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Abstract

This work describes a novel method for approximating an unbounded num-
ber of data points using a B-spline function in the linear and nonlinear
weighted least squares sense. The developed method is based on iterative al-
gorithms for state estimation and its computational effort increases linearly
with the number of data points. The method allows to shift the bounded
definition range of a B-spline function during run-time such that the latest
data point can be considered for approximation regardless of the initially
chosen definition range. Furthermore, the shift operation allows to decrease
the sizes of matrices in the state estimators in order to reduce computational
effort in both offline applications, in which all data points are available at
once for processing, and online applications, in which additional data points
are observed in each time step.

The trajectory optimization problem is formulated such that the approx-
imation method computes a B-spline function that represents the desired
velocity trajectory with respect to time using data points created from map
data. The computational effort of the resulting direct trajectory optimization
method increases only linearly with the unbounded temporal length of the
planned trajectory. The combination with an adaptive model that describes
the power train properties of a battery electric vehicle with fixed gear box
transmission ratio allows to optimize velocity trajectories with respect to
travel time, comfort and energy consumption.

The trajectory optimization method is extended to a driver assistance sys-
tem for automated vehicle longitudinal control that is tested in simulations
as well as in real test drives. Simulated drives on a chosen reference route
need up to 3.4 % less energy with the automated longitudinal control than
with a human driver at the same average velocity. For the same energy
consumption the automated longitudinal control achieves a 2.6 % higher
average velocity than a human driver.
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Kurzfassung

Diese Arbeit beschreibt ein neuartiges Verfahren zur linearen und nicht-
linearen gewichteten Kleinste-Quadrate-Approximation einer unbeschränk-
ten Anzahl von Datenpunkten mit einer B-Spline-Funktion. Das entwick-
elte Verfahren basiert auf iterativen Algorithmen zur Zustandsschätzung
und sein Rechenaufwand nimmt linear mit der Anzahl der Datenpunkte zu.
Das Verfahren ermöglicht eine Verschiebung des beschränkten Definitions-
bereichs einer B-Spline-Funktion zur Laufzeit, sodass der aktuell betra-
chtete Datenpunkt ungeachtet des anfangs gewählten Definitionsbereichs
bei der Approximation berücksichtigt werden kann. Zudem ermöglicht
die Verschiebeoperation die Reduktion der Größen der Matrizen in den
Zustandsschätzern zur Senkung des Rechenaufwands sowohl in Offline-
Anwendungen, in denen alle Datenpunkte gleichzeitig zur Verarbeitung
vorliegen, als auch in Online-Anwendungen, in denen in jedem Zeitschritt
weitere Datenpunkte beobachtet werden.

Das Trajektorienoptimierungsproblem wird so formuliert, dass das Ap-
proximationsverfahren mit Datenpunkten aus Kartendaten eine B-Spline-
Funktion berechnet, die die gewünschte Geschwindigkeitstrajektorie bezüg-
lich der Zeit repräsentiert. Der Rechenaufwand des resultierenden direk-
ten Trajektorienoptimierungsverfahrens steigt lediglich linear mit der un-
beschränkten zeitlichen Trajektorienlänge an. Die Kombination mit einem
adaptiven Modell des Antriebsstrangs eines batterie-elektrischen Fahrzeugs
mit festem Getriebeübersetzungsverhältnis ermöglicht die Optimierung von
Geschwindigkeitstrajektorien hinsichtlich Fahrzeit, Komfort und Energie-
verbrauch.

Das Trajektorienoptimierungsverfahren wird zu einem Fahrerassistenz-
system für die automatisierte Fahrzeuglängsführung erweitert, das simu-
lativ und in realen Erprobungsfahrten getestet wird. Simulierte Fahrten
auf der gewählten Referenzstrecke benötigten bis zu 3, 4 % weniger En-
ergie mit der automatisierten Längsführung als mit einem menschlichen
Fahrer bei derselben Durchschnittsgeschwindigkeit. Für denselben En-
ergieverbrauch erzielt die automatisierte Längsführung eine 2, 6 % höhere
Durchschnittsgeschwindigkeit als ein menschlicher Fahrer.

iii





Acknowledgment

This dissertation was created within the research project e-volution funded
by the German Federal Ministry of Education and Research during my time
as research associate and doctoral candidate at the Institute of Vehicle Sys-
tem Technology (FAST) at Karlsruhe Institute of Technology (KIT).

First, I would like to thank my adviser Professor Dr. rer. nat. Frank Gau-
terin for giving me the opportunity to work on this research topic and for his
support as well as scientific guidance regarding research project, publica-
tions and dissertation. Furthermore, I would like to thank Professor Dr.-Ing.
Eric Sax for his comprehensive feedback to this work and for being my sec-
ond adviser. Moreover, I am grateful to Professor Dr.-Ing. Tobias Düser
for chairing the examination committee and to my research group manager
Dr.-Ing. Michael Frey for his support, suggestions and reviews.

My colleagues I would like to thank for creating an inspiring atmosphere
rich of scientific exchange. In particular previous works by Felix Bleimund,
Dr.-Ing. Dominik Dörr and Björn Fath facilitated the orientation of my re-
search towards algorithms for splines and trajectories. Additionally, I grate-
fully acknowledge the efforts of Dr.-Ing. Johannes Masino and Dr.-Ing.
Stephan Rhode for joint publications.

Within e-volution, I also enjoyed collaborating with Dr.-Ing. Moritz Vail-
lant and Volker Watteroth, associates at Dr. Ing. h.c. F. Porsche AG and
Porsche Engineering Services GmbH, respectively. Their project contribu-
tion enabled the application of the developed algorithms in a real vehicle.

The students Changjoon Lee, Tim Staiger and Adam Thorgeirsson con-
tributed to my dissertation via e-volution-related work and also to a mutual
publication.

Special thanks go to my sister for detailed reviews of this dissertation.
Lastly, I am particularly grateful to my parents, to whom I dedicate this
dissertation, for their continuous support and encouragement.

Karlsruhe, July 2023 Jens Jauch

v





Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Works, contributions and support by others . . . . . . . . . 4
1.5 Prepublications and their citations . . . . . . . . . . . . . . 6
1.6 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Scientific and technical state of the art . . . . . . . . . . . 9
2.1 Assistance systems for automated longitudinal control . . . . 9
2.2 Trajectory optimization . . . . . . . . . . . . . . . . . . . . 13
2.3 B-spline data approximation . . . . . . . . . . . . . . . . . 20
2.4 Adaptive filters . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Data approximation with B-spline functions . . . . . . . . 35
3.1 B-spline function definition . . . . . . . . . . . . . . . . . . 35
3.2 Structure of the data set . . . . . . . . . . . . . . . . . . . . 39
3.3 Methods for linear weighted least squares problems . . . . . 39

3.3.1 Weighted least squares estimator . . . . . . . . . . . 40
3.3.2 Kalman filter . . . . . . . . . . . . . . . . . . . . . 41
3.3.3 Recursive B-spline approximation algorithm . . . . 42
3.3.4 Effectiveness of recursive B-spline approximation . 48

3.4 Methods for nonlinear weighted least squares problems . . . 50
3.4.1 Levenberg-Marquardt algorithm . . . . . . . . . . . 50
3.4.2 Marginalized particle filter . . . . . . . . . . . . . . 51
3.4.3 Nonlinear recursive B-spline approximation algorithm 55
3.4.4 Effectiveness of nonlinear recursive B-spline ap-

proximation . . . . . . . . . . . . . . . . . . . . . . 60
3.5 Scientific contribution . . . . . . . . . . . . . . . . . . . . . 65

4 Models of research vehicle and reference route . . . . . . 73
4.1 Coordinate system . . . . . . . . . . . . . . . . . . . . . . 74
4.2 Driving resistances . . . . . . . . . . . . . . . . . . . . . . 75

vii



Contents

4.2.1 Climbing force . . . . . . . . . . . . . . . . . . . . 75
4.2.2 Wheel resistance . . . . . . . . . . . . . . . . . . . 75
4.2.3 Air resistance . . . . . . . . . . . . . . . . . . . . . 77
4.2.4 Inertial force . . . . . . . . . . . . . . . . . . . . . 78
4.2.5 Force equilibrium . . . . . . . . . . . . . . . . . . . 79

4.3 Power train . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3.1 Mechanical components . . . . . . . . . . . . . . . 80
4.3.2 Electrical components . . . . . . . . . . . . . . . . 81

4.4 Energy consumption and optimization approach . . . . . . . 84
4.5 Vehicle models for simulation environment . . . . . . . . . 87
4.6 Model of reference route . . . . . . . . . . . . . . . . . . . 89
4.7 Vehicle models for automated longitudinal control . . . . . . 89

4.7.1 Adaptive traction force model . . . . . . . . . . . . 93
4.7.2 Adaptive electrical power model . . . . . . . . . . . 95

5 Planning of velocity trajectories . . . . . . . . . . . . . . . 103
5.1 Generation of upper speed limit . . . . . . . . . . . . . . . 103
5.2 Representation of vehicle velocity in time domain . . . . . . 106
5.3 Trajectory optimization . . . . . . . . . . . . . . . . . . . . 109
5.4 Trajectory optimization considering electrical power . . . . 117
5.5 Considering trajectory constraints . . . . . . . . . . . . . . 121

5.5.1 Adaption to vehicle motion state . . . . . . . . . . . 122
5.5.2 Adaption to previous trajectory . . . . . . . . . . . . 125
5.5.3 Adaption to vehicle ahead . . . . . . . . . . . . . . 125

5.6 Scientific contribution . . . . . . . . . . . . . . . . . . . . . 128

6 Automated energy-efficient longitudinal control . . . . . . 133
6.1 Development process . . . . . . . . . . . . . . . . . . . . . 133
6.2 System architecture and design . . . . . . . . . . . . . . . . 138

6.2.1 Route data module . . . . . . . . . . . . . . . . . . 139
6.2.2 Parameter adaption module . . . . . . . . . . . . . . 141
6.2.3 Trajectory module . . . . . . . . . . . . . . . . . . 141
6.2.4 Controller module . . . . . . . . . . . . . . . . . . 143

6.3 Energy-saving potential and effects of parameters . . . . . . 150
6.4 Technical contribution . . . . . . . . . . . . . . . . . . . . 158

7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.3 Suggestions for further research . . . . . . . . . . . . . . . 163

viii



Acronyms

AC air conditioning
ACC adaptive cruise control
AEPM adaptive electrical power model
ALC automated longitudinal control
ASM asynchronous motor
ATFM adaptive traction force model
BEV battery electric vehicle
CAN Controller Area Network
CC cruise control
COG center of gravity
DM direct methods
DP Dynamic Programming
ECU electronic control unit
EKF extended Kalman filter
EM electric motor
FA front axle
FB-KRLS Fixed-Budget KRLS
GB gear box
HEV hybrid electric vehicle
HiL Hardware-in-the-Loop
HQC Hannan-Quinn information crite-

rion
HV high voltage
IDM Intelligent Driver Model
IM indirect methods
KAF kernel adaptive filter
KF Kalman filter
KRLS kernel RLS
KRLS-T KRLS Tracker
LiNMC lithium nickel-manganese-cobalt

oxide
LM Levenberg-Marquardt
LS least squares
MiL Model-in-the-Loop
MLC manual longitudinal control

MPC model predictive control
MPF marginalized particle filter
MPP most probable path
NRBA nonlinear recursive B-spline ap-

proximation
NRMSE normalized root mean square er-

ror
NWLS nonlinear weighted least squares
OBN on-board network
OCP optimal control problem
OR optimization range
PDF probability density function
PE power electronics
PF particle filter
PFD partial fraction decomposition
PID proportional-integral-derivative
PP pressure point
PSM permanently excited synchronous

motor
PTC positive temperature coefficient
PVOP possible vehicle operating points
QP quadratic programming
RA rear axle
RBA recursive B-spline approximation
RLS recursive least squares
SCKF square-root cubature Kalman fil-

ter
SiL Software-in-the-Loop
SOC state of charge
SQP sequential quadratic program-

ming
SSE sum of squared errors
UKF unscented Kalman filter
ViL Vehicle-in-the-Loop
WLS weighted least squares
WR Weissach route

ix





Symbols

Optimal control.
J optimization function.
F state constraint matrix.
G input constraint matrix.
δt cycle time.
T time horizon.

Approximation
0 zero matrix.
1 matrix of ones.
AL state transition matrix for linear

states.
AN state transition matrix for non-

linear states.
A state transition matrix.
B input matrix.
B B-spline matrix.
b B-spline vector.
b B-spline.
C measurement matrix for KF,

RBA, MPF and NRBA.
C measurement matrix for WLS.
c nonlinear measurement func-

tion.
D definition range.
B′ derivative of B-spline matrix.
d degree.
δ degree index.
i iteration.
δ correction step size.
λ damping parameter.
e error function.
e measurement error.
φ function whose values de-

pend nonlinearly on its control
points.

ε tolerance.
f B-spline function.

I identity matrix.
I number of spline intervals.
J number of B-splines.
j B-spline index.
K Kalman gain.
K number of knots.
k knot index.
κ knot vector.
κ knot.
L linear quantity.
µ spline interval index.
P number of data points.
N nonlinear quantity.
O upper asymptotic border.
P− covariance matrix of a priori es-

timation error.
PL,− covariance matrix of a priori es-

timation error of linear states.
P+ covariance matrix of a posteri-

ori estimation error.
PL,+ covariance matrix of a posteri-

ori estimation error.
PLξ,− cross-covariance matrix of a

priori estimation error.
p̄ initial value in P+0 and Q.
Pξ,− covariance matrix of a priori

estimation error of nonlinear
states.

PξL,− cross-covariance matrix of a
priori estimation error.

P particle count.
p particle index.
Q covariance matrix of process

noise.
Q

L covariance matrix of process
noise for linear states.

q̄ initial value in Q.
Q

N covariance matrix of process
noise for nonlinear states.

xi



Symbols

q particle importance weight.
q̃ normalized particle importance

weight.
q̄L initial value in QL .
q̄N initial value in QN .
r order of derivative.
R covariance matrix of measure-

ment noise for KF, RBA, MPF
and NRBA.

R covariance matrix of measure-
ment noise for WLS and LM.

rnd random value drawn from the
standard normal distribution.

s vector of independent variables.
s independent variable.
σ shift variable.
p time step.
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1 Introduction

1.1 Background

The topic of this work falls into the context of driver assistance systems for
automated vehicle longitudinal control based on map data. Such systems
can increase safety, improve comfort and reduce the energy consumption of
the vehicle by computing an energy-efficient course of velocity for the road
section ahead.

In the recent past, energy savings have mainly been achieved by power
train improvements such as downsizing of the internal combustion engine
as well as hybrid and purely electric power trains. When taking into ac-
count the increasing costs for further power train improvements, assistance
systems for energy-efficient longitudinal control offer a more cost-efficient
way to obtain additional energy savings. According to [117, p. 141], effi-
cient driving has the second largest potential for energy savings (30 %) after
electrification of the power train (75 %).

Driver assistance systems for automated longitudinal control (ALC) com-
pute the desired course of velocity, also called velocity trajectory, by solving
a trajectory optimization problem. Different optimization approaches are
known, e.g. Dynamic Programming (DP) and direct methods (DM).

The popular DP approach finds the global optimum for a given optimiza-
tion problem and its computational effort grows linearly with the temporal
length of the planned trajectory. However, only coarsely discretized prob-
lems with few state dimensions can be solved in real-time on a series elec-
tronic control unit (ECU) with limited resources.

A possible way is to compute a rough long-term trajectory with DP that
serves as a reference trajectory for a DM. In addition to discretizing the op-
timization problem, DM approximate the system state and control between
the discretization steps by a function with respect to time. DM are, however,
only suitable for short-term trajectories since the effort of DM increases ex-
ponentially with the temporal trajectory length.

This work addresses the need for computationally less demanding trajec-
tory optimization algorithms for ALC of a battery electric vehicle (BEV).

1



1 Introduction

1.2 Approach

The research problem is approached by developing a novel method for the
generic task of approximating an unbounded number of data points using a
B-spline function in the linear and nonlinear weighted least squares (WLS)
sense. The developed method is based on iterative algorithms for state esti-
mation.

The approximation problem is reformulated as a trajectory optimization
problem such that the approximation method computes a velocity trajectory
with respect to time using data points created from map data. The novel tra-
jectory optimization method falls into the category of DM and its effort in-
creases only linearly with the trajectory length instead of exponentially. The
combination with an adaptive model that describes the power train proper-
ties of the BEV allows to plan velocity trajectories whose resulting energy
consumption varies depending on the chosen relative weighting of different
target criteria.

The trajectory optimization is extented to a driver assistance system for
ALC that is tested in simulation as well as in real test drives. In simula-
tions on a chosen reference route the ALC is compared to a recorded and
re-simulated real drive with manual longitudinal control (MLC) regarding
energy consumption and average velocity.

1.3 Outline

Figure 1.1 illustrates the structure of this work, which follows the V model.
The V model describes the software development process and distinguishes
different process levels. On the descending branch of the V model, the
development goal is analysed and iteratively broken down into subgoals.
Thereby requirements are specified for subsystems that ultimately need to
be implemented.

Chapter 2 of the work corresponds to the descending branch of the V
model and will provide literature background as well as identify research
gaps. The development goal on system level is a driver assistance system
for energy-efficient ALC of a BEV (Section 2.1) which is broken down into
a trajectory optimization method on component level (Section 2.2) and B-
spline approximation methods on algorithm level (Section 2.3). Section 2.4
gives an introductive overview of adaptive filters for Chapter 3 and Chapter 5
without identifying a research gap.
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Figure 1.1: Structure of this work illustrated by the V model that is used to describe
the software development process.

The ascending branch of the V model includes testing and iterative inte-
gration of subcomponents into larger systems until the main goal is reached.
Chapter 3 to Chapter 6 address this phase by presenting contributions for
closing the research gaps on each level of the V model.

Chapter 3 presents novel algorithms for iterative linear and nonlinear
WLS approximation of data with a B-spline function. The algorithms are
referred to as recursive B-spline approximation (RBA) and nonlinear recur-
sive B-spline approximation (NRBA), respectively.

Chapter 4 provides neccessary foundations for Chapter 5 and Chapter 6.
Without having a direct counterpart to the left branch, it states models of the
vehicle that are used for determining energy-efficient trajectories and for
evaluating the energy consumption of the research vehicle in simulations on
a chosen reference route.
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1 Introduction

Chapter 5 applies RBA and NRBA to the trajectory optimization problem
and presents extensions for taking into account trajectory constraints.

Chapter 6 describes the development process of the ALC and its sys-
tem architecture including the interaction of its components. Furthermore,
Chapter 6 investigates the energy-saving potential with the ALC on the ref-
erence route in comparison to a recorded and re-simulated real drive with
MLC as well as effects of ALC parameters on the energy consumption that
results with the ALC.

Chapter 7 concludes the journey through the V model, summarizes the
contributions to research gaps and gives suggestions for future research.

1.4 Works, contributions and support by others

The research described in this work took place within the research project
e-volution [41] funded by the German Federal Ministry of Education and
Research (support code 16EMO0071). The Dr. Ing. h.c. F. Porsche AG was
among the research partners and supported the project work by providing a
battery electric research vehicle for test drives as well as vehicle data and
measurement data. Furthermore, an employee of the Porsche Engineering
Services GmbH integrated the developed ALC system into the prototyping
ECU of the research vehicle and conducted test drives.

The provided research vehicle was developed during the preceding re-
search project e-generation [22], which was also funded by the German
Federal Ministry of Education and Research (support code 16N 11865) and
realized in cooperation with the above mentioned companies. The author of
this work did not contribute to e-generation but reused the following results:

Despite differing strongly in detail, the B-spline data approximation al-
gorithms stated in Chapter 3 adopt the iterative, filter-based characteristics
of the previous method for polynomial data approximation [22, pp. 29-35],
which was patented by F. Bleimund and S. Rhode [21]. A detailed differen-
tiation between the approaches is given at the end of Chapter 3.

The adaptive traction force model (ATFM) stated in Subsection 4.7.1
stems from F. Bleimund [22, pp. 24-29] and is applied without modifica-
tions. The idea to model the power train characteristics with a kernel regres-
sion model, as done in Subsection 4.7.2 using the adaptive electrical power
model (AEPM), originates from S. Rhode [146], who also provided a first
script in MATLAB that performs this task. Based on this, both authors con-
tinued the investigations independently from each other. Problem-specific
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adaptions for using the model for trajectory optimization as well as the de-
termination of model hyperparameters were done by the author of this work.

Trajectory optimization within the previous ALC [22, pp. 29-35] devel-
oped by F. Bleimund differs significantly from the one described in this
work, although both are examples of DM. The previous ALC defined tra-
jectories with respect to position by a cubic polynomial. The few degrees of
freedom of this function only allowed to represent trajectories with simple
shape over short distances. The energy that the vehicle will need for tracking
the planned trajectories was not considered in the optimization process.

Therefore, regarding trajectory optimization this work only adopts the
generation of an upper speed limit (Section 5.1) from e-generation [22,
pp. 29, 30]. The adaptions made are limited to parameterization improve-
ments. At an early stage, with non-final trajectory representation, AEPM
and nonlinear filter, tests for finding suitable target criteria weightings for
the trajectory optimization including the elecrical power (Section 5.4) were
done by A. Thorgeirsson [173] as a student assistant.

Moreover, reused results include agreed interfaces between the ALC sys-
tem and the vehicle, the technical architecture of the ALC system as well as
a Hardware-in-the-Loop (HiL) test bench, which simulates the research ve-
hicle on the reference route and runs the developed ALC on the same ECU
type as in the real research vehicle. The HiL test bench (Section 6.1) was
created by B. Fath [22, pp. 60-73].

The route data module (Subsection 6.2.1) was implemented by D. Dörr
[22, pp. 23, 24]. Within this work, the parameterization was enhanced and
logic for processing roundabout data was added. The parameter adaption
module (Subsection 6.2.2) including ATFM was developed by F. Bleimund
[22, pp. 24-29]. The author of this work added the AEPM.

To the controller module the author of this work added the functional-
ity stated at the beginning of Subsection 6.2.4 and replaced the original
proportional-integral-derivative (PID) control by a model predictive con-
trol (MPC). Overall architecture and control loop including the pilot control
(Subsubsection 6.2.4) were adopted from F. Bleimund [22, pp. 35, 36]. First
implementations and simplified tests of the MPC (Subsubsection 6.2.4) were
done by C. Lee [98] during his time as student assistant after completing his
Master’s thesis.

First evaluations of the energy-saving potential (Section 6.3) with non-
final ALC setup were conducted by A. Thorgeirsson [173] while being em-
ployed as a student assistant. For more detailed differentiations regarding
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1 Introduction

the individual contributions, the reader is referred to the afore-stated parts
of this work.

1.5 Prepublications and their citations

The research community benefits from fast publication of new findings.
Therefore, parts of this dissertation have been prepublished. Namely, RBA
and NRBA described in Chapter 3 are the topics of [78, 80] and the contents
of Chapter 4, Chapter 5 and Chapter 6 are mentioned in a very condensed
way in [78, 79].

This work will put the topics of these publications into a broader context
and present them in much more detail. For more flexibility in rearrang-
ing content compared to a cumulative dissertation, only parts of previous
publications have been added. To avoid interruptions of the reading flow
because of frequent changes between paraphrases and direct quotes, all
content adopted from prepublications, regardless of the extent of adaptions
made, i.e. both paraphrases as well as direct quations, will be indicated as
follows:

� . . . Prepublished content . . . Adopted from [prepublication].

For reproducibility and convenient further use by other researchers the
MATLAB source code for RBA, NRBA and trajectory planning has been
provided along with the corresponding publication [75, 76, 77]. However,
the source code of the trajectory planning method was published with a
generic vehicle model instead of the parameters of the research vehicle and
for the simplest planning case only. Therefore the results presented in Chap-
ter 4 to Chapter 6 are not exactly reproducible by others.

1.6 Notation

In this work vectors are printed in bold font and matrices are printed bold
in capital letters. For example, a and A are scalars, a is a vector and A
is a matrix. Unless explicitly stated, the sizes of vectors and matrices are
assumed to be chosen appropriately.

A hat above a variable a such as â indicates an estimate of a or the solu-
tion of an optimization problem with respect to the variable a.
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This work also adopts the MATLAB-like index notation. The first index
of a matrix A refers to rows, the second to columns. For example, Ai, j

refers to the entry in row i and column j of matrix A. The colon operator
(:) refers to all rows or columns, or a range. A:, j means all rows of column
j. Analogously, Ai,: denotes all columns of row i. Ai is an abbreviation of
Ai,:. The colon operator in the index of A1:4, j extracts a column vector of
rows one to four in column j of matrix A. Additionally, a[i] refers to the
i-th element of vector a.
| · | denotes the absolute value and ()> the transpose operation.
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2 Scientific and technical state of the art

This chapter provides background information and identifies research gaps
regarding driver assistance systems for ALC in Section 2.1, trajectory opti-
mization in Section 2.2 and types of spline representations as well as B-
spline approximation methods in Section 2.3. Furthermore, Section 2.4
gives an overview on adaptive filters for Chapter 3 and Section 4.7.

2.1 Assistance systems for automated longitudinal control

The tasks that the driver performs can be divided into three levels:
• Navigation: Choosing a travel route
• Guidance: Determining a suitable speed from the traffic environment
• Stabilization: Aligning the vehicle motion with the guidance variables

Driver assistance systems can support on each of these levels.
� Regarding the vehicle guidance, assistance functions can be distin-

guished by their operating mode as depicted in Table 2.1 [187, pp. 36-40]:
• Informing and warning functions
• Continuously automated functions
• Intervening emergency functions

This work deals with continuously automated functions for longitudinal
control. Such functions can contribute to increasing safety and comfort as
well as to reducing energy consumption to different extents.

For example, the cruise control (CC) function controls the brake and en-
gine torque so that the vehicle maintains the speed selected by the driver.
Adaptive cruise control (ACC) is an extension of CC that uses a radar sen-
sor to detect a vehicle ahead. ACC can reduce the selected vehicle velocity
to maintain a chosen time gap to a vehicle ahead [52, 196]. Studies cited in
[187, pp. 1140-1145] report that with activated ACC drivers mention feel-
ing safer and more relaxed compared to manual driving. Adopted from
[79]. ACC-like systems increase comfort by reducing the driver workload.
However, the effects on safety are not as clear as the effects on comfort and
require more comprehensive investigations including psychological effects.
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2 Scientific and technical state of the art

Table 2.1: Operating modes regarding vehicle guidance [187, p. 38, adapted]

Mode
name

Informing and warning
functions

Continuously automated
functions

Intervening emergency
functions

Mode
character

A B C

Vehicle
control

Only indirect control
via the driver

• Immediate direct control
• Division of driving tasks
between human driver and
function
• Control always remains
overridable

Immediate direct
control in near-accident
situations or situations
that cannot handled by

an average driver

Examples • Display of current
speed limit based on
traffic sign recognition
• Lane departure
warning

Usually convenience
functions:

• Adaptive cruise control
• Lane centering

Usually safety
functions:
Automatic

emergency braking
(system triggered)

These are adressed by works that are mentioned in the above cited litera-
ture. Briefly summarized, automation of tasks favors that the driver diverts
the attention to things that are irrelevant for driving. In assistance systems
that still require monitoring by the driver, this can cause a safety issue if the
driver unexpectedly needs to take back control. For example, in one of the
studies, drivers looked away from the traffic ahead for longer periods when
driving with ACC [187, pp. 1140-1145].

Driving efficiency oriented extensions of ACC use a corridor of allowed
distances to the vehicle ahead instead of a specific distance value given by
the selected time gap. Within this corridor the vehicle is controlled accord-
ing to an optimization that considers the energy consumption of the vehicle,
either explicitly with an energy consumption model [18, 88, 127, 195] or
implicitely using a proxy for the energy consumption, such as acceleration
[1, 107, 112]. The effectiveness of both approaches is compared in [81].
Section 4.7 will address consumption models in more detail.
� One step further go ACC enhancements that additionally determine the

appropriate speed depending on map data so that the vehicle automatically
slows down if a curve is ahead. Map information enables such systems to
determine an even more energy-efficient or time-efficient driving strategy as
Table 2.2 illustrates. Adopted from [79].

Further developments of assistance systems increase the degree of au-
tomation and finally lead to autonomous vehicles that do not require a driver.
The degree of automation according to SAE International is depicted in Ta-
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2.1 Assistance systems for automated longitudinal control

Table 2.2: Time and energy savings with automated longitudinal controls that con-
sider map data compared to benchmark control methods. Dynamic Pro-
gramming (DP), direct methods (DM), conventional vehicle (CV), hy-
brid electric vehicle (HEV), battery electric vehicle (BEV), urban road
(U), country road (C), highway (H), artificial road profile (A).

Source
Optimiza- Vehicle Energy Time Benchmark Road

tion type type difference difference type

[114] DP CV −10 % 0 % Human U,C

[139] DP CV −23.8 % 1.5 % Human U,C

[139] DP CV −10.2 % −1.3 % Human U,C

[100] DP CV −12 % −3 % Human U,C

[100] DP CV −8.28 % 0.01 % Human U,C,H

[100] DP CV 1.71 % −3.60 % Human U,C,H

[183] DP HEV −18.1 % −1.15 %
Heuristic

U,C,H
strategy

[183] DP HEV 0 % −21.13 %
Heuristic

U,C,H
strategy

[86] DM HEV −4 % n/a
Constant

H
velocity

[188] DP BEV −5.83 % n/a PID control A

[188] DM BEV −5.40 % n/a PID control A

[188] DM BEV −1.27 % n/a PID control H

[188] DM BEV −1.14 % n/a PID control H

ble 2.3. Both mode A and mode C functions according to Table 2.1 are SAE
level 0 functions because they are only capable of warnings and momentary
assistance. Most ACC systems fall into the category SAE level 1, because
they can perform longitudinal control in certain use cases but the driver has
to monitor them, has to override them occasionally and needs to perform the
lateral control by operating the steering wheel. Some system enhancements
include lateral guidance [187, p. 1146]. Systems that offer both longitudinal
and lateral control belong to at least SAE level 2.
�ALC systems that determine an energy-efficient driving strategy mainly

have been developed for vehicles with internal combustion engine [139] or

11



2 Scientific and technical state of the art

Table 2.3: SAE J3016 levels of driving automation [172, adapted].

Level name No Driving
Automation

Driver
Assistance

Partial
Driving

Automation

Conditional
Driving

Automation

High Driving
Automation

Full Driving
Automation

Level number 0 1 2 3 4 5

Type Driver support system Automated driving system

Vehicle
control

Human is driving when the system is
engaged, even if pedals and steering wheel

are not touched

Human is not driving when the system is
engaged, even if sitting in the driver’s seat

Monitoring
and fallback
solution

Human must constantly supervise the
system and override it as the situation

requires

On request by
the system,
human must

take over
driving

Feature will not require
human to take over driving

Capability Provide
warnings and
momentary
assistance

Provide
EITHER

longitudinal
OR lateral

control
support

Provide
longitudinal
AND lateral

control
support

Can drive the vehicle under
limited conditions as long as
all required conditions are

met

Can drive the
vehicle under
all conditions

Example Display of
current speed
limit based on

traffic sign
recognition

Lane
departure
warning

Automatic
emergency

braking

EITHER
lane centering

OR
adaptive

cruise control

Lane
centering

AND
adaptive

cruise control
SIMULTA-
NEOUSLY

Traffic jam
chauffeur

Local
driverless taxi

Installation
of pedals and

steering
wheel

optional

Same as 4 but
system can

drive
everywhere

in all
conditions

hybrid electric vehicles [183]. The degrees of freedom of the power train
in a conventional vehicle include motor torque, clutch state and selected
gear. The various operating modes of a hybrid power train translate to ad-
ditional degrees of freedom. Therefore an energy-efficient driving strategy
is the solution to a nonlinear and high dimensional problem. To perform
the required computations on a ECU with limited computational power in
real-time, the referenced approaches need to reduce the problem complexity,
discretize it coarsely and partly use parallelizable, iterative and approxima-
tive approaches.
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2.2 Trajectory optimization

Research gap: In contrast to conventional and hybrid vehicles, a BEV
usually has a 1-speed gear box and therefore a constant gear ratio. If the
BEV has multiple motors, as the research vehicle does, they have at least
similar characteristics so that the possible benefits from including the torque
distribution in the optimization problem over a rule-based torque distribu-
tion strategy that considers efficiency and driving stability are small. With
a rule-based strategy, as described in Section 4.3 for the research vehicle,
the only degree of freedom that is left in the power train for optimization is
the total torque. The power required by auxilaries can also be significant but
will not be considered in the optimization based on the rationales mentioned
in Section 4.4.

The lack of ALC systems that take advantage of this resulting simple
structure by incorporating a trajectory optimization approach that is on the
one hand less suitable for the complexity of the power train of a conventional
or hybrid vehicle but on the other hand oriented towards low computation
power demand by design, such as a local optimization based on adaptive fil-
ters, an overview of which is given in Section 2.4, poses a research gap. The
next section will illustrate and compare the features of different trajectory
optimization approaches in more detail. Adopted from [78, 79].

2.2 Trajectory optimization

Driver assistance systems that perform continuously automated functions
calculate input commands to steering, brakes, engine and power train in
order to achieve a desired vehicle motion, also called trajectory. Trajectory
planning is also known as motion planning in robotics [187, p. 1414] and
differs from a path planning in that it additionally assigns a time law to a
geometric path [55]. Reviews of state of the art motion planning methods
for automated driving are provided in [40, 59, 90].

With increasing extent of automation and number of degrees of freedom
the decision making process of driver assistance systems becomes more
complex and the trajectory is found by solving an optimization problem.
Trajectory optimization denotes the process of determining a trajectory of a
dynamical system including the control input to the system. Thereby the tra-
jectory must meet the system constraints and optimize a performance mea-
sure [185, p. 3]. This section gives an overview of trajectory optimization
methods.
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The trajectory is often optimized with respect to a trade-off between tar-
get criteria such as comfort, safety, energy comsumption and travel time.
Trajectory constraints result from the vehicle dynamics, for example power
restrictions, as well as from the environment, for example lanes and other
vehicles [187, p. 1414].

In static optimization problems the optimal values of a finite set of vari-
ables p need to be determined such that a cost function J (p) is minimized.
Trajectory optimization problems fall into the category of dynamic or infi-
nite dimensional optimization because the optimization variables are func-
tions x(t) of an independent variable t, usually time. Assessing the perfor-
mance of the trajectory by a scalar quantity requires a cost functional, which
is a function of a function.

The trajectory optimization problem can be mathematically formulated as
an optimal control problem (OCP):

u∗(t) = arg min
u (t)

J (u(t))

J (u(t)) =
∫ t f

0
l (x(t), u(t), t) dt + V

(
x(t f ), t f

)
subject to
ẋ(t) = f (x(t), u(t), t) , x(0) = x0,

g
(
x(t f ), t f

)
= 0, h (x(t), u(t), t) ≤ 0 ∀t ∈ [0, t f ].

(2.1)

In an OCP we seek for t ∈ [0, t f ] the control input trajectory u(t) ∈ Rm for
a system with state x ∈ Rn that leads the system from its initial state x0 to
a terminal state xt f while minimizing the cost functional J and meeting the
system dynamics model f , equality constraints g and inequality constraints
h. u∗(t) is the optimal input trajectory and x∗t the resulting state trajectory.
J includes integral costs l and terminal costs V [187, pp. 1415-1416].

� Figure 2.1 illustrates that known solution approaches to the trajec-
tory optimization problem can be categorized into the three principles Dy-
namic Programming (DP), indirect methods (IM) and direct methods (DM).
Adopted from [78, 79]. However, some approaches combine characteris-
tics of several principles. Therefore the assignment is not necessarily unique
[131, p. 27]. Apart from simple problems and special cases, solutions are
derived numerically [185, p. 9].
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2.2 Trajectory optimization

Optimal control problem

Dynamic
Programming Indirect methods Direct methods

Figure 2.1: Methods for solving the optimal control problem

The following subsections describe the three principles along with appli-
cation examples.

Dynamic Programming

For purely continuous systems a solution to the Hamilton-Jacobi-Bellman
partial differential equation provides sufficient optimality conditions for an
optimal solution of the control problem. The DP algorithm samples the
continuous state and control spaces in order to achieve a discrete OCP:

u∗(t) = arg min
u (t)

J (u(t)), J (u(t)) =
k f −1∑
k=0

l (x(k), u(k), k)

subject to
x(k + 1) = f (x(k), u(k)) , x(0) = x0, k = 0, . . . , k f − 1

(2.2)

The optimal control sequence u∗(k) that minimizes the sum of cost from
the initial state to the final state is computed iteratively using value iteration.
Equality or inequality constraints are taken into account by setting the costs
l = ∞ for cases that violate constraints [187, pp. 1425-1430].

