
Vol.:(0123456789)1 3

Applied Physics B (2023) 129:162 
https://doi.org/10.1007/s00340-023-08096-7

RESEARCH

A Hanbury Brown and Twiss renascence: measurement of photon 
correlations yields spatio‑temporal coherence

Wolfgang Ruppel1 · Peter Duerr1 · Jan Ross1 · Wolfgang Elsäßer2,3,4

Received: 17 July 2023 / Accepted: 28 August 2023 / Published online: 3 October 2023 
© The Author(s) 2023

Abstract
Investigations of photon correlations similar to the  Hanbury Brown and Twiss experiment are since the advent of quantum 
optics in the center of both fundamental and application-oriented research. We derive a factorial moment-generating func-
tion of the probability distribution of electromagnetic radiation emitted by a source and absorbed by a photodetector from 
which we calculate an analytical expression for the second-order correlation coefficient g(2) which reflects spatial coherence 
properties of the emitted light. The measurement of g(2) thus allows to retrieve the spatial coherence parameter of the light 
source in terms of the combination of source area, source-detector distance, wavelength and detector area. The validity of 
the concept is proven by investigating g(2) of true thermal light from a Xenon arc lamp and from the sun for various detector 
areas, in excellent agreement with the theory. Finally, we suggest a novel scheme for determining light source diameters 
by exploiting the spatially dependent statistics and confirm its validity by exemplary calculations. These results based on 
radiation thermodynamics and photon statistics give fresh insight into quantum optical properties of classical light sources, 
photon correlations and photodetection with promising applications perspectives, more than 68 years after the original 
Hanbury Brown and Twiss experiment.

1  Introduction

The existing theory of photodetection goes back to Glauber 
[1], where he formulated in this pioneering work the quan-
tum theory of photodetection and optical coherence. This 
theory is central to quantum optics and has played a key 
role in understanding light-matter interactions [2, 3]. This 
work has been followed by Mandel’s semiclassical counting 

formula [4] relating the photo-clicks of the detector via a 
so-called Poisson Transform to the probability distribution 
of the impinging absorbed field or the intensity statistics [5]. 
However, even before this advent of quantum optics the Han-
bury Brown and Twiss (HBT) experiment [6], now 67 years 
ago, set the foundation of nowadays understanding of light 
statistics in terms of correlations [7, 8]. The fundamental 
observation of photon bunching of a thermal light source, as 
also acknowledged in the Nobel award lecture of Glauber [9] 
led to the classification of light in terms of its second-order 
or intensity correlation coefficient. HBT had been astrono-
mers from their profession driven by the search for improv-
ing stellar interferometry for determining the star diameter 
[10]. After the lab experiment with the observation of pho-
ton bunching of a thermal light source they returned back to 
the stellar interferometer in applying this newly proven and 
realized intensity interferometer to this original task [11]. 
The success story was huge and finds even today a perpetual 
continuation with new detector approaches and signal pro-
cessing technologies investigating photon bunching [12, 13] 
and resulting already in a sort of HBT revival in astronomy 
[14–17] and with new aspects of light correlations [18, 19]. 
The original HBT intensity interferometer always exploits 
two intensity-detectors with the baseline separation L in 
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between them for determining the second order intensity 
cross correlation G(2)(L) = ⟨I1(0)I2(L)⟩ between the two 
intensities I1 and I2 , respectively. From the characteris-
tic decay of G(2) as a function of the baseline separation L 
finally the star diameter is derived. Our approach is a based 
on the autocorrelation determination G(2)(A) = ⟨I(A)I(A)⟩ of 
the intensity I of a single detector as a function of the detec-
tor aperture A. Already in 1966, Martienssen and Spiller 
showed that the photon counting statistics of a so-called 
pseudo-thermal (PT) light source (laser light scattered at a 
rotating diffuser ( [20, 21]) measured with a single photo-
multiplier shows a characteristic transition from Bose–Ein-
stein statistics to Poisson statistics if either the separation 
between detector and source is decreased or, equivalently the 
diameter of the source is increased [22], thus revealing spa-
tial coherence effects [23]. It has been also recognized that 
the measured statistics is effectively a Negative Binomial 
or Polya distribution [5] depending on the mode number 
N, being the effective mode number at the emitter surface 
or being N = 1 at infinity separation between source and 
detector, respectively. Bures et. al. [24, 25] performed com-
prehensive studies of the photon electron counting statistics 
of various types of this PT source, already using one single 
photon multiplier and analyzing the photon count statistics 
in terms of an ansatz for the moment-generating function 
and considering the degree of coherence of an extended light 
source in the framework of the Van-Zittert Zernike theorem 
[26, 27]. This g(2) approach has also been applied to investi-
gations of scattered light [28].

At the beginning of quantum optics [29] measuring pho-
ton statistics has been a useful approach for understanding 
photon statistics of various light sources [23, 30–32], but 
even nowadays, g(2) measurement via HBT based correla-
tion investigations or equivalently of the characteristic sta-
tistics of light is THE tool for the understanding of electro-
magnetic radiation [33] and the search and understanding 
of light emitters [18, 34–36], and even applicable to fer-
mions [37] or photons in biological systems or photosyn-
thesis [38–40]. Even super-bunched light with a g(2) value 
exceeding two had been achieved by doubly scattering of 
laser light [41–43]. Another very recent approach to gener-
ate new statistics focused on nonlinear optical processes [44, 
45] or superbunching in twin photon generation [46–48]. 
These developments and the realization of novel photon 
source schemes have been accompanied by a comparable 
advancement in the detection and in the analysis of photon 
events [49–51]. This development demonstrates that today 
it is still a challenging field of research with impressive pro-
gress giving complete insight into the photon properties by 
novel detector signal analysis strategies and reconstruction 
techniques [52–55]. This research may incorporate inherent 
novel light sources or strategies to modify and tailor the light 
statistics according to the needs of applications, as e.g. in 

ghost modalities [56–58] as ghost imaging [59–61] or ghost 
spectroscopy [62] where tailored photon bunching directly 
determines the metrology advantages [63].

