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The realization of photonic time crystals is a major opportunity but also comes with significant
challenges. The most pressing one, potentially, is the requirement for a substantial modulation
strength in the material properties to create a noticeable momentum bandgap. Reaching that
noticeable bandgap in optics is highly demanding with current, and possibly also future, material
platforms since their modulation strength is small by tendency. Here we demonstrate that by
introducing temporal variations in a resonant material, the momentum bandgap can be drastically
expanded, potentially approaching infinity with modulation strengths in reach with known low-
loss materials and realistic laser pump powers. The resonance can emerge from an intrinsic material
resonance or a suitably spatially structured material supporting a structural resonance. Our concept
is validated for resonant bulk media and optical metasurfaces and paves the way toward the first
experimental realizations of photonic time crystals.

INTRODUCTION

Time-varying electromagnetics has emerged as a cap-
tivating field of research, capturing significant attention
from the scientific community [1, 2]. Within this do-
main, a recent and intriguing concept that has garnered
interest is that of photonic time crystals [3, 4]. Dis-
tinct from conventional spatial photonic crystals, pho-
tonic time crystals are artificial materials whose electro-
magnetic properties are uniform in space but periodically
modulated in time. This temporal periodicity generates a
momentum bandgap in which light exponentially grows
over time. Such behavior results in exotic light-matter
interaction in the optical regime, including amplification
of spontaneous emission of an excited atom [5], sublumi-
nal Cherenkov radiation [6], superluminal momentum-
gap solitons [7], and others. The momentum bandgap
stems from the Bragg-like interference of multiple re-
flected waves generated at the periodic temporal inter-
faces, that is, time moments at which the crystal switches
its refractive index [1]. To develop a detectable momen-
tum bandgap, the relative change of the refractive index
of the crystal ∆n/nmust be comparable to unity [3, 4, 8].

While photonic time crystals have been experimen-
tally confirmed at microwave frequencies [9–11], design-
ing photonic time crystals at optical frequencies remains
a prime challenge. Indeed, the material temporal mod-
ulation must be extremely fast, typically twice the oscil-
lation period of the light that probes the response. Such
a rapid modulation is unreachable with acousto-optic,
thermo-optic, or even electro-optic mechanisms which op-
erate up to 100 GHz [12]. All-optical modulation of the
refractive index n (e.g., via third-order optical nonlineari-
ties) is currently considered the most prominent approach
to realizing photonic time crystals at optical frequencies.
However, nonlinear effects in low-loss materials are very

weak, yielding a relative change in the refractive index
to saturate at less than 1%. It also implies substantial
power densities that can only be achieved through fem-
tosecond laser pulses with low duty cycles (substantially
lower than those required for material modulation) [13].
Recently, transparent conductive oxides were suggested
as alternative material candidates to synthesize photonic
time crystals. In particular, operating at the epsilon-
near-zero regime, indium tin oxide (ITO) and aluminium-
doped zinc oxide (AZO) were demonstrated to exhibit
relative changes in the refractive index of the order of
100% [14–17]. However, they still demand extremely
high pumping power densities, i.e., in the order of tens of
TW/cm3 [8]. When combined with significant material
dissipation, this could lead to rapid thermal damage to
the material. Furthermore, the dissipation can lead to
the excitation of a parasitic “dynamic-grating” nonlinear
effect that may obstruct the observation of the photonic-
time-crystal regime [18]. Therefore, only time refraction
(single-cycle modulation) has been experimentally real-
ized in transparent conducting oxides to date [19]. Even
though the distinction between a photonic time crystal
and a parametric amplifier remains challenging, these
experiments suggest that photonic time crystals are in
reach [20].

To avoid all these obstacles, we introduce a distinct
approach to designing photonic time crystals. We capi-
talize on artificial composites that support high-quality
resonances rather than seeking new materials with im-
proved nonlinear characteristics. Interestingly, a similar
generic idea was recently suggested in Ref. [21], however,
no practical design or implementation was demonstrated.
The approach based on resonant artificial composites al-
lows us to create photonic time crystals with pronounced
momentum bandgaps with significantly reduced required
modulation strength (∆n/n ratio) in reach with known
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low-loss materials and realistic laser pump powers. We
show that at a conceptual level, the resonance can be
intrinsic to the material. But we also go beyond and
suggest exploiting a resonance sustained by a spatially
structured material to significantly lower the requirement
on the modulation strength for reaching a notable mo-
mentum bandgap. We validate our concept of a reso-
nant photonic time crystal for bulk materials and realis-
tic optical metasurfaces. We show that the momentum
bandgap size can be expanded limitlessly under even low
modulation strengths (assuming sufficiently small mate-
rial dissipation). Our results potentially provide the first
material platform to realize a photonic time crystal at
optical frequencies.

