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Abstract: Metamaterials are a fascinating class of photonic materials since they allow us to
control optical responses (largely) at will. Besides being an intellectual challenge, adding time
variations into spatial metamaterials increases the degrees of freedom to tune their effective
response, which motivates their exploration. However, to exploit such materials in the future
design of functional devices, we may wish to treat them at the effective level to avoid considering all
the mesoscopic details. To permit such effective treatment, we describe here an eigenmode-based
approach to homogenize spatiotemporal metamaterials composed of a periodic arrangement of
scatterers made from a time-varying material. Practically, we consider the periodic arrangement
of spheres within one layer. In our two-step homogenization scheme, we first temporally
homogenize that metasurface using the eigenmodes of the bulk time-varying material. Following
this, we perform spatial homogenization by inverting the Fresnel coefficients of a slab made from
a stationary material. These steps effectively describe the optical response of the spatiotemporal
metasurface as a homogeneous slab. We validate our results by comparing the optical observables,
i.e., reflectivity and transmissivity, of the metasurface with those of the homogenized slab, and
we assess the limitations of the homogenization.
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1. Introduction

Metamaterials are artificial photonic materials made from a periodic arrangement of basic
constituent units called meta-atoms [1, 2]. These artificial materials have been extensively
explored due to their degrees of freedom in tailoring light-matter interactions [3]. Metamaterials
can be employed to achieve extreme effective material parameters, such as negative and near-zero
permittivity and permeability [4–6]. These extraordinary effective properties are made possible by
spatial inhomogeneities in three dimensions (3D) that constitute the metamaterials. Specifically,
the local resonances of the meta-atoms drive such extreme behavior [7]. Moreover, metamaterials
exhibit many exotic optical phenomena inaccessible to natural materials, including invisibility
cloaking [8], superlensing [9, 10], perfect absorption [11, 12], artificial magnetism [13], negative
refraction [14], and giant optical activity [15], among others.
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Recently, time-varying metamaterials have garnered significant attention within the scientific
community [16, 17]. The introduction of temporal inhomogeneity in metamaterials has opened
up new avenues for controlling their effective properties in four dimensions (4D) [18–20]. These
temporally modulated materials exhibit an immense potential to advance the applications of
metamaterials. Notable findings in the realm of time-varying metamaterials include temporal
reflection and refraction [21, 22], frequency conversion [23], momentum bandgap [24–26],
non-reciprocal light propagation [27], power combining of waves [28], antireflection temporal
coatings [29], temporal aiming [30], optical isolators [31], synthetic axion response [32],
parametric amplification [33,34], and more [35,36]. Recent experimental advances in modulating
material parameters as a function of time have further fueled research on temporal metamaterials.
Epsilon-near-zero (ENZ) materials, in particular, have emerged as promising candidates to
achieve such time-varying material parameters [37–39]. These ENZ materials hold the potential
to facilitate ultrafast modulation of material properties in time with reasonably high strength [40].

In this contribution, our focus lies on the homogenization of spatiotemporal metamaterials
(MMs) [41–44]. As the term implies, homogenization is a process aimed at approximating the
optical response of inhomogeneous materials with homogeneous media [45]. These homogenized
media are characterized optically by effective material parameters [4, 46]. Homogenization
requires the spatial inhomogeneity that forms the MM to be smaller, or ideally much smaller than
the operational wavelength, and we extend a similar requirement to the temporal domain.

So far, many works have addressed the homogenization of time-varying MMs. For instance,
in [47], an effective description of a temporal multi-stepped system with a single temporal
interface was demonstrated. The homogenization of temporal multi-stepped systems in acoustics is
discussed in [48]. Nonlocal homogenization theories for temporal MMs were proposed in [49,50].
The homogenization of spatiotemporal MMs, considering traveling-wave modulation of material
parameters, was explored in [42] and [43]. Additionally, [41] discusses the homogenization of bulk
systems multi-stepped in both space and time. Furthermore, [44] considers the homogenization of
spatiotemporally modulated wire media. Inspired by these works, we develop a homogenization
theory for spatiotemporal metasurfaces (MSs) [20, 51]. Our interest in MSs is motivated by their
ability to relax the requirement of temporal modulation in extended space [52]. Compared to
many other prior contributions, we stress that the geometry considered here is a thin layer of a
3D spatially structured material that changes its properties in time.

The homogenization theory presented in this article relies on the eigenmodes of bulk time-
varying media. We employ the method introduced in [53] to calculate, first, the eigenmodes of
bulk time-varying media with permittivity 𝜀(𝑡). Subsequently, we analyze these eigenmodes
to identify the spectral region where temporal homogenization can be applied. Additionally,
we demonstrate how the effective permittivity of the corresponding homogenized media can be
determined using these eigenmodes. Once the effective permittivity of the bulk time-varying
medium is retrieved, we validate our homogenization scheme by comparing the optical observables
(reflectivity, transmissivity, and absorptivity) of time-varying bulk media that forms a temporal
slab with those of the corresponding homogenized media. To calculate the optical observables
of the bulk time-varying media that forms a temporal slab, we utilize the transfer matrix-based
method proposed in [54].