The aim of the present publication is to investigate the 
statistical properties of photo clicks or absorption events 
originating from the photon statistics. The method is tradi-
tional stochastic theory based on probability distributions 
and a factorial moment generating function finally being 
condensed in the second order intensity correlation coeffi-
cient. We start with a characteristic factorial moment gener-
ating functions consisting of a composite of a binomial func-
tion involving the photo-detection and a generalized Poisson 
distribution originating from the light source properties. We 
derive an analytical expression for the central second order 
correlation coefficient g(2) in terms of spatial and temporal 
coherence Zs and Zt , respectively [27]. Its dependencies are 
comprehensively discussed in terms of spatial coherence 
and thermodynamics of the source. Finally, we conceive and 
realize an experimental set-up which investigates g(2) of four 
different true thermal light source - detector configurations, 
a Xe arc lamp with three different detector dimensions and 
sun light. The good agreement between theory and experi-
mental results verifies that this novel modified single-detec-
tor HBT concept allows to determine e.g. the source area if 
source distance is known, and this with a single-detector 
concept without any baseline separation, thus giving rise to 
a renascence of HBT.

2 � Theoretical considerations

2.1 � Schematical emission and detection scheme

The schematic of the emission and detection configura-
tion for the basis of the calculations and the experiments is 
depicted in Fig. 1. Radiation with an emission wavelength � 
is emitted by a light source with an emission area of Asource 
and is detected by an absorption process in a photodetector 
at a distance R and with detector area Adetector resulting in 
a number n of click events during a time interval Δt with a 
normalized probability distribution P(n).

Fig. 1   Schematical depiction of the scheme for the investigations of 
the photon statistics with the source and the detector
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We define the coherence parameter Z, which factorizes into 
the temporal coherence Zt and the spatial coherence Zs:

Zs may or may not again factorize into two parameters Zx and 
Zy in an obvious way, depending on the geometric shape of 
the light source and detector.

2.2 � The factorial moment generating function

To calculate photon correlations we make use of the factorial 
moment-generating function (fmgf) G(s), which is defined as

and together with the normalization of the probability dis-
tribution 

∑∞

n=0
P(n) = 1 leads to G(s = 1) = 1.

We start with a factorial moment-generating function G(s) 
of the probability distribution of radiation absorbed by a pho-
todetector yielding a distribution of clicks events as a conse-
quence of the absorption events which has the type of a gen-
eralized binomial distribution. The derivation of this factorial 
moment-generating function G(s) is performed in appendix C 
and D and we obtain

with the average number of photons in a unit coherence vol-
ume nPh , the quantum efficiency of the detector � , and an 
a-priori probability pZ which will be discussed below and 
in the appendix D.

2.3 � Moment calculations and second order 
correlations coefficient for the fmgf

From the fmgf G(s) (Eq. 2) we can directly obtain the facto-
rial moments ⟨n(n − 1)(n − 2)...(n − 1 + k)⟩ according to [64]

The second order correlation coefficient g(2) (We remind 
that throughout the manuscript g(2) means the central sec-
ond order correlation coefficient g(2)(� = 0) for delay time 
� = 0 [64]) is defined as the ratio between the second order 
factorial moment ⟨n(n − 1)⟩ and the square of the first order 
factorial moment ⟨n⟩ resulting finally in [64]

(1)Z = Zt ⋅ Zs = Δ�Δt ⋅
AsourceAdetector

�2R2

(2)G(s) =

∞∑

n=0

P(n)sn

(3)G(s) =
(
1 − nPh�pZ(s − 1)

) −Z

pZ

(4)⟨n(n − 1)(n − 2)...(n − 1 + k)⟩ = d
n

dsn
G(s)�s → 1

For our fmgf in Eq. (3) we get:

This looks relatively simple, but calculating pZ is quite com-
plicated and will therefore be performed in the appendix D. 
Here it shall be sufficient to note that pZ → 1 for Z >> 1 , so 
in this case g(2) ≈ 1 and pZ ≈ Z for Z << 1 and g(2) ≈ 2 . For 
un-modulated thermal light the photon correlation is thus 
restricted to values between 1 and 2.

We also note here that the result above is independent of 
the temperature of the emitter. Still, for real experiments high 
temperatures are strongly favored, as one then has more pho-
tons per single measurement on average and a small enough 
statistical error is reached faster.

3 � The key result: the second order 
correlation coefficient g(2)

Motivated by a realistic star-like experimental configuration 
of a circular source and a rectangular detector geometry, we 
concentrate in the following on the g(2) function obtained in the 
appendix E for this geometry (Eq. E.3 and Eq. 8).

