Numerical thermomechanical modelling of lava dome growth during the 2007–2009 dome-building eruption at Volcán de Colima

Natalya Zeinalova,1 Alik Ismail-Zadeh,1 Igor Tsepelev,2 Oleg Melnik3 and Frank Schilling1

1Karlsruhe Institute of Technology, Department of Civil Engineering, Geo and Environmental Sciences, Institute of Applied Geosciences, 76131 Karlsruhe, Germany. E-mail: akin.ismail-zadeh@kit.edu
2Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, 620108 Yekaterinburg, Russia
3ISTerre, University Grenoble Alpes, 38058 Grenoble, France

Accepted 2023 October 18. Received 2023 October 16; in original form 2022 November 19

SUMMARY

Lava domes form during effusive eruptions due to an extrusion of highly viscous magmas from volcanic vents. In this paper we present a numerical study of the lava dome growth at Volcán de Colima, Mexico during 2007–2009. The mathematical model treats the lava dome extrusion dynamics as a thermomechanical problem. The equations of motion, continuity and heat transfer are solved with the relevant boundary and initial conditions in the assumption that magma viscosity depends on the volume fraction of crystals and temperature. We perform several sets of numerical experiments to analyse the internal structure of the lava dome (i.e. the distributions of the temperature, crystal content, viscosity and velocity) depending on various heat sources and thermal boundary conditions. Although the lava dome growth at Volcán de Colima during short (a few months) dome-building episodes can be explained by an isothermal model of lava extrusion with the viscosity depending on the volume fraction of crystals, we show here that cooling plays a significant role during long (up to several years) episodes of dome building. A carapace develops as a response to a convective cooling at the lava dome–air interface. The carapace becomes thicker if the radiative heat loss at the interface is also considered. The thick carapace influences the lava dome dynamics preventing its lateral advancement. The release of the latent heat of crystallization leads to an increase of the temperatures in the lava dome interior and to a relative flattening of the dome. Meanwhile, the heat source due to viscous dissipation inside the lava dome is negligible, and it does not influence the lava dome growth. The developed thermomechanical model of the lava dome dynamics at Volcán de Colima can be used elsewhere to analyse effusive eruptions, dome morphology and carapace evolution including its failure potentially leading to pyroclastic flow hazards.

Key words: Numerical modelling; Lava rheology and morphology; Heat transfer; Crystallization; Volcán de Colima.

1 INTRODUCTION

An effusive eruption of highly viscous magma leads to a lava dome growth in the volcanic crater interrupted by its collapse due to gas pressure building-up or gravitational instability. The collapse events may completely or in part remove the dome and result in pyroclastic density currents—high-speed avalanches of rocks and ashes. The thermomechanical structure of a lava dome interior (i.e. the temperature, the crystal content and the lava viscosity) is poorly known. However, this knowledge is critical for assessment of potential dome collapse and related hazards (e.g. Voight & Elsworth 2000; Watts et al. 2002). Lava dome dynamics is governed by crystallization and outgassing of the viscous magma in the volcanic conduit (Melnik & Sparks 1999). The domes represent extrusions of a high viscous magma from a volcanic vent, which are affected by degassing, crystallization and cooling. Lava dome morphology varies with the discharge rate, the kinetics of the crystal content growth, the temperature and the vent geometry (e.g. Tsepelev et al. 2020; Mériaux et al. 2022). A highly viscous dome-forming magma prevents significant lateral advancement of the extruded lava from the vent compared to a less viscous lava, which flows along the volcano’s topographic slope. At low eruption rates, lava dome dynamics is associated with high groundmass crystallinity and...
substantial yield strength (e.g. Lavallée et al. 2012; Calder et al. 2015; Sheldrake et al. 2016). Due to cooling, domes develop a ‘solid’ carapace (a highly viscous surface layer of the dome). This carapace remains deformable for days to months (Anderson & Fink 1990) influencing the dome morphology (Iversen 1990) because of the mobility of less viscous lava within the interior of the dome.

Lava dome growth has been monitored at several volcanoes (e.g. Nakada et al. 1999, 2019; Watts et al. 2002; Harris et al. 2003; Wadge et al. 2014; Zobin et al. 2015). Monitoring allows mapping the spatial and temporal development of lava domes and determining the morphological changes during the growth as well as the changes in the lava volume over time. Since 1998 seismic and other types of geophysical and geodetic monitoring at Volcán de Colima, Mexico, revealed several lava dome-building episodes of different duration from days to several years (Zobin & Tellez 2019). According to Zobin et al. (2017), one of the longest dome-building episodes at the volcano occurred from early 2007 until late 2009. Camera images (Fig. 1) outline the morphology of the growing lava dome at Volcán de Colima for several years (Breton-González et al. 2013). The observed morphological shapes of the lava dome help to constrain the results of numerical modelling by fitting the modelled dome shapes to the observed shapes.

Analogical and numerical models play an essential role in understanding lava extrusion dynamics (e.g. Fink & Griffiths 1998; Corrigan et al. 2015). Numerical models of lava dome growth help to analyse the influence of the rheological properties of magma including degassing-induced crystallization, and heat transfer on the dome morphology (e.g. Hale & Wadge 2003; Husain et al. 2014; Harnett et al. 2018; Tsepelev et al. 2019, 2020; Starodubtseva et al. 2021; Zeinalova et al. 2021). Numerical models of a rapid dome-building process at Volcán de Colima in 2013 have been developed by Walter et al. (2019) and Tsepelev et al. (2021). Zeinalova et al. (2021) developed a numerical model of a slow lava dome-building process at Volcán de Colima to analyse the influence of the magma viscosity and discharge rates on the dome growth during 2007–2009. Their viscosity model incorporated the crystal-dependent viscosity and the constant crystal-free melt viscosity, while the model did not depend on temperature. By introducing an artificial thin carapace of a high viscosity at the interface between the lava dome and the air, Zeinalova et al. (2021) showed that this carapace helps to constrain a lateral advancement of the lava dome and keeps the model results in a good agreement with the observation. The model by Zeinalova et al. (2021) does not consider thermal effects on the lava dome growth and hence does not allow a carapace to be formed and evolved due to cooling.

Here, we present a numerical study of the thermomechanical evolution of the lava dome at Volcán de Colima during 2007–2009 to understand the lava dome extrusion dynamics and the dome growth using a more sophisticated model. The research questions we try to answer in this study include: How does temperature influence the lava dynamics and the evolution of the dome carapace? How do the latent heat of crystallization and the viscous dissipation impact the lava dome dynamics? How do the thermal boundary conditions and the heat transfer at the lava–air interface influence the dome dynamics and its morphology? Below we introduce a thermomechanical model of lava dome extrusion dynamics and the dome growth (in Section 2), present the results of numerical experiments with varying physical characteristics of the lava dome (in Section 3) and discuss the results (in Section 4).

