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Abstract
We provide new structural results on sets of positive reach in Euclidean spaces
and Riemannian manifolds. In particular, we describe neighborhoods of points,
whose tangent cones have maximal dimensions.
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1 INTRODUCTION

Sets of positive reach in Euclidean spaces were introduced by Federer [3], as common generalizations of convex subsets
and 1,1-submanifolds. They have turned out to be relevant in Riemannian, integral, andmetric geometry, cf. [6, 9, 10, 19].
A subset 𝐶 of a Riemannian manifold𝑀 has positive reach if the closest-point projection is uniquely defined in a neigh-

borhood of 𝐶 in𝑀. The notion of positive reach is invariant under 1,1-diffeomorphisms and it is local. Bangert verified
in [1] that being of positive reach in a Riemannian manifold does not depend on the choice of the Riemannian metric, but
only on the 1,1-atlas.
Geometry and topology of subsets of positive reach has been investigated in many papers including [3, 7, 13, 14, 17, 18].

We refer to Section 2 for a summary of the main properties and recall here only the facts needed to motivate and to state
the results of this paper.
At any𝑥 ∈ 𝐶, there is awell-defined tangent cone𝑇𝑥𝐶which is a convex cone in the Euclidean space𝑇𝑥𝑀. Themaximal

dimension 𝑘 of the cones 𝑇𝑥𝐶 coincides with the Hausdorff dimension of 𝐶 and is called the dimension of 𝐶 [3, Theorem
4.8, Remark 4.15]. A connected 𝑚-dimensional subset 𝐶 of positive reach is a topological manifold if and only if it is a
1,1-submanifold, [14, Proposition 1.4]. Moreover, this happens if and only if all tangent cones 𝑇𝑥𝐶 are Euclidean spaces.
Our results describe what happens if these equivalent conditions are not satisfied. The connected set of positive reach

𝐶 fails to be a 1,1-manifold without boundary if and only if there is a point with the infinitesimal structure of a manifold
with boundary:

Theorem 1.1. Let 𝐶 be a connected 𝑚-dimensional subset of positive reach in a Riemannian manifold 𝑀. Either 𝐶 is
a 1,1-submanifold without boundary of 𝑀 or, for some 𝑥 ∈ 𝐶, the tangent cone 𝑇𝑥𝐶 is isometric to an 𝑚-dimensional
Euclidean half-space.

A slightly stronger statement can be found in Theorem 4.1.
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2 LYTCHAK

A neighborhood in 𝐶 of any point 𝑥 ∈ 𝐶 as in Theorem 1.1 is 1,1-equivalent to a convex body in ℝ𝑚, as stated in the
following main result of this paper:

Theorem 1.2. Let 𝐶 ⊂ 𝑀 be an𝑚-dimensional subset of positive reach in an 𝑛-dimensional manifold𝑀. Let 𝑥 ∈ 𝐶 be such
that the convex cone 𝑇𝑥𝐶 has dimension𝑚.
Then, there exists a closed convex subset 𝐾 ⊂ ℝ𝑚 with non-empty interior inℝ𝑚, an open neighborhood 𝑂 of 𝐾 inℝ𝑚 and

a 1,1-embedding Φ ∶ 𝑂 → 𝑀 such that Φ(𝐾) is a neighborhood of 𝑥 in 𝐶.

The statement is not quite obvious even if dim𝑀 = 𝑚. In this case, some forms of Theorem 1.2 appear in [4, 6, 16,
Theorem 5.6] and as a statement without proof in [12, Appendix B].
If the tangent cone 𝑇𝑥𝐶 in Theorem 1.2 is an 𝑚-dimensional Euclidean space, then a neighborhood of 𝑥 in 𝐶 is a

1,1-submanifold without boundary, [17, Theorem 7.5]. This implies:

Corollary 1.3. Let 𝐶 ⊂ 𝑀 be an 𝑚-dimensional subset of positive reach. Then, the set 𝐶+ of all points 𝑥 ∈ 𝐶 with 𝑚-
dimensional tangent cone 𝑇𝑥𝐶 is an open subset of 𝐶, homeomorphic to an 𝑚-dimensional manifold with boundary. The
boundary of the manifold 𝐶+ is the set of points 𝑥 ∈ 𝐶+ at which 𝑇𝑥𝐶 is not a Euclidean space.

In other words, 𝑥 ∈ 𝐶+ is a boundary point of the manifold 𝐶+ if and only if the tangent space 𝑇𝑥𝐶 has non-empty
boundary, analogous to the structure of boundaries of Alexandrov spaces [15].

1.1 Proofs and further comments

The proof of Theorem 1.1 is presented in Section 4 along the following lines. We consider the maximal non-empty 𝑚-
dimensional 1,1 manifold without boundary 𝑈 contained in 𝐶. We take an arbitrary point 𝑝 ∈ 𝑈 and find a point 𝑥 in
the complement 𝐶 ⧵ 𝑈, which is a closest point to 𝑝 with respect to the intrinsic metric of 𝐶. The tangent cone 𝑇𝑥𝐶 must
then contain an𝑚-dimensional half-space and, therefore, coincide with it.
The proof of Theorem 1.2 is more technical. In the full-dimensional case dim(𝐶) = dim(𝑀), the result is essentially

contained in the paper [16] preceding the investigations of sets of positive reach in [3].We only need to adapt the vocabulary
of [16] to our situation.
The case dim(𝑀) < dim(𝐶) is proven by finding a 1,1-diffeomorphism of a neighborhood of 𝑥 which sends (a neigh-

borhood of 𝑥 in) 𝐶 into an𝑚-dimensional submanifold. Then, one could apply the previously discussed full-dimensional
case. The construction of the diffeomorphism relies on Whitney’s extension theorems and a technical result obtained in
Section 3. This result, Corollary 3.4, states that the tangent cones of a set of positive reach vary Lipschitz semi-continuously
in a precise sense. This semi-continuity may be of some independent interest.
We finish the introduction with a few comments and questions.