RESULTS

Photonic time crystals made of intrinsically resonant
materials

The earlier designs for photonic time crystals relied
on varying the density of free-charge carriers in a bulk
material, such as the number of electrons per unit vol-
ume [14–17]. In this Section, we first demonstrate that
this approach is ineffective in achieving a large momen-
tum bandgap. Next, we will show that temporally mod-
ulating the material’s resonance frequency significantly
increases the bandgap size while having the same modu-
lation strength.

The permittivity of a bulk material with a Lorentzian
dispersion whose charge concentration is modulated in
time can be written as ϵ(ω, t) = 1 + ω2

p(t)/(ω
2
r0 − ω2 +

jγω) [22, Sec. 4.3]. Here, ωp(t), ωr0, and γ are the
plasma frequency, resonance frequency, and the damp-
ing factor of the charger carriers in the material, respec-
tively. A time convention as e+jωt is considered, with
j being the imaginary unit. This form of the complex
permittivity function is valid if the damping coefficient
and the natural frequency of the material can be as-
sumed to be constant in time [22]. Assuming a time-
harmonic modulation of the charge concentration with
the magnitude m and modulation frequency ωm, i.e.,
ω2
p(t) = ω2

p0[1+m cos(ωmt)], the permittivity can be writ-
ten as ϵ(ω, t) = 1 + χ(ω)[1 +m cos(ωmt)] with χ(ω) the
stationary dispersive complex susceptibility of the mate-
rial just considered.

When solving for the eigenmodes to Maxwell’s equa-
tions in such a time-varying medium, the temporal mod-
ulation induces a split of the degenerate eigenmodes at
ω = ωm/2, resulting in a momentum bandgap. Assuming
a weak modulation strength (m ≪ 1) [23], the bandgap
covers the momentum space from k = k− to k = k+,
where

k± =
ωm

2c0

√
1 + χ(ωm/2)[1±m/2]. (1)
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FIG. 1. (a) Dispersion relations of a stationary (not mod-
ulated) bulk material when its plasma frequency is ω2

p1 =
ω2
p0(1 − m/2) (red line) and ω2

p2 = ω2
p0(1 + m/2) (green

line). (b) Band structure of the time-modulated bulk material
when its plasma frequency is modulated as ω2

p(t) = ω2
p0[1 +

m cos(ωmt)]. The gray region emphasizes the bandgap in (b)
and the variation of eigenwavenumber at ω = ωm/2 in (a). (c)
Dispersion relations of a stationary (not modulated) bulk ma-
terial when its resonance frequency is ω2

r1 = ω2
r0(1+m/2) (red

line) and ω2
r2 = ω2

r0(1−m/2) (green line). (d) Band structure
of the time-modulated bulk material when its resonance fre-
quency is modulated as ω2

r (t) = ω2
r0[1+m cos(ωmt)]. In all the

subfigures, the wavenumber is normalized by kr0 = ωr0
√
ϵ0µ0,

and the material parameters are chosen as m = 0.2, ωm/2 =
0.95ωr0, γ = 0, and ωp0 = 3.5ωr0.

The detailed derivation of (1) can be found in Sec. 1 of
the Supplementary Material [24]. Here, c0 is the speed
of light in a vacuum, and γ = 0 was assumed. We plot
the dispersion relation in the first Brillouin zone of such
a photonic time crystal in Fig. 1(b), taking as an exam-
ple m = 0.2 (other material parameters are specified in
the figure caption). Inside the momentum bandgap, the
eigenfrequency has two complex solutions with positive
and negative imaginary parts corresponding to the expo-
nentially decaying and growing modes in time (dashed
orange lines).

The weak-modulation approximation is very powerful.
Not only does it allow us to find a closed-form solution for
the edges of the momentum bandgap, but it also high-
lights a crucial observation. As is seen from Eq. (1),
the bandgap edges k− and k+ in the modulated ma-
terial precisely correspond to the eigenwavenumbers k1
and k2 of two non-modulated (stationary) materials with
scaled susceptibilities χ(ω)(1±m/2) evaluated at the fre-
quency ω = ωm/2. Indeed, inside a stationary material,
the eigenwavenumber is given by k(ω) = ω

√
1 + χ(ω)/c0.

This correspondence is rather general and applies to all
the photonic time crystal topologies withm ≪ 1 explored
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in this work, including the case when the material is
lossy. Interestingly, even when the modulation strength
becomes large, the correspondence has only a small er-
ror (less than 2% and 5% for m = 0.5 and m = 0.9,
respectively).