In addition and as also discussed in the appendix F, we 
have to consider partial coherence effects due to dark counts 
and the extended filter transmission curves of the Fabry–Perot 
interferometers by a factor �2 in front of the four-fold Bessel 
integral which leads finally to the key result: the second order 
correlation coefficient g(2) for a circular source - rectangular 
detector geometry with integration variables r1 and r2 denoting 
points within the detector area S:

With xi and yi being the components of ri , the 
argument of the Bessel  function amounts to 
� = �0 ⋅ r12 = �0

√
(x2 − x1)

2 + (y2 − y1)
2   ,  w h e r e 

�0 = (k0 ⋅ d∕2)∕R = (2� ⋅ d)∕(2 ⋅ � ⋅ R) , with the source 
radius d/2 and the source-detector-distance R. The Papou-
lis simplification (see appendix E) reduces this to a double 
integral for a single vector (x, y) over the detector width and 
height dimensions Δx and Δy , and we finally obtain the key 
expression for g(2) for a circular source - rectangular detec-
tor geometry:

(5)g(2) =
⟨n(n − 1)⟩
(⟨n⟩)2

(6)g(2) =

(
d2

ds2
G(s)||s→1

)/(
d

ds
G(s) ||s→1

)2

= 1 +
pZ

Z

(7)g(2) = 1 +
�2

S2 ∫S ∫S

|||||

2J1(�)

�

|||||

2

d2r1d
2r2
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4 � Discussions of g(2)

In the framework of the calculations we always consider 
“good” temporal coherence Zt << 1 (see also section experi-
mental set-up). According to Eq. D.1 and Eq. 8 the sec-
ond order correlation coefficient g(2) depends on the spatial 
coherence parameter Zs for good temporal coherence Zt . g(2) 
thus depends on the source geometry and its dimensions, 
the detector geometry and its dimensions, and the distance 
between source and detector R. In the following, we concen-
trate on modelling these dependencies for a circular source 
geometry and a rectangular detector geometry and with 
parameters which will be also realized in the experimental 
section.

In order to compare and understand the g(2) results, we 
numerically integrate Eq. 8 for discrete parameter values 
and visualize the modelling results in terms of 3D-Plots and 
cuts through them. First, we depict graphically in Figs. 2 
and 3 the results in terms of a corresponding 3D-Plot of g(2) 
as function of source diameter d and detector dimensions 
Δx and Δy (being here chosen equal for simplicity) for two 
source-detector distances R of 180 �m and 1000 �m . We 
then discuss the calculated results for g(2) in terms of cuts 
through these 3-D plots as shown in Figs. 2 and 3 in depend-
ence on the characteristic parameters of g(2) and we explore 
what we can learn from the statistics regarding the proper-
ties of the emitting light source in terms of a real-world 

(8)

g(2) = 1 +
4�2

Δx2Δy2
×

∫
Δx

0 ∫
Δy

0

(Δx − x)(Δy − y)
�����

2J1
�
�0

√
x2 + y2

�

�0

√
x2 + y2

�����

2

dxdy

application. Finally, at the end after the discussions of the 
modelling results, we show experimental results for four true 
thermal light source configurations and compare and discuss 
them with the developed model and derive a novel scheme 
in the spirit of the Hanbury Brown and Twiss experiment.

The general overall tendency of the modelling results 
as both found in the 3-D plots (Figs. 2,  3) and even more 
clearly visible in the cuts thereof, Figs. 4, 5, 6, and  7 can be 
best summarized as:

•	 The g(2) results as a function of the abscissa exhibit 
always the same kind of shape (in the 3-D plots) having 
the highest value of approximately 1 + �2 at an abscissa 
value of zero.

•	 With increasing abscissa values (d, Δx or Δy ) g(2) is 
monotonously and asymptotically decreasing to a g(2) 
value of 1.0.

•	 With increasing d there is a decrease of g(2) , and this 
decrease occurs faster for larger Δx = Δy values.

Fig. 2   3D-Plot of the second order correlation coefficient g(2) as a 
function of source diameter d and detector dimensions Δx = Δy for a 
source-detector distance R = 180 mm

Fig. 3   3D-Plot of the second order correlation coefficient g(2) as a 
function of source diameter d and detector dimensions Δx = Δy for a 
source-detector distance R = 1000 mm
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Fig. 4   Second order correlation coefficient g(2) as a function of rec-
tangular detector width Δx for five rectangular detector heights Δy for 
a circular source diameter d = 85 � m and a source-detector distance 
R = 180 mm



A Hanbury Brown and Twiss renascence: measurement of photon correlations yields spatio‑temporal…

1 3

Page 5 of 14  162

•	 For larger detector source distances R this overall 
decrease of g(2) both in the d and Δx = Δy direction 
occurs slower.

•	 This behaviour is also reflected by the cuts through the 
3D plots as depicted in Figs. 4, 5, 6, and  7.

•	 The comparison between Fig. 4 and Fig. 6 shows that 
for larger source diameters d also the decay of g(2) with 
increasing Δx is faster.

•	 The maximum value of g(2) both for nearly zero Δx and 
d values decrease with increasing Δy.

•	 This decrease is slower for larger source - detector dis-
tance R and is faster for larger source diameter d.

•	 If we realize a quadratic detector ( Δx = Δy ) and investi-
gate the g(2) behaviour as a function of the source diam-
eter d the general behaviour is reproduced but becomes 
more and more steep with increasing Δx = Δy.