Remark 1.4. The Riemannian manifold𝑀 below and in the formulation of the main results above is always assumed to
be smooth. However, all results are literally valid for all Riemannianmanifolds with 1,1 Riemannianmetrics, as the class
of sets of positive reach is independent on the metric and only depends on the 1,1-atlas of distance coordinates [1, 8].

Remark 1.5. The term positive reach used in this paper coincides with the terminology of [1]. This terminology differ
from the one used in [3]: Following [3] our subsets of positive reach should be called subsets of locally positive reach. We
have decided to keep Bangert’s terminology since in the realm of general Riemannian manifolds this notion seems more
suitable to us.

Remark 1.6. Applications of the above results to the theory of submetries will be presented in a separate paper.

The precise classification of (local) structures of subsets of positive reach up to (biLipschitz) homeomorphisms or even
up to 1,1 diffeomorphisms seems impossible. However, it seems possible to obtain reasonable answers to the following
less ambitious questions.
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LYTCHAK 3

Question 1.7. Is it true that any connected two-dimensional subset of positive reach is locally bi-Lipschitz equivalent to a
subset of positive reach inℝ2? See [17] for an explicit description of subsets of positive reach in the plane.

Question 1.8. Can one obtain an infinitesimal chracterization of topological manifolds with boundary among all subsets of
positive reach?

Question 1.9. Is it possible to describe up to homeomorphisms all germs of three-dimensional subsets of positive reach?

2 PRELIMINARIES

2.1 Slightly generalized definition and localization

We say that a locally closed subset 𝐶 of a smooth Riemannian manifold𝑀 has positive reach in𝑀 if there exists an open
neighborhood 𝑂 of 𝐶 in𝑀 such that the closest-point projection 𝑃𝐶 onto 𝐶 is uniquely defined on 𝑂.
This definition is usually given for globally closed subsets 𝐶. However, replacing𝑂 by a smaller neighborhood if needed,

we may always assume that 𝐶 is closed in 𝑂.
The advantage of this generalized definition is the following locality: for any subset 𝐶 of positive reach in𝑀, any subset

𝑈 of 𝐶, open in 𝐶, is a subset of positive reach in𝑀. On the other hand, a locally closed subset 𝐶 of𝑀 has positive reach
if it is covered by relatively open subsets of positive reach in𝑀.
For a closed subset 𝐶 of a manifold 𝑀, the property of being of positive reach does not depend on the Riemannian

metric [1, Corollary], moreover, it is invariant under 1,1-diffeomorphisms [1, 3, Theorem 4.19]. Due to the locality stated
above, the same statements apply to locally closed subsets.
Given a locally closed subset 𝐶 of positive reach in𝑀 and any point 𝑝 ∈ 𝐶, we can find a small chart𝑈 around 𝑝, such

that 𝐶 ∩ 𝑈 is closed in 𝑈. Changing the metric on 𝑈 to a Euclidean metric, 𝐶 ∩ 𝑈 becomes a closed subset of positive
reach in a Euclidean space.
If a closed subset 𝐶 is of positive reach in the Euclidean space ℝ𝑛 then, for any 𝑝 ∈ 𝐶, the intersection of 𝐶 with any

sufficiently small closed ball �̄�𝑟(𝑝) is a compact contractible subset of positive reach [3, Theorem 4.10, Remark 4.15], [17,
Lemma 2.3].
For a compact subset of positive reach 𝐶 in a manifold𝑀, there exists a positive number 𝑟 such that the closest-point

projection is uniquely defined on the open 𝑟-tubular neighborhood 𝐵𝑟(𝐶) of 𝐶. The supremum of such 𝑟 is usually called
the reach of the subset 𝐶.

Remark 2.1. Note that for non-compact subsets of positive reach 𝐶, the number reach of 𝐶 defined as above may be 0.

The above consideration allows us to reduce all local statements about arbitrary subsets of positive reach in a Rie-
mannian manifold to compact connected subsets of positive reach in the Euclidean space. We will freely use this
observation below.
Finally, we refer [3, 4.18], [1, 14, Theorem 1.3], [8, Proposition 1.3] for many characterizations of the positive reach.

2.2 Basic properties of subsets of the positive reach

The topological dimension dim(𝐶) of a subset of the positive reach coincides with its Hausdorff-dimension [3, Remark
4.15]. Moreover, dim(𝐶) is the maximum of the dimensions of convex cones 𝑇𝑥𝐶.
For 𝑚 = dim(𝐶), we denote by 𝐶reg the set of all 𝑥 ∈ 𝐶 such that the tangent cone 𝑇𝑥𝐶 is isometric to ℝ𝑚. The subset

𝐶reg is non-empty, open in 𝐶 and it is a 1,1-submanifold of𝑀 [17, Theorem 7.5].
The complement 𝐶 ⧵ �̄�reg is a locally closed subset of positive reach of dimension at most𝑚 − 1 [17, Theorem 7.5]. As in

the introduction, we denote by 𝐶+ the set of points 𝑥 ∈ 𝐶 with dim(𝑇𝑥𝐶) = 𝑚. The previous statement implies 𝐶+ ⊂ �̄�reg.
The tangent cones 𝑇𝑥𝐶 depend lower semi-continuously on 𝑥 ∈ 𝐶, [3, Theorem 4.8], [17, Proposition 3.1], or Proposi-

tion 3.3 below: if 𝑥𝑖 converge to 𝑥 in 𝐶 then (in any fixed Euclidean chart around 𝑥) any pointwise Hausdorff limit (of a
subsequence) of convex cones 𝑇𝑥𝑖

𝐶 contains the tangent cone 𝑇𝑥𝐶. This immediately implies:
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4 LYTCHAK

Lemma 2.2. Let 𝐶 ⊂ 𝑀 be of positive reach in𝑀 with dim(𝐶) = 𝑚. The set 𝐶+ of all 𝑥 ∈ 𝐶 with dim(𝑇𝑥𝐶) = 𝑚 is open in
𝐶.