2 MODEL DESCRIPTION

2.1. Geometry and governing equations

We model a lava dome growth in a 2-D domain $\Omega = \Omega_1 \cup \Omega_2 \subset \mathbb{R}^2$. The geometry of the domain (Fig. 2) is asymmetric with respect to the model conduit. We choose one of the model geometries used by Zeinalova et al. (2021), allowing the horizontal spreading of the modelled lava dome to be in a good agreement with the lava dome spreading at Volcán de Colima across the E–W profile. The lava dome base is assumed to be located 20 m below the central part of the visible crater’s rim (Bretón-González et al. 2013), the width of the crater is 257 m and the width and the depth of the conduit are 14.5 and 30 m, respectively (Zobin et al. 2015). The model ‘conduit’ is assumed to be a near-surface vertical channel filled with old, solidified rocks; fresh magma (with the prescribed temperature, crystal content and discharge rate) enters through the bottom of the channel, moves up and extrudes to the surface. In contrast to the work of Husain et al. (2018), we separate the model of magma extrusion and lava dome growth from the model of magma flow in a volcanic conduit and concentrate in this study on the physical processes within the growing lava dome.

In model domain Ω, we consider a 2-D incompressible, two-phase, immiscible viscous fluid flow approximating an extrusion of the lava (one fluid phase) into the air (another fluid phase) on the surface of the crater. The interface between the lava and the air presents a stress-free surface. The influence of the air on the lava dome growth is insignificant due to a large ratio between densities/viscosities of the air and the lava. The lava dynamics is described by the Navier–Stokes equations with the initial condition $u(t = 0, x) = 0$

$$\frac{\partial (\rho u)}{\partial t} + (u, \nabla) (\rho u) - \nabla \cdot (\eta (\nabla u + \nabla u^T)) = -\nabla p - \rho g, \quad \text{(1)}$$

the continuity equation

$$\nabla \cdot u = 0, \quad \text{(2)}$$

and heating equation with the initial condition for the temperature $T(t = 0, x) = T_c$ for $x \in \Omega_1$ and $T(t = 0, x) = T_a$ for $x \in \Omega_2$

$$\frac{\partial (c_p T)}{\partial t} + \nabla \cdot (u (c_p T)) = \nabla \cdot (k \nabla T) + LH - HF + VD. \quad \text{(3)}$$

Here, t is the time; $x = (x_1, x_2)$ is the position vector in 2-D Cartesian coordinates; $u = (u_1, u_2)$ is the velocity; p is the pressure; $g = (0, g)$, g is the acceleration due to gravity and T is the temperature. The term $LH = L^* \rho_0 \frac{\partial \phi}{\partial T}$ describes the latent heat release in magma/lava due to crystallization (Kirkpatrick 1976; Costa et al. 2007a), where $L^* = 3.5 \times 10^7 \text{J kg}^{-1}$; Costa et al. 2007a) is the latent heat of crystallization; ϕ is the volume fraction of crystals; and $\frac{\partial \phi}{\partial T} = \frac{\partial \phi}{\partial T_{\phi}} + \nabla \cdot (\phi \underline{u})$. The term HF accounts for both the convective heat transfer at the interface of the lava and the air $HF_T = [\lambda(T - T_a)]\delta_t$, or the radiative and non-linear convective heat transfer at the interface $HF_n = [\varepsilon \sigma (T^4 - T_	ext{air}^4) + \lambda(T - T_	ext{air})] \delta_t$, (Neri 1998; Tsepelev et al. 2019), where λ is the convective heat transfer coefficient, $\varepsilon = (0.9$; Ramsey et al. 2019) is the effective emissivity of the lava dome solid surface; σ is the Stefan–Boltzmann constant; δ_t is the non-linear convective heat transfer coefficient measured in $[\text{W m}^{-2} \text{K}^{-4}]$ (Neri 1998); T_a is the air temperature; δ_t is the special function determined at interface δ between the lava and the air measured in $[\text{m}]$. The term $VD = \eta (\nabla u + \nabla u^T)$ describes the viscous dissipation. Symbols ∇ is the gradient operator, $\nabla \cdot$ is the divergence operator, T is the transposed matrix, δ_t is
the double-dot product (the trace of the inner product) of two matrices and \((\cdot, \cdot)\) is the scalar product of vectors, respectively. The model density \(\rho\), viscosity \(\eta\), thermal conductivity \(k\) and specific heat capacity \(c\) are represented as

\[
\rho(t, \mathbf{x}) = \rho_0 \alpha(t, \mathbf{x}) + \rho_a (1 - \alpha(t, \mathbf{x})),
\]

\[
\eta(t, \mathbf{x}) = \eta_0 \alpha(t, \mathbf{x}) + \eta_a (1 - \alpha(t, \mathbf{x})),
\]

\[
k(t, \mathbf{x}) = k_0 \alpha(t, \mathbf{x}) + k_a (1 - \alpha(t, \mathbf{x})),
\]

\[
c(t, \mathbf{x}) = c_0 \alpha(t, \mathbf{x}) + c_a (1 - \alpha(t, \mathbf{x})),
\]

where \(\rho_0, \eta_0, k_0, c_0\) and \(\rho_a, \eta_a, k_a, c_a\) are the air density, viscosity, thermal conductivity and specific heat capacity, respectively (we consider these parameters to be constant); and \(\rho_0, \eta_0, k_0, c_0\) are the lava density, viscosity, thermal conductivity and specific heat capacity, respectively (these parameters are not constant and may depend on the temperature, volume fraction of crystals and other physical variables; to be specified below). The function \(\alpha(t, \mathbf{x})\) equals 1 for the lava and 0 for the air at each point \(\mathbf{x}\) and at time \(t\), and this function is transported with the velocity \(\mathbf{u}\) according to the advection equation with the initial condition \(\alpha(t = 0, \mathbf{x}) = 1\) for \(\mathbf{x} \in \Omega_1\) and \(\alpha(t = 0, \mathbf{x}) = 0\) for \(\mathbf{x} \in \Omega_2\).

\[
\frac{\partial \alpha}{\partial t} + \nabla \cdot (\alpha \mathbf{u}) = 0.
\]

2.2. Lava rheology

The lava viscosity \(\eta_l\) measured in [Pa s] is defined here as a multiplication of the melt viscosity \(\eta_{ml}\) and the relative viscosity, depending on the volume fraction of crystals \(\eta_{cr}\):

\[
\eta_l(T, \phi) = \eta_{ml}(T) \eta_{cr}(\phi).
\]