Afterward, we extend the versatility of the proposed homogenization method by applying
it to a spatiotemporal MS. We consider an MS composed of spheres made from a material
characterized by a time-varying permittivity 𝜀(𝑡). To homogenize such a system in space and
time, we propose a two-step homogenization scheme. In the first step, we temporally homogenize
the MS using the eigenmodes of the bulk system with permittivity 𝜀(𝑡). This initial step simplifies
the considered system to a time-invariant MS of spheres. In the second step, we proceed to
spatially homogenize the time-invariant MS by describing it as a spatially homogeneous slab.
For this spatial homogenization, we employ the well-known method of inverting the Fresnel



coefficients of a slab [6,55]. This inversion yields, finally, the effective material parameters of the
slab. To assess the ability of our two-step homogenization, we compare the optical observables
(reflectivity and transmissivity) of the spatiotemporal MS with those of the homogenized slab. To
calculate the optical observables of the spatiotemporal MS, we utilize the T-matrix-based method
introduced in [20]. It’s worth noting that the theory developed in our article can be applied to
systems with any arbitrary shape of the time-periodic permittivity profile 𝜀(𝑡).

2. Theory

2.1. Eigenmodes of bulk time-varying media

We examine the dynamics of an electromagnetic wave in a bulk, linear, isotropic, dispersionless,
non-magnetic, and source-free time-varying medium. We assume the permittivity 𝜀 of the
medium to be a periodic function of time with a time-period 𝑇m (corresponding to a modulation
frequency 𝜔m = 2𝜋/𝑇m). This periodicity is expressed as 𝜀(𝑡 + 𝑇m) = 𝜀(𝑡). Additionally, we
represent 𝜀(𝑡) = 1 + 𝜒(𝑡), where 𝜒(𝑡) is the time-periodic electrical susceptibility of the medium,
satisfying 𝜒(𝑡 + 𝑇m) = 𝜒(𝑡). In the frequency domain, the wave equation governing the electric
field Ẽ(r, 𝜔) within the medium can be expressed as [53, Eq. 4]

∇ × ∇ × Ẽ(r, 𝜔) = 𝑘2
0 (𝜔)

Ẽ(r, 𝜔) +
∞∫

−∞

𝜒̃(𝜔 − 𝜔′)Ẽ(r, 𝜔′)d𝜔′
 , (1)

where 𝑘0 (𝜔) = 𝜔/𝑐0 with 𝑐0 being the speed of light in vacuum, and 𝜒̃(𝜔) is the Fourier transform
of the time-varying electric susceptibility 𝜒(𝑡) [56]. Note that the convolution integral on the
right-hand side of Eq. (1) implies coupling of Maxwell’s equations in frequency. This coupling
signifies that within media having time-dependent electrical susceptibility, a monochromatic
electric field excitation with frequency 𝜔 results in a polychromatic polarization density [20].

Next, to find the eigenmodes of the time-varying medium, we use the following ansatz to solve
Eq. (1) [53, Eq. 5]

Ẽ(r, 𝜔) =
∑︁
𝑖

𝐴𝜅𝑖𝑆𝜅𝑖 (𝜔)F(𝜅𝑖r) , (2)

where 𝐴𝜅𝑖 are complex amplitudes, and 𝑆𝜅𝑖 (𝜔) and F(𝜅𝑖r) are the spectral and spatial parts of
the eigenmodes, respectively. Substituting the ansatz of Eq. (2) in Eq. (1), we find that F(𝜅𝑖r)
is a solution of the vector Helmholtz equation with eigenwavenumber 𝜅𝑖 [57]. Further, 𝑆𝜅𝑖 (𝜔)
can be numerically calculated using the eigenvalue equation (see the Supplementary Material;
Sec 1) [53, Eqs. 8–11]

K̂(𝜔) · S𝜅𝑖 (𝜔) = 𝜅2
𝑖 (𝜔)S𝜅𝑖 (𝜔) ,with (3a)

K̂(𝜔) = k̂2
0 · (Î + ˆ̃χ) , (3b)

S𝜅𝑖 (𝜔) = [𝑆𝜅𝑖 (𝜔−𝑁 ), 𝑆𝜅𝑖 (𝜔−𝑁+1), ...., 𝑆𝜅𝑖 (𝜔𝑁 )]T , and (3c)
k̂0 = diag[𝑘0 (𝜔−𝑁 ), 𝑘0 (𝜔−𝑁+1), ...., 𝑘0 (𝜔𝑁 )] . (3d)

