. To the best of our knowledge, these two
methods remain the only existing methods for explanation-supervision of graph
attributional explanations until now.

In addition to attributional explanations, several other types of explanations
have been introduced. Noteworthy examples are prototype-based explanations
[23] and concept-based explanations [19]. In the realm of prototype explanations,
Zhang et al. [28] and Dai and Wang [5] introduce self-explaining prototype-based
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graph neural networks, although it has not yet been demonstrated if and how
explanation-supervision could be applied to them. For concept-based explana-
tions, on the other hand, Magister et al. [18] demonstrate explanation super-
vision, opening up the possibility to extend artificial simulatability studies to
explanation modalities beyond simple attributional explanations as well.

3 Student-Teacher Analysis of Explanation Quality

Simulatability studies aim to assess how useful a set of explanations is in
improving human understanding of a related task. To offset the high cost and
uncertainty associated with human-subject experiments, Pruthi et al. [21] intro-
duce artificial simulatability studies, which substitute human participants with
explanation-aware neural networks, for natural language processing tasks. In
this section, we describe our extension of this principle idea to the application
domain of graph neural networks and introduce the novel STS metric which we
use to quantify the explanation-induced performance benefit.

We assume a directed graph G = (V,V) is represented by a set of node
indices V = N

V and a set of edges E ⊆ V × V, where a tuple (i, j) ∈ E denotes a
directed edge from node i to node j. Every node i is associated with a vector of
initial node features h(0)

i ∈ R
N0 , combining into the initial node feature tensor

H(0) ∈ R
V ×N0 . Each edge is associated with an edge feature vector u(0)

ij ∈ R
M ,

combining into the edge feature tensor U ∈ R
E×M . Each graph is also anno-

tated with a target value vector ytrue ∈ R
C , which is either a one-hot encoded

vector for classification problems or a vector of continuous values for regression
problems. For each graph exists node and edge attributional explanations in the
form of a node importance tensor V ∈ [0, 1]V ×K and an edge importance tensor

Fig. 1. Illustration of the student teacher training workflow as well as the setting of
our artificial simulatability study.
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E ∈ [0, 1]E×K respectively. K is the number of explanation channels and is usu-
ally equal to the size C of the target vector, meaning that for every target value
each element of the input graph is annotated with a 0 to 1 value indicating that
element’s importance.

In the framework of artificial simulatability studies, human participants are
replaced by explanation-aware machine learning models which will be referred
to as students. In this analogy, the teacher is represented by the dataset of
input graphs and target value annotations, as well as the explanations whose
quality is to be determined. Figure 1 illustrates the concept of such a student-
teacher analysis of explanation quality. The set X of input data consists of tuples
(G,H(0),U(0)) of graphs and their features. The set Y consists of tuples (y,V,E)
of target value annotations, as well as node and edge attributional explanations.
A student is defined as a parametric model Sθ : (G,H(0),U(0)) → (y,V,E)
with the trainable model parameters θθθ. This firstly implies that every student
model has to directly output explanations alongside each prediction. Moreover,
these generated explanations have to be actively supervisable to qualify as an
explanation-aware student model.

During a single iteration of the student-teacher analysis, the sets of input
and corresponding output data are split into a training set X

train,Ytrain and an
unseen test set X

test,Ytest respectively. Furthermore, two architecturally identi-
cal student models are initialized with the same initial model parameters θθθ: The
reference student model Sref

θ and the explanation-aware student model Sexp
θ .

During the subsequent training phase, the reference student only gets to train
on the main target value annotations y, while the explanation student is addi-
tionally trained on the given explanations. After the two students were trained
on the same training elements and the same hyperparameters, their final predic-
tion performance is evaluated on the unseen test data. If the explanation student
outperforms the reference student on the final evaluation, we can assume that
the given explanations contain additional task-related information and can thus
be considered useful in this context.

However, the training of complex models, such as neural networks, is a
stochastic process that generally only converges to a local optimum. For this
reason, a single execution of the previously described process is not sufficient to
assess a possible performance difference. Rather, a repeated execution is required
to confirm the statistical significance of any result. Therefore, we define the
student-teacher analysis as the R repetitions of the previously described process,
resulting in the two vectors of test set evaluation performances pref,pexp ∈ R

R

for the two student models respectively. The concrete type of metric used to
determine the final performance may differ, as is the case with classification and
regression problems for example. Based on this definition we define the student-
teacher simulatability metric

STSR = median(pexp − pref)

as the median of the pairwise performance differences between all the individ-
ual explanation students’ and reference students’ evaluation results. We choose
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the median here instead of the arithmetic mean, due to its robustness towards
outliers, which may occur when models sporadically fail to properly converge in
certain iterations of the procedure.

