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ABSTRACT
The mostly subterranean nature of district heating system pipelines 
makes pinpointing any occurring leakages a challenge. Airborne 
thermography offers a means for widespread monitoring, allowing 
thermal anomalies to be identified within multitudes of infrared 
images. This paper details a program developed to automate the 
entire image analysis process using mainly open-source software. 
Thermal images are acquired via unmanned aircraft system (UAS), 
pre-processed, and georeferenced individually or combined to 
orthomosaics. The search space is minimized to areas around the 
pipelines. Regions of interest are determined by image segmenta-
tion via tailored triangle histogram thresholding. The majority of 
resulting false alarms are removed by comparison with character-
istic traits and results classified by their severity. The algorithm is 
applied to images newly acquired in Germany as part of a case 
study. The implemented methodology allows for a reduction of 
between 92 and 99% of thermal anomalies to a manageable 
amount of potential leakages for network operators to view. The 
use of orthomosaiking software in this context, though helpful in 
coalescing data, is found to lack robustness, precision and therefore 
reliability. Despite some limitations, the developed program is able 
to confidently detect and categorize leakages of varying severity 
and can be used directly by network operators. Future research will 
focus on further data pre-processing to eliminate thermal drift and 
remove the remaining false alarms, which mostly pertain to com-
mon urban features.
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1. Introduction

District heating systems (DHSs) are networks of underground pipelines, which distribute 
thermal energy in the form of hot water or steam to end users (Krist et al. 2017, Werner  
2017). They are capable of incorporating new energy sources and therefore play an 
important role in the integration of renewables in the heat sector (Krist et al. 2017, 
Werner 2017). Compared to local heat generators, DHSs are eco-friendlier, highly energy 
and resource efficient, provide means for easy pollution control, and are accompanied by 
a reduced administrative effort (Krist et al. 2017, Friman et al. 2014).
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However, after decades of use, such subterranean pipelines fatigue. Leakages develop 
owing to corrosion, the deterioration of insulation material, or motion in the ground 
(Olsson 2001). If left unattended, these leakages can turn into public safety hazards, 
eroding the surrounding soil and causing the ground to collapse (Friman et al. 2014). 
The results include damages of considerable cost to infrastructure, the environment, 
involved personnel, and system efficiency (El-Zahab and Zayed 2019). Any loss of energy 
or fluid with such a potentially catastrophic impact needs to be mitigated.

Effective monitoring and maintenance are key to ensuring these systems stay efficient 
and safe. The subterranean nature of the networks, however, complicates the matter. In- 
and outlet flow sensors can generally identify system changes, but pinpointing exact 
leakage locations becomes a difficult and cost-intensive undertaking when the pipes 
need to be dug free for inspection (El-Zahab and Zayed 2019, Friman et al. 2014). 
Therefore, various alternatives for large-scale network monitoring have emerged, includ-
ing the use of remote sensing and infrared thermography. This method is based on the 
premise that a pipe leakage causes an increase in temperature at the surface above, which 
may then be detected as an anomaly within thermal images (Axelsson 1988). However, 
manually screening the vast number of images resulting from such an aerial thermo-
graphy process would be extremely laborious and time-consuming for network operators 
(Friman et al. 2014). As a result, some researchers have already presented methods for 
automated analyses of thermal images and leakage detection.

1.1. Related work

After Axelsson (1988) and Ljungberg and Rosengren (1988) suggest using airborne 
thermography for large-scale monitoring of district heating systems, Friman et al. (2014) 
are the first to describe a method to automatically analyse images and detect pipeline 
leakages. They acquire thermal infrared (TIR) images via manned flight and georectify 
them using recorded GPS and inertial measurement unit (IMU) measurements. The search 
area is minimized by masking the images with a network blueprint and additional buffer 
in geographic information system (GIS) format. The anomaly detection problem is solved 
by identifying those pixels which exceed a certain threshold of the pixel intensity prob-
ability distribution. False alarms caused by buildings are removed through segmentation 
via watershed transform. Berg, Ahlberg, and Felsberg (2016) expand on this methodology 
by extracting and evaluating distinguishing image features and using machine learning to 
classify these previously found detections as true or false. Building segmentation is 
improved upon by implementing a building mask created using OpenStreetMap (OSM).

Xu et al. (2016) implement saliency computation models based on colour, orienta-
tion, and intensity features on TIRs acquired during manned flights. Georeferencing 
the images allows the search space to be minimized to areas close to the DHS. This is 
achieved with a network blueprint in GIS format manually buffered using the com-
mercial software ArcGIS. Saliency maps of the masked TIR images are created with 
a simplified Itti model and leakages detected by threshold segmentation. Zhong et al. 
(2019) expand on this method by fusing a local and global saliency map to include 
a comparison to local pixel neighbourhoods as well as overall feature rarity. The 
authors use maximum entropy segmentation to identify leakages in the final saliency 
map. Thermal images are acquired during both manned and unmanned aircraft 



system (UAS) flights. When pipeline GIS data is unavailable, the authors assume the 
DHS to be located underneath roads and segment streets from RGB images as an 
alternative.

Sledz, Unger, and Heipke (2020) manually create orthomosaics1 from UAS-based 
images using the software Agisoft Metashape and mask these with buffered DHS GIS 
data. Anomalies are detected as elliptical thermal hot spots by means of an Laplacian of 
Gaussian (LoG) blob detector. Blobs found by the detector are divided into regions and 
the temperature difference from warmest region to surrounding area is thresholded to 
identify which depict a leakage.

Hossain, Villebro, and Forchhammer (2020) demonstrate a machine learning approach 
on images acquired via UAS to find potential leakages. A region extraction algorithm is 
used for pre-procesing, which detects warm regions and large gradients in an image, then 
combines both to an output image. A human operator identifies and labels the thus 
identified regions as leakages or not using ground truth data and expert knowledge. 
Some images are subsequently used to train a deep learning convolutional neural net-
work and several different conventional machine learning classifiers.

1.2. Aim and scope

This paper showcases novel implementations of various methodology to the end of 
identifying leakages in district heating networks. The problem at hand is solved while 
simultaneously focusing on automation and generalization of the thermal image analysis 
procedure. The work thereby features a number of contributions to the fields of remote 
sensing, automation and image analysis.

While the above mentioned papers present different approaches, few elaborate on the 
extent of achieved automation or any actual software created for a widespread applica-
tion. Oftentimes, third-party software is mentioned to have manually been used for steps 
like georeferencing or adding buffers. Some steps are not detailed at all and the means of 
creating and cost of running any mentioned or built software is unknown. Neither source 
code nor any thermal image data sets are provided, thus prohibiting tests, comparisons, 
or improvements. All these factors substantially impede the use or recreation of these 
methods and make the adoption of the proposed methodology near impossible.

