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Abstract: During cerebral revascularization surgeries, blood
flow values help surgeons to monitor the quality of the pro-
cedure, e.g., to avoid cerebral hyperperfusion syndrome due to
excessively enhanced perfusion. The state-of-the-art technique
is the ultrasonic flow probe that has to be placed around the
blood vessel. This causes contact between probe and vessel,
which, in the worst case, leads to rupture. The recently devel-
oped intraoperative indocyanine green (ICG) Quantitative Flu-
orescence Angiography (QFA) is an alternative technique that
overcomes this risk. However, it has been shown by the devel-
oper that the calculated flow has deviations. After determining
the bolus transit time as the most sensitive parameter in flow
calculation, we propose a new two-step uncertainty reduction
method for flow calculation. The first step is to generate more
data in each measurement that results in functions of the pa-
rameters. Noise can then be reduced in a second step. Two
methods for this step are compared. The first method fits the
model for each parameter function separately and calculates
flow from models, while the second one fits multiple parame-
ter functions together. The latter method is proven to perform
best by in silico tests. Besides, this method reduces the de-
viation of flow comparing to original QFA as expected. Our
approach can be generally used in all QFA applications using
two-point theory. Further development is possible if number of
dimensions of the achieved parameter data are broadened that
results in even more data for processing in the second step.

Keywords: ICG, Quantitative Fluorescence Angiography,
QFA, neurosurgery, non-contact, blood flow measurement, un-
certainty reduction.

1 Introduction

Even though the brain is a rather small organ, it consumes a
huge amount of energy that is transported by blood [1]. To
maintain brain function, patients undergoing hypoperfusion
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may need revascularization surgeries to restore a proper blood
flow function [2, 3]. By measuring the blood flow intraoper-
atively, better surgical outcomes are observed, e.g., cerebral
hyperperfusion syndrome (CHS) caused by exceeded perfu-
sion enhancement through surgeries can be avoided or oc-
currence can be reduced [2-5]. The state-of-the-art technique
for this measurement is ultrasonic (US) flow probe. However,
it may cause contamination, compromise and rupture due to
the contact between device and vessel [4]. Thus, the optical
camera-based alternative, Quantitative Fluorescence Angiog-
raphy (QFA), has been implemented by Ady Naber [6]. In this
method, flow is generally dependent on injected bolus transit
distance, time and cross section area of the blood vessel. The
resulting calculated flow is, however, deviated and thus, in a
certain range due to e.g., camera noise, heart pulse and non-
uniformly distributed fluorescence particles. Multiple tests on
this system reveal that transit time is the most sensitive param-
eter. Thus, reliable flow strongly correlates with transit time
uncertainty reduction. Calculating average flow values by tak-
ing multiple measurements is not feasible in QFA due to the
need for repeated dye injections, which would significantly in-
crease time requirements and render it impractical for intraop-
erative use. Hence, the aim of this work is to provide a method
for transit time uncertainty reduction that results in more reli-
able flow measurements even if cause and distribution of this
uncertainty is unclear.

2 Quantitative Fluorescence
Angiography

QFA is a method that calculates blood flow in a certain area
of the blood vessel. Therefore, solution including fluorescence
dye is injected into blood veins. The dye reaches the brain
through blood transport. Flow can then be calculated through
dye concentration over time that is approximated by fluores-
cence intensity. In our work, QFA is based on two-point the-
ory whose basic principles are shown in Figure 1. The physical
assumption of QFA is an approximately constant cross section
area and a constant velocity anywhere between the two defined
points (here A and B). In this case, flow can be derived from
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the bolus travel distance and transit time, As and At, respec-
tively, as well as the cross section area of the blood vessel, A:

_As,
At

Vv 6))

Fig. 1: Two-point measurement of QFA. At is calculated through
the shift of the Indicator Dilution Curves (IDCs), which are esti-
mated based on the light intensity from the two regions of interest
(ROls) at manually selected points A and B. [7]

The vessel of interest must be segmented first. Afterwards, a
centerline corresponding to the mask will be calculated au-
tomatically. Figure 2 shows an example of the segmentation
mask (white area) and its centerline (black line in the middle).