The algorithm takes advantage of the optimality principle of Bellman,
which states that an optimal trajectory is composed of optimal subtrajecto-
ries. This principle allows to split the OCP into many smaller problems.

Since the value function depends on the system state x, the optimal con-
trol is a closed feedback control loop. The closed-loop control is valid within
the bounds of the sampled state space [131, p. 5].

DP is especially beneficial for trajectory planning in driving scenarios
with dynamic environment and constraints resulting from other traffic par-
ticipants [87] and for planning parking maneuvers [103]. � An ACC based

15



2 Scientific and technical state of the art

on DP is proposed in [53]. DP based algorithms for energy-efficient ALC
exist for vehicles with internal combustion engine [100, 139], hybrid elec-
tric vehicles [183], plug-in hybrid electric vehicles [197] and BEVs [188].
Adopted from [78, 79].

If the time when a vehicle reaches a location is unimportant, the prob-
lem can be simplified. However, without temporal dependency the decision
graph is cyclic. Therefore the value iteration needs to be replaced with an-
other graph searching method that draws on the DP paradigm, for example
the Dijkstra algorithm or the faster A∗ algorithm [187, p. 1430]. In the
DARPA urban challenge 2007 many successful autonomous vehicles ap-
plied an A∗ based path planning algorithm [34].

Indirect methods

Indirect methods (IM) transform the OCP into the problem of solving a
system of nonlinear equations. First, they determine the neccessary first-
order optimality conditions for an OCP, which leads to a boundary value
problem consisting of a set of differential equations, the so-called Hamilton
equations. Then they solve the boundary value problem numerically, e.g by
a Newton method [185, pp. 10, 11].

For example, variational calculus requires that the first derivative of
the functional J (u(t)) diminishes for the optimal control u∗(t). The La-
grange multiplier method allows incorporating differential equality con-
straints resulting from the system dynamics. Without inequality constraints
the Hamilton equations then read

ẋ = f (x, u, t), λ̇ = −
∂l
∂x
−

[
∂ f

∂x

]>
λ, 0 = −

∂l
∂u
−

[
∂ f

∂x

]>
λ. (2.3)

Herein λ denotes the Lagrange multipliers [187, pp. 1417-1418]. The ap-
proach is also known as maximum principle of Pontryagin [131, p. 32] or
minimum principle of Pontryagin [185, p. 10], depending on the formulation
of the optimization problem.

IM only state a necessary condition for optimality and considering state
constraints is often difficult [127]. Furthermore, they require initial con-
ditions for the Lagrange multipliers. This made them unsuitable for many
automotive applications [187, p. 1420]. Nevertheless, there are indirect tra-
jectory optimization applications in literature, e.g. for conventional vehicles
in [126, 160] and for electric vehicles in [39, 132].
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Direct methods

�DM compute the solution of an OCP for a continuous system by discretiz-
ing it with respect to time. Between the discrete time steps they approximate
the system state and control with a function of time. Thereby DM trans-
late the infinite dimensional problem into a finite dimensional optimization
problem. Adopted from [79]. System dynamics enter the optimization
problem via constraints for discrete points in time. Therefore constraints
are also finite.

For example, the input trajectory can be represented by a polynomial ψ
and its finite dimensional parameter vector ū:

u(t) = ψ (t, ū) (2.4)

Then the system dynamics are

ẋ(t) = f (x(t),ψ (t, ū), t), x(t0) = x0. (2.5)

This initial value problem can be solved by a differential equation solver.
The system trajectory is denoted by

x(t) = φ(t, ū). (2.6)

The resulting static problem that approximates the dynamic OCP reads

u∗(t) = arg min
ū

J (ū),

J (ū) =
∫ t f

0
l
(
φ(t, ū),ψ (t, ū), t

)
dt + V

(
φ(t f , ū)

)
subject to
g(φ(t f , ū), t f ) = 0, h(φ(ti, ū),ψ (ti, ū)) ≤ 0, i = 1, . . . , N .

(2.7)

� The cost functional J is optimized directly using an optimization method
that varies the finite state and control values of the functional representation.
Usually the optimization problem is nonlinear and solved using sequential
quadratic programming methods (e.g. [65, 92]) or interior point methods.

DM often occur in literature as MPC, which solves (2.7) on a receding
horizon [187, pp. 1420-1425,1431-1432]. Adopted from [78]. For ex-
ample, [56] applies MPC for generating locally optimal trajectories, [28]
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Table 2.4: Comparison of methods for solving an optimal control problem (OCP).
The table shows average values for common algorithms applied to the
same OCP. Some methods may not fulfill all of the generalized state-
ments. Summarized version derived from [131, p. 8]. ∗: According to
[131, p. 8], an exception that achieves polynomial increase using a con-
vexification approach is stated in [151].

Category
Dynamic Indirect Direct

Programming (DP) methods (IM) methods (DM)

Optimality of solution Global Local Local

Domain of convergence Global Smaller than DM Larger than IM

Ease of initialization Higher than DM Lower than DM Medium

Classes of solvable systems Less than IM Medium More than IM

Control Closed-loop Open-loop Open-loop

Increase of complexity

with increased

- Accuracy Polynomial Linear Polynomial

- Time horizon Linear Polynomial Exponential∗

- # of continuous states Exponential Polynomial Polynomial

- # of discrete states Linear Polynomial Polynomial

Required system
High Higher than DP Lower than DP

knowledge

proposes a MPC based lateral control that tracks the lane centerline while
avoiding collisions, [47] calculates the control inputs with MPC so that the
vehicle tracks a planned path and [127] uses MPC for an ACC system that
additionally aims to reduce the energy consumption.

Comparison

A comparison of the stated solution principles is presented in [131, p. 8] and
further summarized in Table 2.4. The generalized statements apply to many
methods found in literature but individual methods might differ.

DP computes a globally optimal control because of the sufficient opti-
mality conditions of the Hamilton-Jacobi-Bellman equations. The compu-
tational effort grows linearly with increasing time horizon and number of
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discrete states. DP offers a closed-loop feedback control that is beneficial
for the system stability. DP algorithms converge globally in the discrete state
space. However, the required discretization leads to an exponential increase
of computational effort with the number of continuous states. Therefore, DP
usually can only be applied to systems with a state and control dimension up
to four and requires coarse discretization. Therefore the solution accuracy
is comparatively low. If the discretization is refined for more accurate solu-
tions, the computational effort increases polynomially. DP requires a high
system knowledge and can solve less classes of OCP than other principles.

IM are very accurate and the computational effort only grows linearly
when the accuracy is increased. With respect to the time horizon and num-
ber of states, the complexity grows polynomially. IM can solve more OCP
classes than DP but less than DM. IM only compute locally optimal open-
loop controls which means that the control loop is not closed using system
feedback information. IM converge within a smaller domain than DM and
in general, applying IM requires more knowledge than other methods.

� DM converge within a larger domain than IM. They can deal with
numerous states, require less control knowledge and can solve more OCP
classes than other methods. Like IM, DM provide only locally optimal
open-loop control. The acceptable solution accuracy mainly results from
discretization errors. The computational effort grows polynomially with the
solution accuracy and the number of states. With respect to the time hori-
zon, effort usually grows exponentially because in each time step all controls
have to be analyzed. Therefore the optimization horizon is mostly restricted
to few seconds [131, pp. 2-12, 27-37], [187, pp. 1415-1431].

Due to their complementary properties, different approaches are com-
bined for solving difficult, farsighted trajectory optimization problems.
Then DP provides a rough long-term plan or reference trajectory for a DM
that computes feasible trajectories within a short time horizon. Adopted
from [78, 79]. An example is the energy-optimal adaptive cruise control
in [186]. Closed-form solutions of calculus of variations can be applied to
speed up DP. Table 2.5 shows the benefits of combining different methods
[187, pp. 1430-1431].

Research gap: Both DP and DM are popular for automotive applications
on their own and combining their orthogonal features offers great potential.
However, the exponential growth of computational effort with increasing
time horizon limits the application of DM to short time horizons. Hence,
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Table 2.5: Suitability of Dynamic Programming (DP), direct methods (DM), in-
direct methods (IM) and combinations for selected problem features.
Particularly suitable (++), suitable (+), less suitable (−). Derived from
[187, p. 1430].

Approach
Many Continuous Global Long

states states optimum horizon

DP − − + +

DM + + − −

DP + DM + + + +

DP + DM + IM + + + ++

the research gap regarding trajectory optimization consists of available DM
with lower complexity.

2.3 B-spline data approximation

Data approximation can be viewed as a special case of trajectory optimiza-
tion using the DM approach and instead of a polynomial, a B-spline function
can represent the input trajectory from (2.4) or the system trajectory from
(2.6). Following an overview of spline representations, this section states
methods for determining a data approximating B-spline function and iden-
tifies the corresponding research gap.

Spline representations and their features

A function that is used for approximating data points needs to possess a
sufficient number of parameters which translates to the number of degrees
of freedom. A complicated relationship in the data usually requires more
function parameters in order to achieve an acceptable representation.

With polynomials the degree is coupled to the number of parameters and
as the degree is increased, the polynomials become computationally expen-
sive to evaluate [5]. Assume a polynomial p(u) given by

p(u) =
d∑
i=0

uici . (2.8)
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2.3 B-spline data approximation

With a high degree d the monomial basis functions ud, ud−1, . . . tend to take
large values and therefore need to be multiplied with small coefficient values
cd, cd−1, . . . . This can lead to ill-conditioned matrices, from which numeri-
cal instability issues can arise [35, pp. 272-274]. Increasing the degree of a
polynomial approximation function also tends to result in an undesired os-
cillating behavior instead of better accuracy [35, pp. 292-294]. This effect
is called Runge’s phenomenon [150].

The explicit form of a curve y = f (x) in two dimensions, x, y, states the
value of one dependent variable, y, in terms of the independent variable, x.
Most curves can also be represented in the implicit form f (x, y) = 0.

However, curves in three dimensions are not as easily defined in implicit
form. Instead, they are usually represented in parametric form in terms of
an independent variable u, called parameter. An advantage of the parametric
form is that each dimension is defined by an explicit function that is not
coupled to the others:

p(u) =
[
x(u), y(u), z(u)

]> (2.9)

For example, a cubic polynomial parametric curve p(u) reads

p(u) =
3∑

k=0

uk ck = u>c, u =
[
1, u, u2, u3

]>
,

ck =
[
cxk, cyk, czk

]>
, c =

[
c0, c1, c2, c3

]>
.

(2.10)

c is viewed as a 4×1 matrix, whose elements ck are 3×1 matrices. Each co-
efficient vector ck has independent components for each dimension, hence
there are three independent functions, each of the form (2.8) with d = 3.
Without loss of generality, 0 ≤ u ≤ 1 can be assumed. Figure 2.2 illustrates
such a curve segment.

Defining each explicit function in terms of two parameters u and v, leads
to a parametric surface p(u, v), e.g. for three dimensions:

p(u, v) =
[
x(u, v), y(u, v), z(u, v)

]> (2.11)
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Figure 2.2: Curve segment (left) and surface patch (right) [5, pp. 508-509,adapted].

A surface patch, as also depicted by Figure 2.2, can be defined by varying u
and v over the rectangle 0 ≤ u, v ≤ 1. A bicubic surface patch is given by

p(u, v) =
3∑
i=0

3∑
j=0

uiv j ci j = u>Cv,

v =
[
1, v, v2, v3

]>
, ci j =

[
cxi j, cyi j, czi j

]>
(2.12)

C =
[
ci j

]
is a 4x4 matrix with elements ci j . A surface patch can be seen

as the limit of a collection of curves that result from keeping one parameter
constant and varying the other [5, pp. 503-515].

Spline functions are piecewise defined, which decouples the number of
parameters from the degree of the function. Spline functions allow to in-
crease the number of function parameters while still using polynomials of
low degree in order to avoid numerical stability issues and Runge’s phe-
nomenon. At the join points, neighboring pieces of a spline function are
continuously differentiable to a certain extent. A function that is continu-
ously differentiable up to its r th derivative is called a Cr continuous function
[35, p. 26].

The remainder of this subsection reviews the most common cubic spline
types. Figure 2.3 illustrates them and Table 2.6 compares their features.

A straight-forward approach to construct a cubic spline function is to con-
nect cubic polynomials by specifying continuity requirements at their join
points as explained in [35, pp. 294-299]. In literature this approach is also
referred to as natural polynomial spline [9].

22



2.3 B-spline data approximation

(a) Natural polynomial (b) Interpolating polynomial

(c) Hermite (d) Bézier

(e) B-spline (f) Catmull-Rom spline

Figure 2.3: Cubic curve segments p(u), and q(u) of various representation types
depending on parameter u ∈ [0, 1] with their control points pi , qi ,
i = 0, . . . , 3 indicated by dots. Dotted lines indicate borders of convex
hulls defined by the control points. [5, pp. 510-534, adapted].

For example, connecting two cubic polynomials p(u) and q(u) while de-
manding continuity up to the second derivative leads to eight degrees of
freedom, which need to fulfill three equality constraints at the join point.
Figure 2.3a illustrates this case. In order to determine possible spline func-
tions, an undetermined linear system of equations needs to be solved. Each
additional polynomial segment leads to four additional degrees of freedom
and three additional continuity constraints. Furthermore, the parameters of
all segments of the same dimension influence each other via the continuity

23



2 Scientific and technical state of the art

Table 2.6: Cubic representation types for functions, curves and surfaces.

Representation type Control
Continuity at Control point Convex hull

join points interpolation property

Natural polynomial Global C2 − −

Interpolating polynomial Local C0 Yes No

Hermite Local C1 Yes No

Bézier Local C0 Yes Yes

B-spline Local C2 No Yes

Catmull-Rom spline Local C1 Yes No

contraints and therefore changing the spline function at any point can affect
the shape of the function at any other point. This feature is called global
control and mostly undesired because it requires that all segments are de-
signed within a single global calculation.

In contrast, the spline types described below offer local control of shape,
meaning that changing a parameter only influences the function locally.
Therefore each segment can be designed individually. Furthermore, they
achieve continuity without solving a system of equations during application.

Geometrically interpretable parameters called control points are used to
design the shape of these functions. Assume four control points

pk =
[
xk, yk, zk

]> , k = 0, 1, 2, 3, (2.13)

which are equally spaced at u = 0, 1/3, 2/3, 1. c is determined such that p(u)
from (2.10) interpolates the control points pk . The conditions

p0 = p(0), p1 = p(1/3), p2 = p(2/3), p3 = p(1) (2.14)

read in matrix form

p = Ac, p =



p0

p1

p2

p3



, A =



u(0)>

u(1/3)>

u(2/3)>

u(1)>



=



1 0 0 0

1 1/3 (1/3)2 (1/3)3

1 2/3 (2/3)2 (2/3)3

1 1 1 1



. (2.15)
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2.3 B-spline data approximation

p and c are 4 × 1 matrices, whose elements are 3 × 1 matrices. The control
points given by c = A−1p = Mp with geometry matrix M = A−1 achieve
continuity at join points, but not for the derivatives. Figure 2.3b shows two
curve segments p(u), q(u) with their control points [5, pp. 509-517].

For C2 continuity, quintic polynomials would have to be used. Increasing
the degree of a polynomial segment from three on complicates the calcula-
tion process with each increment significantly [11]. In particular, for poly-
nomials of degree higher than four there is no general closed-form solution
[23]. This makes nonnegativity checks by determining the roots costly.

By substituting M into (2.10), p(u) can be expressed in terms of the
blending polynomials b(u) with

b(u) = u>M = [b0(u), b1(u), b2(u), b3(u)] (2.16)

and the control point vector p:

p(u) = u>c = u>(Mp) = (u>M )p = b(u)p (2.17)

Interpolating curves can be extended to interpolating surfaces. Assume
a 4 × 4 control point matrix P =

[
pi j

]
comprising 16 independent three-

dimensional control points pi j, i = 0, . . . , 3, j = 0, . . . , 3, which are again
equally spaced at u, v = 0, 1/3, 2/3, 1. The curve for v = 0 must interpolate
p00, p10, p20, p30:

p(u, 0) = u>M
[
p>00, p

>
10, p

>
20, p

>
30

]>
= u>C [1, 0, 0, 0]> (2.18)

v = 1/3, 2/3, 1 give the other three interpolating curves. Putting all of them
together leads to u>MP = u>CA> with A−1 = M . Solving for coefficient
matrix C = MPM> and substituting with (2.16) results in

p(u, v) = u>MPM>v = b(u)Pb(v)> =
3∑
i=0

3∑
j=0

bi (u)bj (v)pi j . (2.19)

Each term bi (u)bj (v) describes a blending patch. The surface is formed
from 16 blending patches, each weighted by a control point. Surfaces that
are created in such a way are called tensor product surfaces and are an ex-
ample of separable surfaces. They allow to work with functions in u and v

independently [5, pp. 510-517].
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The spline types described in the following can also be represented using
(2.17) and (2.19). They differ only in the blending functions b(u) from
(2.16), because their designs fulfill conditions other than (2.14) and (2.18).

Hermite curves depicted in Figure 2.3c offer C1 continuity between dif-
ferent segments. However, instead of p1, p2, the user needs to specify the
values at the join points up to their first derivatives p′(0) and p′(1), so that
consecutive tangents are collinear. This is often undesired because without
an analytic formulation of the data, no derivative information is available.

Bézier curves are approximations to Hermite curves and do not need
derivative information. They result when the derivatives of two segments
at their join point are not required to be exactly equal. Therefore cubic
Bézier curves only have C0 continuity. Each segment is within the convex
hull given by its control points, see Figure 2.3d. For spline types with this
convex hull feature, only the discrete control points but not the continuous
curve itself need to be evaluated to ensure that the curve fulfills certain con-
straints, e.g. nonnegativity.

For higher continuity, an alternative to increasing the polynomial degree
is to not require the curve to interpolate any control point. This leads to B-
spline curves (Figure 2.3e). Each of their segments only spans the distance
between its two middle control points. In general they only come close to
the control points but compensate with C2 continuity at the join points.

Omitting the requirement that each spline segment must lie within the
convex hull of its control point allows to form other types of splines. One
of the most popular is the C1 continuous Catmull-Rom spline (Figure 2.3f)
that interpolates its control points. Compared to a Hermite curve it does also
not require derivative information [5, pp. 509-535].

The remainder of this work will use cubic B-spline functions. Compared
to natural splines, they offer numerically stable computations, local control
and do not require solving a system of equations during their application.
Compared to the other cubic spline functions, only B-splines are both C2

continuous and fulfill the convex hull property. C2 continuity is an important
requirement for technical applications such as the definition of a jerk-free
trajectory [55].

The convex hull property in combination with the geometrically inter-
pretable control points offers a convenient and computationally efficient way
to enforce constraints on the function because no evaluation of the function
is needed. Enforcing constraints on an approximation function can be ben-
eficial in case of knowledge about the data, e.g. that it is nonnegative.
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2.3 B-spline data approximation

� Due to their favorable features, B-spline functions, curves and surfaces
are widely used for data approximation [4, 84, 202] and for defining paths
and trajectories of vehicles [17, 42, 45], robots [26, 45, 108, 162] and indus-
trial machines [69, 200]. Moreover, the B-spline representation is common
in computer graphics [93, 193] as well as in signal processing for filter de-
sign [128, 129, 148] and signal representation [120, 142, 143, 176, 177].
Adopted from [78, 80].

Methods for B-spline data approximation

� According to (2.17), the value of a B-spline function equals the sum of
basis functions (B-splines) or blending functions, weighted with their cor-
responding control points. Each B-spline in (2.16) is only nonzero within
a bounded interval so that effects of control point changes are only local.
Hence, the definition range of a B-spline function is also bounded. More
extensively these features will be described in Section 3.1 and by Figure 3.2.
Adopted from [80].
� A common application of B-spline functions, curves and surfaces is fit-

ting of data points. Fitting can either be interpolation or approximation. An
interpolating B-spline function f must pass through all of the data points
(sp, yp), i.e. f (sp) = yp ∀p. In contrast, an approximating B-spline func-
tion only minimizes the residuals f (sp) − yp between the function and the
data but does not pass through the data points in general.

In offline applications, in which all data points are available at once, fit-
ting B-spline functions are often determined by least squares (LS) methods
[31, 113, 159]. With the standard formula in batch form, all data points have
to be collected first and then processed simultaneously. Therefore the num-
ber of data points P must be bounded. The computation usually involves a
Cholesky or QR factorization and requires O(P) operations if one takes ad-
vantage of the banded matrix structure [20, pp. 327-331]. Such algorithms
are stated in [20, pp. 117-121] and [58, pp. 152-160]. With the least squares
(LS) algorithm each data point influences the result to the same extent. The
weighted least squares (WLS) estimator, stated in (3.14), allows to weight
measurements relative to each other [113, pp. 119-123].

In online applications data points are observed one after another and an
ever-growing amount of data is common. Two groups of LS algorithms for
online applications can be distinguished: First, growing memory LS algo-
rithms apply an exponential weighting that forgets old data. Second, slid-
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ing window LS algorithms discard old data completely and need only finite
storage [201]. Sliding window LS and sliding window WLS algorithms are
proposed in [83, 201] and [33, 184], respectively. Re-computing the fitting
function from scratch with each new data point is costly. Rank update and
rank downdate methods allow to reuse an already known factorization for an
efficient update of a solution after observations have been added or deleted
[66, 124, 125].

In online applications data points can be outside the definition range of the
B-spline function if the magnitude of the data points is not exactly known
or changes over time, e.g. because one dimension of the data point refers
to its observation time, that keeps increasing. Data points outside the def-
inition range cannot be taken into account for approximation. Thereby the
problem arises that the approximation might not reflect the data anymore.
When using WLS the bounded definition range of B-spline functions does
not present a problem because the number and position of B-splines can be
changed if the fitting function is re-computed from scratch. Moreover, rank
modification methods also support adding or deleting matrix columns [66].
This allows to extend, shrink or shift the definition range of the B-spline
function. Adopted from [80].
� In nonlinear weighted least squares (NWLS) problems, the solution de-

pends on the function parameters in a nonlinear fashion. Based on the results
of numerical experiments, [73] reports that a B-spline function is useful for
solving NWLS problems as well because of its piecewise polynomial char-
acter and smoothness. For NWLS problems, several batch methods that
work iteratively can be found in literature, e.g. the Newton method, Gauss-
Newton method, Levenberg-Marquardt method, dog leg method of Powell,
hybrid method of Madsen, Levenberg-Marquardt-Fletcher method. None of
the algorithms is an exact method that computes an optimal solution [73]. A
method for separable NWLS problems in which some parameters affect the
solution linearly is derived in [149].

The Levenberg-Marquardt (LM) algorithm, described in more detail in
Subsection 3.4.1, solves in each iteration a linearized NWLS problem [35,
pp. 222-224]. A sliding window implementation of the LM algorithm is
stated in [38]. Adopted from [78].
� Recursive methods compute an approximating B-spline function recur-

sively meaning that the approximation is updated with each new data point.
This approach is preferred in online applications, in which data points are
observed one after another. Recursive algorithms such as recursive least
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squares (RLS) [164, pp. 84-88] usually require less computational power
than batch algorithms because they use smaller matrices and vectors whose
sizes do not depend on the number of data points. The recursive compu-
tation is also referred to as progressive, iterative or sequential [110, 192].
This work will use all mentioned terms synonymously. In computer sci-
ence, however, an iteration differs from a recursion. In [106], fitting B-spline
curves and surfaces are iteratively constructed based on the idea of profit and
loss modification without solving a linear system. The authors of [36] build
on the progressive and iterative approximation technique for B-spline curve
and surface fitting and prove that their algorithm achieves a least squares fit
to the data points. A recursive algorithm for optimal smoothing B-spline
surfaces inspired by the RLS method is presented in [50]. Algorithms that
involve a Kalman filter (KF) are stated in [67, 104]. Adopted from [80].

Recursive algorithms for NWLS problems can be based on nonlinear fil-
ters. Overviews of commonly used filters and their features are provided by
[57] and [187, p. 615]. In [2] a solution via a modified extended Kalman fil-
ter (EKF) is investigated and algorithms for offline and online applications
are stated. The two-step estimator proposed in [68] splits the problem into
a linear subproblem which is solved with a KF and a nonlinear subproblem
to which the Gauss-Newton algorithm is applied. Section 2.4 will give an
introduction into the aforementioned adaptive filters and categorize them.

Research gap: � Publications of other researchers regarding the recur-
sive data approximation with a B-spline function assume a constant defi-
nition range. For example, the approaches based on the KF in [67, 104]
require that the KF state vector contains all control points that are estimated
during the whole approximation procedure. Therefore the number of con-
trol points has to be bounded and specified in advance. As a result, these
algorithms can only approximate data points that are within the bounded
B-spline function definition range determined at the beginning. Other re-
searchers have not addressed the possible issue of data points outside the
inital B-spline function definition range. Adopted from [80].

Therefore the research gap regarding the recursive data approximation
with a B-spline function consists of the lack of available online methods for
data approximation with B-spline functions in the linear WLS and NWLS
sense that can handle data that leaves the initially chosen bounded B-spline
function definition range. For example, leaving the initial definition range
is needed if an additional data point of an unbounded data set is observed
in each time step and the values in at least one dimension of the data points
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keep increasing because they refer to the observation time. More detailed
application examples are stated on page 70 and illustrated by Figure 3.9.

2.4 Adaptive filters

�As a foundation for Chapter 3 and Chapter 5 this section gives an overview
of several kinds of adaptive filters with focus on the Bayesian approach to
state estimation, which calculates the probability density function (PDF) of
the unknown state of a dynamic system. The required information for calcu-
lating the PDF stems partly from a system model and partly from previous
measurements. The state estimation is performed by a recursive filter that
alternates between a time update that predicts the state via the system model
and a measurement update that corrects the estimate with the current mea-
surement. Adopted from [78].

Assume a system whose input u and output y are measurable and known
for a sequence of time steps p = 1, . . . , P.

Adaptive filters include a system model f̂ with free model parameter x.
Sequentially they adjust x based on the sequence of u and y such that the
parameter estimate x̂ minimizes the residuals between the system model
output ŷ = f̂ ( x̂, u) and y [111, p. 1].

Filtering means that x̂p , referring to time step p, is calculated based on
data of the current and all previous time steps, hence p = P. This is also
referred to as measurement update. The estimation problem is called pre-
diction in case of p > P and smoothing if p < P [72, p. 7].

Adaptive filters can be subdivided according to their system assumptions.
In systems, in which x is assumed to change over time, it is also called
system state, whereas x is mostly referred to as parameter in systems, in
which it is assumed to be constant.

Linear adaptive filters

� RLS and KF compute an optimal state estimate for systems with linear
system and measurement equations as well as Gaussian system and mea-
surement noise. They differ in that RLS assumes a constant state, whereas
the KF is designed for tracking a time-variant state [164, p. 129], [57, pp. 3-
5]. Use cases include parameter estimation [83] and path planning [189], re-
spectively. The KF will be explained in Subsection 3.3.2 and applied within
RBA in Subsection 3.3.3.
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Nonlinear adaptive filters

In many scenarios the linear Gaussian assumptions do not apply and subop-
timal approximate nonlinear Bayesian filters such as the extended Kalman
filter (EKF), unscented Kalman filter (UKF) or particle filter (PF) are re-
quired [8].

The EKF applies a local first order Taylor approximation to the nonlinear
system and measurement functions via Jacobians, in order to keep the linear
state and measurement equations. System and measurement noise are both
approximated with zero-mean Gaussian PDFs [57, p. 52]. Although the
EKF is not suitable for systems with strong nonlinearity or non-Gaussian
noise, it is still often successfully used for nonlinear state estimation [27].
For example, NWLS approximation via a modified EKF is presented in [2].

An alternative to the approximation of nonlinear state and measurement
functions is the approximation of the PDFs. This can be done by propagat-
ing few state samples called sigma points through the nonlinear functions.
A filter that follows this approach is referred to as sigma point Kalman filter.
A well known representative is the UKF. It uses 2 · J + 1 deterministically
chosen sigma points, whereby J denotes the system state dimensions. The
PDFs are approximated as Gaussians whose means and variances are deter-
mined from the propagated sigma points [57, pp. 3-5, 62-70].

Compared to the EKF, the UKF offers at least second order accuracy [37]
and is a derivative free filter [57, pp. 62-63], meaning that it does not require
the evaluation of Jacobians, which is often computationally expensive in
the EKF [27]. Several publications report nonlinear problems in which the
UKF performs better than the EKF, e.g. for trajectory estimation [37, 63].
However, if the PDF cannot be well approximated by a Gaussian, because
the PDF is multi-modal or has a strong skew, the UKF will also not perform
well. Under such conditions, sequential Monte Carlo methods like the PF
outperform Gaussian filters like EKF and UKF [8].

The PF approximates the PDF by a large set of randomly chosen state
samples called particles. The state estimate is a weighted average of the
particles. With increasing number of particles the PDF approximation by
the particles becomes equivalent to the functional PDF representation and
the estimate converges against the optimal estimate [8]. For nonlinear and
non-Gaussian systems the PF allows to determine various statistical mo-
ments, whereas EKF and UKF are limited to the approximation of the first
two moments [27]. However, the number of particles that is needed for
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sufficient approximation of the PDF increases exponentially with the state
dimension [122]. The PF has been successfully applied to optimization [99]
and prediction [190] of trajectories as well.

Many use cases involve a mixed linear/nonlinear system. Typically there
are few nonlinear state dimensions and comparatively many linear Gaussian
state dimensions. The marginalized particle filter (MPF) is beneficial for
such problems as it combines KF and PF. The PF is only applied to the
nonlinear states because the linear part of the state vector is marginalized
out and optimally filtered with the KF.

This state decomposition is called Rao-Blackwellization [72, pp. 49-50]
and can be described as an optimal Gaussian mixture approximation. There-
fore the MPF is also called Rao-Blackwellized particle filter [70]. Marginal-
izing out linear states from the PF strongly reduces the computational effort
because less particles suffice. This often enables real-time applications. Si-
multaneously the estimation accuracy usually increases [27, 205]. When the
state dimension is large, the MPF tends to outperform the PF [123].

In the recent past, several publications have proposed approaches for lo-
calization [135, 191] and trajectory tracking [109, 205] that are based on
the MPF because of its advantages for mixed linear/nonlinear systems. Au-
tomotive use cases include a road target tracking application, whose multi-
modality requires using a PF or MPF [166]. The MPF is chosen as it allows
reducing the number of particles for less computational effort. Similarly,
[122] presents a MPF application for lane tracking, in which the achieved
particle reduction compared to a pure PF enables executing the algorithm in
real-time in an embedded system. Adopted from [78].

According to (2.17), between spline function value and spline function
control points there is a known linear relationship given by the blending or
basis functions. Section 3.1 will state in (3.3) and (3.5) that this applies to
both the value of a B-spline function and its derivatives as well. Therefore
NWLS approximation leads to a mixed linear/nonlinear problem as long as
there are target criteria that refer to the B-spline function or its derivatives
directly. For being able to take into account this known linear relationship
instead of having to estimate it, the iterative algorithm for NWLS approxi-
mation, NRBA, that is defined in Subsection 3.4.3, includes an MPF, which
is described in Subsection 3.4.2.
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Kernel adaptive filters

The two previous subsections assumed that knowledge about the system
state with respect to the measured input u and measured output y is avail-
able. Sometimes this does not apply or the system features are difficult to
specify. In such cases the unknown system function f with y = f (x) can
be approximated by f̂ . The approximation f̂ is also called black-box model
because it is created only from the data itself without system knowledge.

f̂ can be determined with a kernel adaptive filter (KAF). Using a nonlin-
ear mapping Φ(·), KAFs transform the input data u into a high-dimensional
feature space, in which more degrees of freedom are available to solve the
problem with a linear adaptive filter. Due to a property of reproducing ker-
nel Hilbert spaces no costly explicit mapping is needed to compute inner
products 〈·, ·〉 of the transformed data Φ(xi). Instead, inner product algo-
rithms can be performed implicitly in feature space by replacing all inner
products in the original problem by a kernel function κ [146]:

κ(x j, xm) = 〈Φ(x j ),Φ(xm)〉 (2.20)

Often Gaussian kernels are used. These kernels differ from multi-dimensional
PDFs of the standard normal distribution with variance σ2 only in the miss-
ing normalization constant 1/

(
σ
√

2π
)
:

κ(x j, xm) = exp(− 


x j − xm





2
/2σ2) (2.21)

The nonlinear mapping f̂ is calculated as a linear combination of kernels,
each of which is weighted by its coefficient. For example, by transforming
the RLS cost function into feature space, a nonlinear kernel RLS (KRLS)
algorithm is derived. With most kernel-based methods the required mem-
ory increases with the processed data points. In contrast, the Fixed-Budget
KRLS (FB-KRLS) algorithm can operate with constant memory by pruning
the least significant data [180]. This enables long-term online applications.

In summary KAFs are nonlinear adaptive filters that result from applying
kernel method concepts to linear adaptive filters. KAFs combine the capa-
bility of approximating any nonlinear function with the advantage that they
only require solving a convex optimization problem instead of a nonlinear
problem. For convex problems there are solvers that operate within a fixed
time interval. This is important for real-time applications [146].
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2 Scientific and technical state of the art

Subsection 4.7.2 will apply the FB-KRLS to represent the power train
of the research vehicle. The model is updated constantly during vehicle
operation.
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3 Data approximation with B-spline
functions

This chapter deals with the general problem of recursive least squares ap-
proximation of data points with a B-spline function. First, Section 3.1 states
a B-spline function definition in matrix form. Section 3.2 introduces a data
set which will be approximated by a B-spline function. Section 3.3 ad-
dresses the case of linear least squares approximation and Section 3.4 the
nonlinear case. Each of the two latter sections proposes a novel recursive
algorithm and compares it with a well-known method for batch processing.
Section 3.5 summarizes the scientific contribution.

3.1 B-spline function definition

A B-spline function consists of several polynomial basis splines (B-splines),
all of which have the same degree. A B-spline of degree d is piecewise
defined using d + 1 polynomial functions of degree d. Figure 3.1 illustrates
the composition of a cubic B-spline. The solidly drawn parts of the depicted
polynomial functions p1, p2, p3 and p4 build a B-spline.

Let [κ1, κ2] denote a closed interval between and including κ1 and κ2 and
let (κ1, κ2) denote an open interval between but not including κ1 and κ2.

κ1 κ2 κ3 κ4 κ5
0

0.5

1

p1

p2 p3

p4 s

Figure 3.1: Piecewise definition of a cubic B-spline by the solid parts of four cubic
polynomials p1, p2, . . . , p4. Vertical lines indicate the knots κ1, . . . , κ5.
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3 Data approximation with B-spline functions

In the interval [κ1, κ2), the B-spline is given by the first polynomial p1,
in the interval [κ2, κ3) it is given by the second polynomial p2 and so on.
Outside the interval (κ1, κ5) the B-spline is zero. The dashed curves are
only shown for better visualization of the polynomials but are not part of
the B-spline. The interval borders κ1, κ2, . . . , κ5 are also called knots. Their
distances influence the shape of the polynomials and therefore the shape of
the B-spline as well.

� A B-spline function is also piecewise defined. Its value is given
by the weighted sum of J B-splines of degree d. The knot vector is
κ = (κ1, κ2, . . . , κJ+d+1). Strictly increasing knot values (κk < κk+1, k =
1, 2, . . . , J + d) are assumed. κ and d determine the number and shape
of B-splines. The j-th B-spline bj (s), j = 1, 2, . . . , J is positive only for
s ∈ (κ j, κ j+d+1) and zero elsewhere [113, pp. 37-42].

The following definitions originate from [113, pp. 47-50, 65-70]: Let
[κµ, κµ+1) be a spline interval and let µ denote the spline interval index with
d +1 ≤ µ ≤ J. For s ∈ [κµ, κµ+1), the B-splines bj (s), j = µ− d, . . . , µ can
be nonzero. Their values for a specific s ∈ [κµ, κµ+1) can be summarized in
the B-spline vector bµ,d (s) = (bµ−d (s), bµ−d+1(s), . . . , bµ (s)) ∈ R1×(d+1)

which can be computed according to (3.1):

bµ,d (s) = Bµ,1(s)︸  ︷︷  ︸
∈R1×2

Bµ,2(s)︸  ︷︷  ︸
∈R2×3

. . . Bµ,δ (s)︸  ︷︷  ︸
∈Rδ×(δ+1)

. . . Bµ,d (s)︸   ︷︷   ︸
∈Rd×(d+1)

(3.1)

The B-spline matrix Bµ,δ (s) ∈ Rδ×(δ+1) is defined for each δ ∈ N with
δ ≤ d and given by

Bµ,δ (s) =


κµ+1−s

κµ+1−κµ+1−δ

s−κµ+1−δ
κµ+1−κµ+1−δ

0 . . . 0

0 κµ+2−s

κµ+2−κµ+2−δ

s−κµ+2−δ
κµ+2−κµ+2−δ

. . . 0
...

