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1 Introduction

With demands on superconducting microwave circuits increasing over the past
decade [1], it has become clear that their performance is eventually limited by
material losses. As a consequence, increasing experimental effort has been under-
taken to characterize the microwave properties of different materials [2–5] and their
surface oxides [6–8]. For these studies, superconducting resonators have emerged
as one of the most versatile platforms [9], being a central part of both microwave
detectors and quantum circuits for information processing [10]. In particular, noise
and dissipation measured in resonators is related to decoherence of qubits made
from the same materials. While most works aim to find ways to mitigate noise
and dissipation, the corresponding measurements have shown to also offer unique
insights into the complex physics dictating the dynamics of solid-state devices
[11–13].

In the context of microwave resonators, noise typically refers to fluctuations of
the resonance frequency, while dissipation corresponds to the linewidth of the
resonance. In practical applications, where different frequency states have to be
distinguished, both are of importance. For superconducting samples, the most
universally observed sources of noise and dissipation are quasiparticles and two-
level-systems. Quasiparticles (QP), on the one hand, are elementary excitation
within the superconducting film, which contribute to the AC conductance, thereby
causing dissipation [14, 15] and frequency fluctuations [16, 17]. Critically, the
experimentally measured QP concentrations are usually much higher than expected
in thermal equilibrium, a phenomenon that occurs for various reasons [18–20].

Two-level-systems (TLS), on the other hand, primarily exist in the dielectric circuit
layers, e.g., surface or junction oxides. While TLS have long been known to exist in
amorphous and glassy solids [21], their coherent interacting with superconducting
resonators and qubits opened a more direct pathway towards uncovering their
microscopic nature in recent years [22]. The most common form of TLS are atoms
or groups of atoms tunnelling between two nearly degenerate configurations. If
the atom is charged, such a TLS possesses an electric dipole moments which can
couple dissipatively [23] or dispersively [24] to a resonant circuit. While dissipative
coupling renders the circuit inoperable in a certain frequency range and provides
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1 Introduction

a parasitic channel for energy relaxation [25, 26], dispersive coupling leads to
resonance frequency fluctuations in the form of 1/ f or RTS noise [27, 28], likewise
limiting the overall performance [29, 30].

In this work, noise and dissipation is studied in granular aluminum, a disordered
superconducting material. Due to its particularly high kinetic inductance, granular
aluminum has proven valuable for many quantum circuit applications, like kinetic
inductance detectors [31, 32], nanowire devices [33, 34], and junction free [35–
37] or protected [38, 39] qubit architectures. Further, it allows fabrication of high
impedance resonators with an enhanced dipole coupling strength [40]. Combined
with the good magnetic field resilience of disordered superconductors [41], this
promotes their application in hybrid quantum systems including molecular or
semiconductor spin qubits [42, 43].

For disordered superconductors, the kinetic inductance of a film is directly propor-
tional to its normal state sheet resistance, which, in the case of granular aluminum,
depends on the oxygen concentration of the sample. However, when the resistivity
of the film surpasses a critical value, it become insulating instead of superconduct-
ing. The quantum nature of this so-called superconductor to insulator transition
(SIT), which imposes a natural limit on the maximum obtainable kinetic induc-
tance, is still under intense debate [44]. Fueled by the increasing use of disordered
superconductor in quantum circuits and detectors as well as the realization that
high-Tc superconductors are intrinsically disordered [45, 46], new theoretical and
experimental efforts in this direction are still being put forward [44].

While, in the past, good microwave properties have been reported for granular
aluminum samples sufficiently far from the SIT [3, 47], the high degree of disorder
implies the presence of intrinsic defects, possible opening up new loss channels.
Indeed, several experiments have recently reported peculiar frequency fluctuations
in granular aluminum circuits [37, 48, 49]. At the same time, it remains an open
question how the microwave properties of disordered films generally change in the
vicinity of the SIT, as experiments studying SIT physics usually resort to scanning
tunneling microscopy [50–52] or optical spectroscopy [53–55].