The first contribution of this work therefore lies in the detailed description of a fully 
automated, implementable and replicable program for DHS leakage detection. In contrast 
to related work, the source code will be provided with the publication of this paper and is 
available on Zenodo (Vollmer, Volk, and Vogl 2023). The focus of the program design lay 
on using mostly open-source software to allow as large a user-ship as possible. This new 
form of implementation requires novel adaptations as well as the introduction of new 
methods.

Furthermore, this paper showcases various new methodological implementations. 
Following the example of only the most recent papers in this field, the thermal images 
are acquired via UAS. This is preferable to manned aircraft because flight planning is much 
more flexible, cheaper, and the process yields images with a higher ground sampling 
distance (GSD) (Sledz, Unger, and Heipke 2020). However, the close proximity to the 
ground complicates the georeferencing process because buildings have a more promi-
nent distortive effect. The authors of the previously discussed work do not detail the 



means by which they realized georeferencing or did not automate the process at all, 
and they do not address the problem of said distortions.

Another key contribution of this work therefore lies in the incorporation of three 
different approaches of handling the georeferencing problem automatically, varying in 
complexity and precision. The first is an individual image georeferencing method by 
means of affine transformation matrix using global navigation satellite system (GNSS) 
and IMU data and its adaption to remove general distortions by including building and 
topography data. Additionally, a novel indicator for false attitude recordings is identified 
and according automatic sorting out developed. This allows for new insights to be 
gathered concerning best practice rules for image acquisition via UAS. The other two 
implemented georeferencing methods demonstrate and compare the utilization of open- 
and closed-source photogrammetry software for automated orthomosaic generation. 
Additionally, because photogrammetry software itself can only handle input images of 
high quality, another contribution of this work is the development of an automatic 
thermal image quality indicator using the Canny edge detector. Finally, the novel use of 
these three different georeferencing approaches in parallel allows for a first direct 
comparison between these methods in their automatically implemented form.

Further contributions of this work revolve around the leakage identification itself. 
Previously proposed detection methods in the afore-described papers either failed to 
yield satisfactory results on the given real-world data2 or proved to be inapplicable owing 
to a temperature drift in the given case study images. Therefore, the focus of this work lay 
in identifying a generally applicable method independent of data drifts and without 
requiring extensive preliminary effort. This new method for image segmentation imple-
ments the triangle histogram algorithm for thresholding as well as essential adaptions for 
its use in this new application. False positives are sorted out based on a novel combina-
tion of three characteristic leakage traits, as separately described in aforementioned work. 
Additionally, a simple means of result classification by severity via relative temperature 
difference is introduced. Lastly, the results are automatically prepared for user-friendly 
reviewing.

The automation of these aforementioned steps in their entirety as a focus of this work 
limits the required user interaction to the beginning (for data input) and the end (for 
result review). The program and method functionality are demonstrated and discussed 
using newly acquired images for a case study in Germany, which were used as a basis for 
design and testing. Contrary to predecessors and in the spirit of open data exchange, 
a dataset of thermal images will be made publicly available and can be viewed on Zenodo 
(Vollmer, Volk, and Vogl 2023).

1.3. Outline

The rest of this paper is organized as follows. Section 2 discusses the required data for the 
program to function. This includes details on the thermal image acquisition process, 
required prevalent conditions, and necessary auxiliary data. Section 3 describes the five 
key methodological steps implemented for leakage detection within the framework of the 
developed program. Section 4 details its application on images of a new case study, while 
Section 5 discusses the results and limitations. Section 6 concludes the paper with 
a summary and outlook.



2. Thermal image acquisition and auxiliary program data

The required data for program usage are thermal images acquired via UAS, GIS data of 
the DHS, and surface information, which include a level of detail 1 (LOD1) model of 
buildings in the area and a digital terrain model (DTM).

2.1. Thermal images and their acquisition

Image acquisition via UAS is preferable as it enables a flexibility, cost and ground 
sampling distance unobtainable by manned aircraft (Sledz, Unger, and Heipke 2020). 
Depending on the size of a DHS, it can take several days and the subdivision of the 
network into multiple regions to cover the entire area (Friman et al. 2014). Certain 
conditions must prevail during all flights to ensure sufficient image quality. These can 
be summed up as follows:

● Image acquisition should take place at night, preferably a few hours before dawn so 
as to ensure most irrelevant heat sources caused by sun and people have been 
eliminated (Friman et al. 2014, Heipke and T¨odter 2020).

● Outdoor air temperatures should not exceed 10°C. In the northern hemisphere, the 
acceptable time frame is given as October to April (Heipke and T¨odter 2020).

● The ground should be free of foliage or snow to give the thermal camera an 
unhindered view  of the ground above the DHS. Not only may leakages otherw ise be 
overlooked, but also snow reflectance can falsify the thermal imagers’ tempera-ture 
recording (Friman et al. 2014, Heipke and T¨odter 2020).

● It should not be snowing, raining, or foggy during image acquisition and wind 
speeds should be comparatively low.3 Water particles absorb some of the IR radia-
tion before it can reach the thermal camera, resulting in grainy images lacking 
contrast and detail. Long-lasting rain and high w inds cause the ground surface to 
cool down and puddles to form, which falsify the recorded temperature data (Friman 
et al. 2014, Heipke and T¨odter 2020).

Several characteristics of the DHS in question need to be considered as well. The 
pipes cannot be placed too deep below the surface for thermography to work 
reliably. Heipke and T¨odter (2020) set the limit at 1 m and stress that the 
depth, just like the temperature of the transported medium, should stay 
constant throughout the system. Additionally, the method may not function 
reliably on unconventional types of pipe casings, meaning these must be 
tested in advance.4 Lastly, local laws pertaining to UAS usage on private or 
company property might call for special permits or prevent data acquisition 
in specific areas (Heipke and T¨odter 2020).

The recorded images must contain extractable thermal data and specific metadata 
such as a GNSS coordinate, flight height, camera parameters, and attitude information in 
the form of yaw, pitch, and roll angles of flight and gimbal. A fitting file format is therefore 
Radiometric Joint Photographic Experts Group (RJPEG) as these images contain thermal 
matrices with a temperature value for every recorded pixel.