...
. . .

. . .
...

0 0 . . .
κµ+δ−s

κµ+δ−κµ

s−κµ
κµ+δ−κµ



.
(3.2)
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3.1 B-spline function definition

κ1 κ2 κ3 κ4 κ5 κ6 κ7 κ8 κ9 κ10
0

0.5

1

b1x1 b2x2 b3x3 b4x4 b5x5 b6x6

∑J
j=1 b j x j

definition range of f (s)

s

Figure 3.2: Construction of a cubic B-spline function: Equidistant knots
κ1, κ2, . . . , κ10 (indicated by vertical straight lines) and J = 6 re-
sulting B-splines bj, j = 1, 2, . . . , J weighted with control points
x1, x2, . . . , x6. The black line indicates the sum of all weighted B-
splines and its solid part is the B-spline function. Black dots represent
the control points and the gray area is the convex hull formed by the
first four control points. Adopted from [80].

The B-spline function f : D → R , s 7→ f (s) has the definition range
D = [κd+1, κJ+1). For s ∈ [κµ, κµ+1), the B-spline function is given by

f (s) = bµ,d (s)xµ,d (3.3)

with control point vector

xµ,d =
(
xµ−d, xµ−d+1, . . . , xµ

)>
. (3.4)

Adopted from [78, 80]. As stated, the spline types mentioned in Section 2.3
can all be defined using the same structure because they only differ in the
geometry matrix M . Therefore (3.1) and (3.3) correspond to (2.16) and
(2.17), which were obtained for an interpolating polynomial curve.

Figure 3.2 illustrates the construction of a B-spline function. Each cubic
(d=3) B-spline bj is weighted with a corresponding control point x j , here
x1 = 1.5, x4 = 0.5 and all other control points equal one. The cubic B-spline
function f (s) is given by the weighted sum of B-splines but only defined in
the interval [κ4, κ7). Its shape is given by the solid part of the black curve.
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3 Data approximation with B-spline functions

The black dots denote the control points of the B-spline function. The
horizontal position of the j-th point is determined by the value of s, for
which the j-th B-spline reaches its maximum. The vertical position is iden-
tical to x j . In each interval [κk, κk+1), k = d+1, . . . , K , the B-spline function
lies within the convex hull of the relevant control points. For s ∈ [κ4, κ5),
the four leftmost control points are the relevant ones. They form the convex
hull indicated by the gray shaded area.
� A B-spline function of degree d is d − 1 times continuously differen-

tiable. For r ∈ N0, the r-th derivative ∂r

∂sr f (s) of the B-spline function with
respect to s is given by

∂r

∂sr
f (s) =

∂r

∂sr
bµ,d (s)xµ,d (3.5)

with B-spline vector

∂r

∂sr
bµ,d (s) =




d!
(d−r )!Bµ,1(s). . .Bµ,d−r (s)B′µ,d−r+1. . .B′µ,d, if r ≤ d

01×(d+1), otherwise.

(3.6)

01×(d+1) denotes a 1× (d + 1) zero matrix. The matrix B′µ,δ ∈ R
δ×(δ+1) is

obtained by differentiating all entries in Bµ,δ (s) with respect to s:

B′µ,δ =



−1
κµ+1−κµ+1−δ

1
κµ+1−κµ+1−δ

. . . 0
...

. . .
. . .

...

0 . . . −1
κµ+δ−κµ

1
κµ+δ−κµ



(3.7)

Adopted from [78, 80].
According to [161] the antiderivative or indefinite integral F (s) of f (s)

with degree dInt = d + 1 is given by

F (s) =
∫

f (s)ds = bInt
µInt,dInt (s)xInt

µInt,d
(3.8)

bInt uses the stricly increasing knot vector κInt which differs from κ only by
an additional knot at either end for the increased degree. µInt equals µ + 1.
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3.2 Structure of the data set

The control point vector xInt comprises one additional component than x
and can be computed according to (3.9):

xInt
1 = 0, xInt

j+1 =
κ j+dInt+1 − κ j

dInt + 1
·

j∑
i=1

xi, j = 1, . . . , J (3.9)

The definite integral of f (s) over the interval [s1, s2] then reads∫ s2

s1

f (s)ds = F (s2) − F (s1). (3.10)

3.2 Structure of the data set

� Section 3.3 and Section 3.4 will work with the set {(sp, yp)}p=1,2,...,P of P
data points. p denotes the time step, at which data point (sp, yp) is measured
or observed.

sp is the value of the independent variable s at time step p. The vector of
independent variables s is given by s = (s1, . . . , sp, . . . , sP)>.

yp = (yp,1, yp,2, . . . , yp,v, . . . , yp,Vp )> is a vector of Vp measurements
y that refer to sp and may come from different sensors. Vp ∈ N can be
different for each yp but it is assumed that Vp � P ∀p. The vector of all
measurements y is composed as follows:

y> = (y1,1, . . . , y1,V1︸          ︷︷          ︸
=:y>1

, . . . , y>p, . . . , yP,1, . . . , yP,VP︸             ︷︷             ︸
=:y>P

) (3.11)

Adopted from [78, 80].

3.3 Methods for linear weighted least squares problems

Subsection 3.3.1 describes the WLS approach followed by the KF algo-
rithm in Subsection 3.3.2. Subsection 3.3.3 presents the RBA algorithm.
Its effectiveness is demonstrated in comparison with the WLS solution in
Subsection 3.3.4.
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3 Data approximation with B-spline functions

3.3.1 Weighted least squares estimator

� The linear weighted least squares (WLS) method estimates the constant
state vector x ∈ RL×1 of a linear system

y = Cx + υ. (3.12)

y ∈ RN×1 is the vector of measurements from (3.11) and C denotes the
measurement matrix that relates x to y. The measurement noise υ ∈ RN×1

is assumed to be an uncorrelated white noise process with mean zero. This
implies that the covariance matrix of measurement noise R is a diagonal
matrix and Ri;i, i = 1, . . . , N is the variance of measurement yi which can
differ from the variances of other measurements [164]. The assumptions
for {υ} can be generalized to a correlated noise process. This is termed
generalized linear model [138, p. 143]. Then R is a positive definite matrix
[20, p. 374].

The linear WLS estimate x̂ minimizes the sum of squared errors between
the measurements y and the vector Cx which are weighted with the recip-
rocals of the variances of the measurements:

x̂ = arg min
x

(y − Cx)>R−1(y − Cx) (3.13)

The solution to optimization problem (3.13) is given by the closed-form
estimator

x̂ = (C>R−1C)−1C>R−1y [164]. (3.14)

From (3.3) follows that the value of a B-spline function is a linear com-
bination of its control points. Therefore WLS can be used to determine the
control points such that the function approximates the set of data points
defined in Section 3.2. Then C is a

(∑P
p=1 Vp

)
× J matrix because y

comprises
∑P

p=1 Vp scalar components yp,v, p = 1, . . . , P, v = 1, . . . ,Vp

(c.f. (3.11)) and there are J B-splines. yp,v is the ṽ-th component of y(
ṽ =

∑p−1
p̃=1 Vp̃ + v

)
and provides information about ∂r

∂sr f (sp) with sp ∈
[κµ, κµ+1) and an r ∈ N0. The ṽ-th row of C is given by Cṽ;1,...,J = c with

c =

(
01×(µ−(d+1)),

∂r

∂sr
bµ,d (sp), 01×(J−µ)

)
(3.15)

Herein 0r×c denotes a r × c zero matrix. Adopted from [80].
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3.3 Methods for linear weighted least squares problems

3.3.2 Kalman filter

� The Kalman filter (KF) is an established method for estimating the state
of a dynamic system. Applications include tracking, navigation, sensor data
fusion and process control [60, pp. 4-5]. The KF can be seen as a general-
ization of the RLS method [164, p. 129].

The linear KF estimates the state vector xp ∈ R
L×1 of a linear time-

discrete system

xp =Apxp−1 +Bpup + ωp (State equation) (3.16)
yp = C pxp + υp (Measurement equation) (3.17)

where p ∈ N denotes the time step. Ap is the state transition matrix that
relates xp−1 to xp , up ∈ R

M×1 is an input signal vector with known influ-
ence on xp and Bp is the input matrix that relates up to xp . The vector of
measurements is denoted by yp ∈ R

N×1 and C p is the measurement matrix
that relates xp to yp . ωp ∈ R

L×1 is the process noise with covariance matrix
Qp and υp ∈ R

N×1 is the measurement noise with covariance matrix Rp .
Both {ωp } and {υp } are uncorrelated white noise processes with mean zero
which implies that Qp and Rp are diagonal matrices [164, p. 124].

Algorithm 1: Kalman filter. Adopted from [80].
Input: x̂+p−1,P

+
p−1, up, yp,Ap,Bp,C p,Qp,Rp

/* Time update */
1 x̂−p ←Ap x̂

+
p−1 +Bpup

2 P−p ←ApP
+
p−1Ap

> +Qp

/* Measurement update */

3 K p ← P
−
pC p

>(C pP
−
pC p

> +Rp)−1

4 x̂+p ← x̂−p +K p (yp − C p x̂
−
p)

5 P+p ← (I −K pC p)P−p (I −K pC p)> +K pRpK p
>

Output: x̂+p,P
+
p

The KF consists of a sequel of equations, which are computed for each
time step and summarized in Algorithm 1, in which I denotes the identity
matrix with appropriate dimensions. The KF performs a time update fol-
lowed by a measurement update. During the time update, the state estimate
is updated based on the knowledge about the system specified by (3.16).
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3 Data approximation with B-spline functions

Both the a priori estimate x̂−p and the covariance P−p of the a priori estima-
tion error are calculated. During the measurement update, the Kalman gain
K p is computed and used together with the information provided by mea-
surement yp for the calculation of the corresponding a posteriori quantities
x̂+p andP+p [164, pp. 124-129]. KF generalizations for correlated or colored
noise processes are stated in [164, pp. 183-193].

If the state vector xp is constant, then Ap = I , ωp = 0 and up = 0,
whereby 0 is the zero matrix with appropriate dimensions. In this case, the
time update is redundant and the KF simplifies to the RLS algorithm [164,
p. 129].

Data approximation by a polynomial using RLS is described in [164,
pp. 92-93]. Due to the unbounded definition range of a polynomial, ap-
plying RLS saves computational effort without limiting the approximation
compared to a KF.

Data approximation by a B-spline based on the KF is proposed in [67,
104]. These approaches require that the state vector xp comprises all control
points that are estimated during the whole approximation procedure. This
means that xp , i.e. what is estimated, is constant and only the estimation
x̂p can change. Hence, RLS would suffice. Combined with the bounded
definition range of a B-spline function, the missing ability to change which
control points are estimated leads to a definition range of the approximation
that is also bounded, constant and needs to be specified in advance.

In contrast to these approaches, the recursive B-spline approximation al-
gorithm proposed in Subsection 3.3.3 takes advantage of the time update,
that the KF provides, to shift the control points in xp . As a consequence,
RBA can shift the definition range of the B-spline function to consider data
points outside of the current definition range. Adopted from [80].

3.3.3 Recursive B-spline approximation algorithm

� The recursive B-spline approximation (RBA) algorithm computes an ap-
proximating B-spline function f (s) of degree d for the set of data points
from Section 3.2 iteratively using the KF. Algorithm 2 summarizes the cal-
culations. I ∈ N denotes the constant number of spline intervals of f (s).
The KF state estimate x̂p = ( x̂p1, x̂p2, . . . , x̂pJ )> comprises J = d + I com-
ponents which are the estimated control points of f (s). The knot vector
κp = (κp1, κp2, . . . , κpK

) for time step p has to contain K = J + d + 1 knots.
Dp = [κpd+1, κpJ+1 ) is the definition range of f (s) at p.
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3.3 Methods for linear weighted least squares problems

Algorithm 2: Recursive B-spline approximation. Adopted from [80].
Input: κp−1, x̂

+
p−1,P

+
p−1,Rp, sp, yp, κ̄p, x̄, p̄, q̄

1 J ← length( x̂+p−1)
2 K ← length(κp−1)
3 d ← K − J − 1
4 I ← J − d
5 σ ← 0
6 if sp ≥ κp−1J+1 then
7 if sp ≥ κp−1K

then
8 σ ← d + 1
9 else

10 σ such that sp ∈ [κp−1d+I+1+σ , κp−1d+I+2+σ )
11 end
12 else if sp < κp−1d+1 then
13 if sp < κp−11 then
14 σ ← −(d + 1)
15 else
16 σ such that sp ∈ [κp−1d+1+σ , κp−1d+2+σ )
17 end
18 end
19 Ap ∈ R

J×J from (3.19)
20 Qp ← q̄I J×J
21 if σ ≥ 0 then
22 κp from (3.18)
23 up ←

(
01×(J−σ), x̄11×σ

)>
24 Qpm;m ← p̄, m = J − σ + 1, J − σ + 2, . . . , J
25 else
26 κp from (3.25)
27 up ←

(
x̄11×(−σ), 01×(J+σ)

)>
28 Qpm;m ← p̄, m = 1, 2, . . . ,−σ
29 end
30 µ such that sp ∈ [κpµ, κpµ+1 )
31 Vp ← length(yp)
32 C p ∈ R

Vp×J from (3.27)
33 [x̂+p,P

+
p]← Algorithm 1( x̂+p−1,P

+
p−1, up, yp,Ap, I J×J,C p,Qp,Rp)

Output: κp, x̂+p,P
+
p
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•

(e)

Figure 3.3: Changes of covariance matrix elements for d = 3 and I = 3. • indi-
cates a large positive value, empty cells indicate zeros and ◦ denotes
comparatively small values. Adopted from [80].

Initialization

x̂p is initialized with x̂+0 = x̄1J×1, where 1J×1 denotes a J×1 matrix of ones
and x̄ a scalar quantity of the magnitude of measurements yp,v that refer to
∂r

∂sr f (s) with r = 0.
The covariance matrix of a posteriori estimation error P+ is initialized

withP+0 = p̄I J×J , where I J×J is a J× J identity matrix. The scalar p̄ should
be chosen large

(
e.g. 104

)
because then x̂p will quickly deviate from its

initial value x̂+0 in such a way that f (s) approximates the data points. If the
elements in P−p are small, this signals to the KF that the state estimate x̂−p is
very certain and therefore it will hardly be updated using the measurements.
If the KF updates x̂+p as intended, the elements in P+p become smaller as p
increases.

In the long-run, P−p is strongly influenced by the covariance matrix of
process noise Qp according to line 2 of Algorithm 1. If the elements in Qp

are large, the elements in P−p remain large too. This can lead to volatile
state estimates x̂p that do not converge to a certain value. Then f (s) will
not approximate the data points well. For that reason a very small positive
value q̄

(
e.g. q̄ = 10−12

)
is chosen for Qp = q̄I J×J .

Time update with shift operation

RBA compares the knot vector κp−1 with sp in order to determine whether
sp ∈ Dp−1. If necessary, a shift ofDp−1 is performed during the time update
of the KF such that sp ∈ Dp . The variable σ indicates the shift direction
of Dp−1 and the number of positions by which elements are shifted. σ > 0
means a right shift of Dp−1, σ < 0 a left shift of Dp−1 and for σ = 0 no
shift is performed because sp ∈ Dp−1. Algorithm 2 computes σ from line 5
to line 18.

44



3.3 Methods for linear weighted least squares problems

For example, assume d = 3, I = 3 and κp−1 = (1, 2, . . . , 10), thenDp−1 =

[4, 7). If sp = 8.5, two additional knots are needed to be able to perform
a right shift by two elements (σ = 2). 11 and 12 as additional knots give
κp = (3, 4, . . . , 12) and hence sp ∈ Dp = [6, 9).

Algorithm 2 distinguishes between σ ≥ 0 and σ < 0. It assumes
that the |σ | additional knots are the σ last components of the knot vector
κ̄p = ( κ̄p1, κ̄p2, . . . , κ̄pK ) in case of σ > 0 and that they are the −σ first
components of κ̄p in case of σ < 0.

Case 1: Right shift of definition range (σ ≥ 0)

The new knot vector is

κp ← (κp−1σ+1, κp−1σ+2, . . . , κp−1K
,

κ̄pK−σ+1, κ̄pK−σ+2, . . . , κ̄pK
).

(3.18)

The elements in x̂+p−1 are shifted by line 1 of Algorithm 1 using the state
transition matrix

Ap ∈ R
J×J withApg;h =




1, if h = g + σ

0, otherwise.
(3.19)

x̂−p ←Ap x̂
+
p−1 updates the old estimate x̂+p−1 to

x̂−p = ( x̂p−1σ+1, x̂p−1σ+2, . . . , x̂p−1J−σ
, 01×σ )>. (3.20)

With the second part of the instruction (x̂−p ← x̂−p + Bpup), input matrix
Bp = I J×J and input signal vector

up =
(
01×(J−σ), x̄11×σ

)> (3.21)

arbitrary initial estimates x̄ in x̂−p can be obtained:

x̂−p =
(
x̂p−1σ+1, x̂p−1σ+2, . . . , x̂p−1J−σ

, x̄11×σ
)>

(3.22)

P+p−1 is updated during the time update as well by line 2 of Algo-
rithm 1. The first part of the instruction (P−p ← ApP

+
p−1Ap

>) leads to
P+p1, . . .,J−σ;1, . . .,J−σ

← P−p−1σ+1, . . .,J ;σ+1, . . .,J
and all elements in the rows or

columns J − σ + 1, J − σ + 2, . . . , J of P−p equal zero. Especially zeros on
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3 Data approximation with B-spline functions

the main diagonal prevent that x̂pJ−σ+1, x̂pJ−σ+2, . . . , x̂pJ
become different

from the initial value x̄.

These zeros inP−p can be replaced with large values using the second part
of the instruction, P−p ← P

−
p +Qp , with

Qp ∈ R
J×J with Qpg;h =




p̄, if h = g ∧Q
q̄, if h = g ∧ ¬Q
0, otherwise

(3.23)

with

Q =



h ≥ J − σ + 1, if σ ≥ 0
h ≤ −σ, if σ < 0.

(3.24)

Figure 3.3 depicts different states of P+ and P−, respectively. d = 3 and
I = 3 lead to a 6 × 6 matrix P+. The diagonal values of P+0 are initial-
ized with a large positive value as depicted in (a). All other elements of
P+0 are initialized with zeros. After some data points in the second spline
interval have been processed, different comparatively small values are in the
submatrix P+2:5,2:5 (b).

After data points that fall into the third spline interval have been taken
into account, only the elements in the first row and column of P+ still have
their initialization values (c). If only the first part of the update instruction
is executed during a right shift by one element (σ = 1), the elements in the
last row and column of P− become zero (d). With the second part of the
instruction, these elements can be set to nonzero values. For Q6,6 = • and
all other elements of Q equal zero, matrix (e) is obtained.

Case 2: Left shift of definition range (σ < 0)

The new knot vector is

κp ←
(
κ̄p1, κ̄p2, . . . , κ̄p−σ , κp−11, κp−12, . . . , κp−1K+σ

)
(3.25)

and the input signal vector reads

up =
(
x̄11×(−σ), 01×(J+σ)

)> . (3.26)
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3.3 Methods for linear weighted least squares problems

Effect of shift operation

The shift operation is the distinguishing feature of RBA compared to the
algorithms in [67, 104]. Due to the shift operation, the total number of con-
trol points that will be estimated during the application of RBA does neither
have to be known in advance nor to be bounded. Using κp and x̂+p , the deter-
mined B-spline function f (s) can be evaluated at any s ∈ [κpd+1, κpd+I+1 ).

By shifting the entries in κp−1, x̂+p−1 and P+p−1 , the required memory
is held constant. In Algorithm 2 |σ | is chosen just large enough that the
current data point can be taken into account during the measurement update.
The reason for this is that the shift operation comes at the cost that parts
of an already computed approximation are forgotten unless the values of
κp−1, x̂+p−1 and P+p−1 are stored separately from Algorithm 2 before they
are removed from the vectors or matrix, respectively.

Measurement update

During the measurement update, the information provided by (sp, yp) is
used to update f (s). With the covariance matrix of measurement noise
Rp , different components of the measurement vector yp can be weighted
relatively to each other. Rp ∈ R

Vp×Vp is a diagonal matrix with positive
elements on its diagonal. The smaller an entry Rpv;v is, the greater is the
effect of the v-th component of the measurement error (yp − C p x̂

−
p) on x̂+p .

The measurement matrix C p is a Vp×J matrix. yp,v is the v-th component
of yp and provides information about ∂r

∂sr f (sp) with sp ∈ [κµ, κµ+1) and an
r ∈ N0. The v-th row of C p is given by

C pv;1, . . .,J = c (3.27)

with c from (3.15). According to C p , (sp, yp) influences only the estimates
x̂pµ−d , x̂pµ−d+1, . . . , x̂pµ . However, other estimates can still be updated by
the KF using the information stored in P−p . Adopted from [80].
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3 Data approximation with B-spline functions

3.3.4 Effectiveness of recursive B-spline approximation

� A numerical experiment in [80] demonstrates the effectiveness of Algo-
rithm 2 in comparison with the corresponding WLS solution. The data set
{(sp, yp)}p=1,2,...,P from Section 3.2 with P = 5000 is chosen, whereby

sp = 0.01 + 0.02(p − 1), (3.28)

yp,1 =



20, if 30 ≤ sp < 70
10, otherwise

and (3.29)

yp,2 = yp,3 = 0 ∀p. (3.30)

A cubic (d = 3) B-spline function f (s) approximates the data set,
whereby it is assumed that the measurements yp,2 refer to the slope ∂

∂s f (s)
of the B-spline function and the measurements yp,3 to the curvature ∂2

∂s2 f (s).
The reciprocals of the relative weights between the different target criteria
are specified by the diagonal measurement covariance matrix Rp ∈ R

3×3

with Rp1;1 = 1, Rp2;2 = 10−2 and Rp3;3 = 10−3. The diagonal measurement
covariance matrix of WLS R ∈ R3P×3P has analogous values:

Ri+1;i+1 = 1, Ri+2;i+2 = 10−2, Ri+3;i+3 = 10−3,

i = 3(r − 1), r = 1, 2, . . . , P
(3.31)

The chosen weighting helps to prevent overshoots and oscillations of f (s)
and leads to a B-spline function that smooths the jumps of yp,1 in the data
set. The parameter values are q̄ = 10−12, x̄ = 0 and p̄ = 104.

In order to investigate the effect of the choice of I, four runs of RBA with
I = 1, 3, 7 and 20, respectively, are performed. κ0 = (−15, 10, 15, 20) is
used for I = 1, κ0 = (−15, 10, . . . , 30) for I = 3, κ0 = (−15, 10, . . . , 50) for
I = 7, and κ0 = (−15, 10, . . . , 115) for I = 20. For I = 20 the resulting D0
comprises all sp of the data set and therefore no shift operation is needed.
For I = 1, 3 and 7, RBA has to perform several right shifts by one element in
order to be able to process all data points. For each shift operation, an addi-
tional knot κ̄pK has to be defined in the vector κ̄p . κ̄pK = 25, 30, . . . , 115 is
chosen for I = 1, κ̄pK = 35, 40, . . . , 115 for I = 3 and κ̄pK = 55, 60, . . . , 115
for I = 7. For evaluation purposes x̂p−11 and κp−11 are stored separately
from RBA before a shift operation is performed.
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0 20 40 60 80 100
10

15

20

I = 20
I = 7

I = 3
I = 1

s

yp,1/ f (s)

(sp, yp,1) WLS RBAI=1
RBAI=3 RBAI=7 RBAI=20

Figure 3.4: Effectiveness of RBA: 40 of the 5000 data points (sp, yp,1) (black dots)
and knots 0, 5, . . . , 100 (vertical dashed lines) are shown as well as the
B-spline function f (s) determined by WLS and RBA with I = 1, 3, 7
and 20. Arrows visualize the definition range of f (s) while data points
in the interval [95, 100) are processed. Adopted from [80].

Figure 3.4 displays the results. As both the data set and knot vector are
symmetrical to a vertical straight line through s = 50, the WLS solution
is symmetrical as well. The RBA solution converges to the WLS solution
as I increases. For I = 1 and I = 3, the resulting B-spline function is
asymmetrical with respect to a straight vertical line through s = 50. For
I = 7, RBA provides almost the same result as for I = 20. Consequently, in
this example I can be reduced from 20 to 7 without noticeably worsening the
quality of the approximation. Lowering I leads to less computational effort
in the KF becauseP−p ,P+p andQp are (d+I)×(d+I) matrices and therefore
the asymptotic time complexity of each individual iteration of Algorithm 1
is O((d + I)3) if the standard method for matrix multiplication is used [25,
97]. Under the same conditions both RLS and the known methods of other
researchers based on the KF need 20 × 20 matrices because shift operations
are not possible.

Due to the large possible savings in computational effort, RBA is also
beneficial in offline applications with known finite data set and therefore a
definition range that is known in advance.

In further experiments in [80] κ0 is chosen such that the first data points
lie in the rightmost spline interval and runs with I = 3, I = 7 and I = 20 are
performed. The deviations of the resulting control point vectors from the
those derived when the first data points are in the leftmost interval are close
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3 Data approximation with B-spline functions

to the machine accuracy indicating that the effect of the shift operation on
the approximation result is negligible. Adopted from [80].

3.4 Methods for nonlinear weighted least squares problems

Subsection 3.4.1 describes the Levenberg-Marquardt (LM) algorithm fol-
lowed by the marginalized particle filter in Subsection 3.4.2. Subsec-
tion 3.4.3 presents the nonlinear recursive B-spline approximation algo-
rithm for nonlinear weighted least squares problems. Its effectiveness is
demonstrated in comparison with the LM solution in Subsection 3.4.4.

3.4.1 Levenberg-Marquardt algorithm

Consider the problem
x̂ = arg min

x
e>e (3.32)

with the error function e given by

e =
√

R−1 · (y − φ(s, x)) . (3.33)

s denotes the vector of independent variables, y the vector of measurements
and R the covariance matrix of measurement noise. In (3.33) the difference
between y and φ is weighted with the square root of the reciprocal of the
covariance matrix of measurement noise R. φ is a function whose values
depend nonlinearly on its control points which are summarized in the control
point vector x. Due to this nonlinear relationship (3.32) is a NWLS problem.

The Levenberg-Marquardt (LM) algorithm solves this problem itera-
tively. x̂i denotes the known approximation of the solution x̂ of (3.32)
in iteration i. LM approximates the error function linearly using

e( x̂) = e( x̂i) + e′( x̂i)( x̂ − x̂i) (3.34)

and updates x̂i according to

x̂i+1 = x̂i + δ̂
i (3.35)
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3.4 Methods for nonlinear weighted least squares problems

with correction step size δ. The optimal step size δ̂ is derived by solving the
linear LS problem

δ̂
i
= arg min

δi
‖e′( x̂i)δ + e( x̂i)‖22 + λ‖δ

i ‖22 (3.36)

which includes a damping parameter λ > 0. The solution δ̂i to (3.36) with

δ̂
i
= −

[
e′( x̂i)>e′( x̂i) + λ2I

]−1
e′( x̂i)>e( x̂i) (3.37)

is determined by setting the first derivative of its optimization function with
respect to δ to zero. A too large δ can be avoided by choosing λ appropri-
ately because of

‖δi ‖2 ≤
‖e( x̂i)‖2

λ
. (3.38)

The LM algorithm terminates if

‖e′( x̂i)>e( x̂i)‖2 ≤ ε (3.39)

with a specified tolerance ε . For convergence λ needs to be sufficiently
large. However, a large λ results in a small correction step size and slow
convergence if the solution is still far away from the optimum. Therefore λ
is controlled using heuristic criteria [35, pp. 222-224].

The computational effort of a single LM iteration roughly equals the effort
of the WLS method. The total computational effort of LM depends on the
number of performed iterations and is given by O(ε−2) [175].

3.4.2 Marginalized particle filter

� The marginalized particle filter (MPF) is an iterative algorithm for esti-
mating the unknown state vector xp of a system at time step p ∈ N.

In the MPF, xp is subdivided into xp =

((
xL
p

)>
,
(
xN
p

)>)>
, whereby the

KF optimally estimates the linear state vector xL
p and a PF estimates the

nonlinear state vector xN
p . Exploiting linear substructures allows for better

estimates and a reduction of the computational effort. Therefore, the MPF
is beneficial for mixed linear/nonlinear state-space models [155]. Due to
Equations (3.3) and (3.5), linear substructures will occur in approximation
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3 Data approximation with B-spline functions

problems as long as there are target criteria that refer to the value of the
B-spline function or its derivatives directly.

MPF algorithms for several state-space models can be found in [155]
along with a MATLAB example that can be downloaded from [156]. An
equivalent but new formulation of the MPF that allows for reused, efficient,
and well-studied implementations of standard filtering components is stated
in [70].

For a NWLS approximation, the following state-space model derived
from [70] is applied:

xN
p+1 =A

N
p xN

p + ω
N
p + uN

p (Nonlinear state equation) (3.40)

xL
p+1 =A

L
p x

L
p + ω

L
p + uL

p (Linear state equation) (3.41)

yp = C x
L
p + c

(
xN
p

)
+ υp (Measurement equation) (3.42)

The superscripts L and N indicate that the corresponding quantity refers to
linear or nonlinear state variables, respectively. Ap denotes the state transi-
tion matrix, up is the known input vector, yp is the vector of measurements,
C p is the measurement matrix, and c is the nonlinear measurement function
that depends on xN

p . ωL
p denotes the process noise of the linear state vector

with a covariance matrix QL
p , ωN

p is the process noise of the nonlinear state
vector with a covariance matrix QN

p , and υp is the measurement noise with
a covariance matrix Rp . The model of the conditionally linear subsystem in

the KF has the state vector
(
ξ>,

(
xL

)>)>
, whereby ξ describes the linear

dynamics of xN :

*.
,

ξ p+1

xL
p+1

+/
-
=

*.
,

0 AN
p

0 AL
p

+/
-

*.
,

ξ p

xL
p

+/
-
+

*.
,

uN
p

uL
p

+/
-
+

*.
,

ωN
p

ωL
p

+/
-

yp =
(
0 C p

) *.
,

ξ p

xL
p

+/
-
+ c

(
xL
p

)
+ υp

(3.43)

The covariance matrix of process noise is *.
,

Q
N
p 0

0 Q
L
p

+/
-
, and 0 denotes a zero

matrix with a suitable size.
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3.4 Methods for nonlinear weighted least squares problems

A PF with the model

xN
p+1 = ω̄

N
p

yp = ῡp

(3.44)

deals with the remaining nonlinear effects. The noise depends on the esti-
mates indicated by ˆ from the conditionally linear model:

ω̄N
p ∼ N

(
ξ̂ p,P

ξ,−
p

)
ῡp ∼ N

(
c
(
xN
p

)
+ C p

(
xN
p

)
x̂L,−, Sp

) (3.45)

with
Sp = C pP

L,−
p C

>
p +Rp (3.46)

where the superscript − refers to a priori quantities that are computed in
the time update, which is based on the state of (3.40) and (3.41). In con-
trast, + denotes a posteriori quantities that are calculated in the following
measurement update based on the measurement of (3.42).

PL,−
p and Pξ,−p are the covariance matrices of the estimation errors that

belong to x̂L
p and ξ̂ p , respectively.

The PF uses multiple state estimates, called particles, simultaneously.
The superscript p with p = 1, . . . , P is the particle index and P is the
particle count. In general, a KF is used for each particle. In the chosen
state-space model, however,AL

p ,AN
p , QL

p , and QN
p are independent of xL

p

and xN
p . This implies that PL,−

p and Pξ,−p are identical for all KFs, which
reduces the computational effort substantially [70, 155].

Algorithm 3 states the equations for one MPF iteration and was derived
from [70, 155]. For an implementation in MATLAB, the example from [156]
was adapted. Note that in Algorithm 3 the measurement update of the pre-
vious time step p− 1 occurs before the time update for the current time step
p, similar to the algorithm in [6].

In line 4 of Algorithm 3, linear particles are resampled according to their
corresponding normalized importance weights. After resampling, particles
with a low measurement error occur more frequently in the set of particles.
Subsequently, all particles x̂L,+,p

p−1 are aggregated in line 5 to a single estimate
x̂+p−1 by calculating their mean.
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3 Data approximation with B-spline functions

Algorithm 3: Marginalized particle filter derived from [70, 155].
Adopted from [78].

Input: AL
p,A

N
p ,C p−1, c,P

L,−
p−1,Q

L
p,Q

N
p ,Rp−1, u

L
p, u

N
p ,

x̂
L,−,p
p−1 , x̂

N,−,p
p−1 , yp−1

/* 1a PF measurement update */
1 For p = 1, . . . , P, compute the particle importance weights qp

p using the
likelihood qp

p = N ( ŷp, Sp), ŷp = C p−1P
L,−
p−1 x̂

L,−,p
p−1 + c

(
x̂
N,−,p
p−1

)
,

Sp−1 = C p−1P
L,−
p−1C

>
p−1 +Rp−1 and compute the normalized weights

q̃p
p =

q
p
p∑P

p′=1 q
(p′)
p

.

/* 1b KF measurement update */

2 x̂
L,+,p
p−1 ← x̂

L,−,p
p−1 +P

L,−
p−1C

>
p−1S

−1
p−1

(
yp−1 − ŷp

)
3 P

L,+
p−1 ← P

L,−
p−1 −P

L,−
p−1C

>
p−1S

−1
p−1C p−1P

L,−
p−1

/* 1c Resampling */
4 Resample P particles with replacement,

probability
(
x̂
L,+, (p′)
p−1 = x̂

L,+,p
p−1

)
= q̃p

p .

5 x̂+p−1 ← mean of x̂L,+,p
p−1 , p = 1, . . . , P

/* 2a KF time update */

6 x̂
L,−,p
p ←AL

p x̂
L,+,p
p−1 + uL

p

7 ξ̂
p
p ←A

N
p x̂

L,+,p
p−1 + uN

p

8 PL,−
p ←AL

pP
L,+
p−1

(
AL

p

)>
+QL

p

9 P
ξ,−
p ←AN

p P
L,+
p−1

(
AN

p

)>
+QN

p

10 P
ξL,−
p ←AN

p P
L,+
p−1

(
AL

p

)>
11 P

Lξ,−
p ←

(
P
ξL,−
p

)>
/* 2b PF time update */

12 For p = 1, . . . , P, predict new particles, x̂N,−,p
p ∼ N

(
ξ̂
p
p,P

ξ,−
p

)
.

/* 2c Mixing step, update KF */

13 x̂
L,−,p
p ← x̂

L,−,p
p +P

Lξ,−
p

(
P
ξ,−
p

)−1 (
x̂
N,−,p
p − ξ̂

p
p

)
14 PL,−

p ← PL,−
p −P

Lξ,−
p

(
P
ξ,−
p

)−1
P
ξL,−
p

Output: PL,−
p , x̂+p−1, x̂

L,−,p
p , x̂

N,−,p
p
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After both KF and PF have been time updated, the KF is adjusted based
on the PF estimates in a mixing step with the cross-covariances of the esti-
mation errors, PξL,−p and PLξ,−

p .
In the new formulation from [70], resampling occurs after the measure-

ment update of both PF and KF. Therefore, the quantities computed for the
measurement update of the PF can be reused for the KF measurement up-
date. In particular, each particle is only evaluated once in line 1 of each
MPF iteration instead of twice as with the previous formulation in [155].
Adopted from [78].

3.4.3 Nonlinear recursive B-spline approximation algorithm

� Nonlinear recursive B-spline approximation (NRBA) adapts a B-spline
function f (s) with degree d iteratively to the data set from Section 3.2. Al-
gorithm 4 states the instructions for one iteration of NRBA, which is based
on the MPF.