Here, 𝜅2
𝑖

represent the eigenvalues, and S𝜅𝑖 (𝜔) denote the corresponding eigenvectors of the
eigenvalue equation (Eq. (3a)). Additionally, Î is the identity matrix, and ˆ̃χ is the electrical
susceptibility matrix with elements 𝜒̃ 𝑗𝑙 = 𝜒̃(𝜔 𝑗 − 𝜔𝑙), where 𝜔 𝑗 = 𝜔 + 𝑗𝜔m and 𝑗 ∈ [−𝑁, 𝑁].
Here, 𝑁 is a suitably chosen integer, and it is essential to set 𝑁 sufficiently large for numerical
convergence. Solving Eq. (3a) yields 2𝑁 + 1 eigenvalues and their corresponding eigenvectors.
These are enumerated with the index 𝑖 ∈ [−𝑁, 𝑁]. Furthermore, the eigenvectors are arranged in
ascending order based on the eigenvalues 𝜅2

𝑖
.



Finally, in the time domain, the 𝑖th eigenmode of the time-varying media at eigenfrequency 𝜔

with eigenwavenumber 𝜅𝑖 can be written as

E𝑖 (r, 𝑡) =
𝑁∑︁

𝑗=−𝑁
𝑆𝜅𝑖 (𝜔 𝑗 )F(𝜅𝑖r)𝑒−i(𝜔+ 𝑗𝜔m )𝑡 . (4)

2.2. Homogenizability conditions of bulk time-varying media

In this subsection, we explore the homogenizability conditions of bulk time-varying systems.
Fulfilling these conditions is essential for the validity of the temporal effective medium description.

2.2.1. Monochromaticity of eigenmodes

As evident from Eq. (4), the eigenmodes of bulk time-varying media are generally polychro-
matic [58]. However, a system lacking a time-varying electrical permittivity only supports
monochromatic eigenmodes. Our objective here is to homogenize time-varying media. The
homogenization procedure involves approximating time-varying media (with time-periodic
permittivity 𝜀(𝑡)) by effective time-invariant media (with time-invariant permittivity 𝜀eff). This
approximation must ensure that the dynamics of electromagnetic fields in both media are indistin-
guishable, at least up to a notable degree. Therefore, for time-varying media to be homogenizable,
it is crucial that its eigenmodes are quasi-monochromatic.

Here, we examine the monochromaticity of the eigenmodes of the time-varying media numer-
ically. To check whether the time-varying media supports quasi-monochromatic eigenmodes
at eigenfrequency 𝜔, we first calculate its eigenvectors S𝜅𝑖 (𝜔) with 𝑖 ∈ [−𝑁, 𝑁] (see Eq. (3a)).
Next, we search for that eigenvector which has the maximal value of the quantity |𝑆𝜅𝑖 (𝜔0) |2 (see
Eq. (3c)). Note that numerically 𝜔0 = 𝜔, since 𝜔 𝑗 = 𝜔 + 𝑗𝜔m. Let us denote that eigenvector as
S𝑘 with eigenvalue 𝑘2 = 𝜅2

𝑝 for some 𝑝(𝜔) ∈ [−𝑁, 𝑁]. Since S𝜅𝑖 are normalized eigenvectors,
the closeness of the numerical value of |𝑆𝑘 (𝜔0) |2 to 1 would imply quasi-monochromaticity of
the eigenvector S𝑘 . Therefore, we define the monochromaticity 𝑀% of the eigenvector S𝑘 at
frequency 𝜔 as

𝑀%(𝜔) = 100 × |𝑆𝑘 (𝜔0) |2 . (5)

Additionally, we must ensure that all other eigenvectors, apart from S𝑘 , have a vanishing
value of |𝑆𝜅𝑖 (𝜔0) |2. This condition is crucial for establishing a one-to-one correspondence
between frequency and wavenumber, similar to an isotropic time-invariant medium (refer to
Eq. (2)). This requirement can be met by ensuring that the numerical value of the quantity

𝑄(𝜔) =
(

𝑁∑
𝑖=−𝑁

|𝑆𝜅𝑖 (𝜔0) |2
)
− |𝑆𝑘 (𝜔0) |2 is close to zero.

Once monochromaticity and the one-to-one correspondence of frequency and wavenumber
are ensured, the time-varying media can be approximated as effective time-invariant media with
wavenumber 𝑘 for frequency 𝜔 (refer to Eq. (2)). Consequently, the effective permittivity 𝜀eff of
the corresponding homogenized media can be expressed as

𝜀eff (𝜔) =
𝑘2

𝑘2
0 (𝜔)

. (6)

2.2.2. Constraints on frequency

As mentioned earlier, temporal homogenization involves approximating time-periodic media
with effective time-invariant media. Naturally for such homogenization to be possible, we require
the modulation frequency 𝜔m to be greater than the excitation frequency 𝜔 of the fields, i.e.,
𝜔m > 𝜔. This is because, for a system to be homogenizable, it is necessary that the excitation



Fig. 1. a) Illustration of a bulk time-periodic medium with permittivity 𝜀(𝑡), b) variation
of the permittivity 𝜀 of the medium shown in a) as a function of time 𝑡 when a temporal
slab is considered. c) Permittivity of the homogenized medium corresponding to the
time-periodic medium in a)–b). Here, at 𝑡 = 𝑡a and 𝑡b in b) and c) temporal interfaces
exist so that a slab is formed. Further, the black-dotted lines b) enclose one period of
the rectangular wave.

frequency is unable to detect the temporal variations of the media [49]. This is implied if these
variations are fast enough compared to the frequency of the involved electromagnetic field.