Figure 1(a) depicts the dispersion relations of the two
stationary materials with scaled susceptibilities. Since
χ is linearly proportional to ω2

p, the two materials can
be alternatively described with scaled plasma frequen-
cies ω2

p1 = ω2
p0(1−m/2) and ω2

p2 = ω2
p0(1+m/2). Thus,

by plotting the dispersion relation of the material with
modulation turned off, one can determine the momentum
bandgap size for a given modulation. We emphasize this
property in Figs. 1(a) and (b) using a vertically shaded
region. More importantly, this correspondence provides a
simple visual insight into how a given material dispersion
affects the bandgap size and position. It is clear from
Fig. 1(a) that the temporal modulation of the plasma
frequency results in a relatively narrow bandgap. The
narrow bandgap is caused by the tiny variation of the
dispersion curves of a stationary material when the res-
onance frequency is fixed (k1 ≈ k2). The relative size of
the obtained bandgap, calculated as the gap-to-midgap
ratio ∆k = 2|(k2 − k1)/(k1 + k2)|, reaches only 10.3%.

On the contrary, when the resonance frequency ωr

is time-modulated while the plasma frequency ωp and
damping factor γ are fixed, the momentum bandgap
can be qualitatively different. Now, we assume that
the intrinsic resonance frequency is modulated harmon-
ically so that ω2

r (t) = ω2
r0[1 + m cos(ωmt)]. Following

the above-described correspondence between the station-
ary and modulated material scenarios for m ≪ 1, we
plot in Fig. 1(c) the dispersion relation of a stationary
bulk material for two values of the resonance frequency:
ω2
r1 = ω2

r0(1 + m/2) and ω2
r2 = ω2

r0(1 − m/2). All other
material properties remain the same and are mentioned
in the figure caption. It is evident that for the same value
of m = 0.2, the two dispersion curves now differ signifi-
cantly at ω = ωm/2. When choosing ωr2 < ωm/2 < ωr1,
the horizontal dashed line at ω = ωm/2 intersects only
with one of the dispersion curves, at k = k1 (Fig. 1(c)).
This indicates that the momentum bandgap in the corre-
sponding time-modulated material has only one edge and
extends infinitely towards higher momenta, as shown by
the gray-shaded region in the figure. Indeed, by rigor-
ously computing the band structure for this scenario, we
observe a semi-infinite momentum bandgap whose edge
at k− is located right at k1 for the corresponding station-
ary material (see Fig. 1(d)). The detailed derivations for
the band structure extraction can be found in Sec. 2 of
the Supplementary Material [24]. The imaginary part of
the eigenfrequency inside the bandgap is significantly in-
creased compared to modulating the plasma frequency.
Moreover, the shape of the imaginary part curve (orange
dashed line) is not typical. It points out that waves with
different momentum k can have different and, in princi-

ple, engineered amplification rates. We observed that by
changing ωm within the range ωr2 < ωm/2 < ωr1, it is
possible to control the curve shape.
Since, in realistic scenarios, near the resonance, mate-

rial losses tend to increase, it is crucial to explore how a
nonzero damping factor γ influences the band structure.
The effect of losses is studied in Sec. 3 of the Supplemen-
tary Material [24]. In the presence of loss, the imaginary
parts of eigenfrequencies exhibit a positive offset, result-
ing in reduced temporal amplification rates. In contrast,
the bandgap size remains. Even when considering losses,
the amplification rate remains significantly higher com-
pared to modulating the plasma frequency in the lossless
case.
The temporal modulation of the intrinsic resonance

frequency of a bulk material can be achieved, for exam-
ple, through strong dynamic electric biasing [25] but, in
practice, could be very challenging. Figure 2(a) illus-
trates this scenario where an external electric field mod-
ulates the effective spring constants κ of each nucleus-
electron oscillator. However, instead of modulating ma-
terials by modulating the intrinsic resonance frequency
of their natural atoms, we propose exploiting a meta-
material concept and utilizing the resonances in meta-
materials generated through spatially structured meta-
atoms. A conceptual illustration of our proposal is de-
picted in Fig. 2(b). The metamaterial consists of meta-
atoms (with spherical shapes as an example) whose ma-
terial properties (permittivity ϵr or permeability µr), ra-
dius, or mutual separation distance can be modulated in
time. Each of these modulation mechanisms leads to the
modulation of the effective resonance frequency ωeff

r (t) of
the metamaterial. Probably, the most practical scenario
is when the plasma frequency of the meta-atom’s mate-
rial is modulated, which can be achieved with the current
optical modulation techniques [14–17].
In what follows, instead of relying on bulk metama-

terial geometries, we exploit the recently proposed idea
of constructing photonic time crystals using metasur-
faces [11]. First, we explore the concept by designing
resonant metasurfaces using a generic LC-model appli-
cable to all operating frequencies. Then, we provide a
feasible optical example of the photonic time crystal – a
two-dimensional array of spherical particles – supporting
a large momentum bandgap at realistic pump energies.