2.2. Auxiliary data

Friman et al. (2014) already recognized the advantage of reducing the search space within 
the images to areas close to the DHS. It allows distant objects, which otherwise would 
cause false alarms,5 to be removed from consideration before leakage detection has even 
begun. This same step is therefore also implemented within the developed program and 
requires a blueprint of the pipeline network in GIS format, specifically a shapefile. These 
are obtainable from the local authorities or network operators (Friman et al. 2014).

This step can only be performed if the images themselves are georeferenced in advance. 
Georeferencing refers to the conversion of the image coordinate system to a chosen geo-
graphic coordinate system, thus correctly placing an image on a map (Jayapalan et al. 2021). 
Images acquired during UAS flights suffer from high amounts of relief displacement 
(Whitehead and Hugenholtz 2014), which is the distortion and positional error induced by 
objects of different heights in the camera’s field of view (Government of Canada 2015). To 
mitigate this somewhat, building and topography data are taken into account. A LOD1 model 
of surrounding buildings should be provided in shapefile format, topographic information in 
the form of a DTM of points and corresponding ground elevation values in text file format.

3. Methodology

Using a similar methodology to Friman et al. (2014)’s, the leakage detection 
process is divided into five main steps within the program.

(1) preliminary image processing
(2) image georeferencing and/or orthomosaic generation
(3) search space minimization to areas above and around the DHS
(4) thermal anomaly detection via image segmentation
(5) leakage identification by reduction of false alarms

The procedure is visualized as a flowchart in Figure 1. The acquired thermal images are 
analysed in sets, which are groups of images collected in one flight. Pre-processing occurs 
both in preparation for the subsequent step as well as for later leakage identification. The 
images are placed on a map or alternatively combined to generate orthomosaics using third- 
party software. By overlaying these with a DHS pipeline blueprint the search space can be 
minimized to areas above and around the network, thus excluding those of no importance 
and ensuring considerably fewer false alarms ensue. Areas of interest within the resulting 
masked images are defined as those pixels that exceed a specific threshold. These thermal 
anomalies are evaluated by size, shape, and temperature to identify those which are true 
leakages and classify the results into three categories of severity. The leakage positions 
are additionally evaluated.

The program is designed to run on a ground workstation with at minimum 8 GB of RAM, an 
Intel i5 processor, and either a Windows 10 Pro or Linux Ubuntu 22.04 operating system. For 
the purpose of automation, the open-source programming language Python is utilized in the 
versions 3.6.7 and 3.9.1. Python has several advantages for its use in this application, such as its 
widespread availability, large support network, and variety of third-party modules in addition 
to extensive support libraries. Other programs are also easily accessible via Python, such as the 



Figure 1. Leakage detection procedure implemented in the developed Python program.

aerial image mapping tools OpenDroneMap (ODM) (OpenDroneMap 2020) and Pix4D (Pix4D  
2020) that are employed in this case (Section 3 2). The code can be viewed in full on Zenodo 
(Vollmer, Volk, and Vogl 2023).

It is run via command line and utilizes user prompts to attain all relevant inputs, 
analysing as many sets of images as desired. The final results are saved into excel files 
and different diagrams depict the stages of the process. Users therefore need only 
interact 



with the program at the beginning of a run-through by providing all required data. The 
results can then be viewed at the end to determine which identified leakages merit closer 
observation or even direct intervention.

3.1. Image pre-processing

Preliminary image processing encompasses the calculation of the raw thermal data, the 
definition of a set’s temperature limits in preparation for subsequent steps, as well as 
a quality assessment of the entire set. The temperature data is imperative for later leakage 
identification and can only be obtained from the original images.

For later data conversions, a credible temperature range for each set of images is 
determined. The maximum and minimum of all extracted values cannot represent this 
range because thermal cameras can incorrectly record a temperature given adverse 
surrounding conditions or specific material types.6 Relative minimum and maximum 
temperature limits of a set of images are instead defined using the arithmetic mean μ 
and standard deviation σ of all temperature values: 

Tsetminrel
¼ μset � 3σset (1) 

Tsetmaxrel
¼ μset þ 9σset (2) 

In a normal distribution, the area between μ �  3σ and μ þ 3σ encompasses 99.7% of all 
data (Merziger et al. 2013). Although a histogram of typical set values does not directly 
equate such a distribution, they are akin in shape. Therefore, these values are chosen as 
initial limits. The upper limit is extended and defined by triple the distance to the set’s 
mean temperature value because the usage of this data for leakage detection purposes 
inherently requires a focus shift to higher temperature ranges. Leakages may display 
a more than 20°C higher temperature in comparison to their surroundings (Friman et al.  
2014) and thus extend well beyond such an average set temperature.

Due to the vast amount of data in a set, the values of all temperature matrices cannot be 
handled simultaneously. Instead, the mean and standard deviation are computed for each 
thermal image individually and then combined. The combined arithmetic mean of all tem-
perature matrices is simply the average of all single image means. To calculate the combined 
standard deviation, Burton (2013)’s code using analysis of variance is applied. Owing to an 
extensive image overlap, not all image pixels are considered equally. However, the mathema-
tical error is minor and the assumption of using all temperature data still valid for determining 
a general range of relevant values.

Lastly, the general image quality of a set is evaluated because it defines the way in 
which georeferencing can be implemented. An analysis of both photogrammetry soft-
ware shows that low quality images do not yield usable results (Figure 2). Low quality 
hereby refers to having few distinguishable features, in other words being particularly 
grainy or depicting large amounts of vegetation. Resulting mosaics are blurry and contain 
large gaps of data missing (Figure 2(d)).

The quality of a set is determined using the Canny edge detector, an algorithm that can 
optimally balance precise edge localization and noise influence (Distante and Distante 2020, 
University Consortium for Geographic Information Science 2020). It returns a binary image 
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Figure 2. Comparison of mosaics generated from high and low quality images. Quality is defined by 
the existence of distinguishable features or lack thereof and visualised using the Canny edge detector 
algorithm applied to the images.

displaying the dominant edges as white pixels, the pixel count of which ultimately defines set 
quality. The algorithm is applied to every image (Figure 2(c,f)) to determine a set’s mean edge 
pixel count. Each set is then classified as being of either high or low quality via thresholding. 
The optimal threshold for this case study was found to be 4000 pixels.