For any point 𝑥 ∈ 𝐶, denote by �̂�𝑥𝐶 the Euclidean subspace of 𝑇𝑥𝑀 generated by the convex cone 𝑇𝑥𝐶. This is a
Euclidean space of the same dimension as 𝑇𝑥𝐶. The semi-continuity of the tangent cones 𝑇𝑥𝐶 implies the semi-continuity
of the Euclidean spaces �̂�𝑥𝐶. In the case that the dimensions are constant this implies:

Lemma 2.3. Let 𝐶 be a subset of positive reach in𝑀. Let the sequence 𝑥𝑖 ∈ 𝐶 converge to 𝑥 ∈ 𝐶. Assume that dim(𝑇𝑥𝑖
𝐶) =

dim(𝑇𝑥𝐶) for all sufficiently large 𝑖. Then, the linear spaces �̂�𝑥𝑖
𝐶 converge to �̂�𝑥𝐶.

Note that the assumptions on the dimensions are satisfied if 𝑥 ∈ 𝐶+.

2.3 Intrinsic metric on subsets of positive reach

Let 𝐶 be a connected subset of positive reach of a manifold𝑀. The intrinsic metric 𝑑𝐶 is defined as usual, [2, Section 2.3],
by letting 𝑑𝐶(𝑥, 𝑦) be the infimum of lengths of curves in 𝐶 connecting 𝑥 and 𝑦. Any curve realizing this infimum and
parameterized by arclength is called a𝐶-geodesic between 𝑥 and 𝑦. If𝐶 is compact then any pair of points in𝐶 is connected
by a 𝐶-geodesic.
Let 𝐶 be of positive reach in𝑀 and 𝑝 ∈ 𝐶 be arbitrary. As observed above, there exists a compact neighborhood 𝐾 of 𝑝

in 𝐶, which is of positive reach in𝑀. We may then change the topology and the metric on𝑀 outside a neighborhood𝑈 of
𝐾 in𝑀 and embed 𝑈 isometrically into a compact smooth manifold 𝑁. By this procedure, the metric in a neighborhood
of 𝑝 in𝑀 and the intrinsic metric in a neighborhood of 𝑝 in 𝐶 are not changed.
Applying now [14, Remark 6.4, Theorem 1.3 ] and [13, Theorem 1.1, Theorem 1.2] to the pair 𝐾 ⊂ 𝑁 we deduce:

Proposition 2.4. Let 𝐶 be a locally closed subset of positive reach in amanifold𝑀. For arbitrary 𝑝 ∈ 𝐶 and 𝛿 > 0 there exist
𝜅 > 0 and 0 < 𝑟0 <

𝜋√
𝜅
such that for all 𝑟 < 𝑟0 the following hold true:

∙ �̄�𝑟(𝑝) ∩ 𝐶 is a compact subset of positive reach in𝑀.
∙ The intrinsic distance 𝑑𝐶 on �̄�𝑟(𝑝) ∩ 𝐶 differs from the𝑀-distance on �̄�𝑟(𝑝) ∩ 𝐶 at most by the factor (1 + 𝛿).
∙ With respect to 𝑑𝐶 , the subset �̄�𝑟(𝑝) ∩ 𝐶 is convex in 𝐶.
∙ With respect to 𝑑𝐶 , the subset �̄�𝑟(𝑝) ∩ 𝐶 is a CAT(𝜅) space.

The last point above implies that �̄�𝑟(𝑝) ∩ 𝐶 with respect to the intrinsic metric is uniquely geodesic. In particular, it
is contractible.

3 SEMI-CONTINUITY OF TANGENT SPACES

Weare going to discuss a Lipschitz-version of the semi-continuity of tangent cones in this section. Recall from [14, Theorem
1.2, Theorem 1.3, Example 3.4]:

Lemma 3.1. There exists some universal constant 𝜇1 > 0 with the following property. If 𝐶 is a compact subset of ℝ𝑛

of reach ≥ 1 then any 𝐶-geodesic 𝛾 ∶ [𝑎, 𝑏] → 𝐶 parameterized by arclength is a 1,1 curve, and 𝛾′ ∶ [𝑎, 𝑏] → ℝ𝑛 is
𝜇1-Lipschitz continuous.

The optimal value of 𝜇1 does not play a role here and it does not follow from [14], but it might be of some independent
interest:

Question 3.2. What is the optimal value of 𝜇1 in Lemma 3.1 and the optimal value of 𝜇 in Proposition 3.3?

We can now deduce the following semi-continuity statement:
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LYTCHAK 5

Proposition 3.3. There exists a universal constant 𝜇 > 0with the following property. Let 𝐶 ⊂ ℝ𝑛 be compact subset of reach
≥ 1. Let 𝜀 ≤ 1 and 𝛾 ∶ [0, 𝜀] → 𝐶 be a 𝐶-geodesic parameterized by arclength. Then, for 𝑝 = 𝛾(0), 𝑣 = 𝛾′(0) ∈ 𝑇𝑝𝐶 and any
𝑞 ∈ 𝐶, with ||𝑝 − 𝑞|| ≤ 𝜀2, the distance from 𝑣 to 𝑇𝑞𝐶 can be estimated as:

𝑑(𝑣, 𝑇𝑞𝐶) ≤ 𝜇 ⋅ ||𝑝 − 𝑞|| .
Proof. Without loss of generality, wemay assume that 𝑝 is the origin 0. Wemay further assume that ||𝑝 − 𝑞|| = ||𝑞|| = 𝜀2,
otherwise we just replace 𝛾 by a shorter subcurve.
Set 𝑢 = 𝛾(𝜀). Then, due to Lemma 3.1,

||𝑢 − 𝜀 ⋅ 𝑣|| ≤ 𝜇1
2
𝜀2 .