Photonic time crystals based on resonant
metasurfaces

We consider the photonic time crystal in a metasurface
geometry. The metasurface is assumed to support surface
waves bound to the xy-plane, see Fig. 3(a). The meta-
atoms are deeply sub-wavelength and are all equivalent,
resulting in a spatial homogeneity of the metasurface at
z = 0. Similarly to how bulk photonic time crystals
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FIG. 2. (a) Illustration of the temporal modulation of the
intrinsic resonance frequency of a bulk material. The mod-
ulation can be described by a time-varying effective spring
constant κ(t). (b) Illustration of the temporal modulation of
the resonance frequency of a metamaterial consisting of meta-
atoms. The modulation can be achieved in various ways, in-
cluding modulating the permittivity ϵr or permeability µr of
the material from which the meta-atoms are made, the size
of the meta-atoms R, or the metamaterial periodicity d.

exhibit momentum bandgaps ∆k for bulk propagating
eigenmodes, the metasurface-based counterparts support
momentum bandgaps ∆k|| for surface and/or propagat-
ing eigenmodes [11] (k|| denotes the parallel component
of the wavenumber). While here we model the metasur-
face as an impenetrable impedance boundary, the same
qualitative results hold true for penetrable metasurfaces
(see the next Section). A resonant impenetrable meta-
surface can be described by effective reactive parameters,
the surface capacitance C and the surface inductance L
connected in parallel (Fig. 3(a)). The advantage of this
generic LC-model is its ability to describe the interac-
tion of light with a time-modulated metasurface without
restricting ourselves to any specific geometry and oper-
ational frequency band. At optical frequencies, as we
show in the following section, such a resonant metasur-
face can be made from a two-dimensional array of spher-
ical particles with a time-modulated dielectric constant.
At microwave frequencies, the implementation could be
based on a mushroom-type high-impedance surface with
varactors embedded between adjacent patches [11, 26].

In our model, the surface capacitance is modulated in
time harmonically as C(t) = C0[1 + m cos(ωmt)], while
the surface inductance L remains constant. Here, C0 is
the time-averaged value of the capacitance. Such a con-
figuration effectively provides the temporal modulation
of the resonance frequency. Without loss of generality,
we consider a transverse-magnetic (TM) polarization of
the surface waves. Similarly to the derivation in the pre-
vious Section, we solve for the eigenmodes of the time-
modulated metasurface (see Sec. 4 of the Supplementary
Material [24]). Using the weak-modulation approxima-
tion (m ≪ 1), the edges of the momentum bandgap at

ω = ωm/2 can be calculated as

k±|| =
ωm

2c0

√
1− Y 2

0

Y 2
±
, (2)

where Y0 =
√

ε0/µ0 is the free-space wave admittance
and Y± = j ωm

2 C0(1 ± m
2 ) +

1
j ωm

2 L
. In agreement with

our findings in the previous Section, the expressions for
the edges of the momentum bandgap k+|| and k−|| precisely

correspond to the eigenwavenumbers k||,1 and k||,2 of two
non-modulated impedance surfaces with scaled surface
capacitances C1 = C0(1 +

m
2 ) and C2 = C0(1− m

2 ) eval-
uated at the frequency ω = ωm/2. This is clearly seen
from the dispersion relation of an impedance boundary
k||(ω) = ω

c0

√
1− Y 2

0 /Y (ω) [27, p. 234], where Y (ω) =
jωC + 1/jωL is the admittance of the parallel connec-
tion of the capacitance C and inductance L.

It should be noted that Eq. (2) holds true only for fre-
quencies ωm/2 < 1/

√
LC0(1 +m/2) = ωr1 (see Sec. 4

of Supplementary Material [24] for more details). At the
critical frequency of ωm/2 = ωr1, the denominator in
Eq. (2) approaches zero, which results in the semi-infinite
bandgap (Y+ → j0 and, therefore, k+|| → +∞). By work-

ing in the regime where ωr1 < ωm/2 < ωr2, we can ensure
that the momentum bandgap is semi-infinite (here, ωr2 =
1/
√

LC0(1−m/2)). For larger modulation frequencies,
the bandgap becomes closed. In Fig. 3(b), we plot a
band diagram for a time-modulated impedance surface
for the case of m = 0.2 and ωm/2 = ωr0 = 1/

√
LC0

(lower panel) together with the corresponding dispersion
relations for stationary surfaces (upper panel). As ex-
pected, the bandgap size can be determined by the two
dispersion curves of stationary surfaces with C1 = 1.1C0

and C2 = 0.9C0, in particular, by the points where they
cross with the horizontal dashed line at ωr0. As is seen,
the bandgap size extends from k|| ≈ 4kr0 (kr0 = ωr0/c0)
to infinity.