All these results, however most importantly the unique-
ness of g(2) as a function of the spatial coherence parameter 
Zs =

AdetectorAsource

�2R2
 , which is determined by the source proper-

ties and by the experimental setup allow now reversely to 
determine the spatial coherence parameter from a measure-
ment of g(2) . This opens a completely novel possibility for a 
method for the determination of an unknown parameter of 
the spatial coherence Zs (i.e. e.g. source area or source-detec-
tor distance) when the other three parameters are known by 
measuring g(2) . The essence of this here derived new HBT 
measurement scheme based on the fmgf and the g(2) function 
will subsequently be considered in the second part of the 
discussions after the depiction of the experimental set-up 
and the discussion of the experimental results.

5 � Experimental set‑up

Therefore, motivated by the modelling results for g(2) in 
dependence of the spatial coherence as depicted in Figs. 2, 
3, 4, 5, 6, and  7, we have conceived and realized an experi-
mental set-up (depicted in Fig. 8) to investigate this relation 
experimentally [65, 66].

As light source we have chosen two different thermal 
black-body sources, a Xe arc lamp and sun light. The light 

0.3mmR 500mm; d 0.085mm
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2.5mm
5.0mm

0 2 4 6 8 10 12
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Fig. 5   Second order correlation coefficient g(2) as a function of rec-
tangular detector width Δx for five rectangular detector heights Δy for 
a circular source diameter d = 85 � m and a source-detector distance 
R = 500 mm
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Fig. 6   Second order correlation coefficient g(2) as a function of rec-
tangular detector width Δx for five rectangular detector heights Δy for 
a circular source diameter d = 200 � m and a source-detector distance 
R = 180 mm
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Fig. 7   Second order correlation coefficient g(2) as a function of circu-
lar source diameter d for five square detectors of dimensions Δx = Δy 
for a source-detector distance R = 180 mm

L1 L2IF LP E1 E2 E3 PH g(2)(�=0)A

Source II: Sun

Source I: 
Xe arc lamp } R

ASource ADetector

Fig. 8   Experimental set-up for the investigations of g(2) of the sun and 
the Xe arc lamp as a function of their spatial coherence; L lenses, IF 
interference filter, LP Linear Polarizer, E1, E2, and E3 Etalons, PH 
pin hole determining the effective source area A

source
 and at a distance 

R from it a second aperture A determining the effective detector area 
A
detector

 (c.f. Fig. 1), g(2) photon counting system for the determination 
of g(2) by a coincidence set-up
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emitted by both sources is collected and in the collimated 
beam we perform a highly selective spectral filtering in 
order to meet the requirement to have a sufficiently good 
temporal coherence corresponding to a small temporal 
coherence parameter Zt = Δ� ⋅ Δt . A similar type of exper-
imental configuration has been used by Kurtsiefer’s group 
to comprehensively study temporal photon bunching of 
various terrestrial and astronomical sources [67, 68]. We 
used three etalons E1 , E2 and E3 in combination with an 
interference filter (IF) with free spectral range and spectral 
resolution data as depicted in Table 1. With our multiple 
Fabry–Perot filter or etalon configuration at a wavelength 
of 775 nm we realized a Δ� = 150 MHz which together 
with the time resolution of the photon counting set-up of 
1.05 ns results in a temporal coherence Zt = Δt ⋅ Δ� = 0.26 
[65].

The optical beam emitted by the different sources is 
then focused onto a pinhole (PH, diameter = 85 � m) 
which serves as the effective light source with an area 
Asource = 5.67 ⋅ 10−9m2 . The beam then incoherently 
illuminates an aperture (A) with variable width Δx and 
fixed height Δy which defines the effective detector area 
Adetector = Δx ⋅ Δy . The distance R between these two 
apertures has been kept constant. In the case of the Xe arc 
lamp we used three different apertures with fixed height 
of Δy = 0.6 mm, 1.4 mm, and 2.5 mm yielding the data 
Xe06, Xe14, and Xe25, respectively. For the sun light 
investigations Δy amounts to 0.7 mm and R has been cho-
sen to 0.195 m (data sun). Here, the light had been guided 
via a sun-tracker to the set-up.

The second order correlation coefficient g(2) could have 
been measured with a single photon-counting photomul-
tiplier (PMT) with subsequently following counting elec-
tronics where mean and variance are derived from the 
photon counting probability distribution [69]. We have 
chosen a coincidence method instead by using a beam-
splitter and two PMTs, thus reducing dead-time effects 
[70]. Typical count rates for the sun as light source to be 
investigated have been from 30.500 cps to approx. 80.000 
cps, depending on the realized spatial coherence yielding 
in measurement times from 20 min up to 40 min and for 
the Xe lamp typical count rates have been from 40.000 cps 

to approx. 90.000 cps with measurement times between 
40 min up to 14 h, respectively. The geometrical parame-
ters of the experimental set-up represent all ingredients of 
the spatial coherence parameter Zs =

AdetectorAsource

�2R2
 , entering 

the subsequently following modelling of the experimental 
g(2) values which both are jointly plotted in Figs. 9 and 10.