The melt viscosity \(\eta_{ml}(T)\) (measured in [Pa s]) experimentally determined for lavas at Volcán de Colima is presented by the Vogel–Fulcher–Tamman equation:

\[
\log_{10} \eta_{ml}(T) = a + \frac{b}{T_c - T_g},
\]

where the melt viscosity was fitted for the temperatures from 1000 °C down to the glass transition temperature \((T_g = 710 °C)\).
for a strain rate of one, \(a = 0.29, b = 606.9 \, ^\circ \text{C}, T_\text{C} \) is the temperature in \(^\circ\text{C}\) (Lavallée et al. 2012). We adopt the model proposed by Costa et al. (2009) to define the dimensionless viscosity depending on the volume fraction of crystals as

\[
\eta_{\text{ef}}(\phi) = (1 + \psi')(1 - (1 - \xi)\text{erf}\left(\frac{\sqrt{\pi}}{2(1 - \xi)}\psi(1 + \psi')\right))^{-B\phi},
\]

where \(\psi = \phi/\phi_c; \phi_c \) is the specific volume fraction of crystals representing the critical solid fraction at the onset of the exponential increase of \(\eta_{\text{es}}(\phi) \) (Costa et al. 2009); \(B \) is the theoretical value of the Einstein coefficient; \(\delta, \xi, \gamma \) are the rheological parameters (Lejeune & Richet 1995; Costa et al. 2009). Although the crystal-dependent viscosity is influenced by the shape, size and orientation of crystals (Cimarelli et al. 2011; Frontoni et al. 2022), we do not use the dependence because of the lack of information on the crystal characteristics for the lavas from Volcán de Colima erupted from 2007 to 2009. As the crystal-bearing melt viscosity for lava samples from Volcán de Colima was estimated to be \(10^{11-12} \) Pa s (Lavallée et al. 2007), we limit the lava viscosity \(\eta_l \) to a value of \(10^{12} \) Pa s in all numerical experiments except two, where the effect of the higher viscosity (up to \(10^{14} \) Pa s) of the lava dome carapace is analysed.

In the modelling, the volume fraction of crystals is determined from the evolutionary equation describing the simplified crystal content growth kinetics of degassing-induced crystallization (e.g. La Spina et al. 2016; Tsepelev et al. 2020)

\[
\frac{d\phi}{dt} = -\phi - \phi_q, \tag{10}
\]

where \(\phi(t = 0, x) = \phi_{0,\Omega} \) for \(x \in \Omega_1 \) and \(\phi(t = 0, x) = 0 \) for \(x \in \Omega_2 \). Here, \(\phi_{0,\Omega} \) is the volume fraction of crystals at the equilibrium state depending on the concentration of water dissolved in magma and temperature (Riker et al. 2015; Cashman 2020); \(\tau \) is the relaxation time (the characteristic time of the crystal content growth needed by crystals to reach \(\phi_{eq} \)), which is required to reduce the difference between the actual (\(\phi \)) and equilibrium (\(\phi_{eq} \)) values of the volume fractions of crystals by a factor of \(e \) with respect to the initial difference (\(\phi_0 - \phi_{eq} \)). The constant \(\phi_{eq} = 0.83 \) describes a hyperconcentrated regime of a magma/lava flow with the strong interaction of crystals and the considerable increase of the viscosity (e.g. Costa 2005; Frontoni et al. 2022). The temperature-dependent \(\phi_{eq} \) was determined from laboratory measurements of Volcán de Colima lava samples at various temperatures (Moore & Carmichael 1998) by fitting parameters \(a_1, b_1 \) and \(c_1 \) to get the following relationship:

\[
\phi_{eq} = 1/(1 + \exp\left[a_1 + b_1 T_{sp}/T_{sp} + c_1 (T_{sp}/T_{sp})^2\right]), \tag{11}
\]

where \(T_{sp} = 1000 \, ^\circ\text{C}, a_1 = -42.4, b_1 = 51.04 \) and \(c_1 = -11.11 \).

2.3. Initial and boundary conditions

At the initial time, the model conduit (subdomain \(\Omega_1 \)) is filled by a lava with the volume fraction of crystals \(\phi_c \) at temperature \(T_c \) and the subdomain \(\Omega_2 \) by air at temperature \(T_a \). The following conditions are imposed on the model boundary \(\Gamma = \Gamma_1 \cup \Gamma_2 \cup \Gamma_3 \) (Fig. 2), where \(\Gamma_1 \) is the part of the boundary from where new magma enters into the model via conduit; \(\Gamma_2 \) is the part of the boundary related to the crater surface and its nearby surrounding; and \(\Gamma_3 \) is the upper boundary of the model domain, through which the air escapes from the model. A new magma (of the density \(\rho_1 \), the viscosity \(\eta_1 \), the volume fraction of crystals \(\phi = \phi_0 \) and the temperature \(T_0 \)) enters into the model domain at the specified extrusion rate \(\mathbf{u}_{\text{ext}} = 0, (u_{\text{ext}}) \) through \(\Gamma_1 \) (red line). The initial volume fraction of crystals \(\phi_0 \) is taken to be 0.4 as the critical crystal fraction separating the diluted (non-interacting suspended particles) and particle-concentrated regimes of magma/lava flow (Lejeune & Richet 1995; Frontoni et al. 2022). Although \(\phi_0 \) is constant in the model, we test a sensitivity of the model with respect to a higher value of the initial volume fraction of crystals.

The lava extrusion rate (\(m \, s^{-1} \)) is derived from the discharge rate (\(m^3 \, s^{-1} \)) constraining it by optimization of the fit between the 2-D morphological shape of the observed dome (Bretón-González et al. 2013) and that of the modelled domes (Zeinalova et al. 2021). To match the observed and modelled heights of the lava dome, the following extrusion rates \(u_{\text{ext}} \) have been chosen following Zeinalova et al. (2021): \(5 \times 10^{-5} \) m s\(^{-1}\) for the first 300 d, \(7.5 \times 10^{-6} \) m s\(^{-1}\) from day 301 to day 455, \(2 \times 10^{-5} \) m s\(^{-1}\) from day 456 to day 480 and \(1.7 \times 10^{-5} \) until day 822.

The conditions imposed on the model boundary \(\Gamma_1 \) are simplified; namely, constant (time-independent) values of density, viscosity, the volume fraction of crystals, temperature and the extrusion rate can be considered as approximations to the dynamic conditions in a volcanic conduit. A proper coupling between the conduit and the lava dome (using dynamic conditions on the boundary) may result in a cyclic behaviour of lava dome growth (e.g. Costa et al. 2012). No-slip condition \(\mathbf{u} = 0 \) is prescribed at \(\Gamma_2 \). To satisfy the incompressibility condition (eq. 2) due to lava extrusion and hence to preserve the volume of the model domain, the air should be removed from the domain at the lava discharge rate. Hence, the outflow condition is determined at \(\Gamma_3 \) (the blue curve) as \(\mathbf{u}_{\text{out}} = \mathbf{u}_{\text{ext}} \), \(\phi = 0 \) and \(\alpha = 0 \), where \(\mathbf{u}_{\text{ext}} = -|\mathbf{\Gamma}_3|^{-1} \int (\mathbf{u}_{\text{ext}} \cdot \mathbf{n}) d\mathbf{\Gamma}_3 \), and \(\mathbf{n} \) is the outward unit normal vector at a point on the model boundary.