In each iteration p, NRBA modifies f in I ∈ N consecutive spline in-
tervals. Each linear particle x̂

L,p
p = ( x̂L

p1
, x̂L

p2
, . . . , x̂L

pJ
)> and each nonlinear

particle x̂
N,p
p = ( x̂N

p1
, x̂N

p2
, . . . , x̂N

pJ
)> contains estimates for J = d+I control

points of f . κp = (κp1, κp2, . . . , κpK
) denotes the knot vector comprising

K = J + d + 1 knots. The resulting definition range Dp of f is given by
Dp = [κpd+1, κpJ+1 ). NRBA checks if sp is in the definition range of the pre-
vious time step, Dp−1. If not, Dp−1 needs to be shifted such that sp ∈ Dp .
A shift can be conducted in the MPF time update. The result of the time
update is the a priori estimate x̂−p . In the following measurement update, sp
is needed again to compute the measurement matrix C p , and then, to take
into account yp . The result of the measurement update is the a posteriori
estimate x̂+p .

Figure 3.5 depicts the allocation of available data points and computed
estimates x̂ to KF iterations in RBA versus MPF iterations in NRBA. The
arrows indicate the needed information for computing the estimates. The
KF is initialized with x̂+0 and conducts in each iteration a time update first
and then a measurement update. Therefore, P iterations are required for P
data points. In contrast, the MPF performs the measurement update first and
is initialized with x̂−0 . Therefore, yp has to be stored and sp , sp+1, and yp
have to be provided for iteration p + 1. Hence, in order to take into account
all data points, an additional iteration compared to the KF is needed. By
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p
Time step

Data points

1

(s1, y1)

2

(s2, y2)

3

(s3, y3)

n

(sn, yn)

Estimates x̂−0 x̂−1 x̂−2 x̂−3 x̂−n x̂−
n+1x̂+0 x̂+1 x̂+2 x̂+3 x̂+n

KF Init. Iter. 1 Iter. 2 Iter. 3 Iter. n

MPF Init. Iter. 1 Iter. 2 Iter. 3 Iter. n + 1

Figure 3.5: Allocation of availabe data points and computed estimates x̂ to KF
iterations in RBA versus MPF iterations in NRBA. Arrows indicate
the needed information for computing the a priori estimates x̂− and
the a posteriori estimates x̂+. By definition the MPF uses (s1, y1) for
computing x̂+0 and sn for computing x̂−

n+1. Adopted from [78].

definition, (s1, y1) is used for computing x̂+0 and sn for x̂−n+1 as indicated by
the dashed arrows.

Initialization

Each linear particle x̂
L,−,p
0 is initialized with x̂

L,−,p
0 = x̄Init1J×1, and each

nonlinear particle x̂
N,−,p
0 is initialized with

x̂
N,−,p
0 = x̄Init1J×1 + chol (p̄I J×J ) · rndJ×1.

Hereby, 1J×1 is a J × 1 matrix of ones and x̄Init indicates an initial value
equal to the scalar measurement y1,v referring to f . chol(·) computes the
Cholesky factorization, and rndJ×1 is a J×1 vector of random values drawn
from the standard normal distribution. The covariance matrix of a priori
estimation error of linear states, PL,−, is initialized with PL,−

0 = p̄I J×J .
I J×J denotes a J × J identity matrix.

The large scalar value p̄ causes x̂p to quickly change such that f adapts
to the data. Provided that the values in QL

p are small, the values in PL,−
p

decrease as p grows according to line 8 of Algorithm 3. Small elements in
PL,−

p correspond to certain estimates. Therefore, the particles x̂
L,−,p
p and

x̂
N,−,p
p are slower to be updated using measurements such that f converges.

Analogous statements hold for Pξ,−p according to line 9 of Algorithm 3.
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Algorithm 4: Nonlinear recursive B-spline approximation. Adopted
from [78].

Input: κp−1, x̂
L,−,p
p−1 , x̂

N ,−,p
p−1 , x̂+p−2, P

L,−
p−1, Rp−1, sp, sp−1, yp, yp−1, κ̄p, p̄, q̄

L, q̄N , c

1 J ← length
(
x̂
L,+,p
p−1

)
2 K ← length

(
κp−1

)
3 d ← K − J − 1
4 I ← J − d

/* Quantities for MPF measurement update */

5 Compute µ such that sp−1 ∈ [κp−1µ , κp−1µ+1 )

6 Vp−1 ← length(yp−1)

7 C p−1 ∈ R
Vp−1×J from (3.47)

/* Quantities for MPF time update */

8 σ ← 0
9 if sp ≥ κp−1J+1 then

10 if sp ≥ κp−1K
then

11 σ ← d + 1
12 else
13 Compute σ such that sp ∈ [κp−1d+I+1+σ , κp−1d+I+2+σ )

14 end

15 else if sp < κp−1d+1 then
16 if sp < κp−11 then
17 σ ← −(d + 1)

18 else
19 Compute σ such that sp ∈ [κp−1d+1+σ , κp−1d+2+σ )

20 end

21 end
22 if σ ≥ 0 then
23 x̄ ← last element of x̂+p−2

24 κp , uL
p , uN

p from (3.18), (3.49) and (3.53)

25 else
26 x̄ ← first element of x̂+p−2

27 κp , uL
p , uN

p from (3.18), (3.55) and (3.56)

28 end
29 Compute µ such that sp ∈ [κpµ , κpµ+1 )

30 AL
p , QL

p , AN
p and QN

p from (3.48), (3.51), (3.52) and (3.54)

31
[
PL,−

p , x̂+p−1, x̂
L,−,p
p , x̂

N ,−,p
p

]
← Algorithm 3

(
AL

p, A
N
p ,

C p−1, c, P
L,−
p−1, Q

L
p, Q

N
p , Rp−1, u

L
p, u

N
p , x̂

L,−,p
p−1 , x̂

N ,−,p
p−1 , yp−1

)
Output: κp, x̂

+
p−1, x̂

L,−,p
p , x̂

N ,−,p
p , PL,−

p
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Hence, the process noises are defined as QL
p = q̄L I J×J and QN

p =

q̄N I J×J with small positive values q̄L and q̄N , respectively.

Measurement update

The measurement update from line 1 to line 4 of Algorithm 3 adapts f (s)
based on (sp−1, yp−1). The v-th dimension of yp−1 refers to either f itself
or a derivative of f . Therefore, the v-th row of the Vp−1 × J measurement
matrix C p−1 reads

C p−1v;1, . . .,J =

(
01×(µ−(d+1)),

∂r

∂sr
bµ,d (sp−1), 01×(J−µ)

)
, (3.47)

whereby sp−1 ∈ [κµ, κµ+1) and r ∈ N0. Algorithm 4 computes C p−1 in
line 7 using (3.47).

The value of the nonlinear measurement function c depends on the non-
linear particles x̂

N,−,p
p−1 . Furthermore, c can depend on additional quantities

that vary with the application and are not stated in Algorithm 3.
The diagonal Vp × Vp covariance matrix of measurement noise Rp−1 en-

ables a relative weighting of the dimensions of yp−1 because the influence
of the vth dimension of the measurement error epp =

(
yp−1 − ŷp

)
on x̂

L,−,p
p−1

and x̂
N,−,p
p−1 decreases with a growing positive value Rp−1v;v .

Time update with shift operation

Based on a comparison between κp−1 and sp , NRBA decides if a shift op-
eration of the B-spline function definition range is required to achieve that
sp ∈ Dp .

The variable σ calculated from line 8 to line 21 of Algorithm 4 states
the shift direction ofDp−1 and by how many positions components in κp−1,
x̂
L,−,p
p−1 and x̂

N,−,p
p−1 need to be moved for that purpose. σ > 0 indicates a

right shift of Dp−1, σ < 0 indicates a left shift, and σ = 0 means that no
shift is conducted because sp ∈ Dp−1.

Algorithm 4 expects that, for σ > 0, the |σ | additionally needed knots
are the σ last entries of the knot vector κ̄p = ( κ̄p1, κ̄p2, . . . , κ̄pK ) and that
they are the −σ first entries of κ̄p if σ < 0.
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3.4 Methods for nonlinear weighted least squares problems

Case 1: Right shift of definition range (σ ≥ 0)

The new knot vector κp is given by (3.18) and line 6 of Algorithm 3 updates
x̂
L,+,p
p−1 to x̂

L,−,p
p using the state transition matrix

A
L
p =Ap from (3.19) (3.48)

and the input signal vector

uL
p = up from (3.21). (3.49)

Thereby all entries of x̂L,+,p
p−1 are moved to the left and the last σ entries of

x̂
L,−,p
p have an arbitrary initial value x̄:

x̂
L,−,p
p =

(
x̂L
p−1σ+1

, x̂L
p−1σ+2

, . . . , x̂L
p−1J−σ

, x̄11×σ
)>

(3.50)

During a right shift of the definition range, x̄ is set to the last element of
x̂+p−2, which is determined during the preceding call of Algorithm 3 in line 5.
This is based on the assumption that x̂+p−2 is a good initial value in the
magnitude of the data.

Additionally, line 8 of Algorithm 3 updates PL,+
p−1 to PL,−

p using (3.48)
and

Q
L
p ∈ R

J×J with QL
pg;h
=




p̄, if h = g ∧Q
q̄L, if h = g ∧ ¬Q
0, otherwise

(3.51)

with Q given by (3.24). The update operation moves the elements in PL,+
p−1

to the top left and replaces the zeros on the last σ main diagonal elements of
Q

L
p with p̄ in order to get large values on the last σ main diagonal elements

of PL,−
p and a fast adaption of the initial estimates x̄ to the data points.

In line 7 and line 9, Algorithm 3 computes the quantities ξ̂
p
p andPξ,−p that

are needed for the PF time update. The calculations of the state transition
matrixAN with

A
N
p =Ap from (3.19) (3.52)

and the input signal vector uN with

uN
p = up from (3.21) (3.53)
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3 Data approximation with B-spline functions

are analogous to those for the linear quantities. QN uses q̄N instead of q̄L:

Q
N
p ∈ R

J×J with QN
pg;h
=




p̄, if h = g ∧Q
q̄N, if h = g ∧ ¬Q
0, otherwise.

(3.54)

Case 2: Left shift of definition range (σ < 0)

The updated knot vector is given by (3.25), the input signal vector for linear
states uL reads

uL
p = up from (3.26) (3.55)

and the input signal vector for nonlinear states uN is given by

uN
p = up from (3.26). (3.56)

Additionally, x̄ is set to the first component of x̂+p−2.

Since AL
p and AN

p are identical in the chosen state-space model, com-
putational effort can be saved when calculating the covariances and cross-
covariances from line 8 to line 11 in Algorithm 3. Adopted from [78].

3.4.4 Effectiveness of nonlinear recursive B-spline
approximation

�Numerical experiments conducted in [78] demonstrate the effectiveness of
Algorithm 4 in comparison with solutions determined using the LM [115]
algorithm. Therein effects of the number of simultaneously adaptable spline
intervals and the particle count on the NRBA solution are also investigated.
A MATLAB implementation of the experiments is provided in [76].
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3.4 Methods for nonlinear weighted least squares problems

General experimental setup

The data set {(sp, yp)}p=1,2,...,P is defined according to Section 3.2, whereby

sp = 0.25 + 0.5 · (p − 1),

yp,1 =



40, if 80 ≤ sp < 120
30, otherwise

yp,2 = yp,3 = yp,4 = 0 ∀p

P = 400.

(3.57)

A B-spline function f (s) with knot vector κ = (−30,−20, . . . , 230) and
degree d = 3 approximates the data. Thereby, it is supposed that yp,1 refers
to f , yp,2 to the first derivative of f , yp,3 to the second derivative of f ,
and yp,4 to the value of the nonlinear measurement function c, which is
defined as a quadratic B-spline function with κ = (−5, 0, . . . , 70) and x =
(0, 0, 0, 0.25, 1.5, 5, 5, 0, 0, 6, 8, 8, 8)>.

c depends on the value of the approximating function f (s) and is dis-
played in Figure 3.6. The input variable f (s) of c is restricted to the defini-
tion range [5, 60] of c.

The diagonal measurement covariance matrix Rp ∈ R
4×4 with Rp1;1 = 1,

Rp2;2 = 5 · 10−2, Rp3;3 = 5 · 10−3 and Rp4;4 = 0.8 or 106, respectively,
comprises the reciprocal weights of yp,1, yp,2, yp,3 and yp,4. The reciprocal
weight values for the first three dimensions of yp avoid that f oscillates and
cause that f smooths the jumps in the first dimension of the measurements.
With Rp4;4 = 0.8, the nonlinear target criterion c ( f (s)) = 0 is weighted
strongly, whereas it is almost completely neglected with Rp4;4 = 106.

Depending on the applied algorithm, solutions for the former weighting
case are denoted by NRBAN or LMN indicating the nonlinear problem. Con-
versely, solutions for the latter case of a quasi-linear approximation problem
are denoted by NRBAL or LML.

Solutions for two different numbers of spline intervals I are analysed.
For I = 1, κ is initialized with κ0 = (−30, 20, . . . , 40) which leads to an
initial definition range [0, 10) of f (s). For I = 3, κ is initialized with κ0 =

(−30, 20, . . . , 60) and the resulting definition range is [0, 30). In both cases
NRBA approximates the data by repeatedly shifting the function definition
range to the right. Each time, an additional knot value κ̄pK needs to be
provided in the vector κ̄p . For I = 1 these values are κ̄pK = 50, 60, . . . , 230
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3 Data approximation with B-spline functions
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Figure 3.6: Nonlinear measurement function c
(

f (s)
)

depending on the value of
the B-spline function f (s) approximating the data. Adopted from [78].

and for I = 3 they read κ̄pK = 70, 80, . . . , 230. In order to display the
NRBA results for the whole data set, all values that are moved out of NRBA
matrices and vectors are stored elsewhere.

The remaining NRBA parameters are q̄L = 0.005, q̄N = 0.25 and p̄ = 30.
The LM algorithm uses x̄Init = 30 as the initial value for each control point.

Due to the included PF, NRBA is a nondeterministic method. For each
setting, 50 runs are performed and for each run the normalized root mean
square error (NRMSE) between the B-spline function determined by NRBA,
f NRBA, and the B-spline function according to LM, f LM, is calculated as
follows:

NRMSE =
1

maxp=1,...,P { f LM(sp)} −minp=1,...,P { f LM(sp)}

·

√√∑P
p=1

(
f NRBA(sp) − f LM(sp)

)2

P

(3.58)

The terms NRBAmed and NRBAmax refer to the NRBA solution with the
median or maximum NRMSE, respectively, in each set of 50 runs.

Results

Figure 3.7 shows for both the quasi-linear (L) and the nonlinear (N) problem
the approximating functions NRBAmed and NRBAmax compared to the LM
solutions. Black dots depict the first component yp,1 of 40 of the 400 data
points (sp, yp). Dashed vertical lines indicate knots, whereby the first and
last knots are not shown.
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3.4 Methods for nonlinear weighted least squares problems

Figure 3.7a shows NRBA approximations for I = 1 and P = 6561 = 94.
In this case the MPF state vector comprises four linear and four nonlinear
components and the PF creates nine samples per nonlinear state dimension.

At f (s) = 30, the deviation between the value of c and its target value
yp,4 = 0 has a local maximum (c.f. Figure 3.6). The nonlinear problem
penalizes this deviation strongly; hence, NRBAN and LMN avoid f (s) = 30.
In contrast, NRBAL and LML approximate data with yp,1 = 30 closely.

Data and knot vector are symmetrical to the straight line given by s = 100.
Since the LM algorithm processes all data simultaneously in each iteration,
the solutions LML and LMN in Figure 3.7a reflect this symmetry.

In contrast, NRBA processes the data from left to right and can only adapt
some control points at a time. For I = 1, these are the four control points
that influence the B-spline function in the spline interval in which the current
data point lies and for I = 3 additionally the two control points that affect
the two spline intervals to the left.

NRBAL and NRBAN are both asymmetrical and mostly delayed with re-
spect to LML and LMN. For NRBAN, the asymmetry is less distinct because
the PF removes states that translate to a large delay more quickly from the
particle set because they create a larger error. Additionally, the range of
values in NRBAN is smaller than in NRBAL so that a present lag is less
obvious.

For the same weighting NRBAmed and NRBAmax differ only slightly,
which suggests that, for the given setup, P = 6561 suffices for a conver-
gence of NRBA solutions.

With RBA for linear weighted least squares approximation similar nu-
merical experiments but without any nonlinear approximation criterion were
performed in Subsection 3.3.4 and [80]. For I = 1, a strong asymmetry and
delay are observed with RBA, analogous to NRBAL in Figure 3.7a. The de-
lay decreased as I was increased because the filter was able to update more
control point estimates with hindsight based on PL,+.

By increasing I to three with NRBA, the dimension of the state space
also increases to six linear and six nonlinear components. The PF in NRBA
samples the state space less densely, unless the particle count is increased
exponentially with I.

Figure 3.7b displays the results for the quasi-linear approximation prob-
lem for the case of keeping the sampling density per nonlinear state space di-
mension constant by choosing P = 625 = 54 for I = 1 and P = 15625 = 56

for I = 3. Overall the NRBA solution is more symmetrical with I = 3 but

63



3 Data approximation with B-spline functions

0 20 40 60 80 100 120 140 160 180 200

30

35

40

s

y
p
,1
/

f(
s)

0 20 40 60 80 100 120 140 160 180 200

30

35

40

s

y
p
,1
/

f(
s)

0 20 40 60 80 100 120 140 160 180 200

30

35

40

s

y
p
,1
/

f(
s)

0 20 40 60 80 100 120 140 160 180 200

30

35

40

s

y
p
,1
/

f(
s)

κ (sp, yp,1) LMN LML

(a) NRBAL,med, I = 1, P = 94 NRBAL,max, I = 1, P = 94

NRBAN,med, I = 1, P = 94 NRBAN,max, I = 1, P = 94

(b) NRBAL,med, I = 1, P = 54 NRBAL,max, I = 1, P = 54

NRBAL,med, I = 3, P = 56 NRBAL,max, I = 3, P = 56

(c) NRBAN,med, I = 1, P = 54 NRBAN,max, I = 1, P = 54

NRBAN,med, I = 3, P = 56 NRBAN,max, I = 3, P = 56

(d) NRBAL,med, I = 3, P = 94 NRBAL,max, I = 3, P = 94

NRBAN,med, I = 3, P = 94 NRBAN,max, I = 3, P = 94

Figure 3.7: B-spline functions f with NRBA for interval counts I and particle counts P and
with median (med) and maximum (max) NRMSE compared to the LM solution
for quasi-linear (L) and nonlinear (N) problems. Only 40 data points (sp, yp,1)
and a subset of knots κ is shown. Adopted from [78].
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a comparison of NRBAmed for I = 1 and I = 3 indicates that the delay for
s ≥ 120 is not reduced. Instead, the ability to adapt more control point es-
timates simultaneously sometimes leads to undesirable results, e.g. the too
low course between s = 40 and s = 60 as well as the overcompensation of
the delay between s = 60 and s = 75.

For I = 1, NRBAmax differs more from NRBAmed and shows larger oscil-
lation amplitudes than for I = 3. This suggests that P = 625 is not sufficient
for a convergence of NRBA for I = 1. However, even with 625 particles
for I = 1, the required increase to P = 15625 for I = 3 is already quite
strong. Keeping the sampling density constant quickly becomes infeasible,
especially if computation time constraints are present [70].

All other factors held constant Figure 3.7c shows the results for the non-
linear approximation problem, which support the previously drawn conclu-
sions. Additionally, the conflicting target criteria in the nonlinear approxi-
mation problem cause a larger stabilization period at s ≤ 20.

Figure 3.7d depicts the effect of increasing I from one to three while
maintaining the particle count of Figure 3.7a. For I = 3 NRBAmax differ
much more from the corresponding NRBAmed. This indicates that more
particles are needed for convergence for I = 3. Furthermore, for I = 3 these
differences are much larger for NRBAN than for NRBAL.

A comparison between corresponding NRBAmed solutions in both fig-
ures shows only a small approximation improvement from increasing I for
the chosen setup. In Figure 3.7d NRBAN temporarily decreases below
f (s) = 30, the position of the maximum of c (c.f. Figure 3.6). This is a
case in which NRBA chooses a locally but not globally good solution. More
detailed investigations on the effects of particle count P on convergence can
be found in the cited prepublication. Adopted from [78].

3.5 Scientific contribution

This chapter presented two novel algorithms for the weighted least squares
(WLS) approximation of a set of data points with a B-spline function. These
are the algorithm recursive B-spline approximation (RBA) for the case of a
linear WLS problem and the algorithm nonlinear recursive B-spline approx-
imation (NRBA) for the case of a nonlinear WLS problem.

Figure 3.8 subdivides the unconstrained WLS B-spline approximation
problem and illustrates the problem types to which RBA, NRBA and the
well-known algorithms WLS, RLS, KF and LM can be applied.
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Unconstrained WLS B-spline function approximation

Linear Nonlinear

Batch/offline Online Batch/offline Online

WLS RLS/KF RBA LM NRBA

Figure 3.8: Classification of unconstrained weighted least squares (WLS) B-spline
approximation problems and suitable algorithms.

Table 3.1: Comparison of B-spline approximation methods. ∗: Only applies to
WLS. ∗∗: Also applies to LM if the sliding window method in [38] is
used with a window size very small compared to P. Adopted from [80].

Feature
WLS/LM WLS/LM

RLS/KF RBA/NRBA(single call) (multiple calls)

Number of processable
Bounded Unbounded Unbounded Unboundeddata points P

Time complexity O(P)∗ O(P)∗∗ O(P) O(P)

Approximation interval Fixed Variable Fixed Variable

Determination of total
At During At Duringnumber of control points

beginning run-time beginning run-timebeing estimated

Table 3.1 compares features of the mentioned approximation methods.
With LM the computational effort in each iteration depends on the number
of data points P. However, the number of iterations performed depends on
the specified tolerance and cannot be deduced solely from P. Therefore the
time complexity statement in Table 3.1 does not apply to LM in the general
case. However, the sliding window LM approach in [38] has time compexity
O(P) if the window size is very small compared to P.

The design of RBA, NRBA in this chapter as well as their applications in
the following chapters are limited to the B-spline representation and func-
tions. However, the limitation to functions and B-splines in this work did
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not lead to a loss of generality and the approach of RBA and NRBA can
be generalized to curves and surfaces of all spline representations that offer
local control, so that the benefits of RBA and NRBA stated in the following
can be directly transferred to them as well.

This is because according to Section 2.3, curves and surfaces are direct
extensions of functions. Moreover, spline representations with local control
only differ in the geometry matrix M and therefore in the blending func-
tions, but they all share the same structure of (2.17) for curves and of (2.19)
for surfaces. Their local control results from the bounded interval, in which
a blending function is nonzero. As a result, other local spline representations
suffer from the same identified research gap.

Recursive B-spline approximation

� The RBA algorithm prepublished in [80] solves a linear WLS approxi-
mation problem iteratively using a KF which estimates the control points of
the B-spline function sequentially. Therefore the total computational effort
increases linearly with the number of approximated data points.

The main contribution is to use the time update of the KF for a shift of
estimated B-spline control points in the KF state vector in combination with
a shift in the B-spline knot vector. The shift operation enables to shift the
definition range such that it is always possible to take into account the latest
data point for the approximation.

Thereby RBA overcomes the limitation of other recursive algorithms
based on the KF that can only approximate data points within the initially
chosen and fixed approximation interval.

RBA is especially advantageous in online applications in which the mag-
nitude of the data points is not exactly known or changes over time because
then data points outside the initially chosen bounded B-spline function def-
inition range can occur.

RBA is also beneficial when a tradeoff between low computational ef-
fort and high approximation quality is needed because the shift operation
of RBA allows to reduce the size of the KF state vector in both online and
offline applications. A smaller state vector causes less computational effort.

Numerical experiments in [80] and Subsection 3.3.4 show that the RBA
result converges to the WLS solution as the size of the state vector is in-
creased. Additionally the experimental results reveal that few simultane-
ously adaptable spline intervals suffice for good approximation results.
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The number of required shift operations can increase when the size of
the state vector is reduced to lower the computational effort. The experi-
ments indicate that shift operations influence the control point values of the
resulting approximation function only in a magnitude that is close to nu-
merical accuracy. Each shift operation comes at the expense that a part of
the approximation result is forgotten in order to keep the sizes of matrices
and vectors constant. A growing approximation interval can be realized by
storing matrix and vector elements separately from RBA before they are
overwritten. Adopted from [80].

Nonlinear recursive B-spline approximation

� The NRBA algorithm prepublished in [78] is a generalization of RBA for
NWLS problems which result from target criteria that depend on the control
points nonlinearly.

NRBA determines a B-spline function such that it approximates an un-
bounded number of data points with respect to both linear and nonlinear
target criteria. The approach uses a MPF for solving the approximation
problem iteratively.

In the MPF, a PF takes into account target criteria that do not relate to the
control points in a linear fashion whereas a KF solves any linear subprob-
lem optimally for each particle [70]. As the values of the B-spline function
and its derivatives depend linearly on the control point values, linear target
criteria will occur in most approximation applications.

The MPF can take into account the exactly known values of the B-spline
basis functions and does not need to estimate them like most other nonlinear
filters do. Taking advantage of the linear substructure of the problem allows
to reduce computational effort and achieve better results compared to purely
nonlinear filters like a PF [155].

The features and benefits of RBA that result from the shift operation also
apply to NRBA. Numerical experiments in [78] and Subsection 3.4.4 inves-
tigated the effectiveness of the approach in comparison to the LM algorithm
and illustrated the effects of selected NRBA parameter values on the ap-
proximation result. Provided that the parameters are chosen appropriately,
the solution of the proposed method is close to the LM solution apart from
a slight filter-typical delay.
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(a) Trajectory optimization. Planned
trajectory time t.

(b) Signal representation. Real
time t measured from present
point in time, interval dt be-
tween consecutive measure-
ments.

Figure 3.9: Exemplary use cases for different operating modes of RBA and NRBA.
Optimization range (OR).

NRBA use cases are NWLS problems in which a linearization of non-
linear criteria is not desired or promising, for example because of distinct
nonlinearities.

For linear WLS problems RBA should be used instead of NRBA. RBA
is based on the KF, which computes an optimal solution [205]. For linear
problems NRBA can at best reach the same approximation quality provided
that the particle count is large enough, which requires more computational
effort.

Furthermore, with NRBA the approximation depends more strongly on
the parameterization of the underlying filter algorithm than with RBA.

Increasing the number of control points that NRBA can adapt simulta-
neously is not as unambiguously beneficial for the approximation result as
with RBA. Moreover, with NRBA the increase of control point count usu-
ally needs to be combined with an exponential increase of the particle count
in the PF for an improvement of the approximation. This is known as curse
of dimensionality and a general problem of sampling-based nonlinear filters.
Adopted from [78].
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Use cases in terms of operating mode

Use cases of RBA and NRBA can be classified according to whether the
knot vector changes only with a shift operation or with each iteration:

• Knots change only with each shift operation: This mode assumes that
the independent variable will not take values large enough to create
an arithmetic overflow during operation. Therefore the knot vector
changes only with a shift operation. Figure 3.9a illustrates this mode
at the example of trajectory optimization, whereby the independent
variable t refers to the planned trajectory time. From the top plot
to the bottom plot the computation time progresses and the number
of processed data points increases. In the example, t grows with the
data, but a limited planning horizon, that does not lead to arithmetic
overflows, can be assumed. Ideally, t increases much faster than real
time so that there is no need to evaluate the trajectory in the optimiza-
tion range (OR), in which it can change. Chapter 5 will investigate
this use case in more detail. The examples in Subsection 3.3.4 and
Subsection 3.4.4 also belong to this operating mode.

• Knots change with each iteration: This operating mode is required in
case of an unbounded independent variable, that eventually will take
a value that causes an arithmetic overflow. Figure 3.9b illustrates this
mode at the example of an analytic representation of a signal or its
derivative or its integral over the recent past up to the present point
in time. From the top plot to the bottom plot a new measurement is
received with each plot. If the independent variable t were assigned
to the observation number, eventually an overflow in the knot vec-
tor would be encountered. Let dt denote the time interval between
the two latest measurements. For simplicity, let dt be constant. An
overflow can be avoided by subtracting dt from the knot vector after
each iteration. Thereby the latest measurement is always assigned to
t = 0 and the knots are continuously shifted to the left in Figure 3.9b
as their values keep decreasing until they are removed from the knot
vector and the OR of RBA or NRBA. The signal representation appli-
cation requires to evaluate the function within the OR unless a time
delay of the magnitude of the OR is acceptable and a some knots and
control points can be saved when they leave the OR. If so, the function
can be evaluated outside of the OR and further into the past.
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Differentation from previous works

In the previous project e-generation [22, pp. 29-35] an iterative data ap-
proximation by a functional representation was developed as well and was
patented by F. Bleimund and S. Rhode [21]. This previous approach has in
common with RBA that it also solves the linear WLS optimization problem
(3.13) iteratively, whereby the target criteria refer to the value of the func-
tional representation and its first two derivatives. Moreover, the optimization
problem is solved iteratively using a KF and a shift matrix.

However, in the previous project, a polynomial as in (2.8) is adapted to the
data. This polynomial exhibits the features discussed in Section 2.3 along
with its flaws compared to a spline representation, such as coupling be-
tween degrees of freedom and polynomial degree, risk of oscillations from
the Runge’s phenomenon, global effect of coefficient value changes and ge-
ometrically difficult to interpret coefficients.

Due to the global control of the polynomial, a shift operation and there-
fore the KF would not be needed if the approximation were performed anal-
ogously to the case depicted by Figure 3.9a, in which the value of the inde-
pendent variable can take large values. For this case, RLS would suffice.

However, the approach assigns the latest oberserved data point always to
the same value of the independent variable, analogous to Figure 3.9b. This is
achieved by defining the shift operation via an upper triangular matrix such
that a coefficient vector is calculated for a polynomial that is shifted by dt to
the left with respect to the current polynomial during the time update of the
KF. This shift operation for the polynomial corresponds to the subtraction of
dt from the spline knot vector as described above for the second operating
mode.

In contrast, the shifting operation stated in the previous sections of this
work is needed in general for both of the above described operating modes.
It modifies both the knot vector and the control point vector and occurs
depending on the knot vector and the independent variable of the latest data
point.

The algorithms presented in this work are superior to the one developed
in e-generation in that they allow to benefit from the advantages of spline
representations with local control during an iterative data approximation.
The NWLS problem adressed by NRBA was not considered in the previous
project.
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4 Models of research vehicle and reference
route

This chapter describes models of the research vehicle and the reference
route. The content of this chapter and the previous one will then be com-
bined for trajectory optimization in Chapter 5 and ALC in Chapter 6.

The research vehicle is an all-wheel-driven BEV based on the Porsche
Boxster (type 981) which was developed during the research project e-
generation. Further information about the vehicle is provided in the re-
mainder of this chapter as well as in [14, 16, 207].

Detailed nonlinear models allow a representation of the dynamic vehicle
behavior that is close to reality. Such models take into account the kinemat-
ics of the vehicle and of its subsystems like the wheel suspension. They also
comprise models of tire forces. However, a model should also focus on the
aspects that are important for the actual application and simplify where pos-
sible. Depending on the desired level of detail and the application, different
vehicle models are known in literature [157, pp. 5-6].

The purpose of the vehicle models in this work is to investigate the en-
ergy consumption of the research vehicle under ALC on a reference route.
According to [187, p. 28] with a normally experienced driver the absolute
value of the lateral acceleration is below 3.5 m/s2 and the longitudinal ac-
celeration ranges roughly from −2.4 m/s2 to 1.8 m/s2. For comfort and ac-
ceptance reasons, an ALC should not exceed these limits most of the time,
therefore models for low dynamics suffice. Simplifying assumptions of this
work for longitudinal dynamics include:

• Lifting, rolling and pitching motions of the vehicle are neglected.
• The vehicle mass is concentrated in the center of gravity (COG).
• The vertical wheel force, also known as wheel load, is constant.
• Longitudinal tire slip is neglected.

For describing the lateral dynamics the linear single track model is used.
Section 4.1 states the coordinate system. Section 4.2 describes relevant

driving resistances and Section 4.3 the power train of the research vehicle.
Section 4.4 explains how the resulting energy consumption for a given route
can be derived and reasons the approach for optimization of energy con-
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Figure 4.1: Lateral view of research vehicle at slope of angle α with acting climb-
ing force Fcl, rolling resistance Froll, cornering resistance Fcor, air resis-
tance Fair and inertial force Finert. Vehicle drawing from [46].

sumption that the ALC takes. Section 4.5 describes vehicle models for ALC
tests in a simulation environment and for investigations of the resulting en-
ergy consumption of the research vehicle. The reference route is mentioned
in Section 4.6 and Section 4.7 derives two simplified adaptive vehicle mod-
els for use within the ALC.

4.1 Coordinate system

Several coordinate systems are used to describe vehicle position and ori-
entation [157, pp. 17-31]. This work uses a body-fixed right-hand vehicle
coordinate system with origin in the vehicle COG and axes x, y and z. The
axes are perpendicular to each other and shown in Figure 4.1 and Figure 4.2.
The x axis is the vehicle longitudinal axis and points towards the vehicle
front, whereas the y axis is the vehicle lateral axis that points towards the
left vehicle side. Since rolling and pitching movements of the vehicle with
respect to the road surface are neglected, the plane that x and y axes span
is parallel to the road surface. The z axis is the vertical axis that points
upwards and is perpendicular to the road surface.
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4.2 Driving resistances

4.2 Driving resistances

This section states the main forces acting on a vehicle and the force equilib-
rium that they form at the wheels. Figure 4.1 and Figure 4.2 illustrate these
forces.

4.2.1 Climbing force

� The climbing force Fcl results from the gravitational force acting on the
COG and is given by

Fcl = mvhcl · g · sin(α). (4.1)

Fcl depends on the vehicle mass mvhcl and road slope angle α which is mea-
sured between the road surface and the plane that is perpendicular to the di-
rection of gravitational force mvhcl ·g with gravitational constant g. Adopted
from [79]. The road slope angle α can be computed from the road slope γ
stated in percent using

α = arctan(γ/100) [119, p. 95]. (4.2)

4.2.2 Wheel resistance

The wheel resistance consists of several components, of which only rolling
resistance and cornering resistance will be considered. Resistance compo-
nents neglected in this work include the toe-in resistance and flood resis-
tance. The toe-in resistance is caused by not perfectly parallel wheels and
the flood resistance occurs on wet roads when the tire evacuates water [119,
pp. 11-19]. Moreover, the longitudinal tire slip resistance [165] and the
ventilation resistance of the rotating wheel [182] are not considered.

Bearing friction as well as residual braking torque from the hydraulic
brakes can also be assigned to wheel resistance but will be considered as
resistances of the power train in this work.

Rolling resistance

� Rolling resistance results from damping forces of the deformed tire rub-
ber. When driving straight on a dry road, the wheel resistance almost en-
tirely comes from the rolling resistance Froll [119, p. 11] with

Froll = f r · mvhcl · g · cos(α). (4.3)
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Adopted from [79]. The normal force mvhcl · g · cos(α) equals the sum of
vertical front axle wheel force FWhl,z,FA and vertical rear axle wheel force
FWhl,z,RA. In the static case the distribution of the vertical forces between
front axle (FA) and rear axle (RA) can be determined from the wheel base
(l), the distance between FA and COG (lFA) and the distance between RA
and COG (lRA). The road slope influences the static load distribution be-
tween the axles as well but since the distance between COG of the research
vehicle and road surface is small, this effect of road slope is neglected.

The rolling resistance coefficient f r depends on the vertical wheel force,
tire pressure and slightly increases with velocity [24, pp. 50, 52-53]. For
most passenger vehicles f r can be assumed between 0.007 and 0.014 [10].

Cornering resistance

In curves the centrifugal force Fcentr with

Fcentr = mvhcl · v̇Vhcl,y (4.4)

acts on the COG. The lateral acceleration v̇Vhcl,y is given by

v̇Vhcl,y = v2
Vhcl · κ (4.5)

for small side slip angles and constant velocity [157, p. 228]. The road
curvature κ is the reciprocal of the curve radius.

The single track vehicle model represents the fundamental driving dy-
namics for lateral acceleration smaller than v̇Vhcl,y = 4 m/s2 on dry roads.
The model is very idealized and uses the following simplifications:

• Lifting, rolling and pitching motions of the vehicle are neglected.
• The vehicle mass is concentrated in the COG.
• The vehicle velocity is assumed to be roughly constant, i.e. quasi-

stationary.
• Wheels on the same axle are represented by a single wheel in the

center of the corresponding axle.
• The vertical wheel force is constant.
• Pneumatic trail and aligning torque resulting from the slip angle of

the tire are neglected.
• Longitudinal tire forces are neglected [157, pp. 225-226].