In particular, we know that in the time domain, the general solution of Eq. (1) for the electric
field E(r, 𝑡) is written as [24, 49]

E(r, 𝑡) =
𝑁∑︁

𝑗=−𝑁
Ẽ(r, 𝜔 𝑗 )𝑒−i(𝜔+ 𝑗𝜔m )𝑡 . (7)

Further, let us denote the field inside the homogenized media as Eh (r, 𝑡). Due to monochromaticity
(see Subsection 2.2.1), we need Eh (r, 𝑡) = Ẽ(r, 𝜔)𝑒−i𝜔𝑡 . Moreover, as the effective media cannot
detect fast temporal variations of the system, we expect Eh (r, 𝑡) to be the slowest component
of E(r, 𝑡) (see Eq. (7)). Therefore, homogenizability requires Ẽ(r, 𝜔)𝑒−i𝜔𝑡 to be the slowest
component of E(r, 𝑡). This is possible only if |𝜔 | < 0.5𝜔m. In other words, the excitation
frequency 𝜔 must lie in the first temporal Brillouin zone of the temporal lattice characterized by
the modulation frequency 𝜔m. This condition is the temporal analog of the condition for spatial
homogenization mentioned in [59, 60].

3. Results

In this section, we present the applications of the temporal homogenization method described
above. Initially, we show the temporal homogenization of bulk time-varying media. Then, we
apply the method to spatiotemporal MSs made from time-varying dielectric spheres.

3.1. Homogenization of bulk time-varying media

Here, we explore the homogenization of bulk time-varying media. As shown in Fig. 1(a), we
consider a spatially bulk medium with time-varying permittivity 𝜀(𝑡). In the eigenmode analysis,
an infinitely temporally modulated medium is considered. However, to probe the actual optical
response from such a bulk time-varying medium, we study a temporal slab. We show the chosen
𝜀(𝑡) profile of that temporal slab in Fig. 1(b). We assume that the permittivity stays at a certain
constant value 𝜀min = 8.7 until time 𝑡a. Then, it changes as a function of time in the form of a
rectangular wave with 𝜀max = 15.3, duty cycle 𝑑 = 0.7, and frequency 𝜔m = 6×1014 rads−1 until
time 𝑡b. Then, it returns to the constant value 𝜀min. Here, between time 𝑡a and 𝑡b, we assume nine
complete cycles and one incomplete cycle of the rectangular wave. Further, 𝑁 is taken as 5 (see
Eq. (3c)). Note that as verified numerically, 𝑁 = 5 leads to sufficient convergence of the solutions
of Eq. (3). The corresponding homogenized setting is shown in Fig. 1(c). Here, the system



Fig. 2. a) Monochromaticity of the eigenmodes of the bulk time-periodic medium
(golden curve) and effective permittivity of the corresponding homogenized medium
(blue curve) as a function of the eigenfrequency 𝜔 and eigenwavenumber 𝑘 . b), c), d)
Comparison of reflectivity 𝑅, transmissivity 𝑇 , and absorptivity 𝐴, respectively, for the
time-periodic and effective media as a function of the incident frequency 𝜔inc for a
temporal slab. Here, the green-shaded region represents the spectral region where the
effective medium description remains valid. Further, 𝑘m = 𝜔m/𝑐0 and 𝜔inc =

𝑐0𝑘√
𝜀min

.

effectively behaves as a time-invariant medium with the effective permittivity 𝜀eff between time
𝑡a and 𝑡b. Note that in Fig. 1(c), the homogenized system still maintains the temporal interfaces
at time 𝑡a and 𝑡b.