3.2. Image georeferencing and orthomosaic creation

In order to minimize the search space to areas of relevance, the images are georeferenced 
first by positioning them on a map and thus linking internal coordinate system to 
geographic counterpart (Leidner 2016). The step is crucial to overall accuracy, as only 
precisely positioned images allow for exact masking results. The difficulty, as mentioned 
in Section 2.2, lies in mitigating the relief displacement and geometric distortions inherent 
in remote sensing applications (Government of Canada 2015). Three methods are imple-
mented within the program: (I) georeferencing of individual images, (II) using aerial image 
mapping software WebODM (OpenDroneMap 2020) and (III) Pix4Dmapper (Pix4D 2020). 
Both applications create mosaics of several images at a time while simultaneously 
removing the inherent distortions in a process called geo- or orthorectification (ArcGIS 
Pro 2021a, University Consortium for Geographic Information Science 2020). Since the 
mapping software requires high image quality for successful processing, the first method 
comes into play when the images have a low quality.
The low quality images are georeferenced individually by calculating an affine transforma-
tion matrix for each (Garrard 2016). Applying this matrix will shift, scale, and rotate the 
image 



raster data to its correct position within a chosen coordinate reference system (CRS) (ArcGIS 
Pro 2021b). It can be calculated with a set of geographical coordinates, the GSD, and the 
drone heading angle (Garrard 2016). For this, the following parameters are extracted from the 
image metadata: focal length f , sensor width sw, image width iw and height ih, flight 
height h, longitude lon and latitude lat of the image centre point, and yaw or so-called 
heading angles κ of both unmanned aircraft (UA) and camera. The intrinsic camera 
parameters shown in Figure 3 (left side) are used to calculate the size of the image’s 
footprint gw and gh on the earth’s surface using the following equations (Pix4D 2019): 

GSD ¼
sw � h� 100

f � iw

mm
pxl

� �

(3) 

gw ¼
GSD� iw

100
½m� and gh ¼

GSD� ih
100

½m� (4) 

The coordinates of each image corner are calculated by combining an image’s footprint with 
its centre point coordinate’s easting and northing values7 and heading angle κ8 as depicted in 
Figure 3 (right side). The following trigonometric equations (Merziger et al. 2013) exemplify 
the procedure for the upper left corner: 

d ¼
gw

2

� �2
þ

gh

2

� �2
r

and α ¼ arctan
gh

gw

� �

(5) 

x0UL ¼ EastingUL ¼ Eastingcenter � d � cosðα � κÞ (6) 

y0UL ¼ NorthingUL ¼ Northingcenter þ d � sinðα � κÞ (7) 

By calculating the coordinates of the other three image corners in analogous fashion, 
Python’s Geospatial Data Abstraction Library (GDAL) (GDAL/OGR contributors 2022) 
is capable of constructing the affine transformation matrix.
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Figure 3. Visualisation of the image parameters required for georeferencing. Left side: 
parameters relevant for calculating the GSD and image footprint. Right side: combination 
with the UA heading angle to calculate ground coordinates of the image corners (Pix4D 2019).



Some adjustments are necessary for the application of this method on images 
recorded via UAS. Relief displacement caused by the small flight height is prominent in 
images recorded above buildings and mitigated by subtracting the building height from 
the flight height when the centre coordinate lies above a building. A LOD1 model of the 
buildings is used for this purpose. Additionally, ground elevation information from a given 
DTM is incorporated, as terrain following was not part of the flight program.

A fail-safe is included to account for incorrect flight attitude, as the recorded angles are 
not always accurate (Prof. Grant Petty, pers. comm., April 14, 2021). As both the UA and 
camera save a yaw angle per image, inaccurate measurements can be identified by a large 
delta between the two.9 In these cases, the images are removed from consideration 
because the calculated corner points lead to incorrectly placed images.

Alternatively, orthomosaics are generated from high quality thermal images by either 
or both WebODM (OpenDroneMap 2020) and Pix4Dmapper (Pix4D 2020). These are 
chosen owing to their capacity for automation and advantages (Table 1).

The images are divided into groups (by size and proximity to surrounding buildings) prior to 
processing. For WebODM, an error handling mechanism is included to increase the general groups 
of between 15 and 30 images to a greater size if no usable mosaic is generated from the original 
group. The groups for Pix4Dmapper are generally larger at around 30 images as those result in the 
highest quality mosaics. It should be noted that image groups cannot be extended endlessly as the 
resulting mosaics will display a too low resolution and quality for effective leakage detection 
(Friman et al. 2014), which is why the fail-safes are limited in their extension capabilities.

WebODM requires greyscale equivalents of the raw thermal images as inputs, which are 
calculated using the relative set temperature limit defined during pre-processing (Section 3.1). 
This is necessary because, unlike Pix4Dmapper which can generate thermal index maps, 
WebODM is incapable of creating orthomosaics from the thermal RJPEG themselves.

3.3. Minimizing the search space

Georeferenced images and orthomosaics are overlaid with the network blueprint in GIS format 
to remove pixels that are too far away from the DHS. Overlaying image raster data with 
network pipeline vector data is achieved with Python’s ‘Rasterio’ (Gillies et al. 2013), a library 
also used to extend the DHS shapefile by a 3.5 m buffer on all sides. Figure 4 exemplifies the 
described process using the georeferencing results of the previous step. The WebODM mosaic 
data are finally converted back to thermal values using the same relative set temperature limits 
and all other image and mosaic data are clipped to the same range.

Table 1. Overview and comparison of photogrammetry software WebODM and Pix4Dmapper (infor-
mation from OpenDroneMap [2020], Pix4D [2020], Pix4D [2021], and , Groos et al. [2019]).

WebODM Pix4Dmapper

Relevant 
inputs

JPEG images including all original metadata JPEG, RJPEG images including all original metadata

Useful 
outputs

orthomosaic orthomosaic, thermal index map

Installation 
effort

high - prerequisites: Docker, Git, if 
Windows: 10 Pro OS

medium - prerequisites: Pix4Dengine, Python version 
3.6.7

Python 
access

directly indirectly - via Pix4Dengine

Cost none high - licenses for Pix4Dmapper (1500 for research 
purposes) and -engine



Figure 4. Comparison of masking and post-processing procedures of individual image 
georeferencing (first), Pix4Dmapper (second) and WebODM.

3.4. Detection of thermal anomalies

The masked images or mosaics are segmented to find pixels of interest and thus 
thermal anomalies. Similarly to Friman et al. (2014), pixels of interest are hereby 
assumed to reside in the upper tail of a histogram of all values. Instead of choosing 
the threshold as an upper percentile at random, the triangle threshold histogram 
algorithm is implemented to identify a fitting limit. Owing to a temperature calibration 
drift within the case study data, the method cannot be used to identify an overall set 
threshold and is instead repeated for each individual image. Figure 5 exemplifies this 
non-linear drift in a dataset of case study images, showing an increase of temperatures 
without cause.