In order to stay on the road, the tires need to provide lateral forces that
counteract the centrifugal force. These lateral forces are distributed among
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Figure 4.2: Top view of research vehicle with acting air forces. Environmental
wind with velocity vWind and angle τwind as well as vehicle velocity
vVhcl result in relative air flow with velocity vrel and angle τrel. This
causes longitudinal air resistance Fair,x and lateral air resistance Fair,y
acting on the pressure point (PP). COG denotes the center of gravity.
Vehicle drawing from [46].

the axles depending on the position of the COG and created using tire slip
angles.

These slip angles cause the cornering resistance Fcor acting in longitudinal
direction. Under the assumption of small road curvature, small steering
angle, small slip angles and identical tires, Fcor according to the single track
model reads

Fcor =
κ2 · v4

Vhcl

2 · c
·



(
lFA

l
· mvhcl

)2

+

(
lRA

l
· mvhcl

)2
(4.6)

whereby c denotes the tire cornering stiffness [64, p. 147].

4.2.3 Air resistance

The air resistance Fair acts on the pressure point (PP) of the vehicle and
results from the turbulences of air stream and friction of the air flow. The
relative air velocity vrel and relative air flow angle τrel both depend on the
vehicle velocity vVhcl, the environmental wind velocity vWind and the envi-
ronmental wind angle τwind as Figure 4.2 illustrates:

vrel =

√
v2

Vhcl + v
2
Wind + 2 · vVhcl · vWind · cos(τwind)

τrel = arcsin
(
vWind

vrel

)
· sin(τwind)

(4.7)
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The angles are measured anticlockwise starting from negative direction
of the x axis. � The longitudinal air resistance Fair,x is given by

Fair,x = cx (τrel) A
ρ

2
v2

rel. (4.8)

cx is the dimensionless longitudinal drag coefficient that describes the shape
of the vehicle and depends on the relative air flow angle τrel. A denotes the
effective vehicle cross-sectional area perpendicular to the vehicle longitu-
dinal axis and ρ is the air density. Adopted from [79]. Analogous to
the centrifugal force, the lateral air resistance Fair,y needs to be balanced by
lateral tire forces. The required slip angles in turn cause a driving resistance
component in longitudinal direction.

Neglecting environmental wind leads to vrel = vVhcl, τrel = 0 and Fair,y =

0. cx(τrel = 0) is also denoted cw [157, pp. 212-214]. For passenger vehicles
cw usually lies between 0.20 and 0.40 and A ranges from 1.5 m2 to 2.5 m2.
With increasing vehicle velocity Fair,x becomes the largest driving resistance
component [24, pp. 50-51].

4.2.4 Inertial force

Inertial forces arise when vehicle velocity changes. Analogously variations
of the angular velocity of power train components cause inertial torque.
Each axle of the research vehicle is driven independently as Figure 4.3 il-
lustrates. Due to the fixed gear ratio of each gear box and the assumption
of negligible longitudinal tire slip, angular velocities are proportional to the
vehicle velocity. Computing the equivalent mass of the power train allows
to summarize both inertial force and inertial torque in the inertial force Finert
with respect to the vehicle longitudinal acceleration v̇Vhcl,x [62, pp. 16-17]:

Finert = (mvhcl + meq,FA + meq,RA) · v̇Vhcl,x (4.9)

78



4.3 Power train

meq,FA is the equivalent mass of the power train components that drive the
front axle FA and meq,RA denotes the equivalent mass of components that
drive the rear axle RA:

meq,FA =
JEM,FA · i2

G + JGB + 2 · JWheel,FA + 2 · JBrake,FA

r2
dyn,FA

meq,RA =
JEM,RA · i2

G + JGB + 2 · JWheel,RA + 2 · JBrake,RA

r2
dyn,RA

(4.10)

JEM is the mass moment of inertia of the corresponding electric motor (EM)
that is connected via a gear box (GB) with integrated differential to the
wheels. Both gear boxes have the same gear ratio iG = 9.59 [14]. JGB
is the mass moment of inertia of a GB, JWheel the mass moment of inertia of
a wheel, JBrake the mass moment of inertia of a brake and rdyn the dynamic
wheel radius.

4.2.5 Force equilibrium

� The sum of the driving resistances from (4.1), (4.3), (4.6), (4.8) and (4.9)
equals the traction force Ftrac between all tires and the road surface:

Ftrac = Fcl + Froll + Fair + Fcor + Finert (4.11)

The mechanical traction power Ptrac,mech corresponding to Ftrac reads

Ptrac,mech = Ftrac · vVhcl. (4.12)

Providing Ftrac requires longitudinal tire slip. Under the assumption of neg-
ligible slip losses, Ptrac,mech equals the wheel power Pwheel provided by the
power train [157, pp. 152-153]. Adopted from [79].

4.3 Power train

Figure 4.3 depicts the power train of the research vehicle. In various com-
ponents of the power train power losses occur. These power losses are mea-
sured during component and vehicle tests on test benches and are stored in
look-up tables, which have been provided for the research vehicle. Depend-
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Figure 4.3: Model of power train of research vehicle.

ing on the kind of input power, components of the power train can be divided
into mechanical components and electrical components.

4.3.1 Mechanical components

The wheel power Pwheel provided by the power train reads

Pwheel = TFA · ωWhl,FA + TRA · ωWhl,RA (4.13)

with front axle torque TFA, rear axle torque TRA, front wheel angular velocity
ωWhl,FA and rear wheel angular velocity ωWhl,RA.

The torque distribution between TFA and TRA is computed by the motor
electronic control unit (ECU) as a function of Ftrac. At each axle a gear box
(GB) with open differential distributes the torque equally among the left and
right wheel.

When driving straight, ωWhl,FA and ωWhl,RA are given by

ωWhl,FA =
vVhcl

rdyn,FA
, ωWhl,RA =

vVhcl

rdyn,RA
(4.14)
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with dynamic front wheel radius rdyn,FA and dynamic rear wheel radius
rdyn,RA. Between wheel and gear box undesired friction occurs in the wheel
bearing, which results in braking torque. There is also residual brake torque
caused by permanent residual friction between brake pad and brake disc.
The model takes into account the front axle brake torque TBrk,FA and the rear
axle brake torque TBrk,RA. The values are derived by interpolating linearly
with respect to the wheel angular velocities in look-up tables.

At each axle a 1-speed gear box with gear ratio iG increases the motor
angular velocity and reduces the motor torque. Front axle motor angular
velocity ωEM,FA and rear axle motor angular velocity ωEM,RA are given by

ωEM,FA = iG · ωWhl,FA, ωEM,RA = iG · ωWhl,RA. (4.15)

Front axle motor torque TEM,FA and rear axle motor torque TEM,RA read

TEM,FA =
TFA

iG
+ TBrk,GB,FA

(
TEM,FA, ωEM,FA

)
,

TEM,RA =
TRA

iG
+ TBrk,GB,RA

(
TEM,RA, ωEM,RA

)
,

(4.16)

whereby TBrk,GB,FA and TBrk,GB,RA denote the braking torques occurring in
the gear boxes during the not lossless power conversion. The absolute val-
ues of these quantities increase with the absolute values of motor torque and
angular velocity and are determined using two-dimensional linear interpo-
lation in look-up tables.

4.3.2 Electrical components

A permanently excited synchronous motor (PSM) with 120 kW drives the
front axle and an asynchronous motor (ASM) with 144 kW drives the rear
axle. The PSM has a higher efficiency whereas the ASM has lower drag
losses. Therefore, mainly the PSM propels the vehicle and is supported by
the ASM only in case of high power demands [14]. The motors are con-
nected to the high voltage (HV) battery via power electronics (PE). The
losses of both motors including the losses in the power electronics are mod-
elled by two-dimensional linear interpolation with respect to motor torque
TEM and motor angular velocity ωEM in look-up tables. Ohmic resistance
and magnetic resistance as well as switching losses contribute to the losses
of EM and PE. Ptrac,elec is the electrical traction power that results from the
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mechanical traction power Ptrac,mech and includes the power losses between
power electronics and wheels.

While braking, the motors act as generators and convert mechanical trac-
tion power Ptrac,mech into electrical traction power Ptrac,elec that is recuper-
ated into the HV battery. For driving stability reasons, the majority of the
recuperation power comes from the front wheels, which are connected to
the more efficient PSM. When the braking power demand exceeds the recu-
peration capabilites, hydraulic wheel brakes are activated in order to fulfill
the demand. Hydraulic wheel brakes convert mechanical traction power into
thermal power that cannot be reused for vehicle propulsion anymore. Addi-
tional hydraulic braking power is usually needed when braking at high ve-
locity or when high deceleration is requested. Furthermore, during a stand-
still and at very low speeds hydraulic brakes are solely used.

Due to the powerful drive train, the vehicle has a high recuperation power
limit. Furthermore, simulations of the ALC for determining the energy con-
sumption will not include standstills, high dynamic driving maneuvers and
driving at high speeds. Therefore this work assumes that the vehicle can
brake solely using recuperation, also denoted perfect recuperation by [62,
p. 16], and does not consider hydraulic braking power in the vehicle model.

Apart from the power electronics, the motors and the HV battery, a posi-
tive temperature coefficient (PTC) battery heating, an air conditioning (AC)
compressor and a DC/DC converter for the 12 V circuit belong to the HV
system. The on-board network (OBN) is fed via the 12 V battery or directly
from the DC/DC converter. The on-board network (OBN) also powers a
thermoelectric heat pump for heating the passenger cabin. Arrows in Fig-
ure 4.3 indicate possible power flow directions between electrical compo-
nents.

As a result the PTC power consumption PPTC, the AC power consumption
PAC and the DC/DC converter power consumption PDC/DC also contribute
to the HV battery power demand PBatt,dem:

PBatt,dem = Ptrac,elec + PPTC + PAC + PDC/DC (4.17)

In case of recuperation PBatt,dem can become negative indicating that power
is transferred to the battery.

The HV battery consists of four cell strings arranged in parallel. Each cell
string is composed of 100 lithium nickel-manganese-cobalt oxide (LiNMC)
cells connected in series [207]. The cells are liquid cooled and can be heated
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4.3 Power train

using PTC elements. The battery can provide an electrical power of 300 kW
at a nominal voltage of 370 V [14]. Its nominal capacity of 38.3 kWh en-
ables a vehicle range of more than 200 km [16]. The grid charging power
Pgrid is up to 22 kW with AC via the battery charger inside the vehicle and
up to 100 kW with DC [14].

According to [71] the terminal voltage UTV of a LiNMC battery can be
described using the following model stated in [134]:

UTV = UOCV(SOC) − R · I

R =



R−, I ≥ 0
R+, I < 0

(4.18)

Hereby UOCV is the open-circuit voltage as a function of state of charge
(SOC). The internal ohmic resistance R can be separated into charge re-
sistance R+ and discharge resistance R−. The battery current I is assumed
positive for discharge and negative for charge. UOCV, R+ and R− are deter-
mined by cell testing [134] and have been provided for the HV battery of
the research vehicle in look-up tables.

Figure 4.4 shows the equivalent circuit from [134] and the approximate
open-circuit voltage derived from [71]. A comprehensive literature review
of battery models and their application to LiNMC batteries is given in [71].

According to (4.18) the internal ohmic resistance of the battery causes
a HV battery power loss PBatt,Loss, during a HV battery power demand
PBatt,dem:

PBatt,dem = UTV · I =




UOCV · I︸   ︷︷   ︸
=:PBatt>0

− R− · I2︸ ︷︷ ︸
=:PBatt,Loss>0

, PBatt,dem > 0

UOCV · I︸   ︷︷   ︸
=:PBatt<0

− R+ · I2︸ ︷︷ ︸
=:PBatt,Loss>0

, PBatt,dem < 0
(4.19)

This means that if the HV battery power PBatt is positive, i.e. the battery
is discharged, the battery must provide PBatt,Loss in addition to PBatt,dem in
order to compensate for its ohmic losses. As a result, the SOC will decrease
faster. Conversely, if PBatt is negative because of recuperation, the SOC will
increase slower because the absolute value of the charging power is reduced
by PBatt,Loss.
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Figure 4.4: High voltage battery characteristics. Top: Equivalent circuit according
to the "simple model" in [134] with state of charge (SOC), open-circuit
voltage UOCV, charge resistance R+, discharge resistance R−, battery
current I and terminal voltage UTV. The diodes are assumed ideal. Bot-
tom: Exemplary UTV of the LiNMC battery in the research vehicle
depending on SOC and voltage across the internal ohmic resistance.
UOCV was derived from [105].

4.4 Energy consumption and optimization approach

� Coming from a temporal representation, the HV battery energy EBatt
needed for a route results from integrating PBatt over time t, whereby tTrip
denotes the trip time:

EBatt =

∫ tTrip

t=0
PBatt(t)dt (4.20)

Adopted from [79]. One goal of the ALC is to compute an energy-efficient
velocity trajectory. For reducing the energy consumption of a BEV three
different cost functions in time domain are compared in [81]:
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First, motivated by reports in literature that a velocity profile with low
acceleration and deceleration is beneficial for energy savings, a penalization
of the absolute value of acceleration is investigated. Due to the resulting
reluctance to change velocity limits, this approach is suitable for the consid-
ered ACC example only to a limited extent. The approach offers the least
energy savings in the comparison (8.4 % and 4.1 % depending on the sce-
nario). This approach is also used in [107] and has the benefit that no power
consumption model is needed.

Second, the difference of PBatt from its minimum value is penalized,
which means that the recuperation maximum is seen as the optimal state.
This approach leads to unnecessary strong and frequent recuperations, that
are followed by corresponding accelerations. As losses occur in both re-
cuperation and traction mode, this approach is the second least effective
(10.6 % and 5.2 % on average).

The highest effectiveness (11.9 % and 5.6 % on average) comes from
avoiding deviations of PBatt from zero only for the case of traction and to
not consider recuperation.
� The rationale of the energy consumption optimization approach in this

work is to avoid power losses between battery and wheels denoted by PLoss:

PLoss = PBatt − Ptrac,mech (4.21)

The corresponding efficiency measure Ptrac,mech/PBatt is known as energy
efficiency of driving and tank to wheel efficiency [10].

PLoss can be expressed with respect to Ptrac,elec as in Figure 4.5. The
data points result from computing the driving resistances and power train
quantitites for various combinations of vehicle velocity vVhcl and vehicle
longitudinal acceleration v̇Vhcl,x with road curvature and slope both equal
zero.

PLoss increases with the absolute value of vVhcl and v̇Vhcl,x. Arrows in-
dicate how the operating points are shifted when vVhcl and v̇Vhcl,x are in-
creased. The PLoss minima for each Ptrac,elec can be approximated by a
parabola through the origin. The slope of the parabola increases with the
absolute value of Ptrac,elec indicating that the efficiency of the power trans-
mission decreases with increasing amount of transferred power. Adopted
from [79].

Sensitivity analyses by [10] reveal that Ptrac,mech/PBatt is the parameter
with the highest impact on the energy consumption in a BEV. Frequently,
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Figure 4.5: Power loss between HV battery and wheels PLoss versus electrical trac-
tion power Ptrac,elec for various combinations of vehicle velocity vVhcl
and vehicle longitudinal acceleration v̇Vhcl,x. Adopted from [79].

consumption models that require detailed knowledge of these usually only
roughly known parameter values are used at the risk of inaccurate results
[10]. To overcome this problem, this work applies data-driven models that
learn such relevant parameters in aggregated form during vehicle operation.
� Due to lack of sensors PLoss is not known during vehicle operation and

therefore cannot be used for a data-driven model. However, Ptrac,elec can
be derived from voltage and current sensor data of the power electronics
and can serve as a proxy for PLoss according to the above considerations.
Therefore the energy optimization criterion in the cost function of the ALC
is designed to penalize the absolute value of Ptrac,elec. Adopted from [79].

In comparison, the approach of this work comes closest to the third cited
method but goes beyond in that it additionally penalizes the also imperfect
recuperation mode. Furthermore, using Ptrac,elec as optimization criterion is
assumed to be more effective than using acceleration and deceleration as the
first cited method does. This is because for the same requested acceleration
or deceleration the required Ptrac,elec can differ significantly depending on
road slope and vehicle velocity.
� The power required for auxilaries such as light, ventilation, heating,

cooling and radio can contribute to the total energy consumption for a trip
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significantly, in case of low velocity vVhcl < 30 km/h. For vVhcl > 80 km/h
the auxiliary power demand is negligible. It also strongly depends on envi-
ronmental conditions and individual comfort preferences. Its 5 % and 95 %
quantils are given by 0.2 kW and 1.3 kW [10]. Adopted from [79].

Furthermore, some components such as the AC compressor are only tem-
porarily active and their activation can be scheduled. Therefore a predictive
operating strategy that consideres both traction power demand and cooling
power demand has much more energy-saving potential compared to for in-
stance penalizing the sum of instantaneous AC power consumption and elec-
trical traction power. A longitudinal control that includes operating strate-
gies of auxiliaries is presented in [183].
� For these reasons this work focuses on optimization of traction con-

sumption and neglects auxiliaries by assuming PBatt,dem = Ptrac,elec. Even
without explicit consideration of power demand of auxiliaries, the penaliza-
tion of Ptrac,elec has a beneficial effect on efficiency because any additional
consumption of auxiliaries further increases the HV battery power loss.

The goal is to penalize Ptrac,elec only to such an extent, that the ALC avoids
inefficient power peaks that have negligible effect on the trip time. Adopted
from [79]. With large penalty for Ptrac,elec, the vehicle will drive very slow
or even come to a standstill because of lack of Ptrac,mech that is needed to
overcome the driving resistance. Then the resulting trip time will strongly
increase as well as the energy consumption because of the power demand of
auxiliaries. However such large penalty for Ptrac,elec is far beyond the driver
acceptance.

4.5 Vehicle models for simulation environment

The preceding sections investigated the driving resistances that result from
a certain vehicle velocity vVhcl, vehicle longitudinal acceleration v̇Vhcl,x,
road slope angle α and road curvature κ and stated how the corresponding
HV battery power PBatt can be derived from the mechanical traction power
Ptrac,mech. The upper diagram in Figure 4.6 depicts this approach, which is
referred to as backward simulation. Starting from the desired driving state
backward simulation computes the state of components such as gear box
against the direction of the effect chain.

Backward simulation assumes that the power train can provide the power
needed for the given driving situation. Due to the missing consideration of
physical root causes, this approach is also denoted non-causal modelling
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Figure 4.6: Sequences of forward (top) and backward simulation (bottom).

[45]. Non-causal models include no control loop, therefore no controller
is needed. However, backward simulations are only suitable for quasi-
stationary simulations that do not take into account transient effects. Quasi-
stationary states of components are usually derived by interpolation between
values of look-up tables as mentioned in Section 4.3.

Backward simulation will be applied for computing the resulting energy
consumption for planned trajectories in Chapter 5 and for recorded drives in
Chapter 6. The model will be referred to as open-loop reference model.

The equations from the previous sections can also be rearranged for a for-
ward simulation. The lower diagram in Figure 4.6 depicts this case. Forward
simulation computes component states starting from the cause in accordance
with the cause-and-effect chain. Therefore this approach is denoted causal
modelling.

Forward simulations enable dynamic simulations that incorporate dy-
namic component behavior, e.g. transient effects in the motors and battery.
Components can be described using differential equations which are con-
nected to each other according to the cause-and-effect chain. In this work
the cause is the desired motor torque Tdes while v̇Vhcl,x is at the end of the
cause-and-effect chain. v̇Vhcl,x is derived by rearranging (4.9) and used for
computing vVhcl for the next simulation time step. Causal models include a
closed control loop and therefore require a controller.
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4.6 Model of reference route

Forward simulations will be used for testing the interaction between ALC
and vehicle. The model will be referred to as closed-loop reference model.
The controller inside the ALC chooses Tdes such that deviations of vVhcl
and v̇Vhcl,x from the desired velocity vdes and the desired acceleration ades,
respectively, ideally vanish. vdes and ades are specified by the planned tra-
jectory of the ALC [48], [62, pp. 37-41].

4.6 Model of reference route

� The reference route is a roughly 23 km long circuit around the village
Weissach in Southwest Germany, hence denoted Weissach route (WR). Fig-
ure 4.7 depicts on a map the WR, that comprises urban sections as well as
country roads. The legal speed limit varies between 30 km/h and 100 km/h
and the road slope ranges from -8 % to 10 %. Adopted from [79].

Figure 4.8 displays the corresponding map data consisting of legal speed
limit, road curvature and road slope as well as the therewith derived ele-
vation profile. The map data was extracted from a navigation system and
will be used in backward and forward simulations with the closed-loop and
open-loop reference model, respectively.

4.7 Vehicle models for automated longitudinal control

� This section presents two models for use within the ALC system. For a
given driving situation, the first model provides the required traction force
Ftrac and the second one the required electrical traction power Ptrac,elec. Both
quantities depend on the driving resistances, which in turn are affected by
the given driving situation as well as parameters. Adopted from [79].

According to sensitivity analyses in [10], the second most relevant param-
eter for the accuracy of a vehicle model is f r. In the comparison, the model
is only affected by ρ for vVhcl > 100 km/h, whereas cw and A are negligible
in the investigated situations. mvhcl is only relevant for hilly trips and trips
that lead to higher elevation.
�During vehicle operation these parameters are not exactly known. mvhcl

changes with additional passengers or luggage, cw and A when the convert-
ible top is being opened and f r with tire temperature.

Therefore adaptive models are applied, which estimate these parameters
during vehicle operation either explicitly or in aggregated form. In order to
be able to adapt a model, its inputs and outputs must be quantities that can be
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Figure 4.7: Course of the Weissach route (WR) that is used as reference route for
the evaluation of the automated longitudinal control. The dotted arrow
indicates the driving direction and the straight line the start and end
point of the WR.

derived from signals on the Controller Area Network (CAN) bus. Adopted
from [79]. However, only few quantities of the power train that are relevant
for this purpose, are measured. Therefore the adaptive models represent the
power train properties only on an aggregated level and cannot state losses in
individual components, e.g. gear box losses.

Compared to the vehicle reference models for the simulation environment
both vehicle models for ALC are simplified in that they first do not take into
account road curvature explicitly and in that they second do not distinguish
between vehicle mass and rotational masses of the power train as (4.9) does.

Some publications take into account the inertia of rotating parts of the
power train [96, 188] for more accuracy but the majority does not [12, 91,
102, 127, 195, 204]. Due to lack of a fly wheel, less complicated gear boxes
and smaller motors, the inertia of rotating parts are usually less in a BEV
than in a conventionally driven vehicle. As the inertia of rotating parts is
usually not known and elaborate to determine, publications that consider
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Figure 4.8: Route data of Weissach route (WR) consisting of legal speed limit, road
curvature and road slope used for simulation as well as the therewith
derived elevation profile. The position is measured from the start of the
WR (c.f. Figure 4.7).
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4 Models of research vehicle and reference route

it, mostly increase the vehicle mass by 5%. In the research vehicle, the
equivalent masses add up to roughly 5.6 % of the vehicle mass. Varying the
mass factor between 0 % and 5 % had almost no impact on the results in the
sensitivity analyses for a BEV in [10].
� The simplification regarding rotational masses allows using the sensor

longitudinal acceleration ax as a model input. ax is measured by the accel-
eration sensor and is influenced by both change of velocity and road slope
angle:

ax = v̇Vhcl,x + g · sin(α) (4.22)

Adopted from [79]. The required traction force and the required electrical
traction power can differ for the same ax even if all other influence factors
are kept constant. This is because in the case that ax results from driving at
a slope with constant velocity, no rotational acceleration of the power train
occurs but it does if ax results from change of velocity at zero slope. The
adaptive models cannot distinguish these cases. The simplification using ax
is frequently used for driving resistances parameter estimation [140, 170,
178].

A comprehensive review of vehicle energy consumption models includ-
ing an analysis of influence factors on the energy consumption is given
in [118]. Furthermore, [118] classifies consumption models into white-
box, gray-box and black-box models. White-box models are based on high
knowledge of the underlying system and incorporate detailed descriptions of
subsystems. In contrast, black-box models only learn an input-output pat-
tern from provided data and require no system knowlege. Gray-box models
partly use system knowlege and are partly driven by data.

Based on the inputs to a black-box consumption model, [118] distin-
guishes engine-based consumption models with engine torque and engine
speed as inputs, vehicle-based consumption models with instantaneous ve-
hicle speed and acceleration as inputs and modal-based consumption models
which use operating modes such as idling, accelerating or cruising as inputs.

Based on the criteria in [118], the proposed traction force model can be
regarded as a gray-box model and the proposed model for the electrical trac-
tion power as a vehicle-based black-box consumption model.

Similar models can be found in literature. For example, [48] models
the tractive force without cornering resistance and the mechanical traction
power of a BEV similar to (4.11) and (4.12) depending on instantaneous
speed, acceleration and road grade information. The driving resistance pa-
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4.7 Vehicle models for automated longitudinal control

rameters are assumed to be known and constant. A parameter that describes
the efficiency of recuperation is estimated with the LS method.

In contrast, [51] takes a more aggregated approach and models the trac-
tion force with a quadratic polynomial as a function of vehicle velocity. This
traction force model is then used for a multivariate model of power demand
and energy consumption of a BEV that depends on vehicle velocity and ac-
celeration. In [194] the polynomial regression model additionally uses the
SOC as an input. Two KAF algorithms are compared to RLS for represent-
ing Ptrac,elec depending on ax and velocity in [146].

4.7.1 Adaptive traction force model

� The ATFM answers the question how much traction force is needed in
order to fulfill the driving demand of the longitudinal control in the current
situation. The ATFM is used as a pilot control in the controller depicted in
the lower diagram in Figure 4.6. The controller computes a motor torque
demand such that the vehicle tracks the planned velocity trajectory. The
ATFM is based on the following simplification of the longitudinal traction
force equation (4.11) that neglects the cornering resistance (4.6) and the
equivalent masses of the power train in the inertial force (4.9):

Ftrac = Froll + Finert,simplified + Fcl + Fair

= mvhcl · g · f r · cos(α) + mvhcl · v̇Vhcl,x

+ mvhcl · g · sin(α) +
ρ

2
cw · A · vVhcl

2
(4.23)

For small slope angles cos(α) ≈ 1 applies. Therefore the first summand can
be approximated by the rolling resistance constant F0 when additionally the
vehicle mass in this summand is assumed to change only slowly. Moreover,
the second and third summand are merged using (4.22). The traction force
Ftrac is not measured but it can approximately be computed as

Ftrac = TEM,FA ·
iG

rdyn,FA
+ TEM,RA ·

iG

rdyn,RA
, (4.24)

whereby the braking torques in the power train are neglected in contrast to
(4.16). TEM,FA and TEM,RA are no measured quantities either. These signals
are computed by the motor ECU from the measured motor voltages and
currents using look up tables.
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With these adaptions (4.23) in matrix form reads

Ftrac = (1, ax, vVhcl
2)︸          ︷︷          ︸

=:CVhcl

· (F0,mvhcl, (
ρ

2
cw A))>︸                     ︷︷                     ︸

=:xVhcl

, (4.25)

whereby CVhcl is the vehicle motion vector. The vehicle parameter vector
xVhcl summarizes the driving resistance parameters. These parameters are
generally not fully known. Therefore xVhcl needs to be estimated such that
the estimation minimizes the residual between the traction force computed
with (4.24) and the traction force according to the model output from (4.25).
Adopted from [79].

This optimization problem is solved with a KF (c.f. Subsection 3.3.2) and
the following model equations:

xVhcl,p = xVhcl,p−1 + ωp (State equation) (4.26)
Ftrac,p = CVhcl · xVhcl,p + υp (Measurement equation) (4.27)

p denotes the time step, ω the process noise and υ the measurement noise.
Frequently, algorithms such as RLS, KF, EKF are used to determine the
driving resistance parameters [140, 170, 178]. � For the ATFM a Stenlund-
Gustafsson M-Kalman filter described in [145] is applied. It uses a regu-
larization from Stenlund and Gustafsson [168]. This regularization method
sets lower bounds for the covariance matrix in such a way that the estimated
parameters are kept constant in phases of low excitation, i.e. when Ftrac
and CVhcl temporally remain constant, such as while driving with roughly
constant velocity and road slope. Low excitation also applies to vehicle
standstill but for this phase a simple criterion for pausing the adaption can
be defined. Adopted from [79]. The ATFM was created by F. Bleimund
[22, pp. 24-29] within e-generation and reused by the author of this work
without modifications.

Literature also proposes methods that focus on fusing the information of
different sensors [74, 198] as well as methods that divide the estimation into
several stages [101, 199].
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4.7.2 Adaptive electrical power model

Model interfaces and features

� The AEPM answers the question how much electrical traction power
Ptrac,elec is required to fulfill the driving demand. The ALC uses the AEPM
during trajectory optimization in order to derive trajectories that require few
electrical traction power. As shown in Section 4.4, this corresponds to a low
power loss between HV battery and wheels.

Ptrac,elec can be determined from the measured voltages and currents of
the electric motors that are available on the CAN bus. Apart from the
power losses in the drive train, Ptrac,elec equals the mechanical traction power
Ptrac,mech which can be computed as the product of traction force Ftrac and
vehicle velocity vVhcl (c.f. (4.12)). According to Subsection 4.7.1, Ftrac can
be modelled as a function of the CAN signals vVhcl and ax. Therefore the
AEPM relates vVhcl and ax to Ptrac,elec:

PAEPM = AEPM(vVhcl, ax) (4.28)

Features of power consumption representation

A substantial fraction of Ptrac,mech is needed to overcome the acceleration
resistance mvhcl · v̇Vhcl,x from (4.9). The corresponding acceleration power
mvhcl · v̇Vhcl,x · vVhcl depends on an unseparable product of v̇Vhcl,x and vVhcl.
For negligible road slope angle α these quantities are similar to the model in-
puts because of (4.22) (c.f. [51]). Therefore the linear model structure used
in Subsection 4.7.1 for the ATFM is not suitable for the AEPM. Adopted
from [79].

The power consumption representation in time domain is highly noncon-
vex, as stated at the example of a PBatt = f (Ftrac, vVhcl) representation in
[81]. An approximation of PBatt with a convex function can be used as a
cost function in an convex optimization problem that can be solved more
easily than a nonlinear optimization problem. The quadratic approxima-
tion accuracy for various representations is also investigated in [81]. Due
to the less prominent nonconvexity of the representation in space domain,
the highest accuracy is observed for the (PBatt/vVhcl) = f (Ftrac, vVhcl

2) rep-
resentation, which is the energy consumption in Watt seconds per meter. In
space domain, however, vehicle dynamics and the vehicle control problem
are more nonlinear [81].
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Algorithm for model adaption

� The AEPM is based on the Fixed-Budget KRLS (FB-KRLS) algorithm
described in [180], which is a representative of KAFs introduced in Sec-
tion 2.4. The source code of FB-KRLS is available at [181]. With each
new data point, FB-KRLS adds a new kernel support vector in the vVhcl − ax
plane, updates the approximation and discards the least important kernel
support vector to keep the required memory constant. During model evalu-
ation the model output PAEPM results from computing the sum of all kernels
at (vVhcl, ax), weighted with their corresponding control points. Adopted
from [79].

The model captures aggregated power train losses that are constant or de-
pend on vVhcl or ax. If vehicle parameters or power train properties change,
the AEPM will adapt itself accordingly.

While [81] approximates the nonlinear structure by a convex function
to get a convex optimization problem, a KAF approximates the nonlinear
structure using a nonlinear function and still offers a convex optimization
problem for model adaption. For this kind of convex problems there are
solvers that converge in a defined time period, which is important for real-
time model adaption.

RLS and two fixed-budget KAFs, called KRLS Tracker (KRLS-T) and
QKLMS-FB, are applied to (4.28) in a very similar approach in [146].
KRLS-T achieves the highest accuracy, followed by QKLMS-FB. As ex-
pected, the linear RLS, proves not suitable for strong nonlinearity and
achieves the lowest accuracy.

All three mentioned KAF use the Gaussian kernel defined in (2.21). The
KRLS-T algorithm published in [179] in 2012 is a KAF algorithm for time-
varying regression that includes a forgetting factor that can handle non-
stationary scenarios. In contrast, the FB-KRLS published in 2010 stems
from a sliding-window approach with the improvement that it maintains not
the kernels for the latest but for the most important data. Its forgetting mech-
anism is not optimized towards non-stationary scenarios [181].

The idea to model the power train characteristics with a FB-KRLS orig-
inates from S. Rhode [146], who also provided a first script in MATLAB
that performs this task. Based on this, both researchers continued the in-
vestigations independently from each other, so details differ. The content of
the remainder of this subsection, except from the normalization described
below, stems from the author of this work. The novelity of this work re-
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garding FB-KRLS is limited to the application of this kind of black-box
model for trajectory optimization and within the ALC along with required
problem-specific adaptions such as the data shift as well as the determina-
tion of model hyperparameters, both also mentioned below.

Data transformation

� For various (vVhcl, ax) combinations the trajectory optimization algorithm
evaluates the AEPM and takes decisions based on the AEPM outputs. The
standard FB-KRLS output is zero in border areas where no data points have
occured yet. This means that if the trajectory optimization evaluates the
model for high velocities or accelerations that are beyond the capabilities
of the vehicle, the AEPM states Ptrac,elec ≈ 0. To avoid that results of eval-
uations of the model in its border areas appear as efficient and therefore
favorable driving states to the trajectory algorithm, the model outputs must
have large absolute values in border areas. This can be achieved by shifting
Ptrac,elec in training data by subtracting a large offset value.

After the shift, all components of training data (vVhcl, ax, Ptrac,elec) and
evaluation data (vVhcl, ax) are additionally scaled to a ranges between -1 and
1 by multiplying each of them with a constant between 0 and 1. This process
is called normalization. Frequently better aproximation quality is observed
for models that work with normalized data.

Shift and normalization form the transformation. Results of model eval-
uations are retransformed by a denormalization and backshift operation be-
fore they are provided to the trajectory optimization algorithm.

Figure 4.9 depicts the retransformed model output as a function of ax for
various nonnegative vehicle velocities. Negative velocities are not shown
for simplicity and because with ALC the vehicle only drives forward. For
medium negative ax the Ptrac,elec is negative indicating that power is recu-
perated into the battery. The gray shaded area indicates possible operating
points of the vehicle while driving with activated ALC under the assumption
of no slope. As the ALC limits are defined with respect to v̇Vhcl,x, the width
of the area will change in presence of slope according to (4.22).

In border areas that exceed the vehicle capabilities the shift leads to very
large AEPM outputs of up to three times the maximum Ptrac,elec. As a result,
the trajectory optimization algorithm avoids trajectories that include such
unreachable (vVhcl, ax) combinations. Adopted from [79].
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Figure 4.9: Electrical power PAEPM according to the adaptive electrical power
model (AEPM) depending on sensor longitudinal acceleration ax for
various vehicle velocities vVhcl. The gray shaded area is the opera-
ting area of the ALC, max Ptrac,elec the maximum traction power and
min Ptrac,elec the maximum recuperation power. Adopted from [79].

In case of negative slope peaks or strong braking, the simple shift leads
to a zero-crossing of Ptrac,elec at roughly −7 m/s2 ≤ ax ≤ −5 m/s2 before
Ptrac,elec increases to large values. This case can still mislead the trajectory
optimization algorithm but for the given setup it did not present a problem.
As Figure 4.8 indicates, on the WR peaks in the course of the road slope
are stronger in the positive direction than in the negative direction. This
asymmetrical road slope distribution causes that in AEPM evaluations the
maximum absolute value of ax is greater for ax > 0 than it is for ax < 0 and
that border areas on the left hand side of Figure 4.9 are not reached.

To prevent that negative slope peaks cause issues on other hilly routes, the
shift should be improved by subtracting a plane from the model input data
instead of a constant. This plane can be designed so that it goes through
the origin and is tilted upwards in the directions of the vVhcl and ax axes,
e.g. −c1 · vVhcl − c2 · ax + c3 · Ptrac,elec = 0 with constants c1, c2, c3 ≥ 0.
By choosing these constants appropriately, physically unreasonable zero-
crossings of PAEPM can be avoided.
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Determination of model hyperparameters

The question is how kernel variance σ2 in (2.21) and kernel count M should
be chosen for the AEPM. For better differentiation from other parameters
like control points, σ2 and M are called hyperparameters [146] and deter-
mining them is part of the model selection process [72, pp. 128-130]. A
model with many parameters usually provides more accurate results at the
cost of increased effort for parameterization and evaluation.