Next, we verify with full-wave simulations (see Meth-
ods) the wave evolution inside the momentum bandgap.
A stationary capacitive surface is excited from the left by
a surface wave with momentum k|| = 5kr0 (see Fig. 3(c)).
From the time moment t = 0, the surface capacitance
is harmonically modulated in time, resulting in the ex-
ponential growth of the surface mode and the higher-
order frequency harmonics (some of them being inside the
light cone are propagating). This growth is seen in the
magnetic-field snapshot taken at t = 30Tm(Tm = 2π/ωm)
depicted in the lower panel of Fig. 3(c). Due to the tem-
poral modulation, the momentum of the eigenwaves re-
mains unchanged. However, the modulation generates
backward and forward harmonics with equal amplitudes,
resulting in a standing wave along the horizontal direc-
tion [11]. The complete field evolution animation is avail-
able in movie S1. For comparison, we also analyze the
case when the boundary is excited by a surface wave with
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FIG. 3. (a) Generic illustration of a time-varying resonant LC metasurface. Each meta-atom is described by a time-modulated
surface capacitance C(t) and a constant surface inductance L. The red arrow indicates a surface eigenmode whose amplitude is
growing in time due to its wavenumber being inside the momentum bangdap of the metasurface. (b) Upper: Dispersion relations
of a stationary metasurface for the two scaled values of the surface capacitance. Lower: Band structure of the time-modulated
resonant metasurface with C(t) = C0[1 + m cos(ωmt)]. The gray region emphasizes the bandgap in the lower panel and the
variation of eigenwavenumber at ω = ωm/2 in the upper panel. (c) and (d) magnetic field snapshots for momenta β = 5kr0
and β = 10kr0 above the metasurface at the time moment when modulation switches on (t = 0) and after some time passed
(t = 30Tm). (e) Time evolution of the magnetic field above the metasurface (z = 0) calculated with full-wave simulations and
analytically from the band structure. The theoretical amplitude is calculated as Hy(t) = Hy0 exp [ℑ(ω)t] where Hy0 = 1 A/m
is the initial field at t = 0 and ℑ(ω) = 0.025ωm. (f) Imaginary part of the eigenfrequency for metasurfaces with different
quality factors. The real part of eigenfrequency is fixed as ℜ(ω) = ωm/2. The black dashed line separates propagating waves
(p.w.) and surface waves (s.w.). (g) The magnetic field evolution for a dipole source positioned above the time-varying LC
metasurface. Due to the infinite bandgap, all momenta k|| are amplified by the metasurface. In all the subfigures, m = 0.2 was
chosen. In Figs. 3(c)(d)(g), the excitation source is turned off after modulation starts.

wavenumber k|| = 10kr0 (Fig. 3(d)). This wave experi-
ences an even faster exponential growth since the imag-
inary part of the frequency ℑ(ω) inside the bandgap is
larger in this case (see the lower panel of Fig. 3(b)). In
Fig. 3(e), we plot the simulated magnetic-field evolution
in time (blue curve) for the latter case. The exponential
growth of the field amplitude in time coincides with the
rate predicted by the theory.

It is important to analyze how the momentum bandgap
of the modulated metasurface depends on its quality fac-
tor. For that, we reduce the inductance and increase the
capacitance at the same rate to preserve the resonance
frequency of the stationary metasurface. The quality fac-
tor of the stationary metasurface can be qualitatively
described as a quality factor of an RLC circuit (where
R =

√
µ0/ε0 is the free-space characteristic impedance

which is connected in parallel to the metasurface equiv-
alent circuit), that is, Q = ωr0C0

√
µ0/ε0 [28, Sec. 6.1].