6 �  Experimental results for g(2) : discussion 
and comparison with modelling results

Figures 9 and 10 show the experimental results for g(2) as a 
function of the detector width Δx for fixed detector height Δy 
for the four true thermal light source configurations, 3 Xenon 
arc lamp results (Fig. 9) and one for the sun light (Fig. 10), 

Table 1   Etalon and interference filter spectral characteristic data

Etalons and interference filters

Free spectral range (FSR) Spectral resolution 
(FWHM)

Etalon no.1 1.5 THz (3.0 nm) 45.5. GHz (91pm)
Etalon no.2 75 GHz (150 pm) 2.3 GHz (4.6 pm)
Etalon no.3 5.0 GHz (10 pm) 155 MHz (0.31 pm)
Interference filter @775 nm 763 GHz (1.5 nm)

0.6mm
1.4mm
2.5mm

Dataxe06

Dataxe14

Dataxe25

0 2 4 6 8 10 12
1.0

1.1

1.2

1.3

1.4

1.5

Fig. 9   Experimental results for g(2) measured as a function of the 
rectangular detector width �x for three detector heights �y = 0.6 mm 
(Datax06), 1.4 mm (Dataxe14), and 2.5 mm (Dataxe25) with a xenon 
arc lamp source together with modelling results according to Eq. 8 for 
g(2) considering a source diameter d = 85 � m and a source detector 
distance R = 180 mm (c.f. Fig. 8). Temporal coherence with Zt << 1 
has always been realized

DataSun07

model: 0.7 mm

R 195mm; d 0.085mm

0 2 4 6 8 10 12
1.0

1.1

1.2

1.3

1.4

1.5

Fig. 10   Experimental results for g(2) measured as a function of the 
rectangular detector width Δx for a detector height Δy = 0.7 mm with 
the sun as source together with modelling results according to Eq. 8 
for g(2) with the corresponding parameters. Temporal coherence with 
Zt << 1 has been realized
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respectively together with the model values already shown in 
Fig. 4. The experimental results clearly exhibit the S-shaped 
curve discussed above. Besides this qualitative agreement, 
we find excellent quantitative agreement with the modelling 
results if the real-world parameters for R, d, Δx and Δy are 
inserted. The coherence reduction factor � as discussed in 
subsection F of the appendix has been calculated to be � = 
0.63 resulting in �2 = 0.397. We find that with increasing Δx 
values the second order correlation coefficient g(2) is decreas-
ing from approximately 1.4 towards an asymptotic value of 
1.0 for Δx values beyond 12 mm.

We remind here as outlined before that the experimentally 
observed maximum value g(2)(0) is far from the theoretically 
expected value of g(2)(0) of 2.0 of ideal thermal sources and 
with ideal detection. We have to consider that in the experi-
ment we do not only have the “coherent” light, but also a 
large number of spectrally distributed low intensity side 
lobes in the arrangement of the etalons as discussed in the 
appendix F. The light in these spectral side lobes sums up to 
quite a substantial incoherent contribution to the measure-
ment, which effectively reduces g(2) . With this modification 
as considered by the factor � , our the experimental data are 
in very good agreement with the theoretical g(2) values.

7 � Renascence of Hanbury Brown and Twiss 
experiment towards star diameter 
determination

Finally, this first single-detector g(2) measurement of a true 
thermal light source as a function of the spatial coherence 
parameter together with the analytical expression for g(2) 
derived from the fmgf suggests a novel measurement tech-
nique for determining one of the ingredient parameters of 
ZS , specifically the source area Asource , because usually the 
detector area Adetector , the wavelength � and the distance R 
between source and detector are known. An hypothetical 
example for such a measurement procedure is illustrated by 
Fig. 11 and Table 2.

•	 Let us assume that we have an experimental configura-
tion as listed in Table 2 with a wavelength � = 775 nm, 
a detector source distance of R = 180 mm, and a detec-
tor height of Δy = 1.0 mm and a source diameter d = 
0.63 mm, where the source diameter could not be meas-
ured directly in the experiment. Within our elaborated 
approach, we therefore perform a full hypothetical series 
of measurements of g(2) for 3 detector widths Δx = 0.5 
mm, 1.5 mm, and 10.0 mm with the results as depicted 
in Table 2.

•	 These experimental results for g(2) for the three detec-
tor widths Δx are then plotted in the framework of the 
modelling results for g(2) as horizontal line (with error 
bands) in Fig. 11 and the intersection point with the cor-
responding modelling curve is determined (including the 
error bars) for each detector width.

•	 The abscissa values of the intersection points yield the 
source diameter d. For the hypothetical sketched experi-
ment, we obtain a value of d =

(
0.063+0.07

−0.07

)
 demonstrat-

ing that in fact the source diameter can be extracted by 
this measurement idea and configuration.

Thus, this configuration idea based on the application of 
Eq. 8 represents a suggestion for a novel method for deter-
mining spatial coherence parameters, as e.g. the source 
dimensions in the spirit of a renascence of the HBT experi-
ment. However, the limitations regarding the resolution of 
our scheme are equivalently challenging as the original HBT 
[71]. Moreover, our scheme represents a different approach 
and probably even today, and particularly stimulated by new 
activities in “quantum metrology” new metrology aspects, 

Table 2   Hypothetical measurement data for a source diameter deter-
mination

Detector height Δ y (mm) 1.0 1.0 1.0

Detector width Δ x (mm) 0.5 3.0 10.0
g
(2) hypothetical experiment

(
1.36

+0.3
−0.1

) (
1.22

+0.2
−0.3

) (
1.08

+0.1
−0.2

)

Extracted source diameter d 
(mm)

(
0.06

+0.02
−0.035

) (
0.063

+0.07
−0.07

) (
0.063

+0.07
−0.07

)

model0.5
model3.0
model10.0

y 1.0dextracted 0.5
3.0
10.0

0.0 0.1 0.2 0.3 0.4 0.5
1.0

1.1

1.2

1.3

1.4

1.5

Fig. 11   Example experiment for the determination of an unknown 
source diameter: The experimental data of three g(2) measurements 
(including error bars) of an experimental situation as listed in Table 2 
for three detector widths Δx are plotted in connection with modelling 
results according to (Eq. 8). The intersection between the g(2) values 
and the corresponding modelling results yields the source diameter d 
with the corresponding error bars



	 W. Ruppel et al.

1 3

162  Page 8 of 14

either for very large or for very small thermal light emit-
ter scales can be envisioned, i.e. “determining the size of a 
thermal emitter without measuring it directly” only by meas-
uring the photon statistics of its emitted light alone with a 
single detector and analyzing the photon statistics.