Model selection criteria, also called information criteria, assess mod-
els and thereby can help to find a trade-off between model complexity and
model quality. The general structure of an information criterion is:

criterion = P · ln
(

SSE
P

)
+ penalty term (4.29)

ln(·) is the natural logarithm, P the number of observations and SSE is the
sum of squared errors with

SSE =
P∑

p=1

(
yp − ŷp

)2
. (4.30)

y denotes the measurement and ŷ the model output. The selected criterion
is computed for a set of trained models and the model with lowest criterion
value is chosen. Several information criteria have been introduced, which
are based on different principles and differ in the penalty term. In a compar-
ison in [89] the Hannan-Quinn information criterion (HQC) performs best:

HQC = P · ln
(

SSE
P

)
+ M · ln (ln(P)) (4.31)

Number of model parameters M and kernel variance σ2 from (2.21) span
the hyperparameter space for the search for the most suitable AEPM. For
each combination of M = 10, 20, . . . , 100 and σ2 = 1/1, 1/2, . . . , 1/30 a model
is trained and tested to determine the model with the lowest HQC.

Data for model training and test was created using the open-loop ref-
erence model. Thereby the vehicle longitudinal acceleration was sampled
with v̇Vhcl,x = −10,−9.8, . . . , 10 m/s2 and the vehicle velocity with vVhcl =

0, 0.5, . . . , 56 m/s. Slope and curvature were assumed equal zero. Operating
points that are beyond the vehicle capabilities according to the open-loop
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reference model were removed from the data set. The data set that com-
prises all possible vehicle operating points (PVOP) in random order is split
into a PVOP training data set and a PVOP test data set. The randomly cho-
sen PVOP test data set comprises 10 % of the original PVOP data set and
the remaining data points form the PVOP training data set.

Additionally, a WR data set was created from the closed-loop reference
model output during a simulated drive with the ALC on the WR including
slope and road curvature information. The WR data set was split analo-
gously into WR training data set and WR test data set. PVOP data set and
WR data set contain roughly the same amount of data points.

The upper diagram of Figure 4.10 depicts the best HQC as well as the
corresponding σ2 for each investigated kernel count. Only for models that
are both trained and tested using data from the PVOP data set the HQC
course shows a local minimum at 50 kernels along with comparatively large
kernel variance values.

The lower diagram of Figure 4.10 depicts the corresponding 95 % quan-
tile Q95% of absolute values of the relative error erel between the output of
the AEPM and the reference model for PVOP and WR, respectively. With
increasing M the 95 % quantiles decrease.

Models that are both trained and tested with PVOP data achieve better
HQC values and lower quantiles than models that are trained with PVOP
data and tested with WR data. The PVOP data set contains much more
dynamic driving states than the WR. Furthermore, only the PVOP test data
set evaluates a model that has been trained with the PVOP training data set
in its border areas. Therefore, the worse result for the WR test data set seems
counterintuitive at first.

However, only the WR data set considers road curvature and road slope.
On the WR the road slope is up to 10 %. The AEPM does not use road
curvature input and summarizes road grade and change of vehicle velocity
in the input ax. Hence, the results indicate that road geometry has more
influence on the quality of the model output than the driving style. However,
for M ≥ 40 the quantils are below 2 % for all considered combinations of
training and test data sets. Therefore not considering road curvature in the
AEPM explicitly is acceptable.

Since the goal is not to optimize the model parametrization with respect to
the WR but to find a suitable model for the vehicle in general, the best model
parametrization according to HQC for the PVOP test set was chosen. This
is a model with M = 50 and σ2 = 1/9 that achieves Q95%(|erel |) = 0.94 %
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Figure 4.10: Results of full factorial search for best model hyperparameters ker-
nel count M and kernel variance σ2. Top: Both the best HQC and the
corresponding σ2 are plotted versus M for each combination of train-
ing and test using the data sets from possible vehicle operating points
(PVOP) and Weissach route (WR) . Bottom: 95 % quantile Q95% of
absolute values of relative error erel between output of AEPM and
reference model versus M .

for PVOP and Q95%(|erel |) = 1.5 % for WR. This AEPM model is used in
the remainder of this work and depicted in Figure 4.9.

With the hyperparameter optimization technique from [146] the KRLS-T
accuracy increases for M ≤ 50 and converges for more kernels. Therefore
M = 50 is considered the optimal KRLS-T hyperparameter, analogously
to this work. However, with σ2 = 6.25 the reported kernel variance is
different. Reasons can be contrasting data sets and differences in the KAF
algorithms themselves.
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5 Planning of velocity trajectories

This chapter presents a trajectory planning approach based on the B-spline
approximation methods from Chapter 3. Section 5.1 states how an upper
speed limit for the route ahead is created from map data. Section 5.2 in-
cludes considerations on how to represent the planned vehicle velocity and
Section 5.3 describes the trajectory optimization. Section 5.4 proposes an
extension of the trajectory optimization problem for taking into account the
required electrical traction power. Section 5.5 states ways to enforce con-
straints on the trajectory beginning and Section 5.6 summarizes the scientific
contribution of this work regarding trajectory planning.

5.1 Generation of upper speed limit

An upper speed limit for each meter of the road section ahead of the vehicle
is computed using map data. The upper speed limit takes into account legal
restrictions, limitations from driving dynamics as well as safety and comfort
requirements and serves as input data for the trajectory optimization process.

The map data consists of three P × 1 vectors, each with component index
p = 1, . . . , P. The vectors state the meter-discrete courses of road slope γ,
road curvature κ and legal speed limit vLim,Law for the road section ahead of
the vehicle in driving direction. The first component of each vector refers to
the current vehicle position. P is called the length of the electronic horizon.

Figure 5.1 depicts various speed limits that occur during generation of the
upper speed limit and are described in the following paragraphs.

The course of the legal speed limit vLim,Law forms the basis of the upper
speed limit. The speedometer in a vehicle includes an offset and there-
fore indicates a velocity that is slightly higher than the actual vehicle ve-
locity. For better acceptance by the driver, the legal speed limit including
speedometer offset vLim,Speedo is used instead of vLim,Law. This causes that
the speedometer will indicate roughly the same velocity value as the traffic
sign when there are no relevant restrictions other than vLim,Law present.

Due to tight curves, crests or comfort requirements the upper speed limit
needs to be corrected starting from vLim,Speedo further downwards.
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Figure 5.1: Computation of upper speed limit with respect to position measured
from vehicle at km 11 of Weissach route in driving direction. Corre-
sponding route data depicted in Figure 4.8 between km 11 and km 13.
Legal speed limit vLim,Law, legal speed limit including speedometer
offset vLim,Speedo, speed limit resulting from curvature vLim,Curve and
speed limit resulting from crests vLim,Crest are intermediate quantities.
The speed limit resulting from map data vLim,Map is the minimum of
vLim,Speedo, vLim,Curve and vLim,Crest. End result is the speed limit from
map data with desired acceleration vLim,Map,v̇ .

Driving with vehicle velocity vVhcl on a road with curvature κ causes a
lateral acceleration v̇Vhcl,y = v2

Vhcl · κ (c.f. (4.5)). A maximum absolute
value of lateral acceleration v̇Vhcl,y,max is specified, which leads to the speed
limit resulting from curvature vLim,Curve given by

vLim,Curve ≤

√
v̇Vhcl,y,max

|κ |
. (5.1)

Thereby | · | denotes the absolute value. A comfortable lateral acceleration
maximum varies with vehicle speed [153]. As a first draft a lateral accelera-
tion table v̇Vhcl,y,max(v) was created using a characteristic curve from [153].
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In test drives the characteristic curve was further adapted to suit the vehicle
characteristics. The lateral acceleration table consists of

(
v̇Vhcl,y,max, v

)
sup-

porting points because these quantities can be specified more conveniently
than κ in test drives. With (4.5) the corresponding κ values are computed.
Thereafter v̇Vhcl,y,max for a given κ is determined from map data by linear
interpolation and vLim,Curve is derived using (5.1).

Crests on the route cause another restriction on the upper speed limit.
From road slope data an elevation profile is obtained and it is calculated
how far ahead the road can be seen according to geometrical considerations.
It needs to be ensured that the vehicle can always come to a standstill within
the sighting distance ∆sSighting. Assuming that the absolute value of the
maximum deceleration is the gravitational constant g leads to the speed limit
resulting from crests vLim,Crest given by vLim,Crest ≤

√
2 · ∆sSighting · g.

The speed limit resulting from map data vLim,Map is the minimum of
vLim,Speedo, vLim,Curve and vLim,Crest. Usually vLim,Crest is high compared to
the other quantities and therefore rarely determines vLim,Map.

In the last step the desired longitudinal acceleration ades is taken into
account. The desired acceleration and deceleration values are derived by
interpolating with respect to velocity v in separate acceleration tables for
acceleration ades,pos(v) and deceleration ades,neg(v) < 0. Enforcing the con-
straints

vp+1 ≤
√
vp + 2 · ∆s · ades,pos(vp), p = 1, 2, . . . , P − 1

vp−1 ≤
√
vp − 2 · ∆s · ades,neg(vp), p = P, P − 1, . . . , 2

(5.2)

with ∆s = 1 on vLim,Map gives the speed limit from map data with desired
acceleration vLim,Map,v̇ , which is the output of the whole procedure.

The content described above in this section originates from F. Bleimund
[22, pp. 29, 30], who implemented it during e-generation. The adaptions
done during e-volution are limited to enhancements of the acceleration ta-
bles and adaptions of their entries during test drives.

Other works such as [114, 139] additionally specify a lower speed limit
as a certain percentage of the upper speed limit. Both limits then form a
so-called driving tube that defines the solution space of valid trajectories.
An alternative term is driving envelope [44]. This work specifies no explicit
lower limit but enforces a nonnegativity constraint on velocity trajectories
as Section 5.5 will state.
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5 Planning of velocity trajectories

5.2 Representation of vehicle velocity in time domain

There are several ways to define a course of velocity that stays below the
upper speed limit. Figure 5.1 illustrates that in general only a functional
representation with many degrees of freedom can sufficiently adapt to the
upper speed limit over several kilometers.

Section 2.3 investigated the properties of several function types and the
advantages of spline functions over polynomials. Based on the conclusions
drawn there, the velocity trajectory will be represented using a cubic B-
spline function. This function is twice continuously differentiable which
means the trajectory velocity vTJY is smooth. This is beneficial for driv-
ing comfort but not sufficient for jerk-free driving behavior. If the B-spline
function has many degrees of freedom in a short time period and unfavor-
ably chosen control points, it can lead to an oscillating and uncomfortable
velocity course.

A further helpful feature is that in each interval a B-spline function lies
within the convex hull of the control points that are relevant for this interval
(c.f. Section 2.3 and Section 3.1). This feature allows to enforce vTJY ≥ 0
by simply restricting the control points to nonnegative values.

Since the upper speed limit depends on the position, a straight-forward
approach is to define the trajectory with respect to the position as well. This
was done in [22, 139].

RBA described in Subsection 3.3.3 allows to adapt the control points of a
B-spline function iteratively such that it approximates a set of data points in
the WLS sense. With RBA a spatial velocity trajectory vTJY(s) that depends
on the position s can be adapted to the upper speed limit by solving the LS
problem

x̂ = arg min
x

P∑
p=1

(
vLim,TJY,p − vTJY(sp)

)2
(5.3)

using the data set

(sp, vLim,TJY,p), sp = p − 1, p = 1, 2, . . . , P, (5.4)

in which vLim,TJY,p is derived from vLim,Map,v̇ as (5.12) will define. A spa-
tially defined trajectory can easily be compared against the upper speed limit
and adjusted downwards at any position without risking to violate the upper

106



5.2 Representation of vehicle velocity in time domain

speed limit at another position. However, the spatial trajectory definition
has at least four flaws:

First, at low speeds the position s changes slowly in a given time interval.
If the knots of vTJY(s) are spatially equidistant, the trajectory can only rep-
resent a comparatively reluctant driving behavior at low speeds, whereas at
highway speeds it has an excessive number of degrees of freedom in each
time interval that facilitates undesired velocity oscillations and increases the
computational effort unnecessarily.

RBA only chooses the control points and requires knots as an input. Re-
garding RBA this means that simply specifying spatially equidistant knots
is not suitable. This was also confirmed by real test drives with a spatial tra-
jectory planning approach based on RBA. Therefore a knot placement pro-
cedure was added that computed spatial knot positions that were equidistant
with respect to time. The degrees of freedom were then spatially dense at
low speeds and with increasing vTJY their density decreased.

There are also solutions for adapting both knots and control points when
fitting a B-spline function to data [36, 93, 130] but this problem is a noncon-
vex one with many local minima and therefore difficult to solve [15]. For
example, [158] solves a reduced nonlinear B-spline LS approximation prob-
lem, in which only the knots are optimization variables using a generalized
Gauss-Newton method, whereas [141] applies the LM algorithm from Sub-
section 3.4.1. A review of state of the art methods for this kind of problem
is provided by [43].

Second, a spatial velocity trajectory cannot represent driving off again
after coming to a standstill because if vTJY(s∗) = 0, at any position s∗,
then s∗ cannot be left anymore. Hence, starting from a standstill requires a
different trajectory planning approach.

Third, the time t∗ at which a vTJY(s) trajectory reaches a certain posi-
tion s∗ requires to compute the integral t(s∗) =

∫ s∗

s=0
1

vTJY (s) ds. For a cubic
function vTJY(s) the solution can be determined using a partial fraction de-
composition (PFD). Since the solution of PFD depends on the control point
values, a system of equations needs to be solved repeatedly.

Fourth, derivates of vTJY(s) are no common quantities with known inter-
pretation. Common quantities refer to time and deriving them from vTJY(s)
is costly. For example, the derivative vTJY

′(s) is not the trajectory acceler-
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ation aTJY(s) but the pseudo trajectory acceleration [55]. aTJY needs to be
computed from vTJY(s) as a product:

aTJY(s) =
dvTJY(s)

dt
=

ds
dt
·

dvTJY(s)
ds

= vTJY(s) · vTJY
′(s) (5.5)

Hence, aTJY cannot be repesented by the linear combination of basis func-
tions and control points from (2.17) and (3.3), respectively, anymore. Equa-
tion (5.5) gives oscillations in the acceleration course, which become larger
as the knot distance is decreased to allow for more agile vehicle behavior.
The reason is that the result of (5.5) is no B-spline product and therefore also
does not fulfill the convex hull property. Ways to correctly compute prod-
uct functions of B-spline functions are given in [121, 133]. The approach
in [133] relies on intermediate transformations to the Bézier functions (c.f.
Section 2.3). A sliding window B-spline multiplication algorithm is pre-
sented in [30].

A time dependent velocity trajectory overcomes these flaws. First, the
knots can simply be chosen temporally equidistant. Then the trajectory rep-
resents a vehicle behavior whose agility does only depend on the chosen
constant knot density but not on vehicle velocity. Second, driving off from
a standstill poses no problem because t still changes during a standstill and
so can vTJY(t). Third, the corresponding trajectory position sTJY(t) is ob-
tained efficiently by integration:

sTJY(t) =
∫ t

τ=0
vTJY(τ)dτ (5.6)

Fourth, meaningful quantities like trajectory acceleration and trajectory jerk
arise from a linear combination of basis functions and control points.

For these reasons a time dependent trajectory vTJY(t) is chosen. The prob-
lem of adapting vTJY(t) to the upper speed limit is formulated analogously
to (5.3) as an approximation problem but an additional change of represen-
tation space from position to time is included:

x̂ = arg min
x

P∑
p=1

(
vLim,TJY

(
sTJY(tp)

)
− vTJY(tp)

)2
(5.7)

The trajectory position sTJY is given by (5.6) and computed as in (3.10).
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5.3 Trajectory optimization

In contrast to (5.3), the error vLim,TJY (sTJY) − vTJY in (5.7) does not lin-
early depend on the control point vector x. Instead, x is linked to the error
by the nonlinear upper speed limit, which makes (5.7) a NWLS problem.

The described approach is similar to parametric B-spline curve approxi-
mation. As mentioned in Section 2.3, a B-spline curve is a generalization
of a B-spline function that uses multi-dimensional control points. These en-
able an independent curve shape in each dimension such that the curve can
represent edges of a geometrical object [3]. The velocity trajectory approx-
imates (sp, vLim,TJY,p) data points with respect to the parameter t. However,
sTJY and vTJY are coupled via (5.6) and by still using a B-spline function
with scalar control points this constraint can be enforced.

A disadvantage of the temporal trajectory definition is that road grade,
speed limit and road curvature are position dependent, whereas the position
of the vehicle depends on the future course of velocity. Therefore a velocity
optimization requires a vehicle position estimate [82]. Specifically for the
approach in (5.7) this means that if any component of the solution x̂ of the
optimization problem is modified, the trajectory will likely exceed vLim,Map,v̇
at some later point in time. In contrast, with vTJY(s) control point values can
always be reduced without risking to violate vLim,Map,v̇ afterwards.

For completeness a sTJY(t) trajectory is considered as well. Against such
a trajectory argues the fact that sTJY is unbounded and may take large val-
ues for long trajectories. This encourages numerical problems and instable
computations in optimization algorithms.

5.3 Trajectory optimization

� Trajectory optimization involves adapting the vTJY(t) trajectory function
to the data set in (5.4) that is created using the upper speed limit vLim,Map,v̇ .
vTJY(t) is defined according to (3.3) with degree d = 3, knot vector κ and
control point vector x. κ given by

κ = (κ1, κ2, . . . , κK )
= (∆tκ · (−d),∆tκ · (−d + 1), . . . ,∆tκ · (−d + K − 1))

(5.8)

has equidistant and strictly monotonously increasing entries. ∆tκ denotes
the constant temporal distance of neighboring knots. Due to the choice of κ,
the trajectory can be evaluated for t ≥ 0.
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5 Planning of velocity trajectories

t is discretized using a constant temporal distance of neighboring data
points ∆tIt:

tp = (p − 1) · ∆tIt, p = 1, . . . , P (5.9)

The approximation problem that is solved reads

x̂ = arg min
x

P∑
p=1

(
R−1
v ·

[
vSet

(
sTJY(tp)

)
− vTJY(tp)

]2

+R−1
a ·

(
aSet − aTJY(tp)

)2
+ R−1

j ·
(
jTJY(tp)

)2)
.

(5.10)

aTJY denotes the trajectory acceleration and jTJY the trajectory jerk.
These quantities are the first and second derivative of vTJY and can be cal-
culated according to (3.5). The trajectory position sTJY is measured from
t = 0, hence sTJY(t = 0) = 0. sTJY can be computed using (3.10) and (5.6).

Unless stated otherwise, the set point of trajectory velocity vSet and the
set point of trajectory acceleration aSet are defined as follows:

vSet = vLim,TJY, aSet = 0 (5.11)

In contrast to (5.7), the optimization problem in (5.10) includes two ad-
ditional summands that refer to the derivatives aTJY and jTJY of the vTJY(t)
trajectory. By penalizing deviations of aTJY from aSet and deviations of jTJY
from zero, the vTJY(t) function is stabilized and uncomfortable driving is
avoided, which can be caused by acceleration peaks and velocity oscilla-
tions.

Each optimization goal has a corresponding weight. R−1
v denotes the

weight of velocity error square, R−1
a the weight of acceleration error square

and R−1
j the weight of jerk error square. The reciprocals of the weights

follow the interpretation of the filter algorithms from Subsection 3.3.2 and
Subsection 3.4.2 by referring to the variances of the artificial measurements
vSet, aSet and 0. Rv is the variance of velocity measurement, Ra the variance
of acceleration measurement and Rj the variance of jerk measurement. R−1

v

can be interpreted as a weight for the optimization goal of few travel time
whereas both R−1

a and R−1
j refer to driving comfort. A suitable weighting

combination reads Rv = 5, Ra = 10, Rj = 1. This combination was de-
rived by experiments, validated in real test drives and will be used in the
remainder of this work.
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5.3 Trajectory optimization

WLS and NWLS approximation algorithms usually solve an uncon-
strained problem and compute a function that is close to the data points.
Problem (5.10) follows this approach and penalizes deviations of the func-
tion value from the data symmetrically. This interpretation of the data ne-
glects that the data points of the upper speed limit also present a constraint
to vTJY. This constraint character is taken into account by using modified
data in (5.10). Set point of trajectory velocity vSet in (5.11) is not vLim,Map,v̇
but the speed limit for trajectory optimization vLim,TJY:

vLim,TJY = min
(
vLim,Map,v̇[pmin], . . . , vLim,Map,v̇[pmax]

)
pmin = round

(
sTJY − vTJY · ∆tLim,TJY + 1

)
pmax = round

(
sTJY + vTJY · ∆tLim,TJY + 1

) (5.12)

vLim,TJY is the minimum of vLim,Map,v̇ within a spatial distance around the
calculated trajectory position sTJY. The distance depends on the trajectory
velocity vTJY and the temporal safety margin to upper speed limit ∆tLim,TJY.
∆tLim,TJY is a tuning parameter. In combination with ∆tIt sufficiently small
it causes that there are enough data points at local minima of vLim,Map,v̇ such
that the trajectory does not exceed local minima of vLim,Map,v̇ .

The nonlinear approximation problem (5.10) can be solved with LM and
NRBA. To an approximation of (5.10) RBA can be applied.

Advantage of solving the approximated optimization problem

Regarding the control, [82] states that the time domain is beneficial be-
cause the vehicle dynamics itself is almost linear except from the air resis-
tance. Therefore the problem can easily be simplified to a linear constrained
quadratic programming (QP) problem. In contrast, the control in space do-
main is very nonlinear when the distance to the vehicle ahead is considered
and therefore harder to be solved. Due to the spatially defined upper speed
limit, (5.10) is a nonlinear problem though.

However, RBA can solve an approximation of the nonlinear problem
(5.10) by a quadratic problem. For this, in each iteration p the trajectory
position sTJY at the current time tp is determined by temporal integration of
the trajectory velocity vTJY with its currently estimated control point vec-
tor x in order to derive the upper speed limit vLim,TJY(sTJY(tp)). Then
vSet = vLim,TJY is provided to the linear WLS algorithm RBA. The linear
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5 Planning of velocity trajectories

algorithm has no knowledge of the nonlinearity and assumes that the error
vLim,TJY − vTJY depends linearly on the control point vector x.

The solution of RBA is not guaranteed to be optimal under these condi-
tions. However, the effort is lower than with a method for NWLS and the
solution of the approximated problem is satisfactory compared with an in
general not globally optimal solution of the actual NWLS problem. For pre-
dictive vehicle control, [47, 28, 86] also approximated a nonlinear problem
by a quadratic problem in order to be able to apply a quadratic programming
method instead of a sequential quadratic programming method like LM.

Influence of temporal safety margin to upper speed limit

The upper diagram in Figure 5.2 depicts the velocity v versus the position s
measured from the vehicle in driving direction. The dashed line shows the
speed limit from map data with desired acceleration vLim,Map,v̇ . The solid
red line is a trajectory computed using RBA with ∆tLim,TJY = 1 s, ∆tκ = 1 s,
∆tIt = 0.1 s and I = 1, whereby I denotes the number of spline intervals.
Each red dot is a set point of trajectory velocity vSet that occurs during the
iterations of RBA. For better view, only every tenth vSet point is shown in
Figure 5.2. The blue dots and lines show the same quantities for ∆tLim,TJY =

4 s. The temporal parametrization causes that in the v − s diagram the vSet
data points are less close at higher speeds (e.g. for s ≤ 200 m) compared to
at low speeds (e.g. around s = 600 m). Due to the temporal safety margin to
upper speed limit in (5.12), the spatial distance between the courses of vSet
and vLim,Map,v̇ is larger at higher speeds. Provided that ∆tIt is sufficiently
small and that ∆tLim,TJY is sufficiently large, there are enough data points to
cause that the resulting trajectory does not exceed vLim,Map,v̇ at local minima,
e.g. at s = 400 m and s = 600 m.

Increasing ∆tLim,TJY also reduces the possibility of short-lasting velocity
peaks. For example, at s = 500 m vLim,Map,v̇ has a local maximum that
both vSet with ∆tLim,TJY = 1 s and the corresponding trajectory vTJY(t) re-
flect. For ∆tLim,TJY = 4 s, both vSet and vTJY(t) cannot maintain the local
maximum of vLim,Map,v̇ at s = 500 m, however.

Since the course of vSet is not jerk-free and must be smoothed by the
trajectory, close proximity of vTJY(t) to vSet is not intended in all situa-
tions. The extent to which the trajectory can follow vSet is determined by
the weighting factors R−1

v , R−1
a , R−1

j and the temporal distance of neigh-
boring knots ∆tκ . Furthermore, the temporal distance of neighboring data
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Figure 5.2: Influence of temporal safety margin to upper speed limit ∆tLim,TJY on
set point of trajectory velocity vSet and trajectory velocity vTJY. Only
a subset vSet is shown. Upper diagram: The speed limit from map data
with desired acceleration vLim,Map,v̇ is identical for both trajectories.
Lower diagram: vLim,Map,v̇ differs with the trajectories. Adopted from
[79].

points ∆tIt needs to be sufficiently small. Reducing ∆tIt increases the com-
putational effort of RBA linearly.

In the upper v − s diagram of Figure 5.2 vLim,Map,v̇ is identical for all tra-
jectories. The lower diagram depicts the same quantities versus time. In
a v − t diagram vLim,Map,v̇ needs to be shown individually for each trajec-
tory because when two trajectories differ, in general they have a different
trajectory position at the same time t, hence vLim,Map,v̇ also differs between
the two trajectories. Adopted from [79]. A v − s diagram is often more
convenient for comparisons because of the identical vLim,Map,v̇ . However,
the lower v− t diagram in Figure 5.2 illustrates well that the temporal safety
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margin to upper speed limit leads to a constant time gap between the courses
of vSet and vLim,Map,v̇ .

Moreover, because of the constant temporal density of degrees of freedom
resulting from the temporal distance of neighboring knots ∆tκ , the curvature
of the trajectory is independent of velocity in the v − t diagram. In contrast,
in the v − s diagram the trajectory curvature usually decreases as velocity
increases. Due to the equidistant knots with respect to time and (5.12), the
trajectory can approximate the upper speed limit very close at low speeds
because its degrees of freedom are dense with respect to position whereas at
high speeds the approximation is less close.

Advantage of iterative approach of RBA

LM, RBA and NRBA compute the trajectory iteratively but in different
ways. LM adapts all control points simultaneously, hence the whole trajec-
tory is improved during an iteration. In contrast, RBA and NRBA process
only a subset of the control points simultaneously and the temporal length
of the trajectory increases with the number of iterations.

Figure 5.3 shows a vTJY(t) trajectory generated using RBA after 100, 200,
300 and 400 iterations with ∆tκ = 2 s, ∆tIt = 0.1 s and ∆tLim,TJY = 2 s.
The iterative approach of RBA allows to pause the calculation and use the
intermediate result before continuing the calculations. This possibility is
beneficial in presence of restrictions on computation time. It is also known
that the optimization is finished for the subtrajectory that can be computed
from knots and control points that are not used by RBA anymore but have
been shifted out of the KF.

Furthermore, with RBA the number of data points is not required to be
bounded because of the shifting function. This is beneficial because a priori
it is not known how much time data points tp the trajectory needs in order
to reach the end of the electronic horizon. Also the length of the electronic
horizon usually increases as the navigation system is recalculating the route
(c.f. Section 5.1). RBA can start trajectory optimization immediately par-
allel to the route recalculation and can add knots during the optimization
process as needed.

In contrast, LM cannot change the knots. Hence, the number of needed
knots has to be overestimated, which causes additional computational effort,
because more control point values are computed.
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Figure 5.3: Iterative trajectory optimization using RBA: Speed limit from map data
with desired acceleration vLim,Map,v̇ (black) and trajectory after 100
(green), 200 (yellow), 300 (red) and 400 (blue) iterations p.

Influence of temporal distance of neighboring knots and
number of spline intervals

Figure 5.4 shows trajectories with ∆tLim,TJY = 1.5 s and ∆tIt = 0.2 s. Tra-
jectories with temporal distance of neighboring knots ∆tκ = 1 s are depicted
in red and trajectories with ∆tκ = 5 s in blue. For both cases trajectories
computed by RBA with number of spline intervals I = 1 and I = 5 are
compared to the LM solution. The solutions of both algorithms are similar
and differences can mainly be identified from the acceleration diagram.

Increasing the temporal distance of neighboring knots ∆tκ reduces the
possible oscillation of velocity in a given time interval. This effect can be
seen in the acceleration diagram for 200 m ≤ s ≤ 600 m. However, a
large change of vTJY as for 600 m ≤ s ≤ 800 m can still be represented
by ∆tκ = 5 s through correspondingly larger differences of temporally less
dense neighboring control point values. For ∆tκ = 1 s, the RBA solutions
are closer to the LM solution than for ∆tκ = 5 s.

Increasing I also enables to smooth the trajectory because the filter can
rework larger parts of the trajectory with hindsight when additional informa-
tion is available. However, this can result in undesired velocity oscillations,
e.g. for 800 m ≤ s ≤ 1200 s. This applies to both RBA and LM.

Furthermore, RBA trajectories with larger I are more likely to exceed
vLim,Map,v̇ . This slightly occurs at s = 1200 m where the RBA trajectory with
∆tκ = 5 s accelerates too early. The reason is a general flaw of the filter-
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Figure 5.4: Influence of temporal distance of neighboring knots ∆tκ on trajectory
optimization using RBA and LM and influence of number of spline
intervals I on trajectory optimization using RBA.

based approach. When the filter adapts control points of previous spline
intervals according to the knowledge of its state estimation covariance ma-
trix, it does not compute any deviations or errors for these control points
that could be penalized. Exceeding vLim,Map,v̇ can be avoided by increasing
∆tLim,TJY with I.

As LM evaluates the whole sum of squared errors in the approximated
NWLS problem in each iteration, this problem does not occur with LM. At
around s = 1200 m both LM trajectories are identical.

Although the above stated approach does not optimize the energy con-
sumption by taking into account the electrical power explicitly, a reduction
of energy consumption can be achieved implicitly by increasing the weight
of acceleration error square R−1

a . The method of reducing acceleration and
braking was also chosen in [1, 107, 112]. According to the investigations in
[81] it is less effective than using an energy consumption model. Instead its
advantage is that a simpler optimization algorithm can be used.
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5.4 Trajectory optimization considering electrical power

� According to Section 4.4 low absolute values of the electrical traction
power Ptrac,elec lead to low power losses. Ptrac,elec is described by the adap-
tive electrical power model (AEPM) proposed in Subsection 4.7.2. The
model output PAEPM is given by

PAEPM(t) = AEPM(vTJY(t), ax). (5.13)

The sensor longitudinal acceleration ax from (4.22) is computed as

ax = aTJY(t) + g · sin(α(sTJY(t))) (5.14)

and the road slope angle α can be derived from the road slope stated in
percent according to map data using (4.2).

When considering the required electrical power in trajectory planning,
(5.10) is augmented with the summand R−1

P · (PAEPM)2 which penalizes ab-
solute values of PAEPM. R−1

P denotes the weight of power error square and
its reciprocal RP is the variance of power measurement. The resulting opti-
mization problem reads

x̂ = arg min
x

P∑
p=1

(
R−1
v ·

[
vLim,TJY

(
sTJY(tp)

)
− vTJY(tp)

]2

+R−1
a ·

(
ades − aTJY(tp)

)2
+ R−1

j ·
(
jTJY(tp)

)2

+R−1
P ·

(
PAEPM(tp)

)2)
.

(5.15)

As PAEPM correlates with the product of vTJY and its derivative aTJY, an ap-
proximation of this fourth optimization goal such that RBA can be applied,
seems not promising for good results. Adopted from [79].

Most nonlinear filter algorithms such as UKF or PF do not accept a mea-
surement matrix that relates a control point vector to a measurement as in-
put. Instead, they apply a given nonlinear measurement function to a set
of control point vectors and use the resulting function values for estimat-
ing the relation between measurement and control points. However, for the
first three optimization goals the exact values of the measurement matrix are
known. These result from the values of the B-spline basis functions.
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Estimating the B-spline basis functions and additionally performing the
transition from a spatial to a temporal representation poses a challenge for
the convergence of a nonlinear filter. Experiments were conducted with a
square-root cubature Kalman filter (SCKF) stated in [6, 7]. The SCKF can
be seen as a special case of the UKF. In experiments no weighting factor
combination was found that yielded consistent convergence of the trajectory
to the upper speed limit. This was also the case when the SCKF was applied
to optimization problem (5.10), which does not consider electrical power.

The MPF is beneficial for problems that can be subdivided in a linear
subproblem and a nonlinear subproblem. A KF solves the linear subprob-
lem optimally using a given measurement matrix while a PF is applied to
the nonlinear problem [155]. In the trajectory optimization application the
nonlinear problem is the fourth optimization goal. The MPF converges for
problem (5.15) reliably provided that the weighting factors are within a cer-
tain range. For these reasons, NRBA includes a MPF. However, even though
the MPF comprises a KF, the convergence radius of the MPF is still notica-
bly smaller than that of a pure KF and the MPF is much more sensitive to
filter parameter variations.

� Braking for an upcoming curve usually requires negative PAEPM for
recuperation. Strong penalization of P2

AEPM can prevent braking for up-
coming curves. In order to enable sufficient braking power, the computa-
tion of the error e = vLim,TJY − vTJY within the MPF is designed asym-
metrically. If e ≤ 0, the artificial measurement vLim,TJY is replaced with
vLim,TJY = Rv>vLim · e + vTJY. Hence, e is multiplied with Rv>vLim if vTJY is
above vLim,TJY. In case of e > 0 the original e is multiplied with Rv<vLim,
the error weighting if vTJY is below vLim,TJY. In each case the resulting error
square is afterwards weighted with R−1

v in the MPF. Adopted from [79].

Rv>vLim cannot be chosen arbitrarily large. First, Rv>vLim > 2 can prevent
the MPF from converging to the upper speed limit. Second, during operation
of the ALC situations can occur in which the vehicle exceeds vLim,Map,v̇ . An
example is that the driver intervens and accelerates in order to overtake a
slower vehicle. At its beginning the trajectory needs to indicate the current
vehicle velocity. Rv>vLim should be only so large that a clearly noticable
braking occurs until the vehicle is below vLim,Map,v̇ . For Rv>vLim > 2 braking
according to the computed trajectory is uncomfortably abrupt.

� The asymmetrical weighting of the velocity error can also be used in
combination with RBA but since there is no incentive to exceed vLim,Map,v̇
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Figure 5.5: Relevant quantities of trajectories determined by NRBA and LM for
different variance of power measurement. Velocity v, electrical trac-
tion power Ptrac,elec, road slope γ, energy loss between HV battery and
wheel ELoss and HV battery energy EBatt for trajectories determined by
NRBA and LM that differ in the variance of power measurement RP .
Adopted from [79].
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5 Planning of velocity trajectories

because of the missing optimization goal regarding PAEPM, the asymmetric
weighting has very limited influence. Adopted from [79].

Influence of weight of power error square

� By increasing the weight of power error square R−1
P or by lowering the

variance of power measurement RP , respectively, the trajectory can be op-
timized towards low energy consumption. Figure 5.5 depicts various quan-
tities for trajectories determined by NRBA with RP = 102, RP = 103

and RP = 104. For comparison, the LM solution for RP = 104 is also
shown. The remaining trajectory parameters are ∆tκ = 2 s, ∆tIt = 0.25 s,
∆tLim,TJY = 1 s and I = 1.

In the depicted situation, all tractories indicate roughly the same velocity
at the start position and also at the end position. Hence, the kinetic and
potential energy of a vehicle at the beginning and end is roughly the same
regardless of which trajectory it tracks. Therefore the energy consumptions
resulting from following each of the trajectories can be compared.

For RP = 104 the depicted quantities for the NRBA and LM trajectories
are very similar and both trajectories follow vLim,Map,v̇ closely. With LM the
energy loss between HV battery and wheel (ELoss) is ELoss = 77 Wh and the
required HV battery energy (EBatt) is EBatt = 721 Wh. For RP = 104 NRBA
achieves ELoss = 75 Wh and EBatt = 714 Wh.

When RP is lowered, peaks in the electrical traction power Ptrac,elec are
reduced which translates to less energy loss between HV battery and wheel
as well as less HV battery energy. RP = 103 leads to ELoss = 71 Wh and
EBatt = 703 Wh. For RP = 102 ELoss = 65 Wh and EBatt = 684 Wh result.