For each real value of k||, we fix ℜ(ω) = ωm/2 and cal-
culate for the imaginary part of the frequency ℑ(ω) that
indicates the presence or absence of the bandgap. Fig-
ure 3(f) plots ℑ(ω) for three metasurfaces with differ-

ent quality factors. One can see that metasurfaces with
a higher Q-factor provide wider momentum bandgaps
for surface waves (s.w.) with larger amplification rates
assuming the same modulation function. In compari-
son, the metasurface for which the results are shown in
Figs. 3(b)–(e) has Q = 2.44. Moreover, for sufficiently
large Q-factors (Q ≥ 9.75), a second momentum bandgap
opens inside the light cone, i.e., for propagating waves
(p.w.). Such a regime of the open bandgap for propagat-
ing modes is inherent to metasurfaces with high quality
factors and cannot occur in non-resonant metasurfaces
like those in Ref. [11]. The size of the second bandgap
grows with the quality factor of the metasurface since
resonances with longer lifetimes suffer from smaller ra-
diation loss and need a weaker modulation to maintain
the same amplification rate. It should be noted that the
amplification of surface and oblique propagating waves
in the metasurface is independent of the phase of the in-
cident light in sharp contrast to conventional parametric
degenerate amplifiers [11].

When the quality factor takes sufficiently large values,
the two bandgaps merge, and the metasurface can am-



6

FIG. 4. (a) A representative design of a photonic time crystal based on an optical time-varying resonant metasurface made of
dielectric spheres. The purple arrow indicates a surface eigenmode whose amplitude grows in time due to its wavenumber being
inside the momentum bandgap of the metasurface. (b) Band structure of a time-invariant metasurface. The color denotes the
lowest singular value Smin of the matrix in Eq. (5). The orange dotted lines represent the light lines. (c) The two lowest-order
Mie coefficients of an isolated time-invariant sphere. The vertical scale is the same as in (b). (d) Band structure of a time-
varying metasurface with modulation frequency ωm1 (non-resonant case). (e) Zoomed band structure in the green highlighted
region of (d). (f) The corresponding imaginary part of the frequency for fixed ℜ(ω) = ωm1/2. (g)–(i) Original and zoomed
band structures of a time-varying metasurface with modulation frequency ωm2 (resonant case).

plify incident waves with all possible momenta k|| (see
the curve for Q = 122 in Fig. 3(f)). To demonstrate this
infinite momentum bandgap, we place a dipole emitter
above the metasurface (Fig. 3(g)). The dipole radiation
includes a wide spectrum of momenta, as shown in the
upper panel of the figure. Once the temporal modula-
tion of the metasurface is on, waves with all different
momenta are amplified and radiated in the specular and
retro-directions with respect to the source, see the lower
panel in Fig. 3(g). This leads to interesting possibilities
such as amplified emission and lasing of light from a radi-
ation source [5]. In contrast to the idea suggested in [5],
due to the infinite bandgap, here it is possible to amplify
emission with a large and, in principle, tunable spectrum
of wavenumbers. This provides opportunities for beam
shaping of the amplified signal and for creating perfect
lenses (evanescent content of the source radiation can be
reconstructed effectively [29] thanks to the amplification
of all k||).

Optical implementation

To provide a feasible optical realization of the res-
onant photonic time crystal, we consider a penetra-
ble metasurface consisting of dielectric spheres with a
time-varying permittivity (see Fig. 4(a)). For simplic-
ity, we consider the metasurface being surrounded by
air. Here, each sphere effectively behaves as an LC res-
onator as it supports Mie resonances [30]. The spheres
are arranged in an infinite square lattice with the pe-
riod a. The radius of each sphere is R. For simplic-
ity, we ignore material dispersion. As we verified nu-
merically, it does not significantly modify the bandgap
width. Therefore, the permittivity of each sphere reads
ε(t) = 1 + χ0[1 +mcos(ωmt)] [22, Sec. 4.3]. Varying the
permittivity in time effectively modulates the Mie res-
onance frequencies of the spheres (see Fig. 2(b)). Such
a metasurface corresponds to a (2+1)-dimensional spa-
tiotemporal crystal. In the following, we rely on the T-
matrix method to study the optical response from such a
metasurface [31] (see Sec. 5 of the Supplementary Mate-
rial [24] for more details). Furthermore, the calculation
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method for band structures using the T-matrix method
has been described in the Materials and Methods Sec-
tion. Hereafter, the radius of the spheres R is fixed at
810 nm, and the lattice period a is set to 3R. The mate-
rial susceptibility is chosen χ0 = 10.68, corresponding to
silicon which is nearly lossless and dispersionless in the
considered infrared frequency regime.

