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Abstract: Introduction: 3D surface scan-based diagnosis of
craniosynostosis is a promising radiation-free alternative to
traditional diagnosis using computed tomography. The cra-
nial index (CI) and the cranial vault asymmetry index (CVAI)
are well-established clinical parameters that are widely used.
However, they also have the benefit of being easily adaptable
for automatic diagnosis without the need of extensive prepro-
cessing.
Methods: We propose a multi-height-based classification ap-
proach that uses CI and CVAI in different height layers and
compare it to the initial approach using only one layer. We
use ten-fold cross-validation and test seven different classi-
fiers. The dataset of 504 patients consists of three types of
craniosynostosis and a control group consisting of healthy and
non-synostotic subjects.
Results: The multi-height-based approach improved classifica-
tion for all classifiers. The k-nearest neighbors classifier scored
best with a mean accuracy of 89 % and a mean F1-score of
0.75.
Conclusion: Taking height into account is beneficial for the
classification. Based on accepted and widely used clinical pa-
rameters, this might be a step towards an easy-to-understand
and transparent classification approach for both physicians and
patients.
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eters, Cranial Index, Cranial Vault Asymmetry Index

1 Motivation

Craniosynostosis is a congenital defect caused by premature
ossification of one or more cranial sutures in infants. This may
result in increased intracranial pressure and can impair the
neurological development of the brain [1]. The most common
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types of craniosynostosis are sagittal suture fusion (scapho-
cephaly), metopic suture fusion (trigonocephaly), and coro-
nal suture fusion (anterior plagiocephaly). Dictated by Vir-
chow’s law, growth is blocked in the ossified direction and
compensated by growth in the perpendicular direction, lead-
ing to specific deformations of the head for each type of suture
fusion [2]. Since the bones of small children are still very soft,
an early diagnosis increases the chances of successful treat-
ment.

In clinical practice, the use of the cranial index (CI) and
the cranial vault asymmetry index (CVAI) is a widely prac-
ticed method for diagnosing cranial deformities. In addition,
the head is usually palpated by a physician and a computed
tomography (CT) scan can be consulted as the gold standard.
However, this exposes the children to ionizing radiation and
sometimes requires them to be put under general anesthesia.
To assist physicians in their diagnosis and to make the exam-
inations more patient-friendly, there are some successful and
radiation-free classification approaches based on neural net-
works [3, 4] and statistical shape models [5]. However, they
are computationally expensive and require preprocessing dur-
ing application. For facilitated clinical usage, an automated
method using currently used clinical parameters might be de-
sirable.

In this study, we introduce a multi-height-based approach
using the two clinical parameters CI and CVAI as features that
are easy to extract and do not require a lot of preprocessing.
By using multiple height measurements we expand on similar
approaches using CT scans for skull assessment that have been
explored for shape analysis [6] and circumference-based anal-
ysis [7]. In contrast, we employ a four-height measurement
setup on clinically established measurements. The proposed
method uses 3D surface scans and classifies each subject based
on the clinical parameters determined in different heights. This
way, we ensure easy clinical applicability in contrast to heavy
deep-learning-based approaches.

2 Methods

In the following sections, we provide an overview of the
dataset, as well as the necessary preprocessing steps. We ex-
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plain the algorithm of the multi-height approach and define
how the corresponding feature points can be extracted.

2.1 Dataset and Preprocessing

The dataset was provided by the Department of Oral and Max-
illofacial Surgery from the Heidelberg University Hospital and
was collected between 2011 and 2022. Each sample consisted
of a 3D triangulated mesh of the patient’s head and torso. The
created meshes had been annotated with ten cephalometric
landmarks by medical personnel and were labeled correspond-
ing to the physician’s diagnosis.
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Fig. 1: Class and age distribution within the dataset. Parenthesis
indicate the total number of samples.

According to the fused suture, the samples were catego-
rized into one of the three pathologies “sagittal”, “metopic”
and “coronal” suture fusion (see Fig. 1). The control group
consisted of healthy subjects and non-synostotic patients of
plagiocephaly who later were treated with helmet therapy. In
contrast, all craniosynostosis subjects underwent surgical re-
modeling of the skull. To prevent data leakage (in this case
using different scans from the same subject in training and test
data), we removed duplicate scans of the same patients and
only kept the scan closest to the therapy start date. Rare diag-
noses with less than ten samples were excluded from the study.
This resulted in the final dataset of 504 patient samples. All
patients were of an appropriate age for diagnosis (see Fig. 1).

2.2 Feature Extraction

As a comparison baseline, we used classification based on CI
and CVAI values alone, which were computed on the largest
expansion of the heads as

CI =
width

length
=

f3 − f7
f1 − f5

(1)

and

CVAI =
diag−30∘ −diag30∘

max(diag−30∘ ,diag30∘)
=

(f4 − f8)− (f2 − f6)

max((f4 − f8), (f2 − f6))
.

(2)

The proposed multi-height approach is based on the idea
of expanding the CI and CVAI points but distributing them in
such a way that they cover a larger portion of the head. To
compute the feature points on the 3D mesh, the patient’s in-
dividual coordinate system (see Fig. 2) was constructed. The
cephalometric landmarks were used to determine the individ-
ual center point pc of the patient’s head, corresponding to the
midpoint between left and right tragion ptl and ptr. We de-
fined the three coordinate axes ux, uy and uz according to the
coordinate system defined in [4] and visualized in Fig. 2.