Hence,

||(𝑢 − 𝑞) − 𝜀 ⋅ 𝑣|| ≤ (
1 +

𝜇1
2

)
𝜀2 .

On the other hand, by [3, Theorem 4.18],

𝑑(𝑢 − 𝑞, 𝑇𝑞𝐶) ≤
||𝑢 − 𝑞||2

2
.

Since 𝑇𝑞𝐶 is a cone, the triangle inequality implies

𝑑(𝑣, 𝑇𝑞𝐶) ≤
(
1 +

𝜇1
2

)
𝜀 +

||𝑢 − 𝑞||2
2𝜀

.

Since ||𝑢|| ≤ 𝜀 ≤ 1, the second summand is at most 2𝜀. Thus, we deduce the required inequality with 𝜇 = 3 +
𝜇1

2
. □

We extend the above conclusion from a single 𝑣 ∈ 𝑇𝑝𝐶 to large convex subcones of 𝑇𝑝𝐶, more precisely to the set of all
vectors lying at least at some distance from the boundary of 𝑇𝑝𝐶.
For any 𝜀 > 0, we consider the set 𝑇𝑝,𝜀𝐶 of all 𝑣 ∈ 𝑇𝑝𝐶, such that the ball of radius 𝜀 ⋅ ||𝑣|| around 𝑣 inside the affine

hull �̂�𝑝𝐶 is contained in 𝑇𝑝𝐶. If 𝑇𝑝𝐶 = �̂�𝑝𝐶 then 𝑇𝑝,𝜀𝐶 = 𝑇𝑝𝐶, for any 𝜀. In general, 𝑇𝑝,𝜀𝐶 is a convex subcone of 𝑇𝑝𝐶.
The subcones 𝑇𝑝,𝜀𝐶 increase with decreasing 𝜀 and their union is the set of inner points of 𝑇𝑝𝐶 relative to �̂�𝑝𝐶.
Now, we can deduce from Proposition 3.3:

Corollary 3.4. For any compact subset𝐶 inℝ𝑛 of reach≥ 𝛿 inℝ𝑛, for any point𝑝 ∈ 𝐶 and any 𝜀 > 0 the following holds true.
There exists some 𝑠 = 𝑠(𝑝, 𝜀) > 0 such that for any 𝑞 ∈ 𝐶 ∩ 𝐵𝑠(𝑝) and any vector 𝑣 in the convex subcone 𝑇𝑝,𝜀𝐶 ⊂ 𝑇𝑝𝐶, the

distance from 𝑣 to 𝑇𝑞𝐶 is estimated by

𝑑(𝑣, 𝑇𝑞𝐶) ≤ 2𝜇 ⋅ 𝛿 ⋅ ||𝑝 − 𝑞|| ⋅ ||𝑣|| ,
where 𝜇 is the constant obtained in Proposition 3.3.

Proof. Rescaling the space we may assume 𝛿 = 1. We fix some 𝜀0 ≪ 𝜀 and adjust it in the course of the proof.
The unit sphere 𝑆 in the cone 𝑇𝑝𝐶 is the closure of the set of starting directions of 𝐶-geodesics emanating from 𝑝.

Hence, we find some 𝑡 = 𝑡(𝜀0) > 0 and 𝐶-geodesics 𝛾1, … , 𝛾𝑘 ∶ [0, 𝑡] → 𝐶 starting at 𝑝 in unit directions 𝑣1, … , 𝑣𝑘 such
that {𝑣1, … , 𝑣𝑘} is 𝜀0-dense in 𝑆.
By Proposition 3.3, for any 𝑞 ∈ 𝐶 with ||𝑞 − 𝑝|| ≤ 𝑡2 we get

𝑑(𝑣, 𝑇𝑞𝐶) ≤ 𝜇 ⋅ ||𝑝 − 𝑞|| , (3.1)

for 𝑣 = 𝑣𝑖 , for any 𝑖 = 1, … , 𝑘. By convexity of the distance function to the convex cone 𝑇𝑞𝐶, the inequality (3.1) holds true
for any 𝑣 in the convex hull 𝐾𝜖0

of the unit vectors 𝑣𝑖 and the origin 0.
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6 LYTCHAK

For 𝜀0 → 0 the convex subsets 𝐾𝜀0
converge to the unit ball in 𝑇𝑝𝐶. Thus, for 𝜀0 small enough and any unit vector

𝑤 ∈ 𝑇𝑝,𝜀𝐶, the convex subset 𝐾𝜀0
contains 1

2
𝑤. Then

𝑑

(
1

2
𝑤, 𝑇𝑞𝐶

)
≤ 𝜇 ⋅ ||𝑝 − 𝑞|| ≤ 2 ⋅ 𝜇 ⋅ ||𝑝 − 𝑞|| ⋅ ||1

2
𝑤|| .

This implies that the statement of the corollary holds true for 𝑠 = 𝑡(𝜀0), for such sufficiently small 𝜀0. □

4 EXISTENCE OF BOUNDARY POINTS

The following result is a minor generalization of Theorem 1.1, which is more suitable for localization. Clearly, it implies
Theorem 1.1.