In addition to the calculation of the STS metric, a paired t-test is performed
to assure the statistical significance of the results. Only if the p-value of this
test is below a 5% significance level should the analysis results be considered
meaningful.

4 Computational Experiments

4.1 Ablation Study for a Synthetic Graph Classification Dataset

We first conduct an ablation study on a specifically designed synthetic graph
dataset to show the special conditions under which a performance benefit for
the explanation student can be observed.

We call the synthetic dataset created for this purpose red and blue adversarial
motifs and a visualization of it can be seen in Fig. 2. The dataset consists of 5000
randomly generated graphs where each node is associated with 3 node features
representing an RGB color code. Each graph is seeded with one primarily red
motif: Half of the elements are seeded with the red and yellow star motif and
are consequently labeled as the “active” class. The other half of the elements are
seeded with a red and green ring motif and labeled as “inactive”. The dataset
represents a binary classification problem where each graph will have to be clas-
sified as either active or inactive. As each class assignment is entirely based on
the existence of the corresponding sub-graph motifs, these motifs are consid-
ered the perfect ground truth explanations for that dataset. In addition to the
primarily red motifs, each graph is also seeded with one primarily blue motif:
Either a blue-yellow ring motif or a blue-green star motif. These blue motifs
are seeded such that their distribution is completely uncorrelated with the true
class label of the elements. Thus, these motifs are considered deterministically
incorrect/adversarial explanations w.r.t. the main classification task.

Student Model Implementations. We conduct an experiment to assess the
suitability of different student model implementations. As previously explained,
a student model has to possess two main properties: Node and edge explana-
tions have to be generated alongside each prediction and more importantly it has
to be possible to train the models based on these explanations in a supervised
manner. To the best of our knowledge, there exist two methods from literature,
which do this for attributional explanations: The GNES framework of Gao et
al. [8] and the MEGAN architecture of Teufel et al. [26]. We conduct an experi-
ment with R = 25 repetitions of the student-teacher analysis for three different
models: A lightweight MEGAN model, GNES explanations based on a simple
GCN network, and GNES explanations based on a simple GATv2 network. In
each iteration, 100 elements of the dataset are used to train the student model
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while the rest is used during testing. Table 1 shows the results of this experi-
ment. We report the final STS value, as well as the node and edge AUC metrics,
which indicate how well the explanations of the corresponding models match the
ground truth explanations of the test set.

Table 1. Results for 25 repetitions of the student-teacher analysis for different reference
models (Ref) and explanation supervised student model (Exp) implementations.

Student Model STS25 ↑ Node AUC ↑ Edge AUC ↑
Ref Exp Ref Exp

GNESGCN 0.02 0.55±0.04 0.59±0.03 0.64±0.04 0.66±0.04

GNESGATv2 0.01 0.59±0.05 0.61±0.05 0.51±0.05 0.55±0.04

MEGAN2
0.0 0.12(∗) 0.64±0.15 0.94±0.01 0.66±0.14 0.96±0.02

(*) Statistically significant according to a paired T-test with p < 5%

Since the perfect ground truth explanations are used for this experiment, we
expect the explanation student to have the maximum possible advantage w.r.t
to the explanations. The results show that only the MEGAN student indicates
a statistically significant STS value of a median 12% accuracy improvement for
the explanation-aware student. The GNES experiments on the other hand do
not show statistically significant performance benefits. We believe that this is
due to the limited effect of the explanation supervision that can be observed
in these cases: While the node and edge accuracy of the GNES explanation
student only improves by a few percent, the MEGAN explanation student almost
perfectly learns the ground truth explanations. This is consistent with the results

Fig. 2. Synthetic dataset used to quantify the usefulness of attributional graph explana-
tions, incl. testing the robustness toward adversarial explanations. (Color figure online)
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Fig. 3. Results of student-teacher analyses (R = 25) for different training dataset sizes.
Each column shows the performance distribution for the reference student (blue) and
the explanation student (green) of the student-teacher procedure. The number above
each column is the resulting STS value. (*) indicates statistical significance according
to a paired T-test with p < 5% (Color figure online)

reported by Teufel et al. [26], who report that MEGAN outperforms the GNES
approach in capability for explanation supervision. A possible explanation for
why that is the case might be that the explanation-supervised training of the
already gradient-based explanations of GNES relies on a second derivative of
the network, which might provide a generally weaker influence on the network’s
weights.