8 � Summary

We calculated the second order correlation coefficient g(2) 
of light emitted by a real-world thermal light source and 
absorbed by a photodetector resulting in click events using 
a factorial moment-generating function for the probability 
distribution. For good temporal coherence we find that g(2) 
reflects predominantly the spatial coherence function of the 
source, thus yielding an experimental technique to deter-
mine spatial coherence properties from single-detector g(2) 
measurements. The predicted dependencies have then been 
experimentally studied and discussed for three configura-
tions of a thermal Xe arc light source and for the sun light as 
true thermal light sources. The good agreement between the 
experimental results for the four light source configurations 
and the calculated g(2) based on the factorial moment-gener-
ating function opens real-world perspectives for a novel type 
of HBT experiment allowing, e.g. to determine a light source 
diameter with a single-detector scheme. This progress gives 
fresh insight into the Hanbury Brown and Twiss experiment 
thus enabling a renascence even after 67 years.

9 � Appendix

In these appendices we derive the second order correlation 
function g(2) based on a combination of a binomial detection 
process and a generalized Poisson statistics of the imping-
ing radiation based on a Planck-Einstein approach for the 
photon partial systems and a classical probability approach 
for the a-priori probability, reflecting spatial and temporal 
coherence. Starting with a Poisson distribution, we develop 
the probability distribution of the detected photons in terms 
of a generalized Negative Binomial Distribution depending 
on the detected modes, their number and the a-priori detec-
tion probability. The a-priori-probability is then calculated 
for two selected geometries resulting in an expression for 
g(2) as function of detector area, source area, wavelength 
and distance between source and detector yielding finally 
an expression applicable on the experimental data. Finally, 
the influence of temporal incoherent light contributions will 
be considered.

A Partial sub‑systems

The foundation of the thermodynamics of electromagnetic 
radiation is the quantized harmonic oscillator going back 
in its origins to Planck [72–74] where its energy E can be 
written as

where � =
ℏ�

kBT
 with kB being the Boltzmann constant. We 

note that this has the form of a geometric series, namely

where r=1, 2, 3,.. take here the role of quantum numbers. 
By Eq. (A.2) the system of the electromagnetic radiation 
is factorized into denumerably infinite many sub systems 
which are statistically independent. This allows computing 
the observed photon distribution from that of the individual 
r-subsystems [66], a big advantage in the statistical treatment 
of radiation. The factorial moment generating function of the 
observed photon distribution can be written as the product 
of the fmgfs of the single r-systems. The partial systems can 
be each regarded as an ideal gas as has been already done 
by Einstein [75].

B Statistics basics: Poisson distribution

One might expect that the photons in thermal radiation are 
independent from each other. In this case the repeated pho-
ton counting experiment as described in the main part of the 
manuscript would be described by a Poisson statistics

with the mean value M = ⟨m⟩ and the reduced autocorrela-
tion g(2) would always be 1:

Our measurements (and many others, see, e.g. [15, 16, 67, 
68]) have shown, that this is not true, thermal radiation is 
more interesting than that and g(2)

thermal light
 is exceeding one.

(A.1)
E =

∞�

m=0

(mℏ�)�m = ℏ�

∑∞

m=0
me−m�

∑∞

m=0
e−m�

=

ℏ�
1 ⋅ e−� + 2 ⋅ e−2� + 3 ⋅ e−3� + ...

1 + e−� + e−2� + e−3� + ...
= ℏ�

1

e� − 1
,

(A.2)

E = ℏ�
1

e� − 1
= (ℏ�)(e−� + e−2� + e−3� + ...)

= ℏ�

∞∑

r=1

e−r�

(B.1)GPoisson(s) = eM(s−1),

(B.2)g
(2)

Poisson
(s) =

G��
Poisson

(s = 1)

(G�
Poisson

(s = 1))2
=

⟨m⟩2
⟨m⟩2

= 1,
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C Towards Negative Binomial distribution

Instead, thermal light can be described using the inde-
pendent sub-systems numbered here with an integer r 
denoting the number of photons within an “elementary 
bundle” or “radiation unit” of the radiation [76]. This 
elementary bundle replaces the all-too-simple concept of 
a light ray, taking the wave properties of the radiation into 
account. It is defined by the emitter properties, that is, its 
area and shape and its wavelength spectrum. According 
to the uncertainty principle, the direction of the energy 
transport is not defined precisely, but will instead be angu-
larly spread out in inverse relation to the source dimen-
sion, roughly within ΔΩdiffraction . Similarly, the timing of 
absorption events is again spread out in inverse relation to 
the width of the spectrum, roughly within ΔTspectrum . Both 
these effects are quantitatively described by the Fourier 
Transform of the respective source properties, which we 
shall exploit below performing the actual calculations for 
specifically selected special cases.