Theorem 4.1. Let 𝐶 be an𝑚-dimensional set of positive reach in a Riemannian manifold𝑀 of dimension 𝑛. Let 𝐶𝑟𝑒𝑔 be the
maximal𝑚-dimensional 𝐶1,1-submanifold without boundary contained in 𝐶.
Consider the set of boundary points of 𝐶𝑟𝑒𝑔 in 𝐶:

𝜕𝐶𝑟𝑒𝑔 ∶= (�̄�𝑟𝑒𝑔 ∩ 𝐶) ⧵ 𝐶𝑟𝑒𝑔 .

Consider the subset𝐺 of all points 𝑥 ∈ 𝜕𝐶𝑟𝑒𝑔 with 𝑇𝑥𝐶 isometric to an𝑚-dimensional Euclidean half-space. Then,𝐺 is dense
in 𝜕𝐶𝑟𝑒𝑔.

Proof. If 𝜕𝐶reg is empty, there is nothing to be proven. Thus, assume that 𝜕𝐶𝑟𝑒𝑔 is not empty. We fix any 𝑝 ∈ 𝜕𝐶reg and
𝜀 > 0 and are going to find some 𝑥 ∈ 𝐵𝜀(𝑝) ∩ 𝐺.
We apply Proposition 2.4 with 𝛿 = 1 and obtain some 𝑟0 < 𝜀 such that, for all 𝑟 ≤ 𝑟0, the intersection �̄�𝑟(𝑝) ∩ 𝐶 is a

compact subset of positive reach in𝑀. Moreover, �̄�𝑟(𝑝) ∩ 𝐶 is convex in the intrinsic metric 𝑑𝐶 of 𝐶.
Choose 𝑟 = 𝑟0

4
and an arbitrary 𝑦 ∈ 𝐵𝑟(𝑝) ∩ 𝐶reg. Consider a closest point 𝑥 ∈ 𝜕𝐶reg to 𝑦 with respect to the intrinsic

distance 𝑑𝐶 . Then, 𝑥 ∈ 𝐵3𝑟(𝑝) ⊂ 𝐵𝜀(𝑝). It remains to verify 𝑥 ∈ 𝐺.
Consider the 𝐶-geodesic 𝛾 ∶ [0, 𝑎] → 𝐶 connecting 𝑥 and 𝑦 and parameterized by arclength. Since 𝑥 is a closest point

to 𝑦 on 𝜕𝐶reg, for any 0 < 𝑠 ≤ 𝑎 the following holds: the open ball𝑊𝑠 of radius 𝑠 around 𝛾(𝑠) with respect to 𝑑𝐶 does not
intersect 𝜕𝐶reg. Thus, this ball𝑊𝑠 is completely contained in the 1,1-manifold 𝐶reg.
In particular, any 𝐶-geodesic in 𝑊𝑠 extends as a 𝐶-geodesic up to points with distance 𝑠 from 𝛾(𝑠), [11, Theorem 1.5].

Moreover, 𝑊𝑠 is uniformly bi-Lipschitz to the 𝑠-ball in ℝ𝑚, since 𝑊𝑠 is a geodesically convex 1,1-manifold which is
uniquely geodesic and has curvature uniformly bounded from both sides [8, Proposition 1.7].
Identify the tangent cone 𝑇𝑥𝐶 at 𝑥 with the blow-up of 𝐶 at 𝑥 [14, Remark 6.1]. For the starting direction 𝑣 of 𝛾, which is

a unit vector in 𝑇𝑥𝐶, we deduce: the open unit ball around 𝑣 is𝑚-dimensional. Moreover, no geodesic in 𝑇𝑥𝐶 terminates
at a point with distance less than 1 to 𝑣. Thus, the convex cone 𝑇𝑥𝐶 contains the closed unit𝑚-dimensional ball𝑊 around
𝑣. Since 𝑇𝑥𝐶 is a cone, it contains the tangent cone 𝑇0𝑊 which is an𝑚-dimensional Euclidean half-space.
The tangent cone 𝑇𝑥𝐶 is a convex cone of dimension at most 𝑚 = dim(𝐶) containing an 𝑚-dimensional half-space

𝑇0𝑊. Moreover, 𝑇𝑥𝐶 is not a Euclidean 𝑚-dimensional space, since 𝑥 is not contained in 𝐶reg. Therefore, 𝑇𝑥𝐶 = 𝑇0𝑊.
Hence, 𝑥 ∈ 𝐺. □

5 STRUCTURE AROUND THE BOUNDARY POINTS

5.1 Preparation

We are going to prove Theorem 1.2 in this section. Thus, let 𝐶 be an 𝑚-dimensional subset of positive reach in an 𝑛-
dimensional Riemannian manifold 𝑀. Let 𝑥 ∈ 𝐶 be a point with dim(𝑇𝑥𝐶) = 𝑚. If 𝑇𝑥𝑀 is a Euclidean 𝑚-dimensional
space, then 𝑥 is contained in themanifold𝐶reg [17, Theorem 7.5]. The statement of Theorem 1.2 follows directly in this case.
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LYTCHAK 7

We assume from now on that 𝑇𝑥𝐶 is𝑚-dimensional, but not a Euclidean space. The statement of Theorem 1.2 is local.
Arguing as in Section 2.1, we may assume𝑀 = ℝ𝑛 and that 𝐶 is compact.
We may further assume 𝑥 = 0 and that the 𝑚-dimensional Euclidean space 𝑉 ∶= �̂�0𝐶, generated by the cone 𝑇0𝐶, is

the coordinate subspace

𝑉 = ℝ𝑚 = ℝ𝑚 × {0} ⊂ ℝ𝑚 × ℝ𝑛−𝑚 = ℝ𝑛 .