Here, to address these issues, multiple ultra-compact, high impedance supercon-
ducting resonators are fabricated from different granular aluminum films with the
goal to investigate how noise and dissipation of these resonators changes when
experimental parameters like temperature or probing power are varied. In particu-
lar, samples with different normal state resistances gradually approach the SIT are
compared to that effect. Additionally, electric and strain fields are used to perform
TLS spectroscopy on the same samples.
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1 Introduction

This thesis is organized as follows: In the next chapter, a short overview of the
theories on (disordered) superconductors is provided, with a special focus on gran-
ular aluminum as well as material specific loss mechanisms, i.e, quasiparticles and
two-level-systems. Subsequently, the theoretical framework for superconducting
resonators embedded in a microwave network is provided. In chapter four, the
tools necessary for fabricating and analyzing granular aluminum resonators are
described. Thereafter, the experimental results are presented in two consecutive
chapters, covering noise measurements and TLS spectroscopy data, respectively.
Finally, the thesis is concluded by a brief summary of the main results.
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2 Disordered superconductors

The discovery of superconductivity by Heike Kamerlingh Onnes[56] spawned a
widespread quest at beginning of the 20th century to investigate the low tem-
perature properties of different materials. Because the available range of pure
metals that undergo a phase transition into the superconducting state is limited,
scientist eventually explored more exotic systems to shine light on the nature of
superconductivity. A group of materials that was intensely studied were disordered
superconductors [57–60], i.e, metal compounds like nitrides, oxides, or silicides.
The apparent contradiction between the purity of the superconducting state and
the disorderd nature of these compounds was later resolved by Anderson [61], who
showed that superconductivity is almost insensitive to any general type of disorder.
Consequently, disordered superconductors are, to a degree, well described by the
phenomenological [62–64] and microscopic theories [65, 66] that were developed
for conventional superconductors.

In the first part of this chapter, a brief summary of these theories is given, extended
by a discourse on the response of superconductors to high frequency electro-
magnetic field. There, particular attention is paid to the derivation of the kinetic
inductance, a hallmark property of disordered superconductors. In the second
part, the peculiarities of granular aluminum, the material of choice for this work,
are detailed for different resistance regime. Finally, in the third part, mechanisms
specific to superconducting thin films which can introduce noise and dissipation
in microwave circuits are discussed, providing a basis for the theoretical analysis
of the experiments presented in the later part of the thesis.

2.1 Theoretical description of superconductivity

The term "superconductivity" was coined by Heike Kamerlingh Onnes himself
to describe the zero resistance state he measured on mercury below a critical
temperature Tc [56]. This property was viewed as the main characteristic of su-
perconductors until 1933, when Walther Meissner and Robert Ochsenfeld found
that superconductors also expel magnetic fields from their interior, up to a critical
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2 Disordered superconductors

value. Remarkably, this effect is observed regardless whether the transition to the
superconducting state occurs before or after the magnetic field is applied [67],
making superconductors perfect diamagnetism and thus fundamentally different
from an ideal conductor.

2.1.1 Fundamental properties

One of the first works that provided an explanation for the fundamental properties
of superconductivity was the theory developed by Ginzburg and Landau in 1950
[63]. The starting point for their calculations was the more general Landau theory
for phase transitions [68]. In this context, Landau introduced an order parameter
Ψ = |Ψ|eiΦ that is zero on one side of the phase transition occurring at T = Tc and
nonzero on the other. They then expanded the free energy of the system f (Ψ, A)

around T ≈ Tc up to forth order in Ψ and introduced gradients to the model to
go beyond a constant, spatially uniform order parameter. The change of the free
energy density due to the superconducting phase transition then reads

δ f (Ψ, A) = αGL|Ψ|2 + βGL

2
|Ψ|4 + 1

2ms
|(−ih̄∇− qsA)Ψ|2 + B2

2µ0
, (2.1)

where, ms is an effective mass and qs an effective charge, and B = ∇ × A the
magnetic filed with the corresponding electromagnetic vector potential A. The
parameters αGL and βGL are introduced as material dependent constants. In the
absence of fields and gradients (A = 0 , ∇Ψ = 0, ), it is easy to see that for αGL ≥ 0
the free energy has a single minimum at Ψ = 0, corresponding to the normal state.
If αGL < 0 instead, δ f (Ψ) has a ring of minima with nonzero amplitude |Ψ| =
Ψ∞ =

√
−αGL/βGL but arbitrary phase Φ (see Fig. 2.1(a) for 2D representation),

corresponding to the superconducting state.