The algorithm uses the hypotenuse that links the histogram peak P1 to the right-side 
edge P2 of the set temperature range (Figure 6). The longest orthogonal connection dmax 

between hypotenuse and histogram bin is determined iteratively and identifies the 
threshold as the corresponding bin’s temperature value (Zack, Rogers, and Latt 1977).

Here, an adjustment is made to account for histograms consisting of multiple distinc-
tive peaks when large uniform areas of different temperatures are depicted. This can 
happen when a building and street take up near equal areas within an image. The peak is 
then not simply defined as the bin of maximum height, but instead as the warmest 
amongst all distinctive local maxima. Only if no other peaks of considerable size are 
detected is the bin with the maximum percentage selected.

Experimental analyses showed that the threshold may at times be too conservative, 
choosing too many pixels as being of interest. This can happen in very varied images, 
which include a broad range of temperatures occurring multiple times. For this reason, 
the pixel percentage of the chosen threshold bin is taken into account. If the percentage 
exceeds 1%, the threshold is moved further to the right to a bin that does not exceed said 
experimentally determined limit. The Appendix A exemplifies these described amend-
ments to the traditional triangle histogram thresholding method, thus demonstrating the 
reasons for how it is tailored to match the specific requirements of thermal leakage 
detection in the urban context.



Figure 5. Temperature drift in a case study set, with acquisition from top right to bottom left. Warm 
areas do not stem from underground heat (SWM).

Figure 6. Visualisation of the triangle histogram thresholding method and involved parameters (Zack, 
Rogers, and Latt 1977).



The described method results in an array for each image consisting of pixels 
labelled according to their relation to the found threshold. The pixels of interest are 
grouped to regions of interest. This is accomplished by means of Python’s ‘scikit- 
image’ (Van der Walt et al. 2014), a library that calculates various parameters for 
pixels with identical labels. First, the labelled arrays are assessed to determine 
whether more than one region of interest exists by thresholding the so-called extent 
(ratio of labelled pixels to all within their bounding box). If the pixels are all in the 
same area, they are said to comprise a single region, while sparse and widely spread 
out pixels are recognized as multiple clusters. The clusters are identified using the 
flood fill algorithm. Since the algorithm only connects direct neighbours, small 
regions are additionally joined with larger ones if they are in close proximity to 
one another.

3.5. False alarm removal

Even after search space minimization and segmentation, many false alarms can be found 
amongst the detected thermal anomalies. Therefore, only those anomalies that satisfy 
specific size, form, and temperature constraints are classified as leakages.

(1) Size: A visual analysis of the thermal images and correspondence with local
municipal utilities companies show  that very small thermal anomalies10 cannot
represent actual pipeline leakages and are therefore sorted out.

(2) Form: The form constraint is defined by elliptical or circular shape.11 The thermal
anomaly should, to a certain degree, exhibit such a form to be considered
a leakage. The anomaly’s centre pixel coordinate, major and minor axis lengths,
and rotational angle are calculated to define the ellipse’s size, shape and orienta-
tion (Merziger et al. 2013). The ratio of anomaly pixels to the amount constituting
the ellipse is thresholded w ith an experimentally found limit to determine which
thermal hotspots can be interpreted as leakages.

(3) Temperature: True leakages are identified in a comparison of anomaly temperature
to its surroundings.12 A ring is constructed at a distance around an anomaly to
calculate the average temperature of the surrounding area. The anomaly tempera-
ture is defined by the mean of all pixels in small hotspots, the w armest 50 in
medium-sized, and the top 100 pixels in large anomalies. If the temperature
difference exceeds 5°C13 the anomaly is declared a leakage.

The identified leakages are categorized as either potential, definite, or critical depending 
on the severity of said temperature difference. Potential leakages have a temperature 
delta between 5°C and 10°C, definite ones display a difference of 10°C to 15°C, while 
critical leakages are defined as exceeding the 15°C mark.

To remove redundancy and give insight into further potential false alarms, a location 
analysis is preformed. The leakage positions are compared to surrounding buildings as 
well as each other. This helps determine whether a found region of interest is situated on 
a building roof (e.g. caused by faulty insulation or a warm chimney) or if any duplicates are 
present (e.g. the same thermal anomaly is displayed within multiple subsequent images). 
Additionally, anomalies in close proximity to a building may be caused by vents or 



entrances (Friman et al. 2014). To identify leakages on top of or close to buildings, the 
coordinate of each leakage centre point is compared to the buildings LOD1 model.

In theory, the procedure works well. However, practical application has shown the 
calculated geotransform (Section 3.2) to lack precision, thus prohibiting the inclusion of 
this positional information in the leakage detection process itself. Appendix B exemplifies 
how in particular the calculated mosaic placement can deviate from its true positioning. 
Furthermore, true leakages may appear near buildings as pipeline networks are often 
situated in their close proximity (Friman et al. 2014). Therefore, this information is 
provided as supplementary material to the list of leakages to aid in facilitating the result 
evaluation.

4 . Results

4.1. Case study description

The case study examines parts of the DHS of suburban areas close to Munich in Germany. 
It encompasses several regions including the towns Taufkirchen, Ottobrun, and 
Neubiberg, which in total contain approximately 43 km of DHS pipelines. The water 
transported by these pipelines ranges from 80°C to 130°C. The installation depth is 
unknown. The level of urbanization varies throughout the given region, being mostly 
suburban but including many parks and forests. The area was split into 49 zones, with 
every flight requiring approximately 25 min. Image acquisition took place at night-time 
between 7 pm and 6 am in December of 2019. The ambient temperature ranged from 2° 
to −5°C with maximum wind speeds at 20 km/h. The process produced approximately 
55,000 images.

While many of the resulting images have a high quality, there were some disadvan-
tages to the chosen time frame, which lead to low quality, temperature drift or the 
depiction of features that falsify leakage detection. In some images, snow coverage is 
distinctly visible while ongoing snowfall during the acquisition of others produced 
extremely grainy pictures. The comparatively early starting time allowed for a large 
amount of human activity, which resulted in the presence of people as well as vehicles 
exuding heat. These scenarios are exemplified in Figure 7. Such problematic occurrences 
naturally reduce the efficiency of any leakage detection algorithm owing to either an 
increase of false alarms or loss of valuable information.

(a) (b) (c) (d)

Figure 7. Select case study TIR images examples of high and low quality showcasing various aspects of 
image acquisition.