We find some unit vector 𝑣0 ∈ 𝑇0𝐶 and 𝜀 > 0 such that 𝑇0𝐶 contains the ball of radius 4𝜀 in 𝑉 = ℝ𝑚. After a rotation, we
may assume that 𝑣0 is the last coordinate vector 𝑣0 = 𝑒𝑚 in ℝ𝑚.
We fix some 𝛿 > 0 smaller than the reach of the compact subset 𝐶. Applying Lemma 2.2, Proposition 2.4, and the

semi-continuity of tangent cones, we find some 𝑟 > 0 with the following properties, for 𝐶′ = �̄�𝑟(0) ∩ 𝐶:

∙ 𝐶′ has reach at least 𝛿 in ℝ𝑛.
∙ For any 𝑝 ∈ 𝐶′, we have dim(𝑇𝑝𝐶) = 𝑚.
∙ 𝑇𝑝𝐶 contains some𝑚-dimensional Euclidean ball of radius 2𝜀 around some unit vector 𝑣𝑝 ∈ 𝑇𝑝𝐶.
∙ The subset 𝐶′ is convex with respect to the intrinsic metric 𝑑𝐶 .
∙ The intrinsic metric 𝑑𝐶 and the Euclidean metric differ on 𝐶′ at most by the factor 2.

5.2 The full-dimensional case

Assume first that𝑚 = 𝑛, thus that 𝐶 is full-dimensional. In this case, the result is essentially contained in [16], as we are
going to explain now.
Consider the family  of all closed balls of radius 𝛿 which have exactly one point in common with 𝐶. This family is

closed in the Hausdorff topology and every point in 𝜕𝐶 lies in some ball𝑂 ∈ , compare [17, Proposition 3.1 (vi)]. In terms
of [16], this means that 𝜕𝐶 is an 𝑂∗

𝛿
subset of ℝ𝑚.

The topological boundary 𝜕𝐶 is precisely the set of points𝑝 ∈ 𝐶 at which𝑇𝑝𝐶 is notℝ𝑚, [17, Theorem 9.5]. In particular,
0 ∈ 𝜕𝐶.
By assumption 𝑒𝑚 is an interior point of 𝑇0𝐶. By the semi-continuity of tangent cones, 𝑇𝑝𝐶 contains 𝑒𝑚 as an interior

point, for any 𝑝 in 𝐶 close to 0. Making 𝑟 smaller, we may assume that 𝑒𝑚 is an interior point of 𝑇𝑝𝐶, for all 𝑝 ∈ 𝐶′.
Then, for any 𝑝 ∈ 𝐶′ ∩ 𝜕𝐶, the intersection of all balls in the family  which contain 𝑝 is non-empty (more precisely,

all these balls contain the point−𝑡 ⋅ 𝑒𝑚, for a sufficiently small 𝑡 > 0). In the notation used in [16], this means that 𝐶′ ∩ 𝜕𝐶

is an 𝑂𝛿 set and the main results of [16] can be applied.
In particular, we find a ball𝑊0 in the orthogonal complementℝ𝑚−1 of 𝑒𝑚 with the following property: for any𝑤 ∈ 𝑊0

the line 𝛾𝑤(𝑡) = 𝑤 + 𝑡𝑒𝑚 intersects 𝐶′ ∩ 𝜕𝐶 in at most one point [16, Theorem 1].
On the other hand, for all small 𝑡 > 0, the point 𝛾0(𝑡) lies in the interior of 𝐶 [17, Lemma 3.5]. Hence, choosing 𝑊0

smaller, if necessary, we may assume that 𝛾𝑤 intersects the interior of 𝐶′ for any 𝑤 ∈ 𝑊0.
For all small 𝑡 < 0, the point 𝛾0(𝑡) is not contained in 𝐶. Otherwise, −𝑒𝑚 ∈ 𝑇0𝐶 and, since 𝑒𝑚 is an inner point of

the convex cone 𝑇0𝐶, this would imply that 𝑇0𝐶 = ℝ𝑚, in contradiction to our assumption 0 ∉ 𝐶reg. Hence, making𝑊0

smaller if needed, we may assume that 𝛾𝑤(𝑡0) is not in 𝐶 for some fixed small 𝑡0 < 0 and any 𝑤 ∈ 𝑊0.
Therefore, for any𝑤 ∈ 𝑊0 the intersection of 𝛾𝑤 and𝐶′ is a compact segment 𝐼𝑤 = [𝛾𝑤(𝑓𝑤), 𝛾𝑤(𝑔𝑤)], for some 𝑓𝑤 < 𝑔𝑤.

Moreover, 𝛾𝑤(𝑓𝑤) ∈ 𝜕𝐶 and 𝛾𝑤(𝑔𝑤) lies on the sphere 𝜕𝐵𝑟(0) and 𝑔𝑤 > 0.
By compactness of 𝜕𝐶, we deduce that the map 𝑤 → 𝑓𝑤 is continuous. Thus, near the origin 0, the set 𝐶 is given as the

supergraph in ℝ𝑚 = ℝ𝑚−1 × ℝ of the continuous function 𝑓 ∶ 𝑊0 → ℝ, 𝑓(𝑤) ∶= 𝑓𝑤.
Applying [16, Theorem 5], we deduce that the function 𝑓 is semi-convex on𝑊0, thus there exists some 𝑐 ∈ ℝ such that

the function

𝑓(𝑤) ∶= 𝑓(𝑤) + 𝑐 ⋅ ||𝑤||2
is convex on𝑊0.
Consider the diffeomorphism Φ ∶ ℝ𝑚 = ℝ𝑚−1 × ℝ → ℝ𝑚−1 × ℝ = ℝ𝑚

Φ(𝑤, 𝑡) ∶= (𝑤, 𝑡 + 𝑐 ⋅ ||𝑤2||) .
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8 LYTCHAK

Thus, 𝐾 = Φ(𝐶) ∩ (𝑊0 × ℝ) is given in a neighborhood of 0 as the supergraph of the convex function 𝑓. Thus, the
smooth diffeomorphism Φ−1 sends a neighborhood of 0 in the convex set 𝐾 onto a neighborhood of 0 in 𝐶. This finishes
the proof of Theorem 1.2 in case𝑚 = 𝑛.