Minimizing the free energy density with respect to either Ψ or A yields the two
Ginzburg-Landau equations

0 = αGLΨ + βGL|Ψ|2Ψ +
1

2ms
(−ih̄∇− qsA)2Ψ, (2.2)

js =
qs h̄

2ims
(Ψ∗∇Ψ − Ψ∇Ψ∗)− q2

s
ms

|Ψ|2A, (2.3)

where js = ∇× B/µ0 is the supercurrent density. By studying spacial variations of
the order parameter, e.g., on the surface of a superconducting film, one finds from
Eq. 2.2 that they decays on a characteristic lenght scale

ξGL =

√
h̄2

−2msαGL
, (2.4)
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2.1 Theoretical description of superconductivity

Figure 2.1: Theories of superconductivity. a) The phenomenological model by Ginzburg and
Landau describes superconductivity as a temperature driven, second order phase transition. Below
the critical temperature Tc (αGL ∝ (T − Tc) < 0), the order parameter minimizing the free energy
takes a non-zero value. b) In the microscopic BCS-theory, a phonon mediated, attractive electron-
electron interaction leads to the condensation of Cooper pairs, accompanied by an energy gag
emerging around the Fermi surface with radius kF. Excitation above this gap are superpositions of
electrons and holes, called quasiparticles.

the so-called Ginzburg-Landau coherence length (Fig. 2.1(b)). Looking at the limit
of a uniform Ψ(x) instead, once can simplify Eq. 2.3 to

js = − q2
s

ms
|Ψ|2A = qs|Ψ|2vs, (2.5)

where vs is the velocity of the superconducting charge carriers. Prior to the the-
ory of Ginzburg and Landau, the brothers Fritz and Heinz London developed a
description of the superconductor’s electromagnetic properties [62], where they
found a similar expression for the supercurrent density

js = qsnsvs. (2.6)

Comparing Eq. 2.5 and Eq. 2.6 then identifies the Ginzburg-Landau order parameter
|Ψ|2 = |Ψ∞|2 = ns as the density of the superconducting charge carriers. Using
the Maxwell equations, they further showed that these currents (and the magnetic
field) decay exponentially inside the superconductor on a length scale

λL =

√
ms

µ0q2
s ns

, (2.7)

which is called the London penetration depth.

7



2 Disordered superconductors

The Ginsburg-Landau theory and the London theory provided a first phenomeno-
logical explanation for superconductivity and the corresponding parameters are, to
this day, important quantities for the characterization of superconducting materials.
However, they can not make any claim on the microscopic origin of the supercon-
ducting state. This problem was first successfully tackled by John Bardeen, Leon
Neil Cooper and John Robert Schrieffer (BCS) in 1957 [65]. Their theory was based
on the assumption that a traveling electron causes a temporal vibration of the lattice
perturbing the next electron, leading to an attractive (phonon mediated) electron-
electron interaction which, at low enough temperatures, leads to the formation
of so-called Cooper pairs with charge qs = 2e (ms = 2me). Making a mean-field
approximation, they were able to write down the following BCS Hamiltonian

HBCS = EBCS + ∑
k

Ekγ†
kγk, (2.8)

where EBCS is the energy gained by the ground state due to the electron pairing.
Excitation above this ground state are called (Bogoliubov [69]) quasiparticles,
which are linear combinations of the electron creation and annihilation operators
γk = u∗

kck − vkc†
−k. The corresponding energy

Ek =
√

ϵ2
k + ∆2. (2.9)

is a function of the total energy ϵk of an electron with momentum k and the
strength of the mean field ∆ ∝ Tc. From Eq. 2.9, one finds that a gap of 2∆ emerges
around the Fermi surface (see Fig. 2.1(b)), which is the minimum energy necessary
to break a Cooper pair into two quasiparticles.

Generally, the emergence of superconductivity should be understood as a two step
process. After their formation, which is accompanied by the opening of the gap ∆,
Cooper pairs condensate into a macroscopic quantum state which can be described
by a single wave function, in accordance with Landaus initial guess. Indeed, shortly
after the BCS paper, Gor’kov derived the Ginzburg-Landau equations from BCS
theory [70], showing that the order parameter can be expressed as

Ψ ∝ |∆|e−iΦ. (2.10)

As a consequence, there are two energy scales controlling the stability of the
superconducting state: the quasiparticle gap ∆ and the stiffness J ∝ ns of the global
phase Φ, i.e, the energy required to apply a phase twist of unit magnitude over
a unit length [71]. In most conventional superconductors ∆ ≪ J, and, as shown
by BCS theory, the transition temperature Tc only depends on the magnitude
of ∆. However, in thin films made from strongly disordered superconductors
with low charge carrier densities, J can become relevant and even destroy the
superconducting ground state, as will be discussed in Sec. 2.2.2.
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2.1 Theoretical description of superconductivity