First, using Eq. (5), we calculate the band structure
of a time-invariant metasurface substituting m = 0 and
ωm = 0 (Fig. 4(b)). One can see flat bands that occur
near theM andX points of the spatial Brillouin zone due
to the Mie resonances of the single sphere. For compari-
son, we plot the absolute values of the dipolar Mie coef-
ficients of a time-invariant single sphere in Fig. 4(c) [30].
From Fig. 4(c), we observe the occurrence of a magnetic
dipolar and an electric dipolar resonance that explain
the existence of flat bands in Fig. 4(b). As will be shown
below, exploiting these resonances dramatically reduces
the modulation strengthm for attaining wide momentum
bandgaps. Note that the band structure shown hereafter
accommodates the eigenmodes for both TM and trans-
verse electric (TE) polarizations, however, in what fol-
lows, we optimize the metasurfaces for TE-waves.

Next, we plot the band structures of time-varying
metasurfaces. We start by choosing the modulation fre-
quency to be ωm1 = 300 THz as shown in Fig. 4(b).
Since ωm1

2 is away from the flat bands, this configuration
corresponds to a scenario of modulating a non-resonant
metasurface. Moreover, we observe that the dispersion
around ω = ωm1

2 is linear [see Fig. 4(b)]. This is be-
cause the metasurface is spatially homogenizable near
and below ω = ωm1

2 [32]. Therefore, the time-varying
metasurface with ωm1 mimics the properties of a con-
ventional (space-uniform) photonic time crystal with the
modulated plasma frequency. In Fig. 4(d), we show the
band structure of this nonresonant metasurface. We
choose m = 0.01 that corresponds to the relative change
of the refractive index ∆n/n ≈ mχ0/(1 + χ0) = 1%,
which is the maximum attainable value for the nonlin-
ear effects in low-loss materials with realistic pump pow-
ers [8]. We observe the folding of the band structure
of the time-invariant case [3, 33]. At the band crossing
in the Γ − M region, the momentum bandgap appears,
as is seen in the zoomed region (Fig. 4(e)). For plot-
ting the band structures, we limit ourselves only to the
dominant dipolar moments in the vector spherical ex-
pansion and to the three dominant frequency harmonics
(see Sec. 5 in Supplementary Material [24]). While this
assumption does not modify the response of the meta-
surface inside the momentum bandgap, it allows to elim-
inate side-bands in the band structure. The calculated
relative gap width is very narrow, ∆k|| = 0.0183%. We
also plot the imaginary part of the frequency ℑ(ω) for
a fixed ℜ(ω) = ωm1

2 (see Fig. 4(f)). As expected, in the
middle of the bandgap, ℑ(ω) reaches the largest absolute
value. Since the bandgap lies below the light cone [see

Fig. 4(b)], only surface-wave incident excitations couple
to the modes inside it.

In sharp contrast to the previous case, when half of
the modulation frequency is at the position of the mag-
netic Mie resonance of the spheres (see the horizontal line
0.5ωm2 = 317 THz in Fig. 4(b)), the bandgap greatly ex-
pands. Keeping for a fair comparison the same modula-
tion strength m = 0.01, the relative bandgap size of this
resonant metasurface reaches the value of ∆k|| = 6.59%,
as is calculated from the band structure in Figs. 4(g)–(i).
Remarkably, the resonance of the metasurface leads to
the widening of the bandgap by a factor of about 350 as
compared to the non-resonant case. It should be noted
that the correspondence between a time-varying system
and two stationary systems with scaled parameters also
holds for this metasurface (see Sec. 7 in the Supplemen-
tary Material [24]). It is essential to note from Figs. 4(g)
that the momentum bandgap is not complete since there
exist bands at the ℜ(ω) > ωm2/2 within the bandgap.
Nevertheless, in contrast to spatial photonic crystals with
their energy bandgaps, the modes inside an incomplete
momentum bandgap are always dominant due to their
amplifying nature [4]. The comparison of Figs. 4(f) and
(i) reveals that the structural resonance not just enhances
the bandgap size, but the amplification rate also greatly
increases: ℑ(ω) is an order of magnitude larger for the
resonant case.