5.3 Lipschitz continuity of tangent spaces

We turn to the general case 𝑛 ≥ 𝑚 and fix 𝐶′ ⊂ 𝐶, 𝜀, 𝛿, 𝑟 as in Section 5.1. As in Section 2.2, we denote by �̂�𝑝𝐶 the
𝑚-dimensional Euclidean subspace of 𝑇𝑝𝑀 generated by the cone 𝑇𝑝𝐶, for any 𝑝 ∈ 𝐶′. We are going to deduce from
Corollary 3.4, the following strengthening of Lemma 2.3:

Proposition 5.1. The map 𝑝 → �̂�𝑝𝐶 from 𝐶′ to the Grassmanian 𝐆𝐫𝑚,𝑛 of 𝑚-dimensional subspaces of ℝ𝑛 is
Lipschitz continuous.

Before we embark on the proof, recall that one (of many biLipschitz equivalent) metric on the Grassmannian 𝐆𝐫𝑚,𝑛 is
defined by

𝑑(𝑈,𝑊) ≤ sup
𝑢∈𝑈,||𝑢||=1 𝑑(𝑢,𝑊) ,

for𝑈,𝑊 ∈ 𝐆𝐫𝑚,𝑛. The distance 𝑑(𝑢,𝑊) is the norm ||𝑃(𝑢)||, where 𝑃 = 𝑃𝑊⟂ denotes the projection onto the orthogonal
complement𝑊⟂ of𝑊. The linearity of 𝑃 directly implies the following.

Claim. If 𝑢0 ∈ 𝑈 is a unit vector and for any 𝑢 in the ball 𝐵𝜀(𝑢0) ∩ 𝑈 we have 𝑑(𝑢,𝑊) ≤ 𝑡 then

𝑑(𝑈,𝑊) ≤
2𝑡

𝜀
.

Now, we can proceed with

Proof of Proposition 5.1. On𝐶′ the intrinsicmetric is 2-biLipschitz to the induced one. Thus, it suffices to prove theLipschitz
property pointwise, hence, to verify the following.

Claim. There is some 𝜆 = 𝜆(𝜀, 𝛿) > 0 such that, for any 𝑝 ∈ 𝐶′,

lim sup
𝑞∈𝐶,𝑞→𝑝

𝑑(�̂�𝑝𝐶, �̂�𝑞𝐶)||𝑝 − 𝑞|| ≤ 𝜆 .
□

By Corollary 3.4, for any 𝑣 in the ball 𝑂 in 𝑇𝑝𝐶 of radius 𝜀 around a unit vector 𝑣𝑝 and all 𝑞, sufficiently close to 𝑝, we
have

𝑑(𝑣, 𝑇𝑞𝐶) ≤ 4𝜇 ⋅ 𝛿 ⋅ ||𝑝 − 𝑞|| ,
with some universal constant 𝜇. The observation preceding the proof of the proposition implies

𝑑(�̂�𝑝𝐶, �̂�𝑞𝐶) ≤
8𝜇

𝜀
⋅ 𝛿 ⋅ ||𝑝 − 𝑞|| ,

for all such 𝑞. This shows the claim with 𝜆 = 𝜌 ⋅ 2𝜇 ⋅ 𝛿 and finishes the proof of Proposition 5.1.

5.4 Finding a larger submanifold

In the setting of Section 5.1, we are going to show
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LYTCHAK 9

Lemma 5.2. There exists 𝑠 > 0 and a 1,1-diffeomorphism Ψ between two neighborhoods of 𝑥 = 0 in ℝ𝑛, such that Ψ(𝐶′ ∩

�̄�𝑠(0)) ⊂ 𝑉 = ℝ𝑚.

Once the lemma is verified, the image𝑄 ∶= Ψ(𝐶′ ∩ �̄�𝑠(0)) is an𝑚-dimensional subset of positive reach in𝑉 [3, Theorem
4.19]. Applying the result in the case 𝑚 = 𝑛 obtained in Section 5.2, we find a diffeomorhism Φ0 between two neighbor-
hoods 𝑂1, 𝑂2 of 0 in 𝑉, which sends 𝑂1 ∩ 𝑄 onto a convex subset 𝐾. Then, the statement of Theorem 1.2 follows by taking
Φ to be the composition Φ0 and Ψ−1.
Therefore, it remains to provide:

Proof of Lemma 5.2. Rescaling the space wemay assume that the reach 𝜌 is at least 1. We fix some 𝜆 ≥ 1 such that the map
𝑝 → �̂�𝑝𝐶 is 𝜆-Lipschitz on 𝐶′, Proposition 5.1.
For any 0 < 𝑠 <

1

4𝜆
≤

1

4
and for any 𝑝 ∈ 𝐶′ ∩ �̄�𝑠(0), we have

𝑑(�̂�𝑝𝐶, 𝑉) ≤
1

4
.

Wemay replace 𝑟 by 𝑠 in the definition of 𝐶′ and assume that 𝐶′ = 𝐶′ ∩ �̄�𝑠(0). For any 𝑝 ≠ 𝑞 ∈ 𝐶′, we deduce from the
above inequality and [3, Theorem 4.8] that

𝑑(
𝑝 − 𝑞||𝑝 − 𝑞|| , 𝑉) ≤ 𝑑

(
𝑝 − 𝑞||𝑝 − 𝑞|| , �̂�𝑞𝐶

)
+ 𝑑

(
�̂�𝑞𝐶, 𝑉

)
≤

𝑠

2
+

1

4
<

1

2
.