As a first step, we identify the spectral region where the system in Fig. 1(b) can be homogenized.
For this purpose, we solve the eigenvalue equation for the eigenvectors S𝜅𝑖 of an infinitely time-
periodic system (see Eq. (3)). The temporal unit cell of the infinitely periodic system is taken as
one period of the rectangular wave shown in Fig. 1(b) (the black-dotted lines represent the unit
cell). Next, using Eq. (5), we calculate the monochromaticity 𝑀% of the eigenmodes as shown
by the golden curve in Fig. 2(a). From Fig. 2(a), we observe that we can treat the time-periodic
medium as quasi-monochromatic in the green-shaded spectral region. This is because, in such a
spectral region, 𝑀% is sufficiently high. Numerically, 𝑀% ≥ 92% in the green-shaded spectral
region. Further, the quantity 𝑄 for the eigenmodes also has a vanishing value in the green-shaded
spectral region (see the Supplementary Material; Fig. S1(a)). Therefore, we use Eq. (6) to
calculate the effective permittivity 𝜀eff of the homogenized system (see Fig. 1(c)). We show the
corresponding 𝜀eff by the blue curve in Fig. 2(a). Note that the effective medium description is
only valid in the green-shaded spectral region in Fig. 2(a).

Having calculated the effective permittivity 𝜀eff of the homogenized system in Fig. 1(c), we
proceed to compare the optical observables from a temporal slab made from the time-periodic
system in Fig. 1(b). These optical observables are reflectivity 𝑅, transmissivity𝑇 , and absorptivity
𝐴. In Figs. 1(b)–(c), we observe the existence of temporal interfaces. At each of these temporal



Fig. 3. Band structure of the infinitely time-periodic medium (black curve), and
variation of absorptivity 𝐴 of the time-periodic system shown in Fig. 1(b) as a function
of the incident frequency 𝜔inc (green curve). Here, 𝜔inc =

𝑐0𝜅𝑖√
𝜀min

.

interfaces, a monochromatic incident plane wave (PW) undergoes time reflection and time
transmission [16]. Therefore, reflectivity 𝑅 (transmissivity 𝑇) can be computed by analyzing the
ratio of the power of the backward (forward) propagating PW after time 𝑡 = 𝑡b to the power of the
incident PW before time 𝑡 = 𝑡a [54]. Moreover, absorptivity 𝐴 is computed as 𝐴 = 1− 𝑅 −𝑇 [20].
To test our proposed method, we assume the incident PW to be Einc (r, 𝑡) = ei(kinc ·r−𝜔inc𝑡 ) ûk
in both media (see Figs. 1(b)–(c)). Here, ûk is a unit vector transverse to the wavevector kinc.
Further, the incident frequency 𝜔inc =

𝑐0𝑘inc√
𝜀min

, where 𝑘 inc is the magnitude of the wavevector
kinc. Note that, due to the spatial homogeneity of the considered media, kinc is conserved at all
times 𝑡 [61]. The conservation of kinc also holds for the temporal interfaces at 𝑡 = 𝑡a and 𝑡b (see
Figs. 1(b)–(c)). Therefore, to excite the quasi-monochromatic modes, we must choose 𝑘 inc = 𝑘

such that 𝑘 lies in the green-shaded spectral region (see Fig. 2(a)).
Next, we compare 𝑅, 𝑇 , and 𝐴 of both media as a function of the incident frequency 𝜔inc

in Figs. 2(b)–(d). We compute these quantities using the transfer matrix approach explained
in [54]. From Figs. 2(b)–(d), we observe a good agreement of the observables 𝑅,𝑇, and 𝐴

in the green-shaded spectral region. This is expected since, in such a spectral region, on the
one hand, the excited eigenmodes are monochromatic (see Fig. 2(a)). On the other hand, the
eigenfrequency 𝜔 lies in the first temporal BZ, i.e., 𝜔 < 0.5𝜔m (see Subsection 2.2.2). Further, a
close examination of Figs. 2(b)–(c) reveals that both the time-periodic and effective media satisfy
the so-called pseudo energy conservation relation 𝑇 − 𝑅 = 1. This is expected because in both
the media, the permittivity 𝜀 returns to the same value 𝜀min after time 𝑡b as it was before the
time modulation began at time 𝑡a (see Figs. 1(b)–(c)). Therefore, 𝑇 − 𝑅 = 1 holds as a direct
consequence of [16, Eqs. (14)–(15)].

Furthermore, from Figs. 2(b)–(d), we observe that as the ratio𝜔inc/𝜔m increases, the agreement
of 𝑅,𝑇 , and 𝐴 of the time-periodic and effective media progressively worsens. The disagreement
is substantial mainly outside the green-shaded spectral region. Moreover, the values of the
observables 𝑅, 𝑇 , and 𝐴 progressively grow for the time-periodic medium as 𝜔inc/𝜔m increases.
To explain these observations, we return to the infinitely time-periodic medium whose unit cell
is shown by the black-dotted lines in Fig. 1(b). We plot the band structure of the infinitely
time-periodic medium in Fig. 3 (with the black curve). The band structure is generated by plotting



Fig. 4. a) Illustration of a spatiotemporal metasurface made from spheres. Here, each
sphere has the permittivity 𝜀(𝑡) varying as a function of time with frequency 𝜔m (see
inset). b) Time-invariant metasurface that corresponds to the temporally homogenized
system for the metasurface shown in a). Here, each sphere has the permittivity 𝜀eff
(see inset). c) Spatially uniform time-invariant slab that corresponds to the spatially
homogenized medium for the system shown in b). Here, the slab is characterized by
the effective permittivity ˜̃𝜀eff and permeability ˜̃𝜇eff .