DJI’s Matrice 600 Pro UA was utilized for nearly fully automated image acquisition. The 
routes for image acquisition were pre-programmed into the control software and only 
required a human operator for takeoff. The UA’s flight height was consistent at 60 m 
above the starting point. An image overlap of approximately 88% was achieved. The 
camera technology was provided in form of the Zenmuse XT2, a combination of FLIR’s 
Duo Pro R thermal and visual camera and DJI’s gimbal. The thermal camera contains an 
uncooled VOx microbolometer and therefore works in the long-wavelength infrared 
(LWIR) range between 7.5 and 13.5 µm. It has a focal length of 13 mm, a sensor width of 
10.88 mm, and a spatial resolution of 640 × 512 pixels. (FLIR Systems, Inc. 2017, SZ 
DJI Technology Co. Ltd. 2018a, 2018b)

The thermal camera can output images in JPEG, TIFF or FLIR’s own RJPEG file format 
(FLIR Systems, Inc. 2017). Because RJPEG contains extractable thermal data saved to each 
image pixel, they were chosen as the preferred output. Every image stored all relevant 
metadata including the camera parameters, GNSS coordinate, relative height, and posi-
tional angles. It should be noted that the recorded absolute altitude values were 
incorrect, as they placed the images below the ground. For this reason, the relative 
values were utilized in combination with a DTM. Ordinary RGB images (in JPEG format) 
were recorded as well, although they are not utilized. Both the DTM and LoD1 model 
were provided by the city of Munich.

4.2. Case study results

Four sets out of the 49 (Figure 8) were evaluated to demonstrate the program’s function-
ality, allude to its effectiveness, and discuss potential for improvement. They were chosen 
for the presence of confirmed ground truth data and varying image quality (Table 2).

Applying the developed leakage detection algorithm to the four select sets lead to the 
results given in Table 3. Between 92 and 99% of false alarms were sorted out using the 
various methods described in Section 3.5. The remaining false positives were mostly 
found to stem from common urban features, such as warm vehicles, buildings or 
manholes.14

Figure 8. Locations of four case study sets.



Individual image evaluation leads to the largest amount of detected leakages, mainly 
due to the high image overlap causing regions of interest to be identified multiple times. 
The leakage location evaluation helps determine these cases and remove duplicates. 
A comparative analysis of leakage groupings shows the chosen methodology to be 
effective in grouping together true positives, meaning identical thermal anomalies.15 

The false positive rate, in other words the amount of leakages defined as being 
a replica although they are not, equalled approximately 8% in both mosaics and indivi-
dual images. The location information also gives insight into false alarms that are caused 
by buildings. An evaluation of the computed leakage locations showed that thermal 
anomalies close or above buildings were correctly found in 58% of cases within mosaics 
and 68% within single images. Of the anomalies determined to be in proximity to 
buildings, a small percentage16 was found to stem from objects close by (such as vehicles) 
instead of the building itself.

This requires different computational effort depending on the method involved. Single 
image georeferencing takes the least amount of time and depends solely on the amount 
of images in a set. Orthomosaic generation is more time-intensive owing to the need to 
access the third party software. WebODM outstrips both alternatives by far because of the 
included fail-safe mechanism, which reruns faulty image groups.

5. Discussion

The results of the developed leakage detection algorithm were compared to a manual 
assessment of the select case study sets, an overview of which is given in Table 4. This 
manual evaluation was performed on a mosaic created from all images within a set, as 
little actual ground truth data was available. The algorithm returns only a small portion of 
the manually identified regions of interest, the reasons for which are provided in last row 
of Table 4.

In approximately 70% of the cases (denoted by 'ΔT‘) manually defined areas of interest 
were detected by the algorithm, yet sorted out owing to a low temperature difference to 
their surroundings. The vast majority of manually identified thermal hotspots therefore 
did not differ enough from their setting to be classified as leakages. Almost 15% of the 
visually identified leakages (denoted by 'mask’) were eliminated from consideration due 
to their increased distance from the DHS pipelines. The algorithm is therefore found to 
greatly support human analysis by removing those manually identified regions which do 
not fulfil key leakage criteria.

The other missed leakages shed light upon two shortcomings of the leakage detection 
algorithm in its current implementation. The first is caused by the automation of the 
georeferencing and mosaicking step (denoted by 'no mos‘or 'mos wrong’), the second by 

Table 2. General information on the four select case study sets.
set # 1 2 6 27
date 02.12. 03.12. 02.12. 11.12.
time 11.15–11.50 pm 12.05–12.40 am 10.00–10.45 pm 10.30–11.00 pm
image count 875 868 982 640
Canny pixel count 8250 10706 8444 2163
quality high high high low
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the thresholding method being applied individually to images and mosaics (denoted by 
'Tth’) due to the mentioned calibration drift in the case study sets (Appendix A).

Automating the georeferencing step – be it as orthomosaics or individually – means 
not all images can be processed. Table 5 shows the extent of this fact. As discussed in 
Section 3.2, some images include incorrect heading angles and must therefore be 
removed from consideration during individual georeferencing. Owing to the high 
image overlap of nearly 90%, this only poses a problem when large amounts of con-
secutive images fail the angle evaluation – an extremely rare situation (“single” columns 
in Table 5). Figure 9 depicts the source of most incorrect angles: they occur when the 
UA abruptly changes direction. This observation can be used as a newly identified 
best practice rule and should be taken into account during future image acquisition and 
flight planning to ensure the usability of all images.

This is more problematic in the automated mosaicking process. Both WebODM 
and Pix4Dmapper were at times found to fail to generate mosaics, leading to entire 
image groups being passed over. This happens in WebODM despite implemented 
quality and failure control mechanisms when an image group still yields no usable 
results after considerable size extension. In Pix4Dmapper, even extending 
a previously failed image group to double its amount of images may not yield any 

Figure 9. GNSS coordinates of all images in a case study set displayed on an OSM background. Images 
with incorrect heading angles are red.

Table 5. Comparison of the select case study sets illustrating the methodology- dependent amounts 
of unevaluated image data. Files refer to either mosaics or thermal images. Different file counts pertain 
to the originally given or planned number of files versus those resulting after georeferencing. 
Percentages are calculated in terms of images, although overlapping mosaics are not considered.

set # 1 2 6 27

method Pix 4D Web ODM single Pix 4D Web ODM single Pix 4D Web ODM single single

original file count 28 75 875 28 82 868 32 109 982 640
resulting file count 22 75 694 26 81 651 30 111 796 448
missing images 21% 0% 21% 7% 0.8% 25% 6% 0.9% 18.9% 30%
relevant missing images 21% 0% 0% 7% 0.8% 0.5% 6% 0.9% 0% 0.2%



Figure 10. Example leakages detected within the select case study image sets.

result and forces the original group to be skipped. This explains why the automated 
Pix4mapper software misses most images (Table 5) and one of the manually identi-
fied leakages in Set 1 (Table 4). While theoretically more adept at removing distor-
tions and image vignetting, evaluation of the case study datasets showed the 
georeferencing of both WebODM and Pix4Dmapper mosaics to be imprecise 
(Appendix B).