2.4. Solution method

To solve numerically the problem described above, we use the Ansys Fluent software (Ansys Fluent 2021R2; https://www.ansys.com/products/fluids/ansys-fluent), where the finite volume method (e.g. Ismail-Zadeh & Tackley 2010) is used to solve the models of lava dome dynamics on multiprocessor computers by numerical simulations of multi-phase viscous fluid flow and heat transfer. The software uses the volume of fluid (VOF) method (Hirt & Nichols 1981), which allows for computationally inexpensive treatment of a moving interface between two fluid phases, for example the lava and the air. The model domain is discretized by about 60 000 cells (finite volumes), and the linear size of the cells is about 0.8 m. A finer spatial discretization of the model domain slightly refines the numerical results but significantly increases the time of computations. The cells containing the interface between the lava and the air have \(\alpha \) values between zero and unity depending on the lava proportion in the cells. The term \(\alpha \phi \) in eq. (3) containing the special function (the Dirac delta function) is calculated in a thin layer of the cells adjacent to the interface between the lava and the air, and the special function is approximated by the ratio of the length of a relevant cell to the cell’s area.

Following Zeinalova et al. (2021), the second-order upwind schemes are used to approximate the Laplacians, and the monotonic schemes are used to discretize convective terms in the equations. The \(P-u \) coupling is handled by the SIMPLE method (Patankar & Spalding 1972), where the relaxation parameters are chosen to be
0.01 and 0.3 for P and \mathbf{u}, respectively. We assign 0.5 to the relaxation parameters for α, T and ϕ. A time step is chosen in the range of 1–40 s depending on the stability and optimization of the numerical solution to assure a convergence of a set of linear algebraic equations (SLAE), which is obtained after the discretization of the governing equations. In the modelling, we use the conjugate-gradient method to solve SLAE.

A second-order implicit time integration scheme is used to solve the numerical problem. To test the stability of the numerical solution of the problem, several tests have been performed at different relaxation parameters and time steps. We note that the implicit scheme is unconditionally stable with respect to the size of time steps. An employment of explicit schemes in the model led to unstable numerical results even for the small Courant number (Courant et al. 1928). The high viscosity ratio between the lava and the air presents some computational challenges at their interface. Although the implicit time integration scheme used in this modelling allows for any time step size, the large time steps lead to a high numerical diffusion at the lava–air interface and to the physically implausible results; therefore, the time step was chosen sufficiently small. Also, because of the viscosity discontinuity at the lava–air interface the choice of the relaxation parameters in the SIMPLE method is critical, and sometimes the parameters were lowered to ensure the solution’s stability. The numerical accuracy attains 10^{-3} for the solution of the SLAE to find P and \mathbf{u}, and 10^{-6} for the solution of SLAE to find α, T and ϕ.

Numerical experiments were carried out on the multiprocessor computer (bwHPC) of the Karlsruhe Institute of Technology. The time of computations of the numerical models depends on several factors including the complexity of the mathematical problem, the number of computational cells, the number of cores and the time-step size. For example, 1 d of the lava dome growth in the model (eqs 1–10 with the initial and boundary conditions described in Section 2.3) is computed by eight cores for about 6 min, using the model time step 40 s. Figs 3–5, 7–8, 10–11 were made with ParaView visualisation software (version 5.9.0-RC3 64-bit, https://www.paraview.org).

3 Numerical Results

Here, we present the results of numerical experiments analysing the influence of the following thermal conditions on the dome growth and its morphology: (i) the heat transfer at the interface between the lava and the air, (ii) the latent heat release during crystallization, (iii) the viscous dissipation, (iv) the temperature-dependence of the volume fraction of crystal at the equilibrium state and (v) the heat transfer at the interface between the lava and the conduit wall/the crater. Finally, we use the model to study the lava dome growth during the 2007–2009 dome-building eruption at Volcán de Colima. The principal purpose of this analysis is to understand how the thermal conditions (i)–(v) influence the dome evolution individually and in combination, and which of the conditions influence the model results most significantly. Eqs (1)–(11) have been used to solve the models of lava dome growth. The numerical experiments are described in Table 1, and the model parameters used in the experiments are listed in Table 2. The first and second sets of numerical experiments concern the influence of the convective (described in Section 3.1) and convective-radiative (Section 3.2) heat flux at the lava–air interface on the morphology of modelled lava domes, when the latent heat release during crystallization, the viscous dissipation and the temperature-dependent volume fraction of crystals are accounted. The third set of experiments (Section 3.3) consider the effects of various thermal conditions at the conduit wall and the crater surface and the fourth set of two experiments (Section 3.4) deal with the evolution of the lava dome at Volcán de Colima for several years.

3.1 Convective heat transfer at the lava–air interface

In the case of the convective heat transfer at the interface between the lava and the air ($HF = HF_t$ in eq. 3), we study the lava dome growth with no latent heat ($LH = 0$) and no viscous dissipation ($FD = 0$) terms in the heat equation (eq. 3; experiment 1.1), with the added VD term (experiment 1.2), the added LH term and constant ϕ_{eq} (experiment 1.3) and the added LH term and the temperature-dependent ϕ_{eq} as defined in eq. (11; experiment 1.4). The results of the numerical experiments, namely, the temperature, crystal content, viscosity and flow velocity at day 300 are presented in Fig. 3.

The dome in these experiments builds upward and advances horizontally with a higher velocity towards the right due to the crater’s geometry chosen in the model. The magma at temperature $1250\,K$ enters the model conduit and extrudes on the surface forming a lava dome. This temperature is in a good agreement with the temperatures of dome-building eruptions at Volcán de Colima (Lavallée et al. 2008). The convective heat transfer at the interface between the lava and the air results in a temperature decrease and in the development of a cold surface layer of the lava dome (carapace). In the dome interior, the lava remains hot enough and less viscous, and hence behaves as a ductile and mobile material throughout the entire period of the dome growth. This occurs because the thin dome carapace is unable to restrain the less viscous lava in the dome interior.

As the characteristic time of the crystal content growth τ is chosen to be 5 d, crystals reach their equilibrium state rapidly already within the conduit, and the volume fraction of crystals stays constant ($=0.83$) in the lava dome after that (see Fig. 3, experiments 1.1–1.3). The smaller the relaxation time, the faster the crystallization process converges to its equilibrium state, the lava viscosity increases and the more viscous lava builds dome rather vertically than horizontally (e.g. Tsepelev et al. 2020; Zeinalova et al. 2021). The crystal-dependent viscosity reaches the value $\eta_c(\phi = 0.83) \sim 10^6$, and hence, the dynamics of the lava dome depends on the temperature and the melt viscosity.