2.1.2 Collective modes

So far, only the mean field state of the superconducting order parameter was
considered, i.e, the value that minimizes the Landau free energy (or, for the BCS
theory, simply a constant value ∆). In reality, however, the system will rather
fluctuate around Ψ, which manifests as collective modes of the superconducting
condensate. To see this, one should write

Ψ = (Ψ0 + δΨ)e−i(Φ0+δΦ), (2.11)

with δΨ and δΦ being the fluctuations of the amplitude and phase, respectively.
The change of the Landau free energy density (Eq. 2.1) then becomes [72]

δ f (Ψ, A) =− 2αGLδΨ2 − h̄2

2ms
|∇δΨ|2

− ns h̄2

2ms

∣∣∣∇δΦ − qs

h̄
A
∣∣∣2 + 1

2µ0
|∇ × A|2

(2.12)

keeping only terms up to second order in the fluctuations (Gaussian approxima-
tion). From Eq. 2.12, one can see that the amplitude fluctuations have a mass of
−2αGL, which, according to macroscopic theories, coincides with the gap energy
2∆. Due to this mass, they are commonly referred to as Higgs mode.

The phase fluctuations in Eq. 2.12, on the other hand, appear to be masless. This
so-called Goldstone mode is a direct consequence of the spontaneously broken U(1)
phase symmetry at the superconducting phase transition (Fig. 2.1(a)). However,
upon closer inspection, one realizes that the free energy is invariant under the
gauge transformation

A → A − h̄
q
∇δΦ. (2.13)

Thus, the phase fluctuations are eaten by the field A, which in turn becomes massive
inside the superconductor (Anderson-Higgs mechanism).1 The corresponding mass
nsq2

s /2ms is typically much larger than ∆.

Due to the high energy associated with the "Goldstone" mode and the large phase
space for the decay of the Higgs mode into quasiparticles, they are both difficult
to observe experimentally. In disordered superconductors, however, the situation
might be different [73]. Various calculations based on a effective bosonic XY lattice
model [74] showed that the phase modes can appear as a subgap spectral feature

1 The Meißner effect can be thought of as a direct consequence of this mass term.
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2 Disordered superconductors

in the optical conductivity if the disorder is sufficient [75–78]. In particular, it was
shown that these modes acquire an effective dipole moment [75]

dΦ =
1

Eα

(
∑

i
Ji,i+x∆µΦ̂i,α

)2

, (2.14)

where Φ̂i,α is the phase operator of each mode with energy Eα, ∆µ=x,y is the phase
gradient in µ direction, and Ji,j is the local phase stiffness that dictates the hopping
of Cooper pairs between different lattice sites.

From Eq. 2.14 on can see that if the system is homogeneous (Ji,j = J), dΦ is pro-
portional to the total phase gradient over the sample which vanishes for periodic
boundary conditions. In the inhomogeneous case, however, dΦ is finite and should
be experimentally accessible. While some works promoted the idea that Higgs
modes could also appear below the gap in disordered samples [79], explicit calcu-
lations [80] suggest that signatures of amplitude fluctuations only appear du to
strong mixing with underlying phase modes.

2.1.3 Electrodynamic response

Because Cooper pairs condense into a collective, macroscopic state (Eq. 2.10) that is
insensitive to small-scale effects like scattering, DC currents inside a superconduc-
tor flow without any resistance. However, in this work, superconducting films are
mainly studied by applying microwave signals. There, to describe the non-static
response of a superconductor to alternating fields, it is usefully to follow the ap-
proach of Tinkham and introduce the complex conductivity of the superconducting
state σs = σ1 − iσ2 [81, 82]. An instructive starting point for the calculation of σs is
the Drude model [83], which describes the electrical transport in materials as

σ =
nq2τ

m(1 + ω2τ2)
− i

nq2ωτ2

m(1 + ω2τ2)
(2.15)

Here, τ is relaxation time of the charge carriers q with mass m and ω is the
frequency of the alternating field. In the normal state, ωτ ≪ 1 for all relevant
frequencies and Eq. 2.15 describes Ohmic behavior. In the superconducting state,
the relaxation time τ → ∞ is practically infinite and the conductivity becomes
almost purely imaginary σs ≈ iσ2 = −insq2

s /(msω).2 Here, qs = 2qe and ms = 2me

2 For DC currents, the resistivity ρdc = 1/σdc of the superconductor is always zero because σdc =

nq2τ/m ∝ τ → ∞. However, for ω ̸= 0, the ratio σdc/ωτ remains finite and the AC resistance can
become nonzero, i.e, the Cooper pairs no longer provide a perfect shunt for the quasiparticles.