Based on this result, we only investigate the MEGAN student in subsequent
experiments.

Training Dataset Size Sweep. In this experiment, we investigate the influ-
ence of the training dataset size on the explanation performance benefit. For this
purpose, we conduct several student-teacher analyses with R = 25 repetitions
using the MEGAN student architecture. We vary the number of elements used
for training between 100, 200, 300, 400, and 500 elements out of a total of 5000.
In each iteration, the training dataset with that number of elements is randomly
sampled from the entire dataset and the rest is used during testing. Figure 3
shows the results of this experiment. We visualize the performance distributions
of explanation and reference students for each dataset size and provide the STS
metric in each case.

The results show the greatest performance benefit for the smallest training
set size of just 100 elements. Afterward, the STS value converges to 0 for 500
elements, losing statistical significance as well. We believe that this is caused by
the convergence of both students to the near-perfect performance of approx. 98%
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Fig. 4. Results of student-teacher analyses (R = 25) for explanations with different
ratios of additional explanation noise. Each column shows the performance distribution
for the reference student (blue) and the explanation student (green) of the student-
teacher procedure. The number above each column is the resulting STS value. (*)
indicates statistical significance according to a paired T-test with p < 5% (Color figure
online)

accuracy. In other words: A larger train set size represents a smaller difficulty for
the student models. With decreasing difficulty, the students can solve the task
almost perfectly by themselves, diminishing any possible benefit of the expla-
nations. We can therefore formulate the rule of thumb that explanations have
the potential to provide the greatest benefit when tasks are more difficult, and
cannot be so easily solved without explanations. As shown in this experiment, a
reduction of the train set size sufficiently provides such an increase in difficulty.

Based on this result, we conduct subsequent experiments with a training set
size of 100 to observe the most pronounced effect.

Explanation Noise Sweep. For the majority of real-world tasks, perfect
ground truth explanations are generally not available. Instead, explanations can
be generated through a multitude of XAI methods that have been proposed in
recent years. Since complex machine learning models and XAI methods generally
only find local optima, it is reasonable to assume that generated explanations are
not perfect but rather contain some amount of noise as well. The question is how
such explanation noise affects the results of our proposed student-teacher anal-
ysis. In this experiment, we perform different student-teacher analyses, where in
each case the explanations are overlaid with a certain ratio P% of random noise,
where P ∈ {0, 5, 10, 20, 40, 60, 80, 100}. A ratio P% means that the explanation
importance value for every element (nodes and edges) in every graph has a P%
chance of being randomly sampled instead of the ground truth value being used.
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Fig. 5. Results of student-teacher analyses (R = 25) for datasets containing different
amounts of adversarial incorrect explanations. Each column shows the performance
distribution for the reference student (blue) and the explanation student (green) of the
student-teacher procedure. The number above each column is the resulting STS value.
(*) indicates statistical significance according to a paired T-test with p < 5% (Color
figure online)

Each student-teacher analysis is conducted with a MEGAN student architecture
and 100 training data points. Figure 4 shows the results of this experiment.

The results show that there is a statistically significant performance benefit
for the explanation student until 40% explanation noise is reached. Afterward,
the STS value converges towards zero and loses statistical significance as well.
One important aspect to note is that even for high ratios of explanation noise the
performance difference converges toward zero. This indicates that explanations
consisting almost entirely of random noise do not benefit the performance of a
student model, but they do not negatively influence it either. We believe this is
the case because random explanations do not cause any learning effect for the
model. In our setup of explanation-supervised training, actual explanation labels
are not accessible to either student during the testing phase, instead, the models
have to learn to replicate the given explanations during training through their
own internal explanation-generating mechanisms. Only through these learned
replications can any potential advantage or disadvantage be experienced by the
models during performance evaluation. Completely random explanations cannot
be learned by the models and consequently have no effect during performance
evaluation.

