KIT | KIT-Bibliothek | Impressum | Datenschutz

Interpretable delta-learning of GW quasiparticle energies from GGA-DFT

Fediai, Artem 1; Reiser, Patrick 1; Peña, Jorge Enrique Olivares 1; Wenzel, Wolfgang 1; Friederich, Pascal ORCID iD icon 1,2
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
2 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)

Abstract:

Accurate prediction of the ionization potential and electron affinity energies of small molecules are important for many applications. Density functional theory (DFT) is computationally inexpensive, but can be very inaccurate for frontier orbital energies or ionization energies. The GW method is sufficiently accurate for many relevant applications, but much more expensive than DFT. Here we study how we can learn to predict orbital energies with GW accuracy using machine learning (ML) on molecular graphs and fingerprints using an interpretable delta-learning approach. ML models presented here can be used to predict quasiparticle energies of small organic molecules even beyond the size of the molecules used for training. We furthermore analyze the learned DFT-to-GW corrections by mapping them to specific localized fragments of the molecules, in order to develop an intuitive interpretation of the learned corrections, and thus to better understand DFT errors.


Verlagsausgabe §
DOI: 10.5445/IR/1000163796
Veröffentlicht am 08.11.2023
Originalveröffentlichung
DOI: 10.1088/2632-2153/acf545
Scopus
Zitationen: 3
Web of Science
Zitationen: 2
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Institut für Theoretische Informatik (ITI)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 09.2023
Sprache Englisch
Identifikator ISSN: 2632-2153
KITopen-ID: 1000163796
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Machine Learning: Science and Technology
Verlag Institute of Physics Publishing Ltd (IOP Publishing Ltd)
Band 4
Heft 3
Seiten Art.-Nr.: 035045
Vorab online veröffentlicht am 12.09.2023
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page