Fig. 2: Segmentation mask and its centerline. Based on it, three
parameters for flow calculation can be derived.

As represents the length of the centerline. Circles with in-
creasing diameter whose middle point is a pixel of the cen-
terline will be placed virtually in the mask until they hit the
edge. Then, the diameter d can be estimated. The cross section
area A is calculated through the diameter as follows:

n
A_Z»Zldz,
1=

where n is the number of pixels in the centerline. The calcu-
lation of At only depends on the two endpoints of the center-

(©))

line. The region of interest (ROI) at each endpoint is defined
as a square with a side length equal to one-third of the diame-
ter of the endpoint, and the endpoint itself serves as the center
of the square. To create an Indicator Dilution Curve (IDC),
the mean value of all pixels within each ROI is calculated.
The two resulting IDCs will be normalized by their respective
maximum values, and five methods will be used to calculate
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the time difference At between them. This paper will focus on
two of these methods, described in more detail in [6], for the
sake of visualization:

rawl. At is the mean value of x-axis value shift when set-
ting y-axis target value to 2 %, 3 %, 4 %, 5 %, 7 %, 10 %.
Idrw. Model Local Density Random Walk (LDRW) will
be fit to both entire signals. Then, the cross correlation be-

tween the two models will be calculated. At corresponds
to the shift where the cross correlation function reaches
its maximum.

Methods

The data used in this work consists of 17 patient videos and
intraoperatively recorded flow values from an US flow probe.
As the exact position of the US measurement is uncertain and
its deviation itself, the US flow values are used as a reference
rather than a ground truth. Computational implementation and
visualization is realized with Matlab R2021a [8].

The main difficulty in uncertainty reduction is the data ac-
quisition. QFA derives only one flow value per run, as it de-
pends on a single calculation for each of the three parameters
(As, At, A). Centerline shortening addresses this limitation by
modifying the selected points on the centerline, generating pa-
rameter functions over the centerline pixel index. This enables
the production of multiple distance, time, and area values for
each pair of points. In this work, two methods are compared
for reducing uncertainty in the data obtained. One method
fits each parameter model separately and derives flow from
these models, while the other fit models multiple parameters
together and calculates the flow afterwards. A comparison of
these methods is made with simulation.

Centerline Shortening. This method involves adjusting the
starting point of the centerline while keeping the stopping
point fixed, which allows for calculation of the three param-
eters for each point pair. Consequently, the parameters can
be expressed as a function of the adjusted starting point, also
called centerline pixel index. We define the upper left pixel of
the centerline as ¢ = 1 and the lower right ¢« = n, where n is
the total number of pixels on the centerline. The parameters
Asz,n, Aty n and Ag n of each calculation method are evalu-
ated separately:

Asgz,n equals the length of subcurve from ¢ = z toi = n,
Aen=5F-> 0, d;?, see Equation 2,
Atz,n: two IDCs based on pixel 4 = x and i = n are
calculated and thus, two transit times.
x stands for the index of the starting pixel. As the used stop-

ping pixel is always ¢ = n, we do not include it in the following
notations. A(z) is expected to remain constant, while As(x)



should decrease over pixel index or increase over normalized
selected centerline length, since it represents the arc length of
a curve. Similarly, A¢(z) is expected to increase over normal-
ized centerline length since velocity is assumed to be constant.
Uncertainty Reduction. The flow can be derived from the
parameter functions expressed as a function of the centerline
length. Although only one flow is usually needed in practi-
cal applications, expressing it as a function over the centerline
length enables better comparison. The flow calculation proce-
dure is performed as follows. Method 1 — Direct Line Fit-
ting: A(z) is fitted as a constant line, while As(z) and A¢(z)
are fitted as two lines separately. Flow signal is then calculated
through values of the three fitted lines over the centerline in-
dex. Method 2 — Bounded Line Fitting: A(x) is again fitted
as a constant line. As(z) and A¢(z) are, however, fitted as two
lines together. All variables with hat notation now represent
the expected continuous model. According to Equation 3, the
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condition L b—; has to be fulfilled, so that the velocity is in-