10



2.1 Theoretical description of superconductivity

are the charge and mass of a Cooper pair, respectively. A more specific expression
for σs can be derived from BCS theory, including also quasiparticle contributions
(σ1 ̸= 0, see Sec. 2.3.1 for details)). Since, for T ≪ Tc, these only has a minor effect
on the overall behavior, their (direct) influence will be neglected for the following
discussion.

In the thin film limit, where the film thickness tz ≪ λL is small compared to the
field penetration, the current distribution is almost uniform and one can write
σs

wxtz
ly

= 1
Z = 1

R+iωLk
[14]. Then it is easy to see that the AC response of the

superconductor is given by a sheet inductance

L□
k =

Lk

N□ =
1

ω| Im(σs)|t
=

ms

nsq2
s

1
tz

, (2.16)

where N□ = ly/wx is the number of squares of the wire with lenght ly and width
wx. By extending the BCS theory to time-varying electromagnetic interactions,
Mattis and Bardeen found a more handy expression for the complex conduction,
relating it to the normal state conductance σn [66]. Then, the sheet inductance

L□
k ≈ h̄R□

n
π∆

, (2.17)

can directly be calculated from the normal state sheet resistance R□
n = (σntz)−1,

which is easily accessible experimentally.

Because conceptionally, this inductance emerges from the momentum vs ∝ ω ob-
tained by the Cooper pairs from electric field, it is referred to as kinetic inductance.
As with any conductor, wires made from a superconducting film also possess a
geometric inductance Lg, whose energy is stored in the magnetic field instead. To
characterize a superconducting film, it is sometimes useful to introduce the kinetic
inductance fraction

α =
Lk
L

=
Lk

Lk + Lg
. (2.18)

Discorded superconductors are metal compounds with a sizable fraction of insu-
lating material, and their charge carrier density, also in the superconducting state,
is therefore typically greatly reduced (compared to the pure superconductor). In
accordance with Eq. 2.16, this yields a higher increased kinetic inductance and it is
possible to achieve α values close to unity. Microscopically, this dependence can be
understood from the fact that, in order to carry the same current, less charge carri-
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2 Disordered superconductors

ers have to be proportionally faster, and the overall kinetic energy 1
2 nsmsv2

s ∝ Lk
increases 3.

An expression for the kinetic inductance can also be derived more rigorously
from the phenomenological theories of superconductivity. Using the first London
equation E = dvs

dt
ms
qs

(direction of the wire, 1D case), one directly finds from the
definition of the inductance

L□
k =

U
N□

(
dIs

dt

)−1
=

E
tz

(
djs
dt

)−1
=

ms

qstz

(
djs
dvs

)−1
=

ms

|Ψ|2q2
s tz

, (2.19)

where in the last step Eq. 2.5 was used. As shown above, the order parameter is
equal to |Ψ|2 = |Ψ∞|2 = ns for weak perturbation fields and Eq. 2.19 thus reduces
to Eq. 2.16, consistent with London theory. However, in order to treat the kinetic
inductance more precisely one should consider the more general case of strong
fields, where qsA = vsms is no longer small. Then, |Ψ| will change from Ψ∞ (but
still has the same value everywhere, tz ≪ ξGL) and minimizing Eq. 2.1 yields [84]

|Ψ|2 = ns

(
1 − msv2

s
2|αGL|

)
(2.20)

instead. The corresponding current density js ∝ v3
s has a maximum value when

the charge carrier velocity reaches v2
c = 2|αGL|/(3ms). The maximum value can be

identified as a critical current density

jc =
2
3

qsns

(
2|αGL|

3ms

) 1
2
=

2
3

qsnsvc. (2.21)

above which the superconducting state is no longer favorable. Combining Eq.
2.19 to 2.21 then yields a expression for the kinetic inductance in case of strong
perturbations [85, 86]

L□
k =

ms

nsq2
s tz

(
1 − v2

s
v2

c

)−1

. (2.22)

By inverting js(vc) along its stable branch, Eq. 2.22 can be rewritten in a more
convenient form as [87]

L□
k ≈ ms

nsq2
s tz

(
1 +

(
2js
3jc

)2
+O(j4s )

)
. (2.23)

3 Equation 2.16 can also be calculated by equating the total kinetic energy with the inductive energy
stemming from the current I = qsvsnswd
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2.2 Granular aluminum

Thus, the kinetic inductance shows a nonlinear dependence on the currents flowing
in the superconductor. Experimental consequences of this dependence for res-
onant circuits where jc ∝ ns is small, which is typically the case for disordered
superconductors, will be discussed in section 3.3.