Adversarial Explanation Sweep. The previous experiment indicates that
purely random explanations do not negatively affect the model performance.
By contrast, it could be expected that deterministic incorrect explanations on
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Fig. 6. Results of student-teacher analyses (R = 25) for different layer structures of
the MEGAN student model. The square brackets indicate the number of hidden units
in each layer of the main convolutional part of the network. The normal brackets
beneath indicate the number of hidden units in the fully connected layers in the tail-
end of the network. Each column shows the performance distribution for the reference
student (blue) and the explanation student (green) of the student-teacher procedure.
The number above each column is the resulting STS value. (*) indicates statistical
significance according to a paired T-test with p < 5% (Color figure online)

the other hand should have a negative influence on the performance. The used
dataset is seeded with two families of sub-graph motifs (see Fig. 2): The red-
based motifs are completely correlated with the two target classes and can thus
be considered the perfect explanations for the classification task. The blue-based
motifs on the other hand are completely uncorrelated to the task and can thus
be considered incorrect/adversarial explanations w.r.t. to the target labels. In
this experiment, increasing amounts of these adversarial explanations are used
to substitute the true explanations during the student-teacher analysis to inves-
tigate the effect of incorrect explanations on the performance difference. In each
iteration, Q% of the true explanations are replaced by adversarial explanations,
where Q ∈ {0, 5, 10, 20, 40, 60, 80, 100}. Each student-teacher analysis is con-
ducted with a MEGAN student architecture and 100 training elements.

The results in Fig. 5 show that a statistically significant explanation perfor-
mance benefit remains for ratios of adversarial explanations for up to 20%. For
increasingly large ratios, the STS value still remains positive although the sta-
tistical significance is lost. For ratios of 80% and above, statistically significant
negative STS values can be observed. This implies that incorrect explanations
negatively influence the performance of the explanation-aware student model.
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Student Network Layer Structure. In this experiment, we investigate the
influence of the concrete student network layout on the explanation performance
benefit. For this purpose, we conduct several student-teacher analyses with R =
25 repetitions using the MEGAN student architecture. We vary the number of
convolutional and fully-connected layers, as well as the number of hidden units in
these layers. Starting with a simple two-layer 3-unit network layout, the number
of model parameters, and thus its complexity is gradually increased until the
most complex case of a three-layer 20-unit network is reached. Figure 6 shows
the results of this experiment. We visualize the performance distributions of
explanation and reference students for each dataset size and provide the STS
metric in each case.

The results show that the students’ prediction performance generally
improves for more complex models. However, this is true for the explanation
as well as the reference student. While there still is a statistically significant
effect for the most complex network layout, it is very marginal because the ref-
erence student achieves almost perfect accuracy in these cases as well. On the
other hand, the most simple student network layout shows the largest perfor-
mance benefit. However, for the simple network layouts, the standard variation
of the performance over the various repetitions is greatly increased for reference
and explanation students, but seemingly more so for the explanation student. We
generally conclude that both extreme cases of simplistic and complex student
network architectures have disadvantages w.r.t. to revealing a possible expla-
nation performance benefit. In the end, the best choice is a trade-off between
variance in performance and overall capability.

Node Versus Edge Explanations. We conduct an experiment to determine
the relative impact of the node and edge explanations individually. We conduct
a student-teacher analysis with R = 25 repetitions. We use a simple three-
layer MEGAN student, where each iteration uses 100 randomly chosen training
samples. We investigate three cases: As a baseline case, the explanation student
uses ground truth node and edge explanations during explanation-supervised
training. In another case, the explanation student is only supplied with the
node attributional explanations. In the last case, only the edge attributional
explanations are used. This is achieved by setting the corresponding weighting
factors to 0 during training. Table 2 shows the results of this experiment. We
report the final STS value, as well as the node and edge AUC metrics, which
indicate how well the explanations of the corresponding models match the ground
truth explanations of the test set.

The results show that all three cases achieve statistically significant STS val-
ues indicating a performance benefit of the given explanations. Furthermore, in
all three cases, the explanations learned by the explanation student show high
similarity (AUC > 0.9) to the ground truth explanations for node as well as edge
attributions. This implies that the student model is able to infer the correspond-
ing explanation edges for the ground truth explanatory motifs, even if it is only
trained on the nodes, and vice versa. We believe the extent of this property is
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Table 2. Results for 25 repetitions of the student-teacher Analysis conducted with
either only node explanations, only edge explanations, or both.