The dynamics of magma flows in a long narrow conduit is controlled by thermal effects due to heat generation by the viscous dissipation; namely, the dissipation leads to a temperature rise during the magma ascent in the conduit (Costa et al. 2007b). In experiment 1.2, we have investigated the influence of the viscous dissipation on the lava dome development. We found that the effect of the heat generation due to the viscous dissipation is negligible, because the shear rates are much smaller than those in the narrow conduit; the temperature change is within a degree compared to the case of experiment 1.1 (see Supporting Information, SM). This leads to almost invisible change in lava viscosity and the morphological shape of the dome (see Fig. 3, experiment 1.2).

The latent heat of crystallization is a part of the entire heat budget of the thermal history of lava domes. The latent heat released during the crystallization influences the conduit and lava dome temperature and contributes to variations in the lava viscosity (Hale et al. 2007; Costa et al. 2007a; Morse 2011). In experiment 1.3, we have analysed the influence of the latent heat on the lava dome temperature.
Figure 3. Modelling lava dome growth presenting the temperature, crystal content and viscosity together with the velocity vectors for the convective heat transfer at the lava–air interface at time $t = 300$ d. The white curves (here and in Fig. 5) represent the area of the elevated temperature due to the latent heat release.

Figure 4. The evolution of the temperature-dependent volume fraction of crystals at the equilibrium state at times of 100, 200 and 300 d.

Figure 5. Modelling lava dome growth presenting the temperature, crystal content and viscosity together with the velocity vectors for the convective radiative heat transfer at the lava–air interface at time $t = 300$ d.
and its viscosity. Due to a convective heat loss at the lava–air interface, the high-viscous carapace develops. The temperature increases in the dome interior from 1250 to 1367 K due to the latent heat release (Fig. 3, experiment 1.3; the area of the elevated temperature is marked by a white curve) compared to the case with no latent heat (Fig. 3, experiment 1.1). The higher temperature within the dome interior promotes dome flattening and its lateral advancement to the right compared to that without the latent heat transfer.

When the volume fraction of crystals depends on temperature (experiment 1.4), the release of the latent heat postpones the crystallization, this lowers slightly the lava viscosity, and it results in a further flattening of the lava dome and its horizontal advancement (Fig. 3, experiment 1.4). In experiment 1.4, all parameters are the same as in experiment 1.3 except $\phi_{\text{eq}}(T)$, which is now a temperature-dependent variable. The equilibrium value $\phi_{\text{eq}}(T)$ decreases to about 0.7 due to the increased temperature as a result of the latent heat release (Fig. 4). The maximum temperature of the modelled lava dome drops to the value of 1329 K compared to the maximum temperature of 1367 K in the case of experiment 1.3; this is associated with the reduction in $\phi_{\text{eq}}(T)$ and the subsequent decrease of the latent heat release. The crystal content becomes lower, while the lava viscosity in the dome interior slightly decreases to about 10^{13} Pa s in the right overhang of the lava dome. This leads to a minor increase in the flow velocity and the lava dome advances to the right more than in the case of experiment 1.3; the height of the dome decreases accordingly. Despite the viscosity of the carapace is higher compared to that of the dome interior, it cannot restrict the horizontal flow. We note that although the temperature-dependence of the crystal content (eq. 11) might be plausible for the use in lava dome modelling, it raises uncertainties about being a well-parametrized representation for high-silica magmas at temperatures lower than 1250 K (e.g. Moore & Carmichael 1998).

The difference between the shapes of the modelled domes in experiments 1.1–1.2 and in experiments 1.3–1.4 is associated with the distribution of the lava viscosity in the dome interior. A higher viscosity of the lava dome interior (experiments 1.1–1.2) is required to maintain a vertical growth. The lava dome (experiments 1.3–1.4) tends to flatten due to its lower viscosity in the dome interior (ranging from about 10^{10} to 10^{10} Pa s) compared to the viscosity of the dome interior in the case of experiment 1.1 or experiment 1.2 (ranging from about 10^{10} Pa s to about 10^{11} Pa s).

3.2. Non-linear convective and radiative heat transfer at the lava–air interface

We present here the results of numerical experiments on the lava dome growth accounting for non-linear convective and radiative heat transfer ($HF = HF_{c} + HF_{s}$ in eq. 3) at the interface between the lava and the air. As in the previous case (Section 3.1), we study models of the lava dome growth with no latent heat and no viscous dissipation accounted (experiment 2.1), with the viscous dissipation term (experiment 2.2) and the latent heat term (experiment 2.3). Also, we analyse the influence of the temperature-dependent ϕ_{eq} (experiment 2.4) and the initial volume fraction of crystals ϕ_{i} (experiment 2.5) on the lava dome morphology.

A thick carapace forms at the lava–air interface due to the non-linear convective-radiative heat flux. The thicker carapace (compared to the carapace in the case of the convective heat transfer

![Figure 6](https://academic.oup.com/gji/article-abstract/236/1/290/7325994?lookahead=1)
Modelling of dome growth at Volcán de Colima

Figure 7. Modelled lava dome growth. The temperature together with the velocity vectors (left-hand column), crystal content (middle column) and viscosity (right-hand column) at time $t = 300$ d.

Figure 8. Comparison of the morphological shapes of the modelled domes in experiment 4.1 (solid green curves with index e) and experiment 4.2 (solid red curves with index f) alongside with the observed shapes of the lava dome (dotted black curves with index o) on 1 May 2008 (index 1), 4 December 2008 (index 2) and 1 April 2009 (index 3). The grey dashed line is the crater’s rim. The black bold line presents the base of the crater, and the red dotted line is the top of the conduit.
only; Section 3.1) retards the horizontal advancement of the lava dome (Fig. 5) and promotes the growth of the dome upwards. The temperature and viscosity structures of the lava dome interior in experiments 2.1–2.4 are similar to those in experiments 1.1–1.4.

To analyse the influence of the initial volume fraction of crystals ϕ_{in} on morphology of lava dome, ϕ_{in} has been increased (from 0.4 to 0.6) in experiment 2.5. Since the initial volume fraction of crystals in experiment 2.5 is higher compared to experiment 2.4, the temperature decreases for about 20 K due to a smaller latent heat release. The lower temperature results in a higher value for $\phi_{\text{eq}} \sim 0.83$ (Fig. 4, experiment 2.5) in contrast to experiment 2.4, where $\phi_{\text{eq}} \sim 0.73$ (Fig. 4, experiment 2.4). This leads to a
Table 1. Numerical experiments.