Regarding the driving style it can be observed that with lower RP , the
trajectory exhibits lower acceleration, stays more below vLim,Map,v̇ , avoids
short-lasting velocity peaks and tends to oscillate more. Adopted from
[79]. The oscillations can mainly be explained by the larger slope varia-
tions which affect Ptrac,elec but they partly also result from the fact that the
MPF estimations are more strongly based on the state-space sampling of the
PF than on the KF. With LM no energy savings were achieved by lower-
ing RP , even after varying LM parameters. Instead, the trajectory diverged
which indicates a narrow convergence radius of the unapproximated nonlin-
ear optimization problem.
� During the acceleration phase up to s = 1000 m the NRBA does clearly

avoid peaks in Ptrac,elec by reducing the acceleration at the slope. However,
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5.5 Considering trajectory constraints

this does apply to the deceleration phase not to such an extent, even under
consideration that from s = 2200 m on there is a high road grade which
avoids the need for large negative Ptrac,elec. The filter could still smooth
power demand more by decelerating earlier. It was also oberserved during
road sections with negligible slope that NRBA decelerates too late and there-
fore the asymmetrical weighting of the velocity error was added. Adopted
from [79].

As shown in Subsection 3.3.4 and Subsection 3.4.4, both novel filter
based methods RBA and NRBA can reproduce a symmetrical approxima-
tion of WLS and LM, respectively. Provided that I is large enough, the
filter lag is negligible with RBA. When the nonlinear optimization goal is
weighted heavily with NRBA, a filter lag occurs, solutions become more
oscillating and increasing I is not as unambigiously beneficial as with RBA.
In the situation depicted by Figure 5.5, increasing I mainly leads to more
oscillating trajectories whereas no significant change in deceleration can be
noticed. Hence, the energy-saving potential of NRBA during recuperation
is lower than expected.

Increasing I should facilitate early deceleration because NRBA can adapt
larger parts of the trajectory with hindsight when data that involves the lower
speed limit is processed. MPF improvements that achieve the same approx-
imation quality with less particles as stated in [203] would be beneficial for
good results with larger I. They could help to overcome the flaw concerning
deceleration because they enable to keep the state-space sampling density in
each dimension constant when I is increased.

At an early stage, at which the trajectory representation was not yet tem-
poral, the AEPM hyperparameters were not final and NRBA still included
the SCKF instead of the MPF, automated tests for finding suitable target cri-
teria weightings were done by A. Thorgeirsson [173] as a student assistant.

5.5 Considering trajectory constraints

After each iteration of the trajectory optimization, a lower limit on the tra-
jectory velocity vTJY is enforced and the trajectory acceleration aTJY is re-
stricted. This ensures that after any iteration a feasible trajectory is avail-
able. Due to the high execution frequency the formulae are rather simple,
avoid evaluating the B-spline function and take advantage of the convex hull
property.
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5 Planning of velocity trajectories

vTJY is restricted to nonnegative values, which translates to restricting all
components of the state estimate x̂ to nonnegative values:

x̂ = min ( x̂, 0) (5.16)

Additionally the differences between neighboring components x̂ of x̂ are
limited according to

x̂i = max
(
x̂i−1 + ades,neg · ∆tκ,min

(
x̂i, x̂i−1 + ades,pos · ∆tκ

))
,

i = 2, 3, . . .
(5.17)

ades,pos denotes the desired positive longitudinal acceleration and ades,neg is
the desired negative longitudinal acceleration. The approach in (5.17) over-
estimates the absolute value of trajectory acceleration using the convex hull
property of the B-spline function. Hence, (5.17) might in some situations
adjust control points although the specified acceleration limits are not yet
exceeded.

The following subsections state further constraints which are taken into
account partly as hard constraints and partly as soft constraints. Hard con-
straints are constraints that reduce the solution space of an optimization
problem and can lead to an empty set of feasible solutions. In contrast, the
term soft constraints means that the optimization function is chosen such
that violating these soft constraints leads to very bad function values with
the aim that such solutions are avoided by the optimization method.

5.5.1 Adaption to vehicle motion state

� Small deviations between trajectory velocity vTJY and vehicle velocity
vVhcl always occur because of an imperfect control. However, there are
several cases in which both quantities differ significantly from each other.
Examples are driving off from a parking position and when the driver stops
overriding the ALC by pressing accelerator or braking pedal.

If the deviation exceeds a tolerated threshold, a new trajectory should be
planned. The velocity and acceleration at the trajectory beginning should
be adapted to the vehicle motion state given by vehicle velocity vVhcl and
vehicle longitudinal acceleration v̇Vhcl,x. Hence, the constraints

vTJY(t1 = 0) = vVhcl

aTJY(t1 = 0) = v̇Vhcl,x
(5.18)

122



5.5 Considering trajectory constraints

shall be enforced. Several methods for taking into account state constraints
during Kalman filtering are presented in [163]. The state projection method
can modify the control points such that the trajectory fulfills certain hard
equality constraints at single points in time. Adopted from [79]. The
state projection method projects an unconstrained estimate x̂+p onto the hy-
perplane defined by the constraints Dx = d. Usually Dx = d is an under-
determined equation system. The constrained estimate x̃+p is given by

x̃+p = x̂+p − D>
(
DD>

)−1 (
Dx̂+p − d

)
. (5.19)

The difference of the projected control points need to be checked against
the desired longitudinal acceleration. If they exceed the acceleration limits
ades,neg or ades,pos, the projection needs to be repeated with additional con-
straints that refer to differences between neighboring control point values.
� The state projection method changes only the control points that in-

fluence the trajectory function at t1 = 0. If the function is projected onto
a vehicle at standstill and the temporal distance of neighboring knots ∆tκ
between knots is small, the trajectory will demand an abrupt acceleration
towards the upper speed limit unless control points that refer to following
spline intervals are adapted too.

A jerk-free and comfortable velocity transition can be achieved by modi-
fying in the optimization problems (5.10) and (5.15) the desired acceleration
value aSet(tp) from (5.11) and the acceleration weight R−1

a in the first filter
iterations as follows:

R−1
a = R−1

a,t0
+ (R−1

a − R−1
a,t0

)/∆tVhclAdapt ·min(∆tVhclAdapt, t),

aSet(tp) = v̇Vhcl,x + (0 − v̇Vhcl,x)/∆tVhclAdapt ·min(∆tVhclAdapt, t).
(5.20)

∆tVhclAdapt and R−1
a,t0

are tuning parameters. From an initially strong weight-
ing R−1

a,t0
of aSet = v̇Vhcl,x at t = 0, the quantities R−1

a and aSet return to their
standard values in a linear fashion until t0+∆tVhclAdapt. Adopted from [79].

Figure 5.6 illustrates the individual effects of projection onto vehicle mo-
tion state with (5.19), enforcement of acceleration constraints using (5.17)
and adaption of filter settings according to (5.20) on the trajectory. The tra-
jectory parameters are ∆tκ = 2 s, ∆tIt = 0.1 s, ∆tLim,TJY = 2 s and I = 1.

In the depicted situation, the speed limit from map data with desired ac-
celeration vLim,Map,v̇ is constant at 26.7 m/s (black solid line in upper di-
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Figure 5.6: Individual effects of projection onto vehicle motion state using (5.19)
(1), enforcement of acceleration constraints with (5.17) (2) and adap-
tion of filter settings using (5.20) (3) on the trajectory during trajectory
adaption to vehicle motion state.

agram). The vehicle motion state consists of the vehicle velocity vVhcl =

20 m/s and the vehicle longitudinal acceleration v̇Vhcl,x = −1 m/s2. Each
component is indicated by a black dot in the corresponding diagram. A tra-
jectory without adaption (depicted by green dotted line) starts at vLim,Map,v̇
instead of vVhcl. A trajectory that is only projected onto the vehicle state (or-
ange dashed line) can demand strong accelerations since the projection only
changes the first four control points. The red solid line results from addi-
tionally enforcing acceleration constraints with (5.17). The adaption of the
filter setting using (5.20) with R−1

a,t0
= 0.01 and ∆tVhclAdapt = 150 s allows

to get a more comfortable transition.

The desired effect could also be achieved using a sigmoid function. How-
ever, the parameters of the sigmoid function need to be chosen carefully
because filter sensitivity differs strongly with the magnitude of R−1

a . For
simplicity a linear transition with rather high ∆tVhclAdapt was used.
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5.5 Considering trajectory constraints

5.5.2 Adaption to previous trajectory

vTJY(t1), aTJY(t1) and jTJY(t1) with t1 = 0 of a new trajectory can also be
projected onto vTJY, aTJY and jTJY of the current trajectory at its current
evaluation point t∗ in order to achieve a C2 continuous connection between
both trajectories.

When connecting two trajectories using state projection, the knot posi-
tions of the new trajectory are additionally chosen such that the distance
of t1 to the neighboring knots equals the distances of t∗ to the neighboring
knots of the previous trajectory. Then the shape of the new trajectory around
t1 is identical to that of the previous trajectory around t∗ and uncomfortable
velocity oscillations at the joint are avoided.

Figure 5.7 depicts various trajectories with ∆tκ = 1 s, ∆tLim,TJY = 1 s,
∆tIt = 0.1 s and I = 3. At t∗ = 14.333 s or sTJY(t∗) = 201.75 m, respec-
tively, replanning occurs and the new trajectory needs to be connected to the
current trajectory depicted in green. The new trajectory depicted in orange
is not projected and therefore the connection is not continuous. The new
trajectory depicted in red is projected and a C2 continuous connection to the
current trajectory is achieved. However, shortly behind the connection point
the courses of its derivatives deviate from the corresponding courses of the
current trajectory. The blue trajectory results when additionally the control
point vector of the new trajectory is initialized with the corresponding con-
trol point values of the current trajectory. The deviations in the courses of
the derivatives are significantly reduced.

However, in case of I = 1 the second derivative still deviates with this
approach. This is because the estimate cannot be improved with hindsight
using the knowledge stored in the KF covariance matrix that results from
additional data points.

5.5.3 Adaption to vehicle ahead

The Intelligent Driver Model (IDM) described in [174] provides an ACC
functionality by computing a desired vehicle acceleration aIDM given by

aIDM = afree + aint. (5.21)
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5.5 Considering trajectory constraints

The free-road acceleration term afree with

afree = ades,pos


1 −

(
vVhcl

vSet

)δ
(5.22)

determines how the vehicle velocity vVhcl converges to the set velocity vSet
without a vehicle ahead. ades,pos is the desired positive longitudinal acceler-
ation. The acceleration exponent δ is usually 4. The interaction acceleration
term aint with

aint = ades,neg

(
∆sdes

∆sVhclAhead

)2

(5.23)

causes the vehicle to decelerate in order to adjust the distance to the vehicle
ahead ∆sVhclAhead to the desired minimum distance ∆sdes given by

∆sdes = ∆sJam + ∆tVhclAhead · vVhcl +
vVhcl · (vVhcl − vVhclAhead)

2
√

ades,pos · |ades,neg |
. (5.24)

∆sVhclAhead and the velocity of the vehicle ahead vVhclAhead are measure-
ments of the radar sensor. ∆sJam denotes the desired traffic jam distance
with a typical value of 2 m. ∆tVhclAhead is the desired time gap to the vehicle
ahead and ades,neg < 0 the desired negative longitudinal acceleration.

vSet in (5.11) can be modified with aIDM during the iterative solution
of (5.10) and (5.15) such that the trajectory optimization process takes
into account the vehicle ahead as a soft constraint. The radar sensor data
∆sVhclAhead and vVhclAhead refers to the new trajectory at start time t1 = 0.
Under the assumption that vVhclAhead is constant and that the ego vehicle
will follow the planned trajectory perfectly (vVhcl(t) = vTJY(t),∀t ≥ 0),
∆sVhclAhead can be calculated in following iterations as the sum of the ini-
tial distance ∆sVhclAhead(t1) and vVhclAhead(t1) · t, from which the trajectory
position sTJY is subtracted:

∆sVhclAhead(tp) = ∆sVhclAhead(t1) + vVhclAhead(t1) · tp − sTJY(tp) (5.25)

In order to avoid dividing by small values, the IDM interaction free road
term from (5.22) with velocity dependent ades,pos according to the accelera-
tion tables and with vSet = vTJY is used only if vTJY is larger than 2 m/s. For
vTJY ≤ 2 m/s, afree is set to the trajectory acceleration aTJY. The interaction
term remains as in (5.23).
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5 Planning of velocity trajectories

vSet is determined depending on a hysteresis with respect to aint: If aint >
−0.05 m/s2, vSet for trajectory optimization is computed according to (5.11).
If aint < −0.15 m/s2, braking because of a vehicle ahead is required and
aIDM is used to correct vSet downwards:

vSet = max
(
0,min

(
vTJY + ∆tIt · aIDM, vLim,TJY

))
(5.26)

In experiments it turned out beneficial to let aSet remain at zero. With these
modifications the free-road term in (5.22) causes a comfortable acceleration
or deceleration towards the current vTJY coming from the upper speed limit.

The minimum operation in (5.26) ensures that vTJY can decrease fast
enough. Without this minimum operation, the IDM can weaken the braking
for a tight upcoming curve when there is no vehicle ahead. This is because
(5.22) causes a deceleration towards a lower velocity set point vSet that is
sufficient and comfortable on highways but too weak for country roads, on
which vSet can vary strongly and deviations between vVhcl and vSet should
be minimal.

Figure 5.8 shows a situation in which the IDM adapts the trajectory using
(5.26). If the vehicle trajectory tracks the planned trajectory and the velocity
of the vehicle ahead remains constant, the specified desired time gap to the
vehicle ahead will result.

5.6 Scientific contribution

DM are popular for automotive applications and have great potential in com-
bination with DP as their orthogonal features can complement each other.
However, the exponential growth of computational effort with increasing
time horizon limits the application of DM to short time horizons.

In general the resulting static optimization problem (2.7) in the DM ap-
proach is nonlinear and solved by sequential quadratic programming (SQP)
techniques or interior point methods [187]. Frequently trajectory optimiza-
tion is applied to vehicles with combustion engine or a hybrid power train,
both of which have lots of degrees of freedom and constraints. For exam-
ple, if the optimization problem incorporates the gear selection it is a mixed
integer problem.

In comparison, BEVs often have a power train with 1-speed gear box
which simplifies the optimization problem. Quadratic problems are a sub-
set of nonlinear problems that can be optimized more efficiently with QP
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Nonlinear problems, e.g. NWLS

Convex problems, e.g. WLS

Linear problems

Figure 5.9: Classes and examples of optimization problems

methods because setting the derivative of the convex optimization function
to zero results in sufficient conditions for the global optimum.

The common linear WLS approximation problem is an unconstrained
quadratic optimization problem and the NWLS approximation an uncon-
strained nonlinear optimization problem. Figure 5.9 depicts different classes
of optimization problems.

This work presents a DM based trajectory optimization approach for an
ALC of a BEV with fixed gear ratio such as the considered research vehicle.
With the presented approach, the computational effort only grows linearly
with the number of function parameters or the time horizon. This substan-
tial saving is achieved by formulating the trajectory optimization problem
as either a WLS approximation problem or a NWLS approximation prob-
lem. The approximation problem is solved iteratively by RBA or NRBA,
respectively. Each iterative method includes an iterative state estimator, also
known as filter.

Usually filters solve unconstrained linear and nonlinear WLS problems.
Therefore limitations of the vehicle and restrictions of the environment en-
ter the trajectory optimization problem in the presented approach mainly as
soft constraints. This means that the objective function is designed such
that undesired solutions coincide with comparatively very bad values of the
objective function. However, some hard constraints are also enforced using
the state projection method from [163]. Hard constraints narrow the solution
space of the optimization problem.

The trajectory is defined by a B-spline function and describes the desired
vehicle velocity with respect to time. The trajectory results from an itera-
tive solution of the approximation problem. Spatially or temporally defined
soft constraints or optimization goals referring to derivatives of the function
or its integral can be taken into account during the optimization process.
For example, a spatial upper limit on the velocity defined by the trajectory
results from the legal speed limit or tight curves.
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Treating such spatial constraints as soft constraints leads to a NWLS
problem. However, the iterative trajectory optimization approach allows to
approximate this problem in each time step by a WLS problem similar to
[28, 47], who approximated a nonlinear problem by a quadratic problem in
order to be able to apply a QP method instead of a SQP method. The linear
state estimator for WLS problems enables large savings in computational
effort compared to the nonlinear state estimator for NWLS problems.

The energetic optimization of the trajectory is a case in which the ap-
proximation with a WLS problem cannot be expected to produce acceptable
results. Then a nonlinear state estimator can be applied as demonstrated.

The presented iterative trajectory optimization approach offers the fol-
lowing additional advantages:

First, the number of function parameters does not need to be bounded.
Instead, the iterative estimator can determine additional function parame-
ters if the temporal length of the trajectory needs to be increased. As this
does not influence the computational effort in each iteration of the estimator,
arbitrarily long trajectories can be planned.

Second, the temporal length of the trajectory increases with the iterations
and after each iteration an intermediate result is available for use. Therefore,
the optimization can be paused and continued in accordance with the time
constraints.

Differentation from previous works

The previous project e-generation [22, pp. 29-35] uses a spatially defined
velocity trajectory represented by a cubic polynomial. The polynomial is
iteratively adapted to map data using a KF in such a way that an optimization
problem similar to (5.3) but with additional target criteria referring to the
first two derivatives is solved.

Due to few degrees of freedom of the cubic polynomial, only a trajectory
with simple shape can be represented. The spatially defined velocity trajec-
tory exhibits the flaws mentioned in Section 5.2. Especially the reluctant
behavior at low velocities is noticable in test drives. A target criterion refer-
ring to the electrical traction power or the consumed energy is not included
in the optimization problem.

The approach presented in this chapter ensures nonnegative trajectory ve-
locities at the spline function level by restricting its control point values via
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5 Planning of velocity trajectories

(5.16). In contrast, the nonnegativity of the polynomial is not ensured, only
the result of the polynomial evaluation is restricted to nonnegative values.

Furthermore, the previous approach adapts the trajectory only roughly to
the vehicle velocity and acceleration by modification of the target values
in the approximation, whereas in (5.18) an exact adaption via parameter
projection is done.

An adaption to a previous trajectory as in Subsection 5.5.2 is not needed
with the polynomial function and constraints resulting from a vehicle ahead
as in Subsection 5.5.3 were not considered.
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6 Automated energy-efficient longitudinal
control

Section 6.1 of this chapter states the stages of the development process of
the ALC followed by a description of the architecture of the ALC and its
components in Section 6.2. Section 6.3 investigates the influence of selected
parameters on the ALC energy-saving potential in simulations. Section 6.4
summarizes the technical contribution of this work concerning ALC.

6.1 Development process

The development of the ALC in the project e-volution followed the V model,
which describes the software development process in the shape of the letter
V and is depicted in Figure 6.1. The V model is widely used in the auto-
motive industry [152, p. 25]. ISO 26262 states requirements for the devel-
opment process of safety critical components and systems in vehicles. The
procedure described in ISO 26262 is oriented towards the V model [187,
pp. 110-111].

In the descending branch of the V model the customer requirements are
analyzed and translated into a logical architecture from which a technical
architecture is derived. In subsequent steps this technical architecture is de-
composed into systems and components. During this process on each level
specifications and test cases are defined for later review of the development
steps. The last step of the descending branch coincides with the first step
of the ascending branch and includes the implementation of the specified
components.

The ascending branch comprises subsequent testing and integration steps
from individual components up to testing the customer acceptance on the
whole system.

Each step of the descending branch defines specifications that have to
be met during verification on the same level of the ascending branch as
indicated by dashed arrows in Figure 6.1 [187, pp. 163-168].

The V model distinguishes four different test steps. The first three are
component test, integration test and system test. These are verificiation
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Figure 6.1: Software development process according to V model with allocation of
in-the-Loop methods according to [187, p. 165].

tests. Verification denotes the process of evaluating whether an implemen-
tation meets the specified requirements for the corresponding development
phase. Only the customer acceptance test is a validation test that determines
whether all customer requirements are fulfilled. Methodological additions
to the V model such as rapid prototyping enable validation at an early stage
and help to avoid time-consuming and costly reworking loops across various
stages of the V model [152, pp. 33, 152-154].

Rapid prototyping denotes process steps that enable early verification or
validation of specifications. Typical process steps are modelling, simula-
tion, integration and test of the prototype in the vehicle [152, pp. 160-162].
Model-based methods can be applied for specification of software functions
as well as validation of specifications. Model-based software development
allows to model software functions in a graphic environment using block
diagrams [152, pp. 31-32]. A model compiler can compile the software
functions for various target hardware such that the functions can be sim-
ulated as well as tested in the vehicle [152, p. 208]. If rapid prototyping
methods support the development process, a virtual integration of the sys-
tem is possible at the end of the descending branch. Before the integration
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6.1 Development process

steps this virtual prototype can be evalutated in simulated test drives [187,
pp. 163-168].

In-the-Loop methods allow to combine models or real components at each
development step with a reproduction of their real environment in order to
obtain an assessable system. As there are no real components until the im-
plementation phase of the V model, a simulation environment is used for
virtual integration. Figure 6.1 allocates different in-the-Loop methods to
the steps of the development process.

Model-in-the-Loop (MiL) enables a confirmation of the specification of
customer requirements up to the logical architecture. The created model-
based algorithms do not yet refer to the hardware of the target system. By
transferring the model-based algorithms into a simulation environment that
is hardware independent but exhibits already technical characteristics simi-
lar to that of the target system one can perform Software-in-the-Loop (SiL)
which allows for an assurance up to individual components. Hardware-in-
the-Loop (HiL) denotes methods that transfer models from the SiL envi-
ronment to real components. For example a function can be executed on a
vehicle ECU while the system architecture of the vehicle is simulated. This
allows to verify the interaction of the ECU with other simulated vehicle
components [187, pp. 163-168]. HiL simulation usually requires real-time
capable components [152, pp. 297-301]. When HiL methods are applied
consequently, the entire system exists in real components and can be veri-
fied up to the logical architecture. The Vehicle-in-the-Loop (ViL) method
is especially useful for the development of driver assistance systems as it
allows the operation of a real test vehicle in a virtual environment. Vehicle
and virtual environment can be linked by either replacing the real sensors
with interfaces to the virtual environment or by stimulating real sensors ar-
tificially.

In the research project e-volution, the customer requirement was stated
as an ALC that is as comfortable and reliable as its predecessor from the
previous project and offers at least the same dynamic driving style as the
ALC that was developed during the previous project e-generation for the
same research vehicle. As main enhancements the e-volution ALC was re-
quired to be capable of planning of longer, more far-sighted trajectories and
of realizing an energy-efficient driving style.

The specifications of logical and technical architecture were taken over
from e-generation. The logical architecture can be summarized as a system
that controls motor torque according to map data. The technical architecture
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6 Automated energy-efficient longitudinal control

defines the interfaces of the ALC to the vehicle, for example which CAN
messages are sent and received. Furthermore, it specifies the interfaces to
the driver, e.g. how the driver can control the ALC using buttons next to the
steering wheel and which information about the ALC state is displayed by
the instrument cluster.

System design specifies the software architecture that implements the
ALC functionality. The functionality is divided into different components
whose interfaces are defined. System design was conducted during e-
generation and reused for e-volution. � The system design is specified
by a framework in the model-based development environment MATLAB
Simulink by MathWorks. The framework was created by an employee of
the Porsche Engineering Services GmbH. It also takes care of communica-
tion with other vehicle components via several CAN busses and converts
CAN messages into physical quantities. Furthermore, it checks the torque
demand of the ALC system output for plausibility. This allows a safe vehicle
operation in conjunction with an agile development of the ALC. Adopted
from [79].

Design of components converts the black-box description of the system
design into a white-box description for each module including the internal
data flow such that each module can be implemented [187, pp. 168-173].
Within e-volution, component design led to the approximation algorithms
RBA and NRBA and the AEPM. These components were implemented and
tested in MATLAB. Then the trajectory planning based on RBA and NRBA
was developed and tested in MATLAB using the open-loop vehicle reference
model mentioned in Section 4.5 to investigate its energy-saving capabilities.

For further integration steps these functions were included into the Simu-
link framework. Translating MATLAB functions into sequences of Simulink
blocks seemed not be advantageous. Therefore these functionalities were
integrated into the Simulink framework as embedded MATLAB functions.
As a result, each of the ALC components is based on few Simulink blocks
that contain embedded MATLAB functions. Around the framework several
simulink blocks including the closed-loop vehicle model from Section 4.5
were added in order to enable SiL tests of individual components and the
whole ALC system. Extensions for considering constraints stated in Sec-
tion 5.5, such as the projection of the trajectory as well as taking into account
the vehicle ahead, were almost exclusively developed within the Simulink
framework because of the closed control loop.
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Figure 6.2: Simplified illustration of HiL architecture according to [22, p. 66]

Additionally, a HiL test bench was used for component, system and in-
tegration tests as well as calibration. The HiL test bench was created by B.
Fath during e-generation [22, pp. 60-73]. During HiL tests the developed
functions run on the target hardware of the research vehicle. The target
hardware is an ETAS ES910 rapid prototyping ECU and can execute com-
piled Simulink models. The HiL test bench allows to test the interaction of
the software on ECU with the simulated vehicle architecture close to reality
before the actual test in the vehicle.

The HiL test bench consists of four hardware components. A real-time
computer, a host computer, the prototyping ECU and a car PC. Figure 6.2
shows the connections between the components of the HiL test bench in
a simplified manner. The real-time computer is an IPG Xpack4 that runs
a simulation environment including all CAN communication between the
ES910 and the architecture of the virtual vehicle. The host PC is an ordinary
desktop computer that controls the real-time computer via an ethernet con-
nection, starts simulations, records simulation data and provides a graphic
simulation output. The simulation software is IPG CarMaker HiL, a vehicle
dynamics simulation software that is extended by the capability to control
the Xpack4.

In CarMaker a vehicle model was created that is more detailed than the
vehicle reference models described in Section 4.5 and also takes into ac-
count tire characteristics and vehicle kinematics. Furthermore, a model of
the power train as described in Section 4.3 was integrated into the CarMaker
vehicle model as a Simulink model and a road model of the WR was created
from Open Street Map data and included in CarMaker. These models were
also added by B. Fath.
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6 Automated energy-efficient longitudinal control

The host PC also runs the experiment environment ETAS INCA. Via
a second ethernet connection of the host PC, INCA can flash compiled
Simulink models onto the ES910, start them on the ES910 and view and
change model parameters during run-time, e.g. for calibration purposes.

The car PC is a small computer designed for automotive applications and
connected to the ES910 via a CAN bus. It receives a GPS position that is
generated by the simulation on the Xpack4 and passed trough the ES910.
Using this information the map software EB Assist ADTF by Electrobit,
which runs on the car PC, provides map data for the ES910.

A similar HiL setup also for a trajectory optimization and vehicle control
use case is described in [54, pp. 181-192].

The HiL environment enables safe, reproducible and automatically per-
formed tests. It also helps to reduce expensive testing time in the real vehicle
because most specifications can be verified in advance [187, pp. 163-168].

Despite the great benefits of the in-the-Loop methods, they cannot com-
pletely replace real test drives. At further development stages new test sce-
narios that cause problems more likely occur in reality than in the already
well-known and simplified simulation environment. Furthermore, some
features of driver assistance systems require a subjective assessment [187,
pp. 163-168].
� Real test drives were conducted on the WR itself as well as on the high-

way and at roundabouts nearby. The test drives could focus on determining
various calibration parameters such as acceleration look-up tables, weight-
ing factors of the trajectory optimization and parameters of the controller
that computes the torque demand. Parameter settings for three different
modes that correspond to different driving styles were derived. In a final
acceptance test about ten employees of the project partner who work in au-
tomotive research and engineering tested the ALC on self chosen routes.
Adopted from [79].

6.2 System architecture and design

� The software components of the ALC are denoted modules. The ALC
system consists of route data module, parameter adaption module, trajectory
module and controller module. Figure 6.3 depicts the architecture of ALC.
The following sections describe the component design, i.e. the function each
module performs. Adopted from [79].
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Figure 6.3: System architecture of the automated longitudinal control. Adopted
from [79].

6.2.1 Route data module

� The input to the route data module comprises six vectors that contain the
values and positions of legal speed limits, the road curvature and the slope
for the road section ahead of the vehicle in driving direction. Similar to a
run-length encoding, the vectors contain only information for positions at
which the corresponding quantity changes significantly. The map data is
provided via the CAN bus by the navigation system. Adopted from [79].
Since no destination is specified, the navigation system only knows the route
up to the next junction or roundabout. If all roads connected to the junction
have the same average amount of traffic, the electronic horizon ends at this
junction. If one road has a higher traffic density, the navigation system
assumes that the driver takes this road because it is the most probable path
(MPP).

Following the MPP repeatedly leads onto the next larger road and finally
onto a highway. Unless the driver follows an assumed MPP, there will be a
short time period with no available map data. The navigation system then
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6 Automated energy-efficient longitudinal control

recalculates a new path whereby the length of the electronic horizon quickly
increases.

Sometimes the driver likes to turn at a junction but the navigation sys-
tem assumes that the junction will be crossed straight. In such cases the
ALC does not reduce the vehicle velocity sufficiently and the driver needs
to brake. Since the ALC neither uses information about right of way nor
can detect traffic signs or traffic lights via a camera, the driver usually has
to override the ALC at junctions and roundabouts.

The length of the electronic horizon ranges from several hundred meters
in urban areas over roughly 1 km on country roads to several kilometers on
highways.

The route data module is executed every 500 ms and mainly converts the
map data to a meter discrete representation for up to 3 km ahead of the ve-
hicle position and provides three vectors that describe the courses of road
slope, road curvature and legal speed limit. However, the input vectors of
the legal speed limit can be modified before the conversion by three mecha-
nisms:

First, the driver can overwrite the current legal speed limit of the map
data by adding a positive or negative offset using buttons next to the steering
wheel. This adaption functionality proves beneficial in situations in which
the legal speed limit in the map data does not match the actual legal speed
limit, for example at temporary construction sites.

Second, the positions of upcoming speed limits can be changed. If the
legal speed limit is increased, the ALC will not start to accelerate the vehicle
before the new traffic sign is passed because the planned trajectory does not
exceed the generated upper speed limit. When leaving a city, this behavior
is usually undesired by the driver and can provoke overtaking maneuvers of
following vehicles. Therefore two parameters were added. Both describe
a time offset, one for the case of an increase of the legal speed limit and
one for a decrease of the legal speed limit. In both cases the corresponding
parameter is multiplied with the lower of the two speed limits to determine
the spatial distance by which the position of the higher speed limit is shifted
in the map data. This allows to implement a more realistic driving behavior
or adaption to driver preferences. For example, it can be achieved that the
ALC already starts to accelerate when the driver sees the traffic sign that
indicates a higher legal speed limit.
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Third, an upper limit is enforced on the legal speed limit depending on the
driving mode of the ALC selected by the driver. This is needed on highways
because there is not always a legal speed limit.

The route data module was implemented by D. Dörr [22, pp. 23, 24]. The
author of this work added the time offset parameters and logic for processing
roundabout data.

6.2.2 Parameter adaption module

� The parameter adaption module updates the ATFM and AEPM described
in Subsection 4.7.1 and Subsection 4.7.2, respectively, every 50 ms using
vehicle data from the CAN bus. During the ATFM update one KF iteration
is performed and during the AEPM update the FB-KRLS takes into account
a new measurement.

An update of the ATFM requires the traction force Ftrac, the vehicle ve-
locity vVhcl and the sensor longitudinal acceleration ax and an update of the
AEPM the electrical traction power Ptrac,elec, vVhcl and ax. While vVhcl and
ax are measurement signals on the CAN bus, Ftrac needs to be approximately
computed from the motor torque signals using (4.25). Ptrac,elec can be deter-
mined from the voltages and currents of the electric motors that are available
on the CAN bus.

Before CAN signals are fed to an estimator or used to calculate the in-
put quantity for an estimator, signal noise is removed using a polynomial
function approximation method [145], also denoted polynomial Kalman
smoother [144].

In two cases the models are not adapted: First, during a vehicle standstill
because the missing excitation in the data can cause estimations to diverge
from their true value. Second, if CAN signals indicate that there is signifi-
cant hydraulic brake pressure because the models only consider braking via
recuperation and are not valid when hydraulic brakes are active.

Output of the parameter adaption module are updated parameters of
ATFM and AEPM. The parameter adaption module including ATFM is
from F. Bleimund [22, pp. 24-29]. The author of this work added the AEPM.
Adopted from [79].

6.2.3 Trajectory module

� The trajectory module performs the tasks that Chapter 5 described in de-
tail. These tasks include generating an upper speed limit and planning a
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trajectory. Inputs are the map data from the route data module, parameters
of the AEPM provided by the parameter adaption module, vehicle data and
the selected driving mode. The selected driving mode determines which
longitudinal acceleration look-up table is used to compute the speed limit
from map data with desired acceleration. Furthermore, in driving mode
"Normal" and driving mode "Sport" RBA performs the trajectory optimiza-
tion whereas in driving mode "Range" NRBA optimizes the trajectory using
the AEPM, whereby the absolute value of the electrical traction power is
penalized strongly.

The trajectory module is called every 500 ms and then can either continue
planning the current trajectory or start planning a new trajectory.

Continuing planning the current trajectory means that the module per-
forms additional iterations of RBA or NRBA until it reaches the iteration
limit for the current module call or the optimized trajectory reaches the end
of the electronic horizon (c.f. Figure 5.3).

Planning of a new trajectory is only triggered if distance limit or time
limit since the last beginning of a trajectory planning have been exceeded,
if the driver has stopped overriding the ALC by pressing the braking pedal
or accelerator pedal or if data of the curvature vector has changed more than
a threshold since the last module call indicating that the driver has chosen
a route that differs from the MPP. Additionally, the length of the electronic
horizon must exceed a specified lower limit to enable planning of a new
trajectory. Adopted from [79].

In two cases, vTJY and aTJY of the new trajectory are projected onto the
vehicle velocity vVhcl and vehicle longitudinal acceleration v̇Vhcl,x accord-
ing to Subsection 5.5.1: First, if there is no valid previous trajectory, e.g.
because map data was temporarily not available, and second, if the current
vehicle velocity deviates more than a certain threshold from the planned ve-
locity vTJY, e.g. because the vehicle is starting from a standstill or because
of an intervention by the driver.

In all other cases vTJY(t1), aTJY(t1) and jTJY(t1) with t1 = 0 of the new
trajectory are projected onto vTJY(t∗), aTJY(t∗) and jTJY(t∗) of the current
trajectory at its last evaluation point t∗ according to Subsection 5.5.2 in order
to achieve a smooth connection between both trajectories at t∗.

The knot vector κ and estimated control point vector x̂ are the outputs of
the trajectory module.
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6.2.4 Controller module

� Every 20 ms the controller modules computes the desired velocity vdes
and desired acceleration ades and translates these quantities into a motor
torque demand Tdes that causes the vehicle to track the velocity trajectory. In
most cases vdes and ades equal the trajectory velocity vTJY and the trajectory
acceleration aTJY, respectively. vTJY and aTJY are determined by evaluating
the trajectory defined by the knot vector and estimated control point vector
from the trajectory module at the current point in time measured starting
from the last trajectory planning start. Adopted from [79].

However, the controller also comprises three functionalities of the trajec-
tory module:

1. Trajectory adaption to vehicle motion state: While the driver is over-
riding the ALC by using the pedals, the controller module projects the
trajectory onto the vehicle motion state given by vehicle velocity and
vehicle acceleration as stated in Subsection 5.5.1. Therefore, as soon
as the ALC takes over control again, the controller can immediately
evaluate the trajectory that is connected jerk-free to the vehicle mo-
tion state. During the next call of the trajectory module planning of a
new trajectory is initiated.

2. Trajectory adaption to the vehicle ahead (c.f. Subsection 5.5.3): The
IDM in the trajectory module serves mainly for planning the approach
to the vehicle ahead. For the actual vehicle following task an IDM is
implemented in the controller as well. In order to be able to modify
vTJY and aTJY according to IDM, the controller module can perform
the state projection method described in Subsection 5.5.1.

3. Enforcement of velocity and acceleration constraints: If the controller
changes the control points of the trajectory, it must also enforce the
restrictions vTJY ≥ 0 by adapting control point values and enforce
restrictions with respect to aTJY by adapting the differences of neigh-
boring control point values (c.f. Section 5.5).