the relationship between the eigenfrequency 𝜔 and eigenwavenumber 𝜅𝑖 (see Eq. (3a)). Note that,
in Fig. 3, we only show the bands corresponding to the lowest and second-lowest values of 𝜅𝑖 , i.e.,
for 𝑖 = −𝑁,−𝑁 + 1, respectively. In addition, we also plot the absorptivity 𝐴 of the time-periodic
system shown in Figs. 1(a)–(b) as a function of the incident frequency 𝜔inc in Fig. 3 (with the
green curve). Here, 𝜔inc and 𝜅𝑖 are related as 𝜔inc =

𝑐0𝜅𝑖√
𝜀min

. This relation holds as 𝑘 inc = 𝜅𝑖 , due
to the conservation of momentum in the bulk time-varying medium.

From Fig. 3, we observe the existence of a momentum bandgap for certain 𝜅𝑖 values [24, 62].
Moreover, for the values of 𝜔inc which correspond to the 𝜅𝑖 values falling within the gap, we
observe the existence of an absorption peak (𝑅 and 𝑇 also show similar peaks but are omitted
here for simplicity). Such growth of observables can be attributed to the momentum bandgap in
Fig. 3 [63]. Furthermore, since the momentum bandgap is a feature that emerges purely because
of the temporal periodicity of the system [24], the effective medium cannot capture such growth
of observables. This explains the disagreement of 𝑅, 𝑇 , and 𝐴 for the time-periodic and effective
media in Figs. 2(b)–(d) as 𝜔inc/𝜔m increases.

Moreover, in Fig. 2(d), we observe that the absorptivity 𝐴 is negative for both media. This
is due to the power transfer between the source of temporal modulation and the modulated
system [34]. Note that 𝐴 is negative even for the effective medium. This is because of the power
transfer occurring at the temporal interfaces at times 𝑡 = 𝑡a and 𝑡b (see Fig. 1(c)) [54].

Furthermore, we only show the agreement of reflectivity 𝑅 and transmissivity𝑇 in Figs. 2(c)–(d)
for the time-periodic and effective media. A similar agreement was observed for the phases
of the reflection and transmission coefficients for both media. We plot these phases in the
Supplementary Material; Sec 3. This also holds for the examples discussed further.

3.2. Homogenization of spatiotemporal metasurfaces

So far, we have discussed the homogenization of time-varying MMs that are uniform in space
(see Fig. 1(a)). As the next step, we apply the proposed homogenization scheme to spatially
structured time-varying (spatiotemporal) MSs.

We consider an MS made from a square lattice of dielectric spheres (see Fig. 4(a)) [20].
Each sphere in the MS is made from a material with a time-varying permittivity according to
𝜀(𝑡) = 1 + 𝜒st [1 + 𝑀scos(𝜔m𝑡)]. Here, 𝜒st is the electrical susceptibility of the unmodulated
sphere, and 𝑀s is the modulation strength [53]. Note that such a harmonic permittivity profile is
chosen for simplicity. In general, our proposed method works for any arbitrary time-periodic
permittivity variation. Further, the radius of each sphere is denoted by 𝑟, and the period of the



Fig. 5. a) Absorptivity 𝐴 of the spatiotemporal metasurface as a function of the
incident frequency 𝜔inc and the corresponding wavenumber 𝑘inc (= 𝜔inc/𝑐0). b)
Monochromaticity of the eigenmodes of the bulk time-varying medium with the same
permittivity profile as the spheres in the spatiotemporal metasurface (golden curve),
and correspondingly retrieved effective permittivity 𝜀eff (blue curve) as a function
of the eigenfrequency 𝜔. c), d) comparison of reflectivity (𝑅), and transmissivity
(𝑇), respectively, for the spatiotemporal and time-invariant but spatially structured
metasurface as a function of the incident frequency 𝜔inc. Here, the green-shaded region
represents the spectral region where the temporal homogenization is valid. Further,
𝜔inc = 𝜔. Moreover, the incident plane wave impinges with the 10◦ incidence angle.
Furthermore, it has transverse-magnetic (TM) polarization.

square lattice is denoted by 𝑎. Moreover, for simplicity, we assume the MS to be surrounded by
air. To homogenize such a spatiotemporal system, we use a two-step homogenization scheme. In
the first step, we approximate the optical response of the spatiotemporal MS (see Fig. 4(a)) with
a time-invariant but spatially structured MS (see Fig. 4(b)). For such temporal homogenization,
the method of Sec. 2 is used. Then, in the second step, we approximate the optical response
of the time-invariant MS with a spatially homogeneous slab (see Fig. 4(c)). For such spatial
homogenization, the well-known method of inverting the Fresnel reflection and transmission
coefficients of the slab is used [6, 55].