2.2 Granular aluminum

The disordered superconductor studied in the framework of this work is granular
aluminum. Historically, this material was first investigated in the sixties and sev-
enties, mainly by Abeles in New Jersey [88–91] and Deutscher in Tel-Aviv [92–95].
In the following decades, granular aluminum was repeatedly used in experiments
designed to gain insight in the peculiar nature of superconductivity in granular
films [52, 53, 76, 96–99], but was also studied with regard to its applicability in
superconducting circuits, like single photon detectors [32], superconducting qubits
[35–37, 39], high impedance resonators [3, 41, 47, 49] or nanowire [34] and long
Josephson junction experiments [100]. In microwave applications, it has showed
promising loss properties, [47, 48], in addition to a particularly sizable kinetic
inductance L□

k , unmatched by other popular disordered superconductors [101].

2.2.1 Superconducting properties

Granular aluminum consists of pure aluminum grains with diameter wgrain ∼ 3 −
5 nm embedded in a matrix of amorphous aluminum oxide AlOx (see Fig. 2.2(a)),
which self assembles during the deposition of aluminum in a oxygen atmosphere.
In the process, the oxygen partial pressure influences the thickness of the oxide
barrier separating the grains, around s ∼ 1 − 2 nm and thus the normal state sheet
resistance R□

n . Bellow Tc, the individual grains first become superconducting and
are subsequently coupled via the Josephson effect. 4 In this process, the phase
difference ∆Φ of coupled grains equalizes and all Cooper pairs again form a global
condensate that is described by a single wave function (Eq. 2.10). This assumption is
supported by the fact that the coherence length ξGL ∼ 10 nm in granular aluminum
is larger then the grain size [34].

4 The Josephson effect [102] describes coherent tunneling of Cooper pairs through an insulating barrier
separating two superconductors. The corresponding current is proportional to the phase difference
∆Φ between the two superconductors
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2 Disordered superconductors

Figure 2.2: Microscopic picture and superconducting properties of granular aluminum. a) Trans-
mission electron microscope (TEM) picture of granular aluminum. Inset illustrates the aluminum
grains (Al) embedded in a matrix of amorphous aluminum oxide (AlOx). In the superconducting
state, the Josephson mechanism allows for coherent transport of Cooper pairs between neighboring
grains. b) Critical temperature Tc, superconducting gap ∆ and Josephson energy EJ for increasing
resistivity. When the Josephson energy surpasses the effective Coulomb energy ẼC ∝ ∆, the film is
an insulator below Tc. Data adopted from Ref.[3] and Ref.[53].

As shown in Fig. 2.2(b), the superconducting transition temperature of granular
aluminum strongly depends on the normal state resistivity ρ = R□

n tz of the film.
This phenomena is, due to the shape of the dependency, referred to as the "super-
conducting dome". Noticeable, the maximum value Tc ∼ 2 K at ρ ∼ 1000 µΩ cm is
around two times higher than pure aluminum (Tc,Al = 1.2 K). This enhancement
was one of the main incentives to initially study granular superconductors [88].
The question concerning its origin has not yet conclusively been resolved, despite
numerous explanations that have been brought forward over the years, some of
which will be discussed in the following.

Based on early experiments, Ginzburg [103] and later Cohen and Douglass [104]
suggested that the effective electron-phonon interaction Vk,k′ near the surface of a
superconducting grain may be larger than that of the bulk. This mechanism was
explained by the presence of surface phonons or an enhanced electron pairing
across the grain boundaries, respectively. If the width of the enhanced surface
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2.2 Granular aluminum

region ws is larger then half the grain size wgrain/2, the transition temperature of
the granular superconductor can be calculated as [104]

kBTc ≈ 1.13h̄ωDe
− 1

D(EF)Vs (2.24)

However, if ws ≤ wgrain, the transition temperature should not depend on the grain
size, which contradicts experimental observation [92, 93]. In the opposite case
ws > wgrain, Eq. 2.24 becomes more complicated and one would expect two values
for the gap, which has not been observed experimentally [52, 90].

Around the same time, Parmenter calculated an enhancement of Tc from the quan-
tization of electron motion due to the grain size [105]. He showed that modifying
the BCS theory for a finite lattice parameter leads to an enhanced electron-electron
interaction V and consequently, an enhancement x = Tc/Tc,bulk of the critical
temperature by

x log(x) =