Fig. 2: Visualization of the coordinate axes (left) and enumeration
of the feature points (height-independent, right).

For each height, we obtained the regular CI and CVAI fea-
ture points (see Fig. 2) using corresponding directional vec-
tors starting from the patient’s center point pc. We determined
the distance dmax between the center point pc and the high-
est point ptip of the patient’s head using ray tracing and the
intersection with the 3D surface mesh.

dmax =‖ ptip − pc ‖ (3)

The CI and CVAI feature points finit were then shifted
upwards on the axis uz to form each individual height. For
each height, we used the factor s = {0.3, 0.4, 0.5, 0.6} of the
distance dmax for the shift, visualized in Fig. 3.

The CI and CVAI values were then computed for each of
the defined heights according to equations 1 and 2. In contrast
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to the regular CI and CVAI values, the eight features of the
multi-height approach were not determined at the largest ex-
tension of the head, but were consistent for each subject. The
four heights were approximately 12 mm apart.

Fig. 3: Final multi-height points for an exemplary control subject.
Left: front view, right: side view.

2.3 Experimental Setup and Training
Strategies

The classifications were based on a stratified ten-fold cross-
validation with reproducible splits to ensure that all classi-
fiers had the same prerequisites. This way, the four classes
were evenly distributed across the ten splits so that all clas-
sifiers were trained and tested with all available classes. The
classification between the four classes was performed using
scikit-learn v1.2.2.

We used accuracy and F1-score to evaluate classifica-
tion performance. Mostly, scikit-learn’s default settings
were used. This includes automatic tree and tree depth gener-
ation for decision tree classifier (DT) and random forest clas-
sifier (RF). For k-nearest neighbors classifier (KNN), we used
𝑛 = 5 neighbors, and for support vector machine classifier
(SVM), we used a kernel based on radial basis functions and
a one-versus-one multiclass scheme. The remaining classifiers
naive bayes classifier (NB), linear discriminant analysis classi-
fier (LDA), and multi-height perceptron classifier (MLP) were
used in their default settings, the MLP using one hidden layer
of 100 neurons.

3 Results

For each specific classifier and feature combination, accura-
cies for each split are displayed in Fig. 4 and F1-scores for
each split are displayed in Fig. 5.
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Fig. 4: Accuracy results for different classifiers using the CI and
CVAI values vs. our multi-height approach. Mean values are indi-
cated by white squares.

Accuracy: Using only CI and CVAI values, the clas-
sification results of the individual classifiers varied between
75 % using the MLP and 86 % for the SVM. Compared to the
other classifiers, the DT, the KNN and the MLP showed par-
ticularly high variances in the results of the individual splits
of the cross-validations. For the multi-height approach, the
classification accuracy of all classifiers improved. The KNN
achieved the overall highest mean accuracy of around 89 %
and a slightly reduced variance. The strongest improvements
were found for the DT with 8 % and the MLP with 12 %.

F1-score: Similar trends could be observed for the F1-
score: All classifiers improved when using the multi-height
approach instead of the CI and CVAI approach. A compara-
tively large variance in the results of the individual splits of
the cross-validations was again observed for the KNN and the
DT. For both classification approaches, the KNN achieved the
highest classification results with an F1-score of about 0.62
and 0.75. The LDA performed poorly compared to the other
classifiers even on the multi-height approach with a mean F1-
score of 0.59.

4 Discussion

The multi-height approach showed improvements over using
the single measurement of the CI and CVAI values. This indi-
cates that taking into account the height dimension improves
the classification in this scenario. The information gain likely
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Fig. 5: F1-score results for different classifiers using the CI and
CVAI values vs. our multi-height approach. Mean values are indi-
cated by white squares.

occurs because the deformations characteristic for the different
types of craniosynostosis also occur at locations of the head
that are not used for the determination of the CI and CVAI val-
ues. The classifier with the highest performance, KNN, is fully
explainable as it classifies the sample according to the closest
known sample in the training set. However, the KNN classifier
also showed the largest variance indicating that some runs per-
formed well and others poorly. A white-box classifier such as
KNN has the additional advantage that the diagnosis can be in-
terpreted by the physicians and patients. However, overall the
classification performance falls short compared to more so-
phisticated approaches taking into account substantially more
points [3, 4].

Although the determination of multiple feature points for
the multi-height approach is more complex than only using
CI and CVAI values, the information gain and the resulting
increased classification performance might justify the effort.
When determining the feature points automatically from the
3D mesh, the additional effort is negligible. Since the results of
this study are dependent on the used dataset, our proposed ap-
proach should be validated on another or an extended dataset.
To achieve more precise classification results, the classes stud-
ied should be represented approximately equally often in the
dataset. Data synthesis might be an option to support small and
imbalanced datasets.

5 Conclusion

We presented a multi-height approach for the classification of
craniosynostosis based on clinical parameters that are already
widely used among physicians. While the classification results
can still be improved, physicians can draw on existing exper-
tise, ensuring easy application in clinical practice. Due to its
simplicity and its foundation in clinical parameters, it might
be a suitable path towards an automated and explainable clas-
sifier.

Future work could examine the results concerning the age
of the children to see if this affects performance. Automatic
landmark detection should be employed to remove all manual
steps.
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