We begin with the temporal homogenization of the spatiotemporal MS (see Figs. 4(a)–(b)).
We use the T-matrix method described in [20] to numerically model the MS. In what follows, the
susceptibility of the unmodulated spheres is taken to be 𝜒st = 11, the radius of each sphere is
𝑟 = 800 nm, the period of the square lattice is 𝑎 = 3𝑟, the modulation strength is 𝑀s = 0.4, and
the modulation frequency is 𝜔m = 1.8 × 1015 rads−1. Further, we assume the incident PW is
the same as in the previous example, with frequency 𝜔inc. Moreover, the incident wavevector
kinc is chosen such that the angle of incidence is 10◦. Furthermore, we assume the incident PW
has a transverse-magnetic (TM) polarization. Note that the proposed temporal homogenization
method applies to incident fields of any arbitrary angle of incidence and polarization.

To identify the spectral region where temporal homogenization is applicable, we plot the



absorptivity 𝐴 of the spatiotemporal MS as a function of the incident frequency 𝜔inc in Fig. 5(a).
Note that the calculation of 𝐴 is done using [20, Eq. (25)]. Naturally, in the spectral region where
the temporal homogenization is applicable, we expect the MS to show negligible absorptivity.
This is because negative absorptivity is a feature of the temporal variance of the system.
Moreover, since we are considering lossless systems, the absorptivity cannot be positive either.
Therefore, in Fig. 5(a), we mark the green-shaded spectral region as the region of temporal
homogenization. Note that contrary to the example of bulk time-varying media (see Fig. 1(c)),
here, the homogenized structure no longer has temporal interfaces (see Fig. 4(b)). Therefore, we
require negligible absorptivity of the spatiotemporal MS as a necessary condition for temporal
homogenization.

Next, we retrieve the effective permittivity 𝜀eff of the corresponding time-invariant but spatially
structured MS (see Fig. 4(b)). The corresponding effective permittivity will only describe the
material occupied by the spatial domain of the spheres. For such retrieval, we return to the bulk
time-varying medium shown in Fig. 1(a). Note that the bulk medium has the same time-periodic
permittivity 𝜀(𝑡) as the spheres of the spatiotemporal MS shown in Fig. 4(a). Using Eq. (5), we
plot the monochromaticity 𝑀% of the eigenmodes of the bulk time-varying medium in Fig. 5(b)
(see the golden curve). From Fig. 5(b), we notice that in the green-shaded spectral region, the
bulk eigenmodes are quasi-monochromatic as 𝑀% is sufficiently high. Numerically, 𝑀% ≥ 92%
in the green-shaded spectral region. Further, the quantity 𝑄 for the eigenmodes also has a
vanishing value in the green-shaded spectral region (see the Supplementary Material; Fig. S1(b)).
Therefore, we use Eq. (6) to retrieve the corresponding effective permittivity 𝜀eff . We show the
retrieved 𝜀eff by the blue curve in Fig. 5(b). Note that, as required by the monochromaticity of
the eigenmodes, such an effective medium description characterized by 𝜀eff is only valid in the
green-shaded spectral region shown in Fig. 5(b).

Next, we compare the optical observables (𝑅 and 𝑇) of the spatiotemporal and time-invariant
but spatially structured MSs. We assume that each sphere in the time-invariant MS has permittivity
𝜀eff (see Figs. 4(b) and 5(b)). In Figs. 5(c)–(d), we show reflectivity 𝑅 and transmissivity 𝑇 as
a function of the incident frequency 𝜔inc for both systems. Here, the calculation of 𝑅 and 𝑇

is done using [20, Eqs. (23)–(24)]. Note that to excite the quasi-monochromatic eigenmode at
frequency 𝜔 in the spatiotemporal MS, we must choose 𝜔inc = 𝜔 (see Fig. 5(b)). This is because,
in the limit of temporal homogenization, the spatiotemporal MS conserves the frequency of the
incident field. From Figs. 5(c)–(d), we observe a good agreement of the optical observables
(𝑅 and 𝑇) of both the systems in the green-shaded spectral region. This is expected, as in the
low-frequency limit, i.e., 𝜔inc/𝜔m ≪ 1, the temporal variation is so fast that the incident field
only sees the effective time-invariant system [49]. The observation of such good agreement
is further supported by negligible absorptivity of the spatiotemporal MS in the green-shaded
spectral region (see Fig. 5(a)). Moreover, in Figs. 5(c)–(d), we observe that the predictions
of temporal homogenization break down as the ratio 𝜔inc/𝜔m increases (mainly outside the
green-shaded region). This breakdown is particularly drastic at the spectral locations of the
resonances of 𝑅 and 𝑇 . To explain this, we first note that the resonant behavior of 𝑅 and 𝑇 in
Figs. 5(c)–(d) occurs due to the Mie resonances supported by the unmodulated spheres (with
𝑀s = 0) of the MS shown in Fig. 4(a) [64]. See the Supplementary Material; Fig. S5 for the
Mie coefficients of the unmodulated spheres. Upon temporal modulation, these Mie resonances
enhance the light-matter interaction, giving rise to sharp peaks of negative absorption (see
Fig. 5(a)). Naturally, these negative absorption peaks cannot be captured by the time-invariant
MS. This gives rise to the disagreement of the optical response of the spatiotemporal and
time-invariant MSs in Figs. 5(c)–(d).