While in the above-considered scenarios, the bandgaps
occurred below the light cone, we designed as next a
metasurface to generate bandgaps for propagating waves
(see illustration in Fig. 5(a)). From Fig. 4(b) for a
stationary metasurface, we observe the existence of a
flat band within the light cone at the spectral location
ω = ωm3/2 = 351 THz around the Γ-point. Note that be-
cause the modes in the flat band lie within the light cone,
they correspond to a leaky zone in the band structure. In
literature, such modes are termed as guided resonances
[34]. By modulating the metasurface periodically at the
modulation frequency ωm3, we obtain the band struc-
ture shown in Fig. 5(b) (m = 0.06 in this case). The
zoomed region of the band structure with the momen-
tum bandgap is plotted in Figs. 5(c)–(d). Remarkably,
despite the small modulation strength, the momentum
bandgap is very large and spans over a wide range of in-
cident angles: up to 54◦ in the incidence plane parallel
to Γ−M and 33◦ parallel to Γ−X. Due to the almost
constant ℑ(ω) inside the bandgap (Fig. 5(d)), the waves
that couple to the eigenmodes in the bandgap get ampli-
fied at nearly the same rates irrespective of the value of
k||. Importantly, as mentioned in the previous Section,
the bandgap for propagating waves is unique to resonant
metasurfaces and does not occur for continuous material
slabs. We explain the fact that the bandgap in Fig. 5(b)
does not span all possible k|| due to relatively low qual-
ity factor of magnetic Mie resonances in the spheres as
predicted in the LC circuit analysis and limited value of
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FIG. 5. (a) Optical time-varying metasurface designed to exhibit a momentum bandgap for propagating waves. The purple
arrow indicates a propagating eigenmode whose amplitude is growing in time. The geometry of the metasurface is the same as
in Fig. 4(a). (b) Band structure of a time-varying metasurface with modulation frequency ωm3. (c) Zoomed band structure in
the green highlighted region in (b). (d) The corresponding imaginary part of the frequency for fixed ℜ(ω) = ωm3/2.

m. We foresee that the infinite-bandgap regime as in
Figs. 3(f)–(g) can be achieved in the optical metasurface
by tuning ωm/2 to the frequency of the higher-order Mie
resonances of the spheres.

DISCUSSION

The pivotal challenge in realizing photonic time crys-
tals in the optical domain lies in generating a substantial
and detectable momentum bandgap under current mod-
ulation limitations. In this work, we introduce a novel
and pragmatic platform based on structured materials to
overcome this problem, achieving a significant momen-
tum bandgap under realistic pump conditions. In par-
ticular, our findings underscore that by exploiting struc-
tural resonances in material, we can achieve a great en-
hancement of the momentum bandgap size (350 times
wider compared with the same material without spatial
structuring) with the modulation strength as small as
1%. In principle, a strong resonance has the potential
to extend the momentum bandgap infinitely. A distinc-
tive feature of our approach is that the achieved mo-
mentum bandgap can cover the entire k-space, encom-
passing both free-space propagating modes and surface
modes. This fundamentally provides new physics com-
pared to the implementations based on bulk media [4, 8]
that only support propagating modes and non-resonant
metasurfaces [11] that operate exclusively with surface
modes. From this point of view, our approach holds
novel opportunities for designing more complex photonic
time and space-time crystals as well as for amplifying the
spontaneous emission of light from emitters located near
the structure. Moreover, the designed crystal could be
useful for designing a perfect lens, a long-standing goal
in optics, since the information of an object carried by
evanescent modes can be effectively amplified, resulting

in a highly-resolved image of the object. While our ex-
ample metasurface operates in the infrared spectrum, it
can be extended to the visible spectrum with other ma-
terials. In addition, the shape of the meta-atoms is not
restricted to spherical, and they can be deployed over
a substrate. We anticipate and encourage experimental
endeavors to facilitate the proposed approach.

MATERIALS AND METHODS

Calculation of eigenmodes of a metasurface with
time-varying spheres

Eigenmodes of a scattering structure are self-standing
modes that exist without incident excitation. We use
the T-matrix method to evaluate the eigenmodes of the
time-varying metasurface. For details on the method,
see Sec. 5 in Supplementary Material [24]. Combining
Eqs.(S29) and (S30), we write

Asca =

Û− T̂(s)(ω) ·
∑
R′ ̸=0

Ĉ
(3)

(−R′)e−jk||·R′

−1

·T̂(s)(ω) ·Ainc .

(3)

Next, we use Ainc = 0 in Eq. (3). Therefore, we can
rewrite Eq. (3) asÛ− T̂(s)(ω) ·

∑
R′ ̸=0

Ĉ
(3)

(−R′)e−jk||·R′

 ·Asca = 0 .(4)

Finally, for Eq. (4) to have a non-trivial solution i.e.,
Asca ̸= 0, we arrive at the condition
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∣∣∣∣∣∣Û− T̂(s)(ω) ·
∑
R′ ̸=0

Ĉ
(3)

(−R′)e−jk||·R′

∣∣∣∣∣∣ = 0 . (5)

Here, the values of ω and k|| for which Eq. (5) is satisfied
correspond to the location of the eigenmodes of the time-
varying metasurface. Note that instead of calculating the
determinant D, we minimize the lowest singular value
Smin of the matrix in Eq. (5) to identify the eigenmodes
of the system. The metric of the Smin is advantageous
over that of the determinant (see Sec. 6 in Supplementary
Material [24] for more details).
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