Here, we define a spatio-temporal “measurement vol-
ume” Vmeasure = Adetector ⋅ c ⋅ Δt consisting out of the prod-
uct of the detector area Adetector and the propagation length 
c ⋅ Δt within the measurement time. We also define a 
“coherence volume”:

Dividing the measurement volume Vmeasure by this coherence 
volume Vcoh yields the number of elementary bundles

Comparing this result to our definition of the coherence 
parameter Z according to Eq. (1) we find that the coher-
ence parameter Z is just the number of elementary bundles 
Nelementary bundles within our measurement.

We note that the measurement volume can have arbi-
trarily small or large values for both Δt and/or ADetector 
which together with R2 defines a solid angle as seen from 
the emitter ΔΩ = ADetector∕R

2 . Values Z < 1 just mean, that 

(C.1)

Vcoh = Scoh ⋅ lcoh =
�2R2

Asource

⋅

c

Δ�spectrum

=
�2R2cΔTspectrum

Asource

(C.2)

Nelementary bundles =
Vmeasure

Vcoh

=
Asource

�2R2cΔTspectrum
⋅ AdetectorcΔt

=
Asource ⋅ Adetector ⋅ Δ�spectrum ⋅ Δt

�2R2

the measurement is well inside the coherence length of the 
radiation, at least for one dimension.

We also remark, that this number of elementary bun-
dles is also called number of phase cells of phase space, 
degrees of freedom of light, number of propagating modes 
or Jean’s number [77, 78].

These elementary bundles or radiation units for propa-
gating radiation are in some aspects comparable to the 
“oscillators” in the description of radiation in a cavity. 
Both can be “excited” to contain an integer number of 
energy packets, the photons, and the excited elementary 
bundle can be considered as non-interacting radiation 
units. They therefore obey a Poisson distribution.

For the probability distribution of the total radiation, 
the number Nr of the radiation units in a single r-system is 
proportional to 1/r, and they follow a Poisson distributions 
with a unit number Nr =

Z

rpZ
e−r� . With Eq. (B.1) we obtain 

for the factorial moment-generating function

We are interested in the statistics of the photons and not in 
that of the radiation units which requires a re-scaling of the 
v a r i a b l e s  kradiation units ⋅ r = kphotons  a n d  t h u s 
Gr,photons(s) = ⟨sk

photon,r
⟩ = ⟨sr⋅kradiation units⟩ . This transforms to

and considering

we obtain

where in the last step the photon number per coherence vol-
ume has been inserted according to Eq. A.1:

Finally, we observe that our detector - since it is potentially 
smaller than the “size” of the radiation units (calculation 

(C.3)Gr(s) = e
Z

rpZ
exp(−r�)(s−1)

(C.4)GPhoton(s) =

∞�

r=1

Gr,Photon = exp
∑∞

r=1
Z

rpZ
e−r� (sr−1)

(C.5)
∞∑

i=1

xi

i
= −ln(1 − x)

(C.6)

GPhoton(s) =

(
1 − se−�

1 − e−�

) −Z

pZ

=

(
1 −

e−�

1 − e−�
(s − 1)

) −Z

pZ

= (1 − nPh(s − 1))
−Z

pZ

(C.7)nPh =
e−�

1 − e−�
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below) - will only “see” an a-priori-fraction pZ with its 
quantum efficiency of � and so it will only register this frac-
tion of photons and we obtain for the by clicks registered 
photons

For the mean value of the clicks we correctly obtain:

From the expression of the factorial moments, derived in the 
general case from G(s) or in our case from the photodetected 
clicks Gclicks(s) (Eq. C.8) the probability distribution w(k) is 
obtained according to Ref. [5, 27]:

which is the well-known Negative Binomial or Polya Dis-
tribution [27] with the second order correlation coefficient

D Calculation of pZ

To calculate the effective a-priori-probability pZ we again 
observe that the radiation units or elementary bundles are 
extended in space, shaped by the properties of the light 
source due to the uncertainty principle. They may travel in 
any direction: with their center of gravity right towards the 
center of the detector, off-center, towards the detector edge, 
or even outside the detector. We use a coordinate pair (u, v) 
within the detector plane to designate this direction from the 
light source, meaning the center of gravity of a radiation unit 
while hitting the detector would be at (u, v).

The photons of this radiation unit may then be found 
scattered around this spot. A specific photon may appear 
at position (u�, v�) with the normalized probability density 
q(u� − u, v� − v) . This is the absolute square of the Fourier 
transform of the light source shape S(x, y), normalized to 
∫
ΔZ

q(u� − u, v� − v)du�dv� = 1 . This can be understood in 
some sense as reminescence of the Van Zittert-Zernike 
theorem [27, 79–81]. In case of a rectangular light source 
with Asource = xsource ⋅ ysource = 2h ⋅ 2w the Fourier transform 

(C.8)Gclicks(s) = (1 − �nPhpZ(s − 1))
−Z

pZ

(C.9)⟨m⟩ = d

ds
G

clicks
(s) ��s→1

= �nPhZ

(C.10)

w(k) = 1
k!

dk
dsk

Gclicks(s) ||s→0

=
Γ
(

Z
pZ

+ k
)

Γ
(

Z
pZ

)

Γ(k + 1)

(�nPhpZ)k

(1 + �nPhpZ)
Z
pZ

+k
= wNBD(k)

(C.11)g(2) =

d2

ds2
G

clicks
(s) |s = 1

(
d

ds
G

clicks
(s) |s = 1

)2
= 1 +

pZ

Z
.

separates into x and y components, and each are sinc-func-
tions. In case of a circular light source the shape of q is 
the well-known Airy-disk. In the general case, the 2-dimen-
sional Fourier transform has to be calculated numerically.