<table>
<thead>
<tr>
<th>No. exp.</th>
<th>Convective heat transfer</th>
<th>Convective-radiative heat transfer</th>
<th>Latent heat release</th>
<th>Viscous dissipation</th>
<th>Thermal conditions at the model boundary</th>
<th>$\phi_{\text{eq}}/\phi_{\text{in}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>Heat flux = 0</td>
<td>0.83/0.4</td>
</tr>
<tr>
<td>1.2</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>Heat flux = 0</td>
<td>0.83/0.4</td>
</tr>
<tr>
<td>1.3</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>Heat flux = 0</td>
<td>0.83/0.4</td>
</tr>
<tr>
<td>1.4</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>Heat flux = 0</td>
<td>$\phi_{\text{eq}}(T)/0.4$</td>
</tr>
<tr>
<td>2.1</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>Heat flux = 0</td>
<td>0.83/0.4</td>
</tr>
<tr>
<td>2.2</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>Heat flux = 0</td>
<td>0.83/0.4</td>
</tr>
<tr>
<td>2.3</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>Heat flux = 0</td>
<td>0.83/0.4</td>
</tr>
<tr>
<td>2.4</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>Heat flux = 0</td>
<td>$\phi_{\text{eq}}(T)/0.4$</td>
</tr>
<tr>
<td>2.5</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>Heat flux = 0</td>
<td>$\phi_{\text{eq}}(T)/0.6$</td>
</tr>
<tr>
<td>3.1</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>Temperature 350 K at Γ_2</td>
<td>0.83/0.4</td>
</tr>
<tr>
<td>3.2</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>Temperature 350 K at Γ_2</td>
<td>$\phi_{\text{eq}}(T)/0.4$</td>
</tr>
<tr>
<td>3.3</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>Temperature 350 K at Γ_2</td>
<td>$\phi_{\text{eq}}(T)/0.4$</td>
</tr>
<tr>
<td>3.4</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>Conductive heat flux at Γ_2</td>
<td>0.83/0.4</td>
</tr>
<tr>
<td>3.5</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>Temperature 350 K at the crater surface, 500 K at the conduit wall</td>
<td>0.83/0.4</td>
</tr>
<tr>
<td>3.6</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>Temperature 350 K at the crater surface, 700 K at the conduit wall</td>
<td>0.83/0.4</td>
</tr>
<tr>
<td>4.1</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>Heat flux = 0</td>
<td>0.83/0.4</td>
</tr>
<tr>
<td>4.2</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>Heat flux = 0</td>
<td>$\phi_{\text{eq}}(T)/0.4$</td>
</tr>
</tbody>
</table>

Table 2. Model parameters and their values.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter, unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>the Einstein coefficient (in eq. 9)</td>
<td>2.5</td>
</tr>
<tr>
<td>c_r</td>
<td>specific heat capacity of air, J kg$^{-1}$ K$^{-1}$</td>
<td>1006</td>
</tr>
<tr>
<td>c_l</td>
<td>specific heat capacity of lava, J kg$^{-1}$ K$^{-1}$</td>
<td>1200</td>
</tr>
<tr>
<td>g</td>
<td>acceleration due to gravity, m s$^{-2}$</td>
<td>9.81</td>
</tr>
<tr>
<td>k_a</td>
<td>thermal conductivity of air, J s$^{-1}$ m$^{-1}$ K$^{-1}$</td>
<td>0.025</td>
</tr>
<tr>
<td>k_l</td>
<td>thermal conductivity of lava, J s$^{-1}$ m$^{-1}$ K$^{-1}$</td>
<td>3.0</td>
</tr>
<tr>
<td>L^*</td>
<td>latent heat coefficient, J kg$^{-1}$</td>
<td>3.5×10^5</td>
</tr>
<tr>
<td>T_a</td>
<td>air temperature, K</td>
<td>300</td>
</tr>
<tr>
<td>T_{in}</td>
<td>initial temperature of the magma in the conduit, K</td>
<td>1150</td>
</tr>
<tr>
<td>T_{in}</td>
<td>temperature of the new magma entering the conduit, K</td>
<td>1250</td>
</tr>
<tr>
<td>u_{ext}</td>
<td>extrusion rate, m s$^{-1}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>from day 1 to day 300</td>
<td>5.0×10^{-6}</td>
</tr>
<tr>
<td></td>
<td>from day 301 to day 455</td>
<td>7.5×10^{-6}</td>
</tr>
<tr>
<td></td>
<td>from day 456 to day 480</td>
<td>2.0×10^{-5}</td>
</tr>
<tr>
<td></td>
<td>from day 481 to day 822</td>
<td>1.7×10^{-5}</td>
</tr>
<tr>
<td>δ</td>
<td>rheological parameter (in eq. 9)</td>
<td>7.24</td>
</tr>
<tr>
<td>ε</td>
<td>effective emissivity</td>
<td>0.9</td>
</tr>
<tr>
<td>ϕ_{ct}</td>
<td>initial volume fraction of crystals in the magma in the model conduit</td>
<td>0.8</td>
</tr>
<tr>
<td>ϕ_{in}</td>
<td>volume fraction of crystals of the new magma entering the model conduit</td>
<td>0.4</td>
</tr>
<tr>
<td>ϕ_s</td>
<td>specific volume fraction of crystals</td>
<td>0.591</td>
</tr>
<tr>
<td>γ</td>
<td>rheological parameter (in eq. 9)</td>
<td>5.76</td>
</tr>
<tr>
<td>η_{air}</td>
<td>air viscosity, Pa s</td>
<td>0.001</td>
</tr>
<tr>
<td>λ_1</td>
<td>coefficient of convective heat transfer, J s$^{-1}$ m$^{-2}$ K$^{-1}$</td>
<td>3.0</td>
</tr>
<tr>
<td>λ_2</td>
<td>non-linear convective heat transfer coefficient, J s$^{-1}$ m$^{-2}$ K$^{-4/3}$</td>
<td>5.5</td>
</tr>
<tr>
<td>ρ_{air}</td>
<td>air density, kg m$^{-3}$</td>
<td>1</td>
</tr>
<tr>
<td>ρ_l</td>
<td>lava density, kg m$^{-3}$</td>
<td>2500</td>
</tr>
<tr>
<td>σ</td>
<td>Stefan–Boltzmann constant, J s$^{-1}$ m$^{-2}$ K$^{-4}$</td>
<td>5.67×10^{-8}</td>
</tr>
<tr>
<td>τ</td>
<td>characteristic time of the crystal content growth, days</td>
<td>5</td>
</tr>
<tr>
<td>ξ</td>
<td>rheological parameter (in eq. 9)</td>
<td>4.63×10^{-4}</td>
</tr>
</tbody>
</table>
The inclusion of the temperature-dependent ϕ_{eq} (experiment 3.2) slightly alters the viscosity distribution, retards the lava advancement and leads to vertical growth compared to experiment 3.1 (Fig. 7). In the case of experiment 3.3, the latent heat release leads to increased temperatures, reduction of the crystal content and lowering the lava viscosity. This decrease in viscosity contributes to a horizontal advancement of the lava and flattening the lava dome (Fig. 7). The change in temperature and heat flux at boundary Γ_1 (Fig. 7, experiments 3.1–3.6) leads to cooling of the lava dome at the contact with the crater surface and with the conduit wall. The hot lava concentrates in the conduit centre, where the velocity increases. The changes in the thermal conditions at the crater surface and the conduit wall do not significantly influence the morphological shapes of the lava domes in experiments 3.1, 3.4–3.6. Meanwhile, we note that as the eruption proceeds, the heat flux from the ascending magma will gradually decrease due to heating up the surrounding rocks.