Explanations STS25 ↑ Node AUC ↑ Edge AUC ↑
Ref Exp Ref Exp

Both 0.12(∗) 0.62±0.14 0.95±0.03 0.62±0.16 0.94±0.03

Nodes 0.12(∗) 0.65±0.13 0.93±0.03 0.65±0.12 0.92±0.04

Edges 0.10(∗) 0.67±0.15 0.93±0.03 0.67±0.12 0.94±0.03

(*) Statistically significant according to a paired T-test with p < 5%

a consequence of the used MEGAN student architecture. The MEGAN network
architecture implements an explicit architectural co-dependency of node and
edge explanations to promote the creation of connected explanatory sub-graphs.
These results imply that it may be possible to also apply the student-teacher
analysis in situations where only node or edge explanations are available.

4.2 Real-World Datasets

In addition to the experiments on the synthetic dataset, we aim to provide a
validation of the student-teacher analysis’ effectiveness on real-world datasets
as well. For this purpose, we choose one graph classification and one graph
regression dataset from the application domain of chemistry. We show how the
student-teacher analysis can be used to quantify usefulness of the various kinds
of explanations for these datasets.

Mutagenicity - Graph Classification. To demonstrate the student-teacher
analysis of GNN-generated explanations on a real-world graph classification task,
we choose the Mutagenicity dataset [9] as the starting point. By its nature of
being real-world data, this dataset does not have ground truth explanations
as it is, making it hard to compare GNN-generated explanations to the ground
truth. However, the dataset can be transformed into a dataset with ground truth
explanatory subgraph motifs. It is hypothesized that the nitro group (NO2) is
one of the main reasons for the property of mutagenicity [15,17]. Following the
procedure previously proposed by Tan et al. [25], we extract a subset of elements
containing all molecules which are labeled as mutagenic and contain the benzene-
NO2 group as well as all the elements that are labeled as non-mutagenic and do
not contain that group. Consequently, for the resulting mutagenicity subset, the
benzene-NO2 group can be considered as the definitive ground truth explanation
for the mutagenic class label. We call the resulting dataset MutagenicityExp.
It consists of roughly 3500 molecular graphs, where about 700 are labeled as
mutagenic. Furthermore, we designate 500 random elements as the test set, which
are sampled to achieve a balanced label distribution.
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Based on this dataset, we train GNN models to solve the classification prob-
lem. Additionally, we use multiple different XAI methods to generate attribu-
tional explanations for the predictions of those GNNs on the previously men-
tioned test set of 500 elements. These explanations, generated by the various
XAI methods, are then subjected to student-teacher analysis, along with some
baseline explanations. The results of an analysis with 25 repetitions can be found
in Table 3. The hyperparameters of the student-teacher analysis have been cho-
sen through a brief manual search. We use the same basic three-layer MEGAN
student architecture as with the synthetic experiments. In each repetition, 10
random elements are used to train the students, and the remainder is used to
assess the final test performance. Each training process employs a batch size of
10, 150 epochs, and a 0.01 learning rate. The student-teacher analysis is per-
formed solely on the previously mentioned 500-element test set, which remained
unseen to any of the trained GNN models.

Table 3. Results for 25 repetitions of the student-teacher analysis for different expla-
nations on the MutagenicityExp dataset. We mark the best result in bold and underline
the second best.