Since the controller module can alter the trajectory, the trajectory module
accepts a control point vector coming from the controller module as input
and interprets it as the previous trajectory. If there is no valid trajectory
available for evaluation, the controller module causes the desired vehicle
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Figure 6.4: Architecture of controller module and control loop. The pilot control
generates an open-loop motor torque demand Tdes,PC based on desired
velocity vdes, desired acceleration ades and road slope angle α using the
adaptive traction force model (ATFM). The model predictive control
(MPC) computes a closed-loop torque demand Tdes,MPC to minimize
the remaining deviation of vehicle velocity vVhcl and vehicle longitudi-
nal acceleration v̇Vhcl,x from vdes and ades. Adopted from [79].

acceleration to quickly diminish and keeps the velocity constant. If no map
data is available for several seconds, the ALC system deactivates itself.

The in this subsection above stated functionality was added by the author
of this work. However, the architecture and control loop including the pilot
control were adopted from F. Bleimund [22, pp. 35, 36].

� Figure 6.4 depicts the controller module architecture and the control
loop. vdes and ades are inputs to a pilot control and a model predictive con-
trol (MPC). The pilot control contains the ATFM and computes an open-
loop torque demand Tdes,PC based on road slope angle α, vdes and ades. Due
to imperfect map data, sensor data and ATFM, the vehicle velocity vVhcl
deviates from vdes and the vehicle longitudinal acceleration v̇Vhcl,x deviates
from ades. The two-dimensional MPC computes a closed-loop torque de-
mand Tdes,MPC in order to minimize these deviations.

The torque demand of the controller module Tdes is the sum of the pilot
control torque demand Tdes,PC and the MPC torque demand Tdes,MPC and
reaches the motor ECU via the CAN bus. The motor ECU computes the
distribution of the torque demand between the front and rear motor using the
strategy described in Section 4.3 and controls these actuators accordingly.
If the torque demands indicates a deceleration request, it can additionally be
allocated to the brake ECU that controls the hydraulic brakes.
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The control loop is closed through the vehicle where CAN messages
transfer the feedback information. A comprehensive review of trajectory
tracking methods is provided in [40].

Pilot control

The pilot control determines an open-loop torque demand Tdes,PC with

Tdes,PC =
Ftrac

iG
·

rdyn,FA + rdyn,RA

2
(6.1)

so that the vehicle roughly tracks vdes and ades. iG is the gear ratio, rdyn,FA
the dynamic front wheel radius and rdyn,RA the dynamic rear wheel radius.
The traction force Ftrac results from the ATFM in Subsection 4.7.1:

Ftrac = (1, ax, v
2
des)︸       ︷︷       ︸

=:CVhcl

·xVhcl (6.2)

The parameter adaption module provides the adapted vehicle parameter vec-
tor xVhcl. The vehicle motion vector CVhcl depends on vdes

2 and ax, whereby

ax = ades + g · sin(α). (6.3)

Adopted from [79]. According to Subsection 4.2.1, the road slope angle
α can be computed from the road slope γ, which can be derived from map
data or the signal of a slope estimator that is available on the CAN bus.

The simple calculations in the pilot control are very transparent, the es-
timated vehicle parameters can easily be limited to a valid range and the
other values are measurements. The pilot control contributes to the torque
demand to a large extent and serves for overcoming the majority of the sum
of driving resistances. Using the pilot control allows to restrict the output of
the MPC that closes the control loop to low absolute values without risiking
a vehicle standstill at a slope. Restricting the MPC output seems benefi-
cial from safety considerations because the MPC performs operations that
can be numerically problematic such as dividing by potentially small values.
Additionally it allows to apply a simpler vehicle model in the MPC for less
computational effort.
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Model predictive control

Model predictive control (MPC) is a direct trajectory optimization method
that approximates the constrained infinite dimensional OCP from (2.1) by a
finite dimensional problem that can be solved efficiently in real-time. The
approximation occurs by discretizing the problem and solving it for a finite
time horizon T .

MPC uses a system model to predict the future system behavior. A pos-
sible linear time invariant system model without uncertainties reads

xp+1 =Axp +Bup

yp = C xp

(6.4)

with system state xp , control input up , system output yp and discrete
time index p. In each time step t, MPC solves the following optimization
problem for the horizon t = 0, δt, . . . ,T with cycle time δt:

ût = arg min
u t

J (xt, ut )

J (xt, ut ) =
T−1∑
i=0

[(
yt − C xi |t

)>
Q

(
yt − C xi |t

)
+ u>i |tRu

>
i |t

]

subject to F xt +Gut ≤ 1

(6.5)

Herein the control input sequence ut = {u0 |t, u1 |t, . . . , uT−1 |t } over the
horizon is the optimization variable. xi |t and ui |t denote the predicted val-
ues of x and u, respectively, for time t+ i based on the information available
at t, whereby x0 |t = xt is assumed. Present and future set points are speci-
fied via the system output yt = {y0 |t, y1 |t, . . . , yT−1 |t }.

The cost function J includes symmetric error weighting matrices R and
Q, which are assumed positive definite and positive semidefinite, respec-
tively.

The matrices F and G allow for linear constraints with respect to x and
u, respectively. The constraints are formulated as inequalities, which apply
elementwise. 1 is a matrix of ones. For increased robustness and in order
to avoid an empty set of feasible solutions, constraint softening can be ap-
plied. Thereby hard constraints become penality terms in the cost function
analogously to the approach stated in Section 5.5 [61].
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either forwarded to a low-level feedback steering/acceleration controller or the

optimal input trajectory is directly fed to the vehicle actuators.

Closed-form solutions from the calculus of variations are thereby often used to

speed up dynamic programming. This can be in the form of a heuristic for an

informed search (see, e.g., Ziegler et al. 2008) or so-called analytical expansions

(Dolgov et al. 2010), both of which, roughly speaking, approximate the remaining

trajectory and therefore extend the computable optimization horizon, see Table 1.

5 Receding Horizon Optimization

The receding horizon approach is the gist of model-predictive control (MPC, see,

e.g., Rawlings 2000), which makes a numerical optimization practical for closed-

loop control. Therein, in each step tk, the OCP is solved on a finite horizon T, which
calculates the optimal open-loop trajectories x� τð Þ over τ� tk, tk þ T½ �, see Fig. 14.
Only the first part of the optimal control ū�(τ) is implemented on Δt. Right in time

the new solution is available of the OCP that has been shifted by Δt. In classical

MPC, at each tk the current plant state is fed back as the new initial state of the OCP.

Altogether, this leads to a closed control loop that anticipates future events, such as

input and state saturation, and takes control actions accordingly.

This procedure is completely compatible with trajectory optimization for vehi-

cles. Even more, its replanning mechanism can innately take the limited sensor

range and predictability of the other traffic participants into account, which can

fundamentally change the OCP from one optimization step to the other.
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Fig. 14 Receding horizon optimization with optimization length T, cycle time Δt, current time

step tk, predicted and actual trajectory x�, x, predicted and actual system input ū�, u
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Figure 6.5: Model predictive control optimization horizon with time horizon T , cy-
cle time δt, current time step tp , planned and actual state x̂, x, planned
and actual control input û, u [187, p. 1431, adapted].

Of the optimal control sequence ût only the first element û0 |t is applied
to the system. At the following time step the process is repeated with the
additional information xt+1 on the system state.

Figure 6.5 illustrates this MPC approach, that creates a feedback which
partially compensates for model inaccuracies and leads to a closed-loop con-
trol that can take anticipatory control actions for future set points and events.
The abilities of looking ahead and considering constraints are also distin-
guishing features of MPC compared to a PID controller [187, pp. 1431-
1432], [95, pp. 2, 13-16].

An analysis of different controller designs is provided by [169] and dif-
ferent vehicle models for controller design are stated in [136, p. 12].

Vehicle related MPC applications in literature include ACC systems, e.g.
[13, 61, 112, 154]. These use MPC as a high level controller that calculates a
sequence of acceleration commands for the ACC equipped vehicle so that it
keeps the required distance to a vehicle ahead, whereas a low level controller
tracks the acceleration sequence using commands to power train and brakes.
In the MPC the vehicle is represented with a first-order model because the
low level controller cannot realize commands instantaneously due to the
limited bandwidth of the vehicle.

In this work the MPC serves only as a low level controller and is addi-
tionally supported by the pilot control that considers the driving resistances.
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Furthermore it seems reasonable to assume that the research vehicle is capa-
ble of following power train and brake commands relatively quickly because
of the high power to weight ratio and the missing delay from changing gears.
For these reasons a vehicle model similar to the one in [116] is used. It is not
a first-order model but a double integrator involving vehicle velocity vVhcl,
vehicle longitudinal acceleration v̇Vhcl,x and vehicle longitudinal jerk v̈Vhcl,x.
The forward difference approximations

v̇Vhcl,x(t) =
vVhcl(t + δt) − vVhcl(t)

δt

v̈Vhcl,x(t) =
v̇Vhcl,x(t + δt) − v̇Vhcl,x(t)

δt

(6.6)

give the time-discrete state-space representation of the vehicle model, in
which v̈Vhcl,x is the control input [13, 116]:
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The system state comprises vehicle velocity and acceleration and should be
equal to the set points for the desired velocity vdes and desired acceleration
ades. Hence, the quantities in the state-space model of (6.4) read:

A =
*.
,

1 δt

0 1
+/
-
, B =

*.
,

0

1
+/
-
, C =

*.
,

1 0

0 1
+/
-
,

ut = v̈Vhcl,x, xt =
*.
,

vVhcl

v̇Vhcl,x

+/
-
, y = *.

,

vdes

ades

+/
-

(6.8)

Simplifying Ftrac in (6.1) to Ftrac = mvhcl ·v̇Vhcl,x and calculating the temporal
derivative shows that the control input u defined as the vehicle longitudinal
jerk v̈Vhcl,x translates to changes of MPC torque demand, Tdes,MPC:

dTdes,MPC

dt
=

mvhcl · v̈Vhcl,x

iG
·

rdyn,FA + rdyn,RA

2
(6.9)
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Discretization of the above equation using the backward difference approx-
imation gives Tdes,MPC for the current time step:

Tdes,MPC,t = Tdes,MPC,t−1 + v̈Vhcl,x,t ·
mvhcl · δt

iG
·

rdyn,FA + rdyn,RA

2
(6.10)

Thereby Tdes,MPC,0 = 0 and δt = 0.2 s are used. The change of Tdes,MPC in
each δt is limited to [∆Tmin,∆Tmax] = [−50 Nm,+50 Nm] with following
matrices in (6.5):

F =
*.
,

0 0

0 0
+/
-
, G =

*.
,

−
mvhcl ·δt ·(rdyn,FA+rdyn,RA)

2·iG ·∆Tmin
mvhcl ·δt ·(rdyn,FA+rdyn,RA)

2·iG ·∆Tmax

+/
-

(6.11)

Furthermore, the R describing the cost of the jerk and Q describing the cost
of deviating from the trajectory velocity and the trajectory acceleration on
its main diagonal elements are set to

R = 10−4, Q =

(
20 1

)
· I . (6.12)

The horizon comprises the current time step t and nine future time steps,
which results in 1.8 s look ahead of the MPC. With a previously in e-
generation applied PID controller uncomfortable oscillations between ac-
celeration and deceleration occured on test drives while driving downhill
with roughly constant velocity. After the PID controller had been replaced
with the MPC, these oscillations were not noticed anymore.

However, the computational effort of MPC is usually much larger than
that of the PID controller and depends on the system model and the predic-
tion horizon [147]. Problem (6.5) has a convex quadratic objective function
and linear constraints, which allows using various QP solvers based on ac-
tive set methods or interior point methods for performing the online MPC
optimization.

This work uses the general purpose QP solver provided by [94] with mi-
nor modifications that consist of rewriting instructions that are incompatible
with compilation for the target hardware and of removing functionality and
dependencies that are not needed to solve the above stated problem. Modifi-
cations of the solver, first implementations and tests of promising state-space
models within a provided simplified control loop were done by C. Lee [98]
during his time as student assistant that started after completion of his Mas-
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ter’s thesis. Parameter tuning and closed-loop testing within the ALC in
simulated and real test drives were done by the author of this work.

The disadvantage of general purpose QP solvers is that they do not ex-
ploit the special MPC problem structure and therefore using them might
prevent the application of MPC to problems with a high sample rate, high-
dimensional model, or long time horizon T . For example, the computational
effort of both active set and interior point methods increases roughly cubi-
cally with T , whereas the effort of algorithms that exploit sparse matrices
increases only linearly [95, p. 42], [147]. A survey of technologies for lin-
ear and nonlinear MPC is given by [137] and [171] provides a comparison
between PID controller, linear MPC and nonlinear MPC.

6.3 Energy-saving potential and effects of parameters

� This section investigates the energy-saving potential using the automated
longitudinal control (ALC) with different parameter settings compared to
drives with manual longitudinal control (MLC) on the Weissach route (WR)
defined in Section 4.6 in simulations.

Automated longitudinal control setup and data generation

The varied parameters are the temporal distance of neighboring knots ∆tκ ,
the number of spline intervals I, the temporal safety margin to upper speed
limit ∆tLim,TJY and the weight of power error square R−1

P . Simulations of
the ALC are conducted for all possible parameter combinations that re-
sult from ∆tκ = {1.5 s, 3 s}, I = {1, 3}, ∆tLim,TJY = {1 s, 2 s} and R−1

P =

{ 1
10000,

1
5000,

1
1000,

1
500,

1
100,

1
50 }. Adopted from [79].

During a simulation of the ALC on the WR, the position s on the WR is
calculated by integrating the vehicle velocity over time. With s the corre-
sponding road curvature and road grade are determined from the map data
of the WR.

Section 5.4 applies the open-loop reference model from Section 4.5 in
a backward simulation in order to calculate the energy consumption that
results when the vehicle tracks a planned velocity trajectory perfectly. The
current section considers the whole ALC including its controller module
and calculates the energy consumption that results from the actually realized
velocity trajectory using the closed-loop reference model from Section 4.5
in a forward simulation.

150



6.3 Energy-saving potential and effects of parameters

55 56 57 58 59 60
16

17

18

Average velocity in km/h

E
ne

rg
y

co
ns

um
pt

io
n

in
kW

h/
10

0k
m

ALC with ∆tLim,TJY = 2: ∆tκ = 1.5, I = 1 ∆tκ = 3, I = 1
ALC with ∆tLim,TJY = 2: ∆tκ = 1.5, I = 3 ∆tκ = 3, I = 3
ALC with ∆tLim,TJY = 1: ∆tκ = 1.5, I = 1 ∆tκ = 3, I = 1
ALC with ∆tLim,TJY = 1: ∆tκ = 1.5, I = 3 ∆tκ = 3, I = 3

MLC:

Figure 6.6: Average energy consumption vs. average velocity on the Weissach
route with automated longitudinal control (ALC) under different pa-
rameter settings in comparison to adapted and resimulated real drive
with manual longitudinal control (MLC). Adopted from [79].

� In order to compare different ALC settings, the required trip time tTrip
for completing the WR is converted into the average velocity by dividing
tTrip by the length of the WR and the energy consumption is scaled to the
energy consumption per 100 km. This approach allows to summarize each
simulation in a single data point in Figure 6.6, which depicts energy con-
sumption versus average velocity. The lines are approximations of data
points differing only in R−1

P by quadratic polynomials. Adopted from [79].

For some parameter combinations the values of R−1
P are high or low

enough to make the MPF instable. In such cases the resulting energy con-
sumption is very high while the average velocity is either very low or very
high. Such data points are excluded from Figure 6.6. Reduced convergence
radii are noticed mainly for the combinations that include ∆tLim,TJY = 2 s
and ∆tκ = 1.5 s. ∆tLim,TJY influences the data provided to the MPF and for
nonlinear filters the covariance also depends on the data. If ∆tκ is reduced
while ∆tIt is kept constant, the covariance matrix entries tend to remain
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larger. This suggests that for these settings, the MPF parameter QL,QN

need to be reduced.

Manual longitudinal control setup and data generation

� For comparison with a drive with MLC, a real test drive on the WR with
MLC was performed and CAN data was recorded. From the recorded data,
only the vehicle velocity vVhcl with a sample rate of 100 Hz was further
used. By integrating vVhcl over time, the corresponding position on the WR
for each data point is computed. Time information is then discarded because
the following modifications of vVhcl do not depend on time:

First vVhcl is multiplied with a factor around one in order to achieve MLC
drives with various average velocities in the same range as the average ve-
locities of the ALC simulations.

During the real test drive the driver had to stop the vehicle at junctions
in order to check for other traffic participants with right of way. When the
vehicle has to come to a standstill and drive off again this increases both the
energy consumption and time required for completing the WR.

The simulation environment neglects right of way and other traffic partic-
ipants do not occur. Therefore the vehicle passes junctions with a low speed
without coming to a standstill. In order to not disadvantage MLC drives in
the comparison, position dependent lower limits on vVhcl are applied to MLC
drives. These lower limits coincide with the velocities the ALC chooses at
the corresponding junction. Varying ALC parameter settings influences the
velocity with ALC at the occuring junctions only slightly.

During the real test drive there was few traffic and only once during a
short period the driver was restricted in the choice of vehicle velocity be-
cause of a vehicle ahead. At the corresponding position the recorded vVhcl
data was adapted to a typical ALC behavior.

The ALC computes an upper speed limit for the route ahead, which
among others depends on the specified maximum absolute value of lat-
eral acceleration v̇Vhcl,y,max. The originally recorded vVhcl results in a lateral
acceleration larger than the maximum absolute value of lateral acceleration
for the ALC. Increasing v̇Vhcl,y,max leads to higher average velocity and less
energy consumption. In order to compare ALC and real drive under same
conditions, an upper limit is enforced on the vVhcl of the MLC drives. The
upper limit is the speed limit from map data with desired acceleration.
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After multiplying the recorded vVhcl with a factor around one and impos-
ing the various limits the corresponding time t is re-calculated using t = s

vVhcl
and the MLC energy consumption is determined with the open-loop refer-
ence model. Figure 6.6 depicts the resulting data points and quadratic ap-
proximation for the MLC in black and by a solid line.

The quadratic approximation line serves as a benchmark. The ALC data
points should be below this line, meaning that the ALC achieves the same
average velocity with less energy consumption or a higher average velocity
for the same energy consumption.

Initial evaluations of the energy consumption of MLC and ALC in a non-
final setup were performed by A. Thorgeirsson [173] as a student assistant.

Parameter effects

Temporal distance of neighboring knots

Approximations for data points that differ only in the temporal distance of
neighboring knots ∆tκ and weight of power error square R−1

P indicate higher
average velocities and mostly also higher energy consumptions for ∆tκ =
1.5 s than for ∆tκ = 3 s. The reason for this is that trajectories with larger
∆tκ cannot follow the upper speed limit as closely because their degrees of
freedom are temporally less dense. Hence, the vehicle is generally slower
and omits some inefficient velocity peaks. Adopted from [79].

Number of spline intervals

When the number of spline intervals I is increased, the MPF can adjust
the trajectory in more previous trajectory intervals. When R−1

P is chosen
high for strong penalization of the electrical traction power, a large I should
be beneficial because the MPF can for instance retrospectively reduce the
acceleration if the road grade suddenly increases and maintaining the accel-
eration would lead to large power demand and therefore large power loss.

However, similar to Chapter 3 and Chapter 5 the simulation results do not
support this statement. All approximations for ∆tκ = 1.5 s and I = 1 are
below those for ∆tκ = 1.5 s and I = 3. For ∆tκ = 3 s the ranges of the
average velocities of the approximations for I = 1 and I = 3 do not always
overlap but they can still be compared using their positions with respect to
the MLC approximation. Using this criterion the approximations for I = 1
are always better.
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The reason for the worse results with larger I can be explained by the fact
that the PF in the MPF uses a set of particles, each of which is a possible
trajectory control point vector. The number of particles equals 100 for all
simulations. For larger I, each particle comprises more dimensions and
therefore each particle dimension is sampled less densely.

In order to keep the sampling density in each dimension constant, the
number of particles needs to be increased exponentially with I. Since the
computational effort increases linearly with the number of particles, this
quickly becomes infeasible especially with computation time restrictions.
From these considerations and the simulation results, it seems beneficial to
only use I = 1 in combination with MPF and power penalization. Sec-
tion 5.3 investigated the effect of increasing I in combination with the KF.

Furthermore, with I = 3 there is less potential for an effect from varying
weight R−1

P . Moreover, the approximation for ∆tLim,TJY = 2 s, ∆tκ = 1.5 s
and I = 1 comprises a larger range of average velocities and energy con-
sumptions than the corresponding approximations for ∆tκ = 3 s.

Temporal safety margin to upper speed limit

When the temporal safety margin to upper speed limit ∆tLim,TJY is de-
creased, the trajectory follows the speed limit from map data with desired
acceleration vLim,Map,v̇ more closely which increases the average verloc-
ity. Furthermore, the trajectory can follow short lasting inefficient velocity
peaks which increases energy consumption. Both these effects can be ob-
served for the setting ∆tκ = 3 s and I = 3, which achieve comparatively low
average velocities. For the other settings, however, the average velocity re-
mains almost unchanged but the energy consumption decreases. Lowering
∆tLim,TJY also increases the trajectory velocity at local minima of vLim,Map,v̇
and can cause the trajectory to exceed vLim,Map,v̇ at its local minima. Such
a behavior decreases energy consumption and increases average velocity
at the same time at the expense of driving safety. The increase in average
velocity is not observed though.

vLim,Map,v̇ is an upper speed limit calculated using parameters that are de-
termined in real test drives. Slightly exceeding vLim,Map,v̇ is in most cases
not noticed but should be avoided because the extent to which the trajectory
exceeds vLim,Map,v̇ is not clearly defined. Figures in Chapter 5 demonstrate
that trajectories with ∆tLim,TJY = 1 s stay below vLim,Map,v̇ . Figure 5.4 indi-
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Figure 6.7: Histograms of the relative frequencies of relative differences between
vehicle velocity vVhcl and speed limit from map data with desired ac-
celeration vLim,Map,v̇ for different temporal safety margin to upper
speed limit ∆tLim,TJY with R−1

P =
1

5000 , ∆tκ = 1.5 s and I = 1.

cates that even with the combination ∆tLim,TJY = 1 s, I = 5 and ∆tκ = 5 s
the trajectory remains below vLim,Map,v̇ .

For a more complete assessment of the extent and relative frequency of
vLim,Map,v̇ exceedances, Figure 6.7 shows histograms of the relative dif-
ference between the actual vehicle velocity vVhcl and vLim,Map,v̇ for the
∆tLim,TJY = 1 s and ∆tLim,TJY = 2 s with the other parameters ∆tκ = 1.5 s,
I = 1 and R−1

P =
1

5000 . The histograms reveal that there are exceedances
which was to be expected because of the unconstrained trajectory optimiza-
tion problem formulation. The majority of these remain below 2 %, which
also includes the controller inaccuracies. Higher exceedances can be ob-
served but their relative frequencies are too low to lead to a safety critical
situation during the roughly 1400 s long drive. It also needs to be mentioned
that map data itself is not perfect and can be deprecated or be unavailable,
especially during the first seconds after the driver has taken a different route
than expected by the system in real test drives, which poses a higher risk in
practice. Nevertheless, a slight shift to higher velocities is noticeable when
∆tLim,TJY is reduced from 2 s to 1 s, which leads to a reduction in the energy
consumption if the exceedance occurs in curves.

Figure 6.8 shows histograms of the relative exceedance for two values of
the weight of power error square R−1

P , whereby ∆tLim,TJY = 1 s, ∆tκ = 1.5 s
and I = 1. The results indicate that stronger penalization of the electrical
traction power mainly leads to an in general slower drive and is unlikely to
cause an exceedance of vLim,Map,v̇ in curves for the chosen settings.
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Figure 6.8: Histograms of the relative frequencies of relative differences between
vehicle velocity vVhcl and speed limit from map data with desired ac-
celeration vLim,Map,v̇ for different weight of power error square R−1

P
with ∆tLim,TJY = 1 s, ∆tκ = 1.5 s and I = 1.

Saving potential and assessment

� For the parameter combination ∆tLim,TJY = 1 s, ∆tκ = 1.5 s and I =
1, the ALC achieves on average the largest absolute energy savings with
respect to MLC. With additionally R−1

P =
1

1000 , the ALC requires 3.4 % less
energy than the MLC at the same average velocity of 59.0 km/h, and for the
same energy of 16.9 kWh/100km the ALC achieves a 2.6 % higher average
velocity. Increasing R−1

P from 1
1000 to 1

50 , reduces the energy consumption
by 2.9 % while the average velocity decreases by 3.1 %.

Table 2.2 on page 11 supports assessing the time and energy savings by
summarizing the results for different types of vehicles, roads and ALCs.
The results in the first three lines were obtained for the WR, however for a
conventional vehicle. The saving potential of a BEV is much lower than for
a conventional or hybrid vehicle because of three reasons:

• Recuperation capability: The table indicates that when investigations
include a highway section, the saving potential is in general less than
when only urban and country road sections are considered. This
seems reasonable as drives on the latter types of roads usually incor-
porate much more acceleration and deceleration than highways and
kinetic energy cannot be recovered for later use without losses. While
conventional vehicles need to convert all kinetic energy into heat, hy-
brid vehicles can recuperate at least some of it. BEVs have the highest
recuperation power limit and therefore can reuse much more energy.
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• Efficient power train: The tank to wheel efficiency (c.f. Section 4.4)
of a BEV is much higher, especially because the electric motor does
not perform the inefficient conversion from the chemical energy of
the fuel into kinetic energy as a combustion engine in a conventional
vehicle or hybrid electric vehicle (HEV) does. An efficiency of up
to 95 % for electric motors and of up to 35% for petrol engines are
stated in [10]. As part of the electricity comes from non-renewable
energy sources, an inefficient energy conversion process usually also
takes place for the operation of a BEV but it occurs earlier during
the electricity production from non-renewable energy sources and is
therefore less frequently considered. Since the mix of available en-
ergy sources varies with the region so does the efficiency of fuel and
electricity generation. If these processes are efficient, the total effi-
ciency also referred to as well to wheel efficiency can be twice as high
for a BEV than for a conventional vehicle. The gear box in a BEV
is also more efficient since it usually only has a fixed gear ratio and
therefore much less moving parts [10].

• Less degrees of freedom for optimization of driving stategy: Since
most BEVs have a fixed gear ratio the only degree of freedom is the
choice of torque, which is however strongly coupled to the trip time
and constrained quantities such as velocity and acceleration. Opposed
to that, the power train of a conventional vehicle offers selected gear
and clutch state as additional degrees of freedom for optimization. In
a HEV even the way internal combustion engine, electric motor and
battery work together can be chosen. For that reason the latter vehicle
types benefit strongly from a look-ahead driving strategy.

Due to these aspects it is no surprise that the largest time saving of
21.13 % at the same energy consumption is stated for a HEV and the largest
energy saving of 23.8 %, that however is accompanied by a 1.5 % longer
trip time, is reported for a conventional vehicle. These large savings were
achieved in investigations including country road and urban sections though.

For a BEV the results of Table 2.2 state average energy savings of 1.21 %
on a 1400 km long highway section and of 5.6 % on an only 400 m artificial
road profile which comes closest to an urban section due to its velocity of
roughly 30 km/h and maximum absolute slopes of 10 %. Compared to
these results, the savings achieved by the ALC of this work seem reasonable.
Adopted from [79].
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6.4 Technical contribution

On the level of driver assistance systems, the contribution of this work is
the development of an energy-efficient automated longitudinal control for a
BEV and its parametrization and test in simulations and real test drives. The
developed ALC system shares some similiarities with the solution presented
in [114, 139, 183]. All systems use predictive route data and measurements
of a radar sensor. Each system performs an ACC functionality that is ex-
tended by the use of map data. This enables the system to choose a suitable
velocity depending on legal speed limits and road geometry.

The systems can provide the most benefit on winding country roads, on
which the standard ACC requires frequent manual adaption of the desired
velocity. The systems can also be used on highways and within cities. How-
ever, on highways there is a comfort advantage over ACC only when the
legal speed limit changes and within cities the driver frequently has to inter-
ven because the systems do no consider right of way or traffic signs. Fur-
thermore, other traffic participants are only detected by a radar sensor.

Power train models enable the systems to determine a more energy effi-
cient driving strategy compared to manual driving.

The differences and unique features of the system described in this work
refer to the target vehicle and especially the approach for planning the course
of velocity. The two target vehicles in [139] have an internal combustion
engine and the two target vehicles in [183] a hybrid power train. Therefore
rather complex planning approaches that consider gear selection are applied
to derive an energy-efficient course of velocity. � In contrast a BEV like the
target vehicle for this work usually has a 1-speed gear box, i.e. a constant
gear ratio. The proposed ALC includes a novel trajectory planning method
that takes advantage of the simple BEV power train.

Compared to the ALC that was developed for the same research vehicle
during the preceding project, the ALC in this work uses a trajectory with
respect to time. Especially at low speeds the time-based approach enables a
much more dynamic vehicle behavior, which is beneficial for driver accep-
tance. Furthermore, the ALC of this work considers the required electrical
power explicitly and allows to optimize the trajectory not only with respect
to travel time and comfort but also with respect to driving efficiency.

In simulative investigations of the energy-saving potential for a BEV the
ALC requires up to 3.4 % less energy than the MLC for the same average
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velocity and achieves a 2.6 % higher average velocity for the same energy
consumption on the reference route.

In a final acceptance test about ten employees of the project partners who
all work in automotive research and engineering tested the ALC on self cho-
sen routes. The ALC yielded throughout good comments, which especially
addressed the comfortable and smooth driving style.

The developed system can be used on its own or in combination with
other assistance systems such as an automated lateral control. Adopted
from [79].
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7.1 Summary

This work describes novel methods for the general problem of approximat-
ing an unbounded number of data points using a B-spline function in the lin-
ear and nonlinear weighted least squares (WLS) sense. The developed meth-
ods are based on iterative algorithms for state estimation and their computa-
tional effort increases linearly with the number of data points. The methods
can adjust the bounded definition range of a B-spline function during run-
time if this is required to approximate the latest data point.

The approximation problem is reformulated as a trajectory optimization
problem such that the approximation methods compute a velocity trajectory
with respect to time using data points created from map data. The developed
trajectory optimization methods fall into the category of direct methods and
its effort increases linearly with the temporal length of the planned trajec-
tory. The combination with an adaptive model that describes the power
train properties of the battery electric vehicle (BEV), allows to plan veloc-
ity trajectories whose resulting energy consumption varies depending on the
chosen relative weighting of different target criteria.

The trajectory optimization is extented to an assistance system for auto-
mated longitudinal control (ALC) that is tested in simulation as well as in
real test drives. In simulations on a reference route the developed ALC is
compared to a recorded and re-simulated real drive with manual longitudi-
nal control (MLC) and can achieve better ratios between average velocity
and energy consumption than MLC.

7.2 Contribution

The contribution of this work is threefold and comprises approximation al-
gorithms, a trajectory planning method and a system for energy-efficient
ALC of a BEV.

Iterative algorithms are proposed for the approximation of an unbounded
set of data as it occurs in online applications. The first algorithm denoted
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recursive B-spline approximation (RBA) and prepublished in [80] solves a
linear WLS approximation problem iteratively using a Kalman filter (KF).
The second algorithm is termed nonlinear recursive B-spline approxima-
tion (NRBA) and prepublished in [78]. NRBA is generalization of RBA for
nonlinear weighted least squares (NWLS) problems and uses a marginal-
ized particle filter (MPF). In the MPF a particle filter (PF) deals with the
nonlinear subproblem, whereas a linear KF solves the linear subproblem
optimally.

RBA and NRBA include a novel shift operation which allows to shift the
bounded definition range of a B-spline function during run-time such that it
is always possible to take into account the latest data point. With previous
recursive algorithms the approximation interval is fixed during run-time and
if data outside this interval occurs, it cannot be considered. Moreover, the
shift operation allows to decrease the size of vectors in the filters in order
to reduce computational effort in both offline and online applications. In
offline applications all data points are available at once, so their number is
bounded and batch processing in one step is possible. In contrast, in online
applications, additional data points are oberved in each time step, therefore
a previously calculated solution must be updated with each new observation.

The exponential growth of computational effort with increasing time hori-
zon limits the application of direct trajectory optimization approaches to
short time horizons. � This work presents a direct trajectory optimization
method whose computational effort only grows linearly with the number of
function parameters or the time horizon.

This substantial saving in computational effort is achieved by taking adan-
tage of the comparatively simple power train of a BEV with fixed gear ra-
tio and by formulating constraints coming from the vehicle dynamics or
the environment mainly as soft constraints. The resulting nonlinear op-
timization problem is formulated as an NWLS problem and solved using
NRBA. The trajectory can be optimized with respect to travel time, comfort
and energy consumption. Without consideration of energy consumption the
nonlinear optimization problem can be approximated by a quadratic opti-
mization problem that is solved with less computational effort using RBA.
Adopted from [79].

The trajectory is defined by a B-spline function that describes the desired
vehicle velocity with respect to time. The temporal length of the trajectory
increases with the iterations and the number of function parameters does
not need to be bounded. If the temporal length of the trajectory must be
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increased, function parameters can be added during the optimization. After
each iteration an intermediate result is available. The optimization can be
paused and continued in accordance with computation time constraints.
� Based on the novel trajectory planning approach a system for energy-

efficient automated longitudinal control of a BEV is developed and tested in
simulation and real test drives. The system can provide the most benefit on
winding country roads, but can also be used on highways and within cities.

In simulations on a chosen reference route the ALC needs up to 3.4 % less
energy than the MLC for the same average velocity and achieves a 2.6 %
higher average velocity for the same energy consumption as with MLC.

For additional subjective impressions, employees in automotive research
and engineering tested the ALC on other, individually chosen routes. The
throughout good reviews especially mentioned the comfortable and smooth
driving style of the ALC. Adopted from [79].

7.3 Suggestions for further research

The approximation algorithms RBA and NRBA have only been investigated
for B-spline functions. According to Section 2.3, they can be extended to
multidimensional control points for approximation of parametric curves and
surfaces. Furthermore, RBA and NRBA can be transferred to other spline
representations which offer local control and arise from a linear combination
of basis functions and control points.
� Additionally, the modular concept of these algorithms allows to replace

the included filters. The KF used for the linear approximation is known to
be optimal, but for the PF and the MPF used for the nonlinear approxima-
tion various improvements are available in literature. For example, [203]
proposes a MPF that determines the particles of the PF using particle swarm
optimization and achieves better results at lower effort compared to both a
standard MPF and PF. Adopted from [78]. Even more promising for the
nonlinear approximation seems using a kernel adaptive filter as it does not
suffer from the curse of dimensionality and requires only solving a convex
problem, which is very beneficial for real-time applications (c.f. Section 2.4
and Subsection 4.7.2).

Regarding trajectory planning the computation of the temporal safety
margin to upper speed limit can be enhanced such that the trajectory fol-
lows the upper speed limit closer at high speeds while still remaining below
local minima of the upper speed limit.
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A more comprehensive improvement consists of an adaptive selection of
the values of temporal distance of neighboring knots, the temporal safety
margin to upper speed limit and the temporal distance of neighboring data
points so that the trajectory degrees of freedom per trajectory time unit are
not constant but depend on the driving situation. For example, on country
roads and highways with simple shape of the upper speed limit, temporal
distance of neighboring knots and temporal distance of neighboring data
points can be increased. Then, for the same computational effort, longer,
more farsighted trajectories can be planned because the tractory degrees
of freedom are temporally less dense. The resulting larger time horizon,
that can be optimized simultaneously by the proposed local trajectory op-
timization approach, facilitates achieving higher reductions of energy con-
sumption. In contrast, in situations with complicated upper speed limit or
at low speeds, the values can be reduced to enable a more dynamic trajec-
tory. Analogously, the relative weighting of the trajectory optimization can
be designed adaptive.

Moreover, additional information can be used for calculating the upper
speed limit. This can be either data from vehicle-based sensors such as cam-
eras for detecting traffic signs and other traffic participants like pedestrians
or it can be messages of other vehicles or the infrastructure. In particular the
driving style should be adapted according to the present weather and friction
coefficient between tire and road [19].

The mentioned improvements of the trajectory planning directly translate
to improvements of the ALC system which can also be extended by other
systems such as a lateral control system.

Alternatively, the trajectory optimization approach can be combined with
Dynamic Programming (DP), as [187, pp. 1430-1431] suggests and Ta-
ble 2.5 illustrates, in order to solve more complex problems, for which the
presented filter-based approach on its own seems not suitable.

In such a case, DP can still plan in the spatial domain, which can be
even more coarsely discretized for less computational effort because a rough
long-term trajectory is sufficient. From this long-term trajectory the filter-
based trajectory optimization approach creates a smooth trajectory in time
domain with the benefits mentioned in Section 5.2 that can represent the
vehicle velocity starting from zero so that the case of driving off can also be
covered by the trajectory optimization.
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