Despite all specified processing options, the mosaics sometimes failed to achieve 
high quality. In the selected image sets, the WebODM mosaics included holes or 
small areas missing in approx. 7% of the cases. Pix4Dmapper displayed the more 
serious peculiarity of sometimes producing near (approx. 17%) or completely 
(approx. 12%) unusable mosaics. While a cause for this might be the previously 
mentioned conflicting image metadata, it highlights the necessity for a more in- 
depth testing, particularly of Pix4Dmapper, to ensure the usability for applications 
such as leakage detection. Additionally, the importance of high image quality must 
be stressed: The optimal acquisition conditions described in Section 2.1 should 
always be adhered to. The comparative analyses of all implemented georeferencing 
methodology has shown the single image georeferencing process, while not as adept 
at removing distortions, to be the most consistent, robust and reliable. Moreover, 
due to the large number of images and various viewpoints of similar scenery, the 
scaling distortions do not weigh quite as heavily. It also requires the least processing 
time (Table 3).

The second shortcoming of the implemented leakage detection algorithm comes from 
the necessity to individually threshold images and mosaics due to the observed calibra-
tion drift (Section 3.4). While this individual segmentation method works well in detecting 
locally concentrated leakages of various sizes, it cannot identify more widespread variants 
that encompass large areas. Extending the algorithm to perform both individual as well as 
the combined thresholding demonstrated by Friman et al. (2014) could solve this problem 
and allow for the detection of long pipeline sections of interest. Any temperature drift 
similar to this case study’s would, however, cause a vast increase in false positives. 



Ultimately, an extensive analysis of the thermal camera is required to ensure such a drift 
does not occur during future acquisitions. Alternatively, calibration references such as 
black-bodies with known temperatures can be placed within the flight zone to calculate it 
(Prof. Grant Petty, pers. comm., April 14, 2021).

Owing to the algorithm design and non-automatic removal of duplicates as well as 
little actual ground truth data available, an exact comparison to methods from related 
work cannot properly be performed. However, despite the revealed problems, the imple-
mented program is capable of identifying the most critical and important leakage in the 
entire case study within Set 2, which ruptured two weeks after image acquisition. It was 
detected within all variations of the georeferencing process, characterized by a 36.4°C 
temperature difference to its surroundings, and therefore categorized correctly as critical 
in all cases (Figure 10(a)). Various smaller, potentially existent leakages were reliably 
identified as well (Figure 10(b)). Most importantly, the developed algorithm was shown 
to be capable of automatically evaluating thousands of images, detecting the important 
leakages and returning concise and easily manageable results completely autonomously.

Finally, some limitations of the program in its current form need to be addressed. For 
adequate functionality, thermal images must be acquired in a similar fashion as those of 
the case study. For instance, terrain following should not be implemented because the 
elevation data used to calculate the flight height would otherwise have an adverse effect 
and cause imprecision. Changes in flight height or choice of thermal camera affect the 
correctness of the thermal image quality assessment, buffer size around the DHS network, 
and false alarm removal by anomaly size and may therefore cause subpar functionality.

Incorporating building data into false alarm identification requires extremely precise 
georeferencing. Because none of the three presented methods can offer this to the 
desired extent, the location evaluation step could not be included in the overall process. 
Further enhancement is necessary to do so.

6. Conclusion

6.1. Summary

The aim of this study was to develop and demonstrate a simple, automated way for 
network operators to monitor and assess their DHSs. Aside from making use of the cost- 
and time-efficient UAS-based acquisition process, this meant the development of an 
program suitable for automated thermal image analysis. The designed software is func
tional, completely automated, and capable of correctly identifying leakages of varying 
importance. Considerable value was placed upon the development of a freely implemen
table program to ensure the program’s future usability and allow for effortless modifica
tions of both code and general methodology.

The developed algorithm comprises five fundamental steps modified for automation. 
The images are pre-processed, three variations of georeferencing are applied and com
pared, results are masked with the DHS blueprint, and thermal anomalies are identified 
within the minimized search space. Various false positives are sorted out based on 
characteristic size, shape, and temperature of thermal anomalies, and the final results 
are categorized as leakages of different severity. Lastly, information is supplied on leakage 
locations, their proximity to buildings, and potentially existing duplicates.



The results are presented in an easily comprehensible and transparent fashion using 
excel data sheets and the plotting of leakage locations on maps to give operators an 
effortless and quick overview. Additionally, the identification of identical leakages and 
anomalies in proximity to buildings can help reduce the amounts of remaining false 
alarms.

Result evaluation exposed two drawbacks of the algorithm in its current implementa-
tion, with suggestions for improvement discussed in Section 5. It highlighted the impor-
tance of capturing high quality images by adhering to best-practice acquisition rules 
(Section 2.1). The camera should be tested to ensure no discernible temperature drift 
occurs. Additionally, flight speeds or patterns should be altered to record correct heading 
angles and avoid sharp curves. In order to alleviate the misinterpretation of common 
urban features such as vehicles and people, it would be prudent to acquire images during 
the night and early morning.

6.2. Outlook

An important extension to a leakage detection program would be the inclusion of 
temporal analyses as described by Berg, Ahlberg, and Felsberg (2016). Repeating the 
image acquisition process after one or more years under similar conditions allows for 
a comparison to the initial state and gives further insight into the general network status 
and its degradation. Critical changes can be identified and initially overlooked leakages 
discovered (Berg, Ahlberg, and Felsberg 2016).

Additional insight can also be gained by integrating simultaneously recorded RGB 
images as suggested by Sledz, Unger, and Heipke (2020), which would allow for a parallel 
analysis of both thermal and optical images. For instance, it would be possible to remove 
common false alarms in the given case study data sets caused by streetlamps or 
manholes through their identification within the corresponding optical images. However, 
since the optimum time frame is image acquisition at night-time, the inherent RGB 
information that can be extracted from optical images will be limited.

Future work may also profit from the integration of network characteristics like age, 
repairs, material information, and pipeline depth. Including these can help improve the 
quality of leakage forecasts. Data gained from collaborations with local utility companies 
would also allow for more precise analyses by including any identified true ground truth 
information, something that studies so far lack.