The a-priori-probability pZ can now be calculated by inte-
grating the probability density of photons that fall into the 
detector sensitive area Z:

The factor 1
Z
 ensures that for Zx >> 1 and Zy >> 1 (very large 

detector) we get the normalization pZ ≈ 1 . It follows that in 
the case Zx << 1 and Zy << 1 we get pZ ≈ Z . By inserting 
Eq. D.1 into C.11 we can calculate the desired g(2) from the 
parameters of the experimental setup.

E. Calculation of g(2) for selected geometries

1.	 For a rectangular source (dimensions height 2h and 
width 2w) and rectangular detector (dimensions Δ x and 
Δ y) Eqs. C.11 with D.1 yield: 

 where 

 can be recognized as the module of the normalized 
degree of coherence (for the case D >> 𝜌 ) between two 
points P1 and P2 in a plane (observation plane of r1 and 
r2 ) located at a distance R of an incoherent monochro-
matic rectangular source with the dimensions height 2h 
and width 2w and with wavelength � and uniform bril-
liance [26].

2.	 For a circular source (diameter d or radius � ) of uniform 
brilliance and a rectangular detector with surface S at a 
distance R we obtain 

(D.1)pZ =
1

Z ∫Z ∫Z

q(u� − u, v� − v)dudu�dvdv�

(E.1)

g(2) = 1 +
1

(ΔxΔy)2
×

∫
Δx∕2

−Δx∕2 ∫
Δx∕2

−Δx∕2 ∫
Δy∕2

−Δy∕2 ∫
Δy∕2

−Δy∕2

|||||

sin
koh

R
(x1 − x2)

koh

R
(x1 − x2)

sin
kow

R
(y1 − y2)

kow

R
(y1 − y2)

|||||

2

dx1dx2dy1dy2

(E.2)|�(r1, r2)| =
|||||

sin
koh

R
(x1 − x2)

koh

R
(x1 − x2)

sin
kow

R
(y1 − y2)

kow

R
(y1 − y2)

|||||

(E.3)g(2) = 1 +
1

S2 ∫S ∫S

|||||

2J1(k0
�

R
r12)

(k0
�

R
r12)

|||||

2

dx1dx2dy1dy2
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 with r12 =
√
(x2 − x1)

2 + (y2 − y1)
2  , the distance R 

between source and detector, and wavelength � . Also 
here, the function under the integral 

 can be recognized as the module of the normalized 
degree of coherence (for the case R >> 𝜌 ) between two 
points P1 and P2 in the observation plane. We define 
�0 = (k0 ⋅ d∕2)∕R = (2� ⋅ d)∕(2 ⋅ � ⋅ R) and get 

 The Papoulis Ansatz [82] according to 

 allows finally a reduction of the fourfold integral 
(Eq. E.5) to a double integral 

(E.4)|�(r1, r2)| =
|||||

2J1(k0
�

R
r12)

(k0
�

R
r12)

|||||

(E.5)

g(2) = 1 +
1

(ΔxΔy)2
×

∫
Δx∕2

−Δx∕2 ∫
Δx∕2

−Δx∕2 ∫
Δy∕2

−Δy∕2 ∫
Δy∕2

−Δy∕2

�
2J1

�
�0

√
(x2 − x1)

2 + (y2 − y1)
2
�

�0

√
(x2 − x1)

2 + (y2 − y1)
2

�2
dx1dx2dy1dy2

(E.6)∫
L

−L ∫
L

−L

f (x1 − x2)dx1dx2 = 2∫
2L

0

(2L − x)f (x)dx

(E.7)

g(2) = 1 +
4

(ΔxΔy)2 ∫
Δx

0 ∫
Δy

0

(Δx − x)(Δy − y)

�
2J1

�
�0

√
x2 + y2

�

�0

√
x2 + y2

�2
dxdy

 which is the basis of the calculations and discussions 
in the main part.

F The effect of incoherent light contributions

In principle the temporal coherence Zt could be discussed 
the same way as the spatial coherence above. However, in 
our measurement setup (see section 5 Experimental set-up) 
the spectral distribution of the light is quite complex as it 
is realized by a combination of an interference filter and 
three different Etalons. We carefully matched the central 
wavelengths of the Etalons to the same values to get a very 
narrow Δ� central line, which together with the temporal 
resolution of our detector corresponds to a temporal coher-
ence parameter Zt = 0.26 . We consider this to be sufficiently 
small so that pt ≈ Zt.

However, it was unavoidable that a lot of further transmis-
sion peaks were also transmitted by the filter combination 
at small transmission ratios. Fig. 12 shows the theoretical 
transmission curves of the three etalons separately. In total 
we get the product of all three curves multiplied again by the 
transmission of the interference filter.

With this we have about � = 62% of the transmitted inten-
sity in the central peak, while the residual light is distributed 
over a wide spectral range. For simplicity, we consider this 
residual light as an incoherent background intensity, which 
due to the wide spectral range (large Zt ) for itself exhibits a 
g
(2)

background
= 1 . In addition, photons from this background are 

also not correlated with the photons from the central peak, 
which reduces the measured g(2) further. A comprehensive 
treatment yields:

Therefore, for our realized experimental conditions we 
expect the value of g(2) in the limit Zx, Zy → 0 to be around 
1 + �2 ≈ 1.38 . The largest measured value is still a little bit 
smaller due to the finite Zx and Zy . However, this agrees 
very well with our actual measurement and modelling results 
shown in Fig. 9 and Fig. 10.
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