dependent of x. Both slopes need to be nonzero, otherwise the
data are physically, physiologically or mathematically wrong.
Thus,
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The ideal time curve can be written as Af(z) = kox + by =
ko(x+b1/k1). The next step is to fit A3(z) to obtain k1, by and
fit Af(x) to derive ko. The Mean Square Error (MSE) is used
as the metric. The error function e(k3) is given in Equation 4.
To minimize the error, the first derivative of the error function
over ko is calculated and set to zero according to Equation 5.
After the calculation of k2, we can simplify v as described in
Equation 6. Afterwards, A(x) is fit to a constant. Finally, the
flow reads V = 9 A. To realize a comparison between results
after line fitting and centerline shortening, the flow is again
written as function of pixel index according to Equation 7,
where A is the mean value of all A(x). This approximation
is generally valid based on our test results. The corresponding
equations then read:
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Normalized centerline length is introduced to substitute x for
better visualization. The formel can be easily derived in mind
and thus will not present in this work.
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A comparison of these two methods is made via simulations.
As A(z) is generally constant, it is set to 1 m? in simulation.
Blood flow is assumed to be 8 ml/min which is confirmed
according to our patient data. As(z) is set as a vector from
0.1cm to 1cm with step size 0.005cm. Time is noised us-
ing additive white Gaussian noise (AWGN) but with signal
to noise ratio (SNR) ranging from 1dB to 40dB. AWGN can
approximate the noise in At¢(z) according to [7]. Then, two
methods will be applied and the mean value of flow will be
calculated over SNR of time. 10000 tests are made to each
SNR.

4 Results

Centerline Shortening. Figure 3 and 4 visualize the centerline
shortening results of A(x), As(z) and A¢(z) on a exemplary
patient. Here we use the normalized centerline length as vari-
able. These graphics are generally valid for all patient data.
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Fig. 3: Testing results of A(x) and As(x) using centerline short-
ening based on one exemplary patient in the same scalar.

o
w

—raw1

PR e S
——raw1 fit
Idrw fit

o
)
o

o
N

=]
o
o

4

transit time in s

0.05 o 8

o Lk ‘
0 0.5 1
Normalized centerline length

Fig. 4: At in origin and bounded fitting after centerline shortening
in one exemplary patient.

Uncertainty Reduction. Figure 5 shows the comparison
through simulation between direct and bounded line fitting.
Figure 6 visualizes calculated flow signals of both methods
using in vivo patient data.
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Fig. 5: Comparison of direct and bounded line fitting. Mean values
(right) and standard deviation (left) of calculated velocity over SNR
of At are visualized.
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Fig. 6: Flow value without (top) or with (bottom) bounded line
fitting after centerline shortening. The higher the used length, the
more data are exploited in uncertainty reduction.

5 Discussion

Transit time is the most sensitive parameter and has a substan-
tial impact on the calculated flow. Using centerline shortening,
a large amount of data can be obtained. Note that centerline
shortening must be combined with line fitting. Furthermore,
not all data generated via centerline shortening should be used,
as discretization errors may occur if at least one data value is
too small. This is the case e.g., when As is smaller than three
pixels, see Figure 3. Bounded line fitting is more suitable than
separate line fitting both in terms of accuracy and deviation,
according to Figure 5. High SNR difference between As and
At is ideal, as it adds information to noisy signals. Besides,
our approach needs only little time comparing to whole QFA
execution duration. Thus it is suitable for intraoperative usage.
Finally, our method is generally valid for all transit time cal-
culation methods.

6 Conclusion and Outlook

Using centerline shortening and line fitting, uncertainty of flow
measurement can be reduced even if its source and distribution
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is unclear. Bounded line fitting works generally better than di-
rect line fitting based on simulation results. In our application,
centerline shortening can be advanced to the two-dimensional
case where signals depend on any pixel pair on the centerline
instead of only the start pixel. In this case, accuracy should be
even higher.
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