After temporal homogenization, our system of operation is reduced to a time-invariant but
spatially structured MS (see Fig. 4(b)). As evident from Fig. 5(a), we chose the lattice period
𝑎 of the MS such that it is also spatially homogenizable in the green-shaded spectral region.



Fig. 6. a) Effective permittivity ˜̃𝜀eff (solid curve), and effective permeability ˜̃𝜇eff (dotted
curve) of the slab as a function of the incident frequency 𝜔inc. b), c) Comparison of
reflectivity 𝑅, and transmissivity 𝑇 , respectively, for the spatiotemporal metasurface and
homogeneous slab as a function of the incident frequency 𝜔inc and the corresponding
wavenumber 𝑘inc. Note the range of 𝜔inc (and 𝑘inc) shown here corresponds to the
green-shaded spectral region shown in Fig. 5

Such spatial homogenizability is ensured as 𝑎𝑘 inc ≪ 2𝜋 in the green-shaded region, where
𝑘 inc = 𝜔inc/𝑐0 [46, 59, 60]. Therefore, we can approximate the optical response of the time-
invariant MS shown in Fig. 4(b) by the slab shown in Fig. 4(c). Here, the thickness of the slab is
taken as the diameter of the spheres, i.e., 2𝑟. Such a slab can be optically characterized by an
effective permittivity ˜̃𝜀eff , and effective permeability ˜̃𝜇eff (see Fig. 4(c)). Further, these effective
parameters of the slab can be computed by inverting the Fresnel coefficients expressing the
complex reflection and transmission amplitudes from a slab [6, 55].

Therefore, after inverting the Fresnel coefficients from the slab for 10◦ incidence using [6,
Eqs. (4)–(10)], we show its effective parameters ˜̃𝜀eff and ˜̃𝜇eff in Fig. 6(a). Note that we used
complex reflection and transmission coefficients of the time-invariant but spatially structured MS
to perform this inversion. Further, the range of incident frequencies 𝜔inc is taken such that it lies
in the green-shaded spectral region (see Fig. 5(a)). From Fig. 6(a), we observe the departure
of ˜̃𝜇eff from unity for 𝜔inc/𝜔m > 0.1. Such effective magnetic response of the slab is due to a
magnetic dipolar resonance supported by the unmodulated spheres (with 𝑀s = 0) of the MS
shown in Fig. 4(a) at 𝜔inc/𝜔m = 0.18 [4, 6, 64]. See the Supplementary Material; Fig. S5 for the
Mie coefficients of the unmodulated spheres.

Next, as before, we compare the optical observables of the spatiotemporal MS with that of the
slab in Figs. 6(b)–(c). From Figs. 6(b)–(c), we observe a good agreement of the observables 𝑅 and
𝑇 of both systems. This is expected because, to begin with, the MS is temporally homogenizable
for the shown incident frequencies (see Fig. 5(a)). Further, spatial homogenizability is ensured as
the incident field is such that 𝑎𝑘 inc ≪ 2𝜋 [46,59,60]. Therefore, only the principal diffraction
order of the field scattered off the MS is non-evanescent. Furthermore, in such a long wavelength
limit, the first Bragg resonance of the MS is also away from the spectral region of operation.
Such resonance occurs at 𝑎𝑘 inc = 𝜋 [65,66]. Therefore, the optical response of the MS can be
well approximated by the slab.

4. Conclusions

We have presented an eigenmode-based approach to homogenize spatiotemporal MSs. We
started with the calculation of the eigenmodes of bulk time-varying media. Then, we used these
eigenmodes to retrieve the effective permittivity of the corresponding homogenized media. Next,
we verified our approach by comparing the optical observables of the bulk time-varying and
corresponding homogenized media. Then, we showed the applicability of our homogenization
method to spatiotemporal MSs. Following a two-step homogenization scheme, we approximated



the optical response of the spatiotemporal MS with a homogeneous slab. Again, the optical
observables of the spatiotemporal MS and the slab were compared to verify our method.

Our homogenization method can be applied independent of the shape of the periodic tem-
poral modulation. A further extension of our study could include material dispersion in the
temporally modulated media. Moreover, one can extend the spectral range of applicability of the
homogenization method by considering the nonlocal response of the effective media.
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