Explanations by STS25 ↑ Node AUC ↑ Edge AUC ↑
Ref Exp Ref Exp

Ground Truth 0.13(∗) 0.42±0.05 0.97±0.05 0.41±0.05 0.96±0.04

GNNExplainer 0.09(∗) 0.50±0.09 0.69±0.05 0.50±0.11 0.71±0.04

Gradient 0.07(∗) 0.54±0.18 0.84±0.06 0.46±0.17 0.67±0.10

MEGAN2
1.0 0.12(∗) 0.55±0.15 0.91±0.01 0.55±0.14 0.92±0.02

Random 0.01 0.50±0.04 0.50±0.03 0.50±0.04 0.50±0.04

(*) Statistically significant according to a paired T-test with p < 5%

As expected, the results show that the reference random explanations do not
produce a statistically significant STS result. These explanations are included as
a baseline sanity check because previous experiments on the synthetic dataset
imply that purely random explanation noise should not have any statistically sig-
nificant effect on the performance in either direction. The benzene-NO2 ground
truth explanations on the other hand show the largest statistically significant
STS value of a median 13% accuracy improvement, as well as the largest expla-
nation accuracy of the explanation student models. GNNexplainer and Gradient
explanations also show statistically significant STS values of 9% and 7% median
accuracy improvement respectively. The MEGAN-generated explanations show
the overall second-best results with an STS value just slightly below the ground
truth.
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We hypothesize that high values of explanation accuracy are a necessary but
not sufficient condition for high STS results. A higher learned explanation accu-
racy indicates that the explanations are generally based on a more consistent
set of underlying rules and can consequently be replicated more easily by the
student network, which is the basic prerequisite to show any kind of effect dur-
ing the student evaluation phase. This is a necessary but not sufficient condition
because as shown in the previous adversarial explanation experiment, explana-
tions can be highly deterministic yet conceptionally incorrect and thus harmful
to model performance.

AqSolDB - Graph Regression. The AqSolDB [24] dataset consists of roughly
10000 molecular graphs annotated with experimentally determined logS values
for their corresponding solubility in water. Of these, we designate 1000 random
elements as the test set.

For the concept of water solubility, there exist no definitive attributional
explanations. However, there exists some approximate intuition as to what
molecular structures should result in higher/lower solubility values: In a sim-
plified manner, one can say that non-polar substructures such as carbon rings
and long carbon chains generally result in lower solubility values, while polar
structures such as certain nitrogen and oxygen groups are associated with higher
solubility values.

Based on this dataset, we train a large MEGAN model on the training split of
the elements to regress the water solubility and then generate the dual-channel
attributional explanations for the previously mentioned 1000-element test split.
For this experiment, we only use a MEGAN model as it is the only XAI method
able to create dual-channel explanations for single value graph regression tasks
[26]. These dual-channel explanations take the previously mentioned polarity
of evidence into account, where some substructures have an opposing influence
on the solubility value. The first explanation channel contains all negatively
influencing sub-graph motifs, while the second channel contains the positively
influencing motifs. In addition to the MEGAN-generated explanations, we pro-
vide two baseline explanation types. Random explanations consist of randomly
generated binary node and edge masks with the same shape. Trivial explanations
represent the most simple implementation of the previously introduced human
intuition about water solubility: The first channel contains all carbon atoms as
explanations and the second channel contains all oxygen and nitrogen atoms as
explanations.

The hyperparameters of the student-teacher analysis have been chosen
through a brief manual search. We use the same basic three-layer MEGAN stu-
dent architecture as with the synthetic experiments. In each repetition, 300 ran-
dom elements are used to train the students, and the remainder is used to assess
the final test performance. Each training process employs a batch size of 32,
150 epochs, and a 0.01 learning rate. The student-teacher analysis is performed
solely on the previously mentioned 1000-element test set, which remained unseen
to the predictive model during training (Table 4).
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Table 4. Results for 25 repetitions of the student-teacher analysis for different expla-
nations on the AqSolDB dataset. We highlight the best result in bold and underline
the second best.

Model STS25 ↑ Node AUC ↑ Edge AUC ↑
Ref Exp Ref Exp

Random 0.00 0.50±0.04 0.50±0.03 0.50±0.04 0.50±0.04

Trivial 0.03 0.40±0.05 0.99±0.05 0.42±0.05 0.99±0.04

MEGAN2
1.0 0.23(∗) 0.55±0.15 0.90±0.01 0.55±0.14 0.89±0.02

(*) Statistically significant according to a paired T-test with p < 5%

The results show that neither the random nor the trivial explanations result
in any significant performance improvement. The MEGAN-generated explana-
tions on the other hand result in a significant improvement of a median 0.23
for the final prediction MSE. This implies that the MEGAN-generated explana-
tions do in fact encode additional task-related information, which goes beyond
the most trivial intuition about the task. However, a possible pitfall w.r.t. to
this conclusion needs to be pointed out: The MEGAN-generated explanations
are evaluated by a MEGAN-based student architecture. It could be that the
effect is so strong because these explanations are especially well suited to that
kind of architecture, as they were generated through the same architecture.
We believe that previous experiments involving architecture-independent ground
truth explanations have weakened this argument to an extent. Still, it will be
prudent to compare these results with explanations of a different origin in the
future, such as the explanations of human experts.