Consider the orthogonal projection 𝑃 ∶ 𝐶′ → 𝑉 and denote by 𝑄 ⊂ 𝑉 the compact image 𝑄 ∶= 𝑃(𝐶′). The above
inequality implies that the 1-Lipschitz map 𝑃 ∶ 𝐶′ → 𝑄 is injective and has a 2-Lipschitz continuous inverse Φ = 𝑃−1 ∶

𝑄 → 𝐶′.
We claim that it is sufficient to find an extension ofΦ to a 1,1-mapΦ ∶ 𝑉 → ℝ𝑛. Once this is done, the differential ofΦ

at 0 will automatically be the identity. Hence, the mapΦwill be a 1,1-embedding of a neighborhood𝑂1 of 0 in𝑉 intoℝ𝑛.
Then, making 𝑂1 smaller if necessary, we can extend Φ to a diffeomorphism between two neighborhoods of 0 in ℝ𝑛. In
this case, the inverse mapΨwill be a 1,1 diffeomorphism between two neighborhoods of 0 inℝ𝑛 and such thatΨ|𝐶′ = 𝑃.
This would finish the proof.
It remains to find the extension of Φ ∶ 𝑄 → 𝐶′ to a 1,1-map Φ ∶ 𝑉 = ℝ𝑚 → ℝ𝑛. In order to do so, we will rely on

Whitney’s extension theorem [20] in the form of [5].
For any 𝑧 ∈ 𝑄 with �̄� = Φ(𝑧), consider the inverse map 𝑓1

𝑧 ∶ 𝑉 → �̂��̄�𝐶 ⊂ ℝ𝑛 of the linear isomorphism 𝑃 ∶ �̂��̄�𝐶 → 𝑉.
Denote by 𝑓𝑧 ∶ 𝑉 → ℝ𝑛 the affine map (“Taylor plynomial of degree one”)

𝑓𝑧(𝑞) ∶= Φ(𝑧) + 𝑓1
𝑧(𝑞 − 𝑧) .

Whitney’s extension theorem in the form of [5, Proposition VII] implies the following. There exists an extension of Φ ∶

𝑄 → ℝ𝑛 to a 1,1-map Φ ∶ ℝ𝑚 → ℝ𝑛 with 𝐷𝑧Φ = 𝑓1
𝑧 for all 𝑧 ∈ 𝑄 if and only if for some 𝑐 > 0 and all 𝑦, 𝑧 ∈ the two

subsequent conditions are satisfied:

∙ ||𝑓1
𝑧 − 𝑓1

𝑦|| ≤ 𝑐 ⋅ ||𝑧 − 𝑦|| .
∙ ||𝑓𝑧(𝑧) − 𝑓𝑦(𝑧)|| = ||Φ(𝑧) − Φ(𝑦) − 𝑓1

𝑦(𝑧 − 𝑦)|| ≤ 𝑐 ⋅ ||𝑧 − 𝑦||2.
Set �̄� ∶= Φ(𝑧) and �̄� ∶= Φ(𝑦).
In order to verify the first item above, consider an arbitrary unit vector 𝑣 ∈ 𝑉. Then, the vector 𝑓1

𝑧(𝑣) ∈ �̂��̄�𝐶 has norm
at most 2. By Proposition 5.1, we can find some vector 𝑤 ∈ �̂��̄�𝐶 with

||𝑤 − 𝑓1
𝑧(𝑣)|| ≤ 2 ⋅ 𝜆 ⋅ ||�̄� − �̄�|| ≤ 4 ⋅ 𝜆 ⋅ ||𝑧 − 𝑦|| ,

where 𝜆 is the Lipschitz constant provided in Proposition 5.1. Then

||𝑃(𝑤) − 𝑣|| = ||𝑃(𝑤 − 𝑓1
𝑧(𝑣))|| ≤ 4 ⋅ 𝜆 ⋅ ||𝑧 − 𝑦|| .
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10 LYTCHAK

Hence,

||𝑤 − 𝑓1
𝑦(𝑣)|| = ||𝑓1

𝑦(𝑃(𝑤) − 𝑣)|| ≤ 8 ⋅ 𝜆 ⋅ ||𝑧 − 𝑦||
With 𝑐 ∶= 12𝜆 the triangle inequality implies

||𝑓1
𝑧(𝑣) − 𝑓1

𝑦(𝑣)|| ≤ 𝑐 ⋅ ||𝑧 − 𝑦|| .
Since 𝑣 was an arbitrary unit vector, this shows the first item.
In order to verify the second item, we apply [3, Theorem 4.18] and find a vector 𝑤 ∈ 𝑇�̄�𝐶 ⊂ �̂�𝑦𝐶 with

𝑤 − (�̄� − �̄�) ≤
1

2
||�̄� − �̄�||2 ≤ 2 ⋅ ||𝑧 − 𝑦||2

Therefore

||𝑃(𝑤) − (𝑧 − 𝑦)|| ≤ 2 ⋅ ||𝑧 − 𝑦||2 .
Hence

||𝑤 − 𝑓1
𝑦(𝑧 − 𝑦)|| ≤ 4 ⋅ ||𝑧 − 𝑦||2 .

By the triangle inequality, we deduce

||�̄� − �̄� − 𝑓1
𝑦(𝑧 − 𝑦)|| ≤ 6 ⋅ ||𝑧 − 𝑦||2 .

Thus, for 𝑐 = max{12𝜆, 6} this finishes the verification of both conditions, the proof of Lemma 5.2, and of Theorem 1.2. □
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