One of the main gaps in current literature is a true comparison of already devel-
oped solutions. The lack of published thermal datasets and source code makes this 
impossible up to now. We hope that by sharing our data as part of this paper’s 
publication, the open-source approach will become common-place amongst these 
kinds of case studies and thus allow for genuine analyses and a collaborative exchange 
of knowledge.

Abbreviations

CRS coordinate reference system.
DHS district heating system.
DTM digital terrain model.



GDAL Geospatial Data Abstraction Library.
GIS geographic information system.
GNSS global navigation satellite system.
GSD ground sampling distance.
IMU inertial measurement unit.
LOD1 level of detail 1.
LoG Laplacian of Gaussian.
LWIR long-wavelength infrared.
ODM OpenDroneMap.
OSM OpenStreetMap.
RJPEG Radiometric Joint Photographic Experts Group.
SWM Stadtwerke München.
TIR thermal infrared.
UA unmanned aircraft.
UAS unmanned aircraft system.

Notes

1. Orthomosaics are georectified mosaics, meaning mosaics that are correctly mapped and have 
had their inherent distortions removed (ArcGIS Pro 2021a).

2. Preliminary testing showed saliency maps and LoG blob detectors to be ineffective or require 
the setting of multitudes of dataset-dependent parameters.

3. Heipke and T¨odter (2020) define 2 m/s as the maximum wind speed yet exceeded that limit 
frequently during their own image acquisition.

4. Heipke and T¨odter (2020) name the following as unproblematic: fibre cement, plastic, 
protective, steel, and flexible pipes, independent of overhead or underground placement.

5. For instance faulty building insulation, streetlamps, people, vehicles, and metal surfaces.
6. Metal objects, for instance, are depicted w ith much colder temperatures than are actually 

measured on their surface (Gade and Moeslund 2014).
7. Latitude and longitude are translated from the geographical coordinate system (unit:

degrees, minutes and seconds) into easting and northing values in a Cartesian CRS (unit: 
metres).

8. Ordinarily, complex angle transformations would be necessary to convert the recorded 
navigational attitude yaw , pitch, and roll to the photogrammetric equivalents’ omega, phi, 
and kappa used in georeferencing (Bäumker and Heimes 2002). These can be omitted here 
because the implemented 3-axis gimbal (SZ DJI Technology Co. Ltd. 2018b) stabilizes the UA, 
ensuring negligibly small roll and pitch angles (Prof. Grant Petty, pers. comm., April 14, 2021). 
Owing to nadir UA alignment, the yaw angle is directly assumed to be κ.

9. An 8° difference is experimentally determined as the threshold for the given UA Matrice 600 
Pro (SZ DJI Technology Co. Ltd. 2018a).

10. In the case of a UA’s flight height, a conservative threshold is chosen at 10 pixels.
11. This form is based upon Sledz, Unger, and Heipke (2020)’s observation that an elliptical shape 

best depicts leakages. Berg, Ahlberg, and Felsberg (2016) consider form as an important 
factor, but only take circularity into account as a feature for distinguishing leakages. However, 
as Friman et al. (2014) state, a leakage is not always perfectly round and may also be partially 
covered, making an ellipse the more obvious choice.

12. Berg, Ahlberg, and Felsberg (2016) propose a similar method of comparing the intensity of 
a hotspot and its surroundings. However, using temperature data has the advantage of 
enabling postliminary leakage categorization with empirical values.

13. Sledz, Unger, and Heipke (2020) define a delta of 5°C already sufficient to indicate a leakage.



14. Munich’s municipal utilities company SWM states some manholes may indicate DHS leakages 
and should therefore not be disregarded completed, although the majority are marked as 
false alarms in Table 3.

15. In mosaics approximately 85% and in individual images 96% of thermal hotspots.
16. 7% within mosaics and 10% within single images.
17. In the Universal Transverse Mercator (UTM) projection, zone ‘32N’ (denoting European

territory), and European Terrestrial Reference System 1989 (ETRS89) map datum.
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Appendix A

The following figures exemplify the amendments made to the basic triangle histogram 
thresholding method, showing why these are necessary in form of a cursory, visual ablation 
study. Each figure depicts in (a) a thermal image after mapping and masking, in (b) 
a distribution of the thermal data and threshold automatically selected by the thresholding 
method, and in (c) the results of applying that threshold to the image to obtain a binary 
matrix with white pixels being those of interest.

Figure A1 shows a regular thermal mosaic and its threshold, which is used without further 
changes to create the resulting binary image in (c). No amendments are necessary for the majority 
of images such as this one.

Figure A2 showcases an example where the standard choice of threshold lies between peaks, 
making an amendment necessary to choose the correct threshold according to peak distribution. 
Figures (d) and (e) display the effects of the methodological change on the choice of threshold and 
subsequent pixels of interest.

Figure A3 demonstrates a too conservatively chosen threshold and the implemented correction 
to mitigate the problem. Figures (d) and (e) display the effects of the methodological change on the 
choice of threshold and subsequent pixels of interest.

(a)

(b) (c)

Figure A1. Triangle histogram thresholding demonstrated using a standard thermal mosaic.



(a)

(b) (c)

(e)(d)

Figure A2. Triangle histogram thresholding demonstrated using a thermal mosaic with two distinct 
areas causing two peaks. The peak adjustment allows the selection of only relevant pixels within the 
warmer region.



(a)

(b) (c)

(e)(d)

Figure A3. Triangle histogram thresholding demonstrated using a varied thermal mosaic with a large 
leakage causing a too conservative threshold. The adjusted threshold ensures the region of interest is 
reduced to the appropriate size.



Appendix B

Figure B1 comparatively visualises how the geotransform calculated during (a) individual 
image georeferencing and georectification via (b) WebODM or (c) Pix4Dmapper can deviate from 
the true positioning. Particularly in orthomosaics it is found to be too inconsistent to use 
reliably in classification. Figure B1 demonstrates this with example points, marked in relation to the 
depicted building,17 to illustrate the shift in comparison to the building’s equivalent geographically 
accurate polygon.

(a)

(b)

(c)

Figure B1. Possible discrepancies in georeferencing exemplified for all variations of georeferencing. 
The left side shows the georeferenced image or mosaic with points plotted in relation to the depicted 
building. The right side draws those same geographic points in relation to the building’s equivalent 
geographic polygon. 
Legend: black - on building, blue - at building border, green - close to building, yellow - far from 
building
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