5 Limitations

We propose the student-teacher analysis as a means to measure the content
of useful task-related information contained within a set of attributional graph
explanations. This methodology is inspired by human simulatability studies but
with the decisive advantages of being vastly more time- and cost-efficient as well
as being more reproducible. However, there are currently also some limitations
to the applicability of this approach. Firstly, the approach is currently limited
to attributional explanations, which assign a 0 to 1 importance value to each
element. These kinds of explanations have been found to have issues [1,12] and
recently many different kinds of explanations have been proposed. Some exam-
ples are counterfactuals [20], concept-based explanations [19], and prototype-based
explanations [23].

Another limitation is that the student-teacher analysis process itself depends
on a lot of parameters. As we show in previous sections, the size of the training
dataset and the specific student architectures have an impact on how pronounced
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the effect can be observed. For these reasons, the proposed STS metric cannot be
used as an absolute measure of quality such as accuracy for example. Rather, it
can be used to relatively compare different sets of explanations under the condi-
tion that all experiments are conducted with the same parameters. We propose
certain rules of thumb for the selection of these parameters, however, it may still
be necessary to conduct a cursory parameter search for each specific applica-
tion. Despite these limitations, we believe that artificial simulatability studies,
as proposed in this work, are still an important step toward better practices
for the evaluation of explainable AI methods. The currently most widespread
metric of explanation quality is the concept of explanation faithfulness, which
only measures how decisive an explanation is for a model’s prediction. We argue,
that the concept of artificial simulatability is a first step towards a measure of
how intrinsically useful explanation can be for the communication of additional
task-related information.

6 Conclusion

In this work, we extend the concept of artificial simulatability studies to the
application domain of graph classification and regression tasks. We propose the
student-teacher analysis and the student-teacher simulatability (STS) metric to
quantify the content of intrinsically useful task-related information for a given
set of node and edge attributional explanations. We conduct an ablation study
on a synthetic dataset to investigate the conditions under which an explana-
tion benefit can be observed most clearly and propose several rules of thumb
for an initial choice of experimental parameters: Analysis requires a sufficient
number of repetitions for statistical significance, a small number of training ele-
ments and a light-weight layer structure for the student model. Furthermore,
we show evidence that the analysis method is robust towards small amounts
of explanation noise and adversarial explanations. Interestingly, random expla-
nation noise merely suppresses any explanation benefit while deterministically
incorrect explanations cause significant performance degradation. This indicates
that the method cannot only be used to identify good explanations but also to
detect actively harmful ones. Furthermore, we can validate the applicability of
our proposed analysis for several real-world datasets of molecular classification
and regression.

We believe that artificial simulatability studies can provide a valuable addi-
tional tool for the evaluation of graph explanations. The student-teacher analysis
measures the usefulness of explanations in communicating task-related knowl-
edge, which can be seen as a complementary dimension to the current widespread
practice of measuring explanation faithfulness.

For future work, it will be interesting to extend this process to other kinds
of graph explanations that have recently emerged such as concept-based expla-
nations or prototype-based explanations. Since this is a method of measuring
the content of task-related information within explanations, another application
may be in educational science. The method could be used to assess explana-
tion annotations created by human students to provide quantitative feedback
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on their understanding of a given graph-related problem. Another line of future
work is demonstrated by Fernandes et al. [7] which uses the differentiable nature
of Pruthi et al.’s [21] original artificial simulatability procedure itself in a meta-
optimization process that attempts to optimize an explanation generator for this
property of explanation usefulness.

7 Reproducibility Statement

We make our experimental code publically available at https://github.com/
aimat-lab/gnn student teacher. The code is implemented in the Python 3.9 pro-
gramming language. Our neural networks are built with the KGCNN library by
Reiser et al. [22], which provides a framework for graph neural network imple-
mentations with TensorFlow and Keras. We make all data used in our experi-
ments publically available on a file share provider https://bwsyncandshare.kit.
edu/s/E3MynrfQsLAHzJC. The datasets can be loaded, processed, and visu-
alized with the visual graph datasets package https://github.com/aimat-lab/
visual graph datasets. All experiments were performed on a system with the fol-
lowing specifications: Ubuntu 22.04 operating system, Ryzen 9 5900 processor,
RTX 2060 graphics card and 80GB of memory. We have aimed to package the
various experiments as independent modules and our code repository contains a
brief explanation of how these can be executed.
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