3.4. Lava dome growth at Volcán de Colima from 2007 to 2009

In this section we present the results of two numerical experiments (experiments 4.1 and 4.2) related to the lava dome growth from the start of the lava extrusion in February 2007 until April 2009. In both experiments, the numerical model includes eqs (1)-(10) with the initial and boundary conditions described in Section 2.3, assuming the non-linear convective and radiative heat transfer at the lava–air interface and including the latent heat of crystallization and the viscous dissipation (even though its effect is negligible) in eq. (3). We use the constant (experiment 4.1) and the temperature-dependent (experiment 4.2) ϕ_{eq} in the modelling.

Laboratory and numerical experiments showed earlier that cooling increases the viscosity of the uppermost part of the lava dome and results in developing a high-viscosity carapace (e.g. Fink & Griffiths 1998; Griffiths 2000; Hale & Wadge 2003; Hale et al. 2007; Hale 2008; Husain et al. 2014, 2018, 2019; Harnett et al. 2018; Tssepelev et al. 2020). As the viscosity of the model dome carapace is higher than 10^{12} Pa s at lower temperatures, the threshold of the lava viscosity (eq. 7) was raised to 10^{13} Pa s (and to $10^{13.5}$ Pa s at day 600) in both experiments. The increase of the viscosity in the carapace allows for simulating a lava dome, which morphological shape fits better the dome shape observed at Volcán de Colima. We have used several thresholds (from $10^{12.5}$ to $10^{13.4}$ Pa s) and found that the lava dome still advances horizontally at $10^{12.5}$ Pa s and develops an obelisk-type dome at 10^{13} Pa s, and both scenarios of the dome development contradict the observations on the lava dome growth at Volcán de Colima.

Zeinalova et al. (2021) used a similar approach but introduced an artificial thin carapace with the viscosity 10^{14} Pa s in the model of lava dome growth at day 481 after the commencement of the lava extrusion to mimic the growth of the observed lava dome, as their model did not consider thermal effects (that is, eqs 3, 5 and 8 were not used) and, hence, could not generate a high viscosity carapace. Here, we show how the carapace evolves self-consistently due to cooling of the uppermost part of the dome.

Fig. 8 presents the morphological shapes of the modelled lava dome at times of 1 May 2008 (day 480), 4 December 2008 (day 704) and 1 April 2009 (day 822). The increased viscosity of the carapace due to cooling restrains the lateral advancement of the dome. The
modelled dome develops steep flanks, and its morphology fits observations at Volcán de Colima with a few meter differences in the length of the dome.

Initially, the morphological shapes of the modelled domes (Fig. 8, green and red curves with index e and f, respectively) fit quite well the observed shape of the lava dome (black dashed curve with index o). Later, the lava advances to the right in experiment 4.2 compared to that in the case of experiment 4.1, and this can be associated with a decrease (to about $10^{13.5}$ Pa s) in the viscosity of the dome interior (Fig. 9). These results underscore that the variations in viscosity, particularly between the dome interior and its carapace, along with the introduction of the temperature-dependent ϕ_{ov}, influence the lava dome growth and its morphological shapes.

To quantitatively compare the morphological shape of the modelled dome with that of the observed dome (Fig. 8), we evaluate the closeness of the shape \hat{F} of the part L of the observed dome, which is visible over the crater’s rim (dotted black curves), and the shape F_i of the part L_i of the modelled dome also visible over the crater’s rim. We use the quality functional J_i, which is based on the symmetric difference (Starodubtseva et al. 2021):

$$J_i(\hat{F}, F_i) = \frac{\left((\hat{L} \cup L_i) \setminus (\hat{L} \cap L_i)\right)}{\left((\hat{L} \cap L_i) \setminus (\hat{L} \cup L_i)\right)},$$

where indices $i = 1$ and $i = 2$ denote the modelled domes in experiments 4.1 and 4.2, and S is the area measured in [m^2]. The closeness of the function J_i to zero means the closeness of the observed shape \hat{F} to the model shape F_i. The functional J_1 takes the values 0.12, 0.16 and 0.11 and the functional J_2 the values 0.12, 0.17 and 0.25 for days 480, 704 and 822, respectively. While the morphological shapes of both modelled domes fit the observed shape with the almost same accuracy for the first 704 days, the modelled shapes deviate from each other at the later stages of the dome growth. Namely, in experiment 4.2, the lava advances considerably to the right moving over the crater’s rim and develops an overstepping feature, while the modelled dome heights do not fit well the height of the observed lava dome. In the case of experiment 4.1, the morphological shape of the modelled dome agrees better with the observation.

The carapace of the viscosity $10^{13.5}$ Pa s in the model by Zeinalova et al. (2021) (Fig. 9, experiment Z-2021) is thinner than that of the viscosity $10^{13.5}$ Pa s in the studied models (Fig. 9, experiments 4.1 and 4.2). The thicker carapace constrains the lava dome advance despite its viscosity lower than in the case of the modelled carapace by Zeinalova et al. (2021). The interior of the lava domes in experiments 4.1 and 4.2 has a low viscosity ranging from about $10^{7.5}$ to 10^{8} Pa s.

Although the volume fraction of crystals in experiment 4.1 remains relatively consistent with that in experiment Z-2021 (Zeinalova et al. 2021), the viscosity of the modelled dome interiors in these experiments differs significantly from each other and should influence the dome’s shape. The temperature-dependent volume fraction of crystals at the equilibrium state exerts an impact on the crystal content (experiment 4.2) leading to a decrease in crystal content within the dome interior from 0.83 (Fig. 9, experiment 4.1) to 0.7 (Fig. 9, experiment 4.2). This crystal content’s reduction has a corresponding effect on the latent heat release during crystallization, decreasing the temperature from 1380 K (in experiment 4.1) to 1335 K (in experiment 4.2). Meanwhile the shapes of the modelled domes (in experiments 4.1 and 4.2) remain very similar. Therefore, the viscosity and the thickness of the carapace influence more profoundly the morphological shapes of lava domes.

The modelled domes are presented in Fig. 10 together with the recorded images of the lava dome at Volcán de Colima (Bretón-González et al. 2013). The dome interior in both experiments remains hot and therefore ductile throughout the dome growth during the studied period of the lava extrusion.

4 DISCUSSION AND CONCLUSION

Lava dome eruptions at Volcán de Colima are episodic and vary in the dome building duration from days to months and years without explosive dome collapses. The eruption started in February 2007 with the extrusion of hot rocks from a rising plug of the older magma filling the uppermost part of the conduit (Hutchison et al. 2013). The dome grew continuously, and from the beginning of 2008 its morphology resembled closely that of a truncated cone (Bretón-González et al. 2013; Fig. 1).

Our numerical thermomechanical models of the lava dome growth are validated against recorded dataset from Volcán de Colima during the long dome-building episode lasting from 2007 to 2009 (Bretón-González et al. 2013). We show that long episodes of the dome building require a viscosity model depending on both the crystal content and the temperature to allow for generating a thermal, highly viscous carapace (e.g. Zeinalova et al. 2021). This numerical study has estimated the influence of the lava temperature, thermal boundary conditions, the crystal content, the latent heat of crystallization, the heat due to the viscous dissipation and the heat transfer mechanisms at the lava–air interface on the lava dome dynamics and its morphology.

Although degassing-induced crystallization plays a significant role in lava dome building process, especially during short dome-building episodes (e.g. Walter et al. 2019; Tspelev et al. 2021; Zeinalova et al. 2021), we have shown that the rheological stiffening within the lava dome is essentially controlled by cooling during long dome-building episodes. Cooling influences the viscosity of the lava dome at its interface with the air making the dome carapace more viscous and promotes a development of lobe-shaped lava dome (Watts et al. 2002; Tspelev et al. 2020). The model results indicate that a high-viscous carapace of the lava dome at Volcán de Colima retards the dome lateral advancement and promotes the development of steep slopes on the dome sides. As the magma ascent is slow during the dome growth at Volcán de Colima, the crystal content in the magma grows rapidly and the crystallinity (the volume fraction of crystals) reaches almost its equilibrium state already in the model conduit. Meanwhile, the latent heat release due to crystallization lowers the lava crystallinity.

We have demonstrated that (i) the dome carapace becomes thicker in the case of the convective-radiative heat transfer at the interface between the lava and the air; (ii) the latent heat of crystallization leads to elevated temperature in the conduit and in the lava dome interior and to further flattening of the dome; (iii) the heat source within the dome due to the viscous dissipation is negligible, and can be omitted in the modelling of the lava dome growth and (iv) thermal boundary conditions influence the magma flow pattern and the crystal content in the conduit with an insignificant impact to the dynamics of the dome interior, and hence, to the morphological shapes of the lava dome.

The dynamics of dome eruptions can be more complicated than that described in this work due to the complex interplay between magma decompression, degassing, degassing-induced crystallization, pore-fluid dynamics, temperature and rheological properties of the erupted lava (e.g. Fink & Griffiths 1998; Melnik & Sparks.
1999; Calder et al. 2015). Particularly, our current model cannot simulate a brittle, but ductile only, behaviour of the dome carapace. Tsepelev et al. (2020) showed that in the case of the strain-rate dependent viscosity, the viscosity of the dome carapace increases with the decrease of the strain rate and vice versa. This dependence of the viscosity on strain rates presents a typical behaviour of a non-Newtonian Herschel–Bulkley fluid exhibiting rigid body properties at low strain rates and viscous fluid properties at higher rates.

The dome morphology shall also vary with the strain rate resulting in short and wide domes at higher strain rates, and tall and narrow domes at lower rates (Tsepelev et al. 2020). The form of crystals influences the lava viscosity (Frontoni et al. 2022) and, hence, may lead to changes in the dome morphology. Discrepancies in the shapes of the modelled dome compared to the observed dome shapes can also be associated with a brittle behaviour of the natural dome carapace and its failures, which are important components in natural lava dome developments. Furthermore, 2-D numerical models cannot capture complexity of natural lava dome growth, and 3-D models should provide additional insight into lava dome dynamics.

Although no numerical model is likely to represent the exact lava dome extrusion dynamics, the thermomechanical model accounts for the main dynamic processes and characteristics within the shallow conduit and lava dome, such as the mass and heat transfer (eqs 1–6), the degassing-induced crystallization kinetics (eq. 10), the latent heat of crystallization, the convective and radiative heat flux at the lava interface with the air, conductive heat flux at the crater surface and the shallow conduit wall, and the lava viscosity depending on the volume fraction of crystals and the temperature (eqs 7–9). The present model can be further developed by incorporating the water content and stress-dependence into the lava viscosity model, although efficient degassing, as observed during lava-building eruptions at Volcán de Colima, results in a low (about 9 per cent) mean porosity (Lavallée et al. 2007) and low water contents (2.5 to 0.1 wt. per cent) of Colima eruptive products (Reubi & Blundy 2008).

Using observations (i.e. morphological shapes of the lava dome at Volcán de Colima and experimentally derived material properties of lava samples from the volcano) and models (i.e. crystal growth kinetics, lava viscosity and various heat transfer), this contribution demonstrates that the lava dome growth at Volcán de Colima for 2007–2009 can be well described. Although it was known that the cooling at the surface of the lava dome and the air plays a significant role in the evolution of dome carapaces, we have shown here that the combined effects of the thermal evolution and crystallization in the dome interior and the cooling at the lava–air interface shape the lava dome during long episodes of its building. The developed thermomechanical model of the lava dome evolution can be used at other volcanoes during effusive eruptions, long episodes of lava dome building, the dome carapace formation and its potential failure, which may lead to pyroclastic flow hazards.

ACKNOWLEDGMENTS

We thank Juan Carlos Afonso, Tobias Keller and anonymous reviewer for their constructive and review comments. This is a contribution to the research project funded by the Deutsche Forschungsgemeinschaft (project DFG IS203/14–1). OM is supported by the PAUSE program (grant #C7H-PUB23A59). We are grateful to Vyacheslav Zobin for discussion on the dome growth at Volcán de Colima during 2007–2009.

DATA AVAILABILITY

The data supporting the conclusions of this paper and input model files for Ansys Fluent will be made available by the authors without undue reservation.

AUTHOR CONTRIBUTION

AIZ and NZ (a PhD student) contributed to the conceptualization of the paper. NZ processed the data, developed a numerical model and performed all model experiments. AIZ supervised the study and assisted NZ in numerical modelling and data processing. IT contributed to the development of numerical codes and modelling. AIZ, FS, NZ and OM contributed to interpretation of numerical results. AIZ and NZ performed writing—original draft preparation and figures. All co-authors performed writing—review and editing.

Competing Interests

The authors declare no competing interests.

SUPPORTING INFORMATION

Supplementary data are available at GJI online.

Figure S1. Temperature distribution in the models of lava dome growth in experiments 1.1(a) and 1.2(b).

Figure S2. The heat conduction term (a) and the viscous dissipation term (b) in experiment 1.2.

Please note: Oxford University Press is not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the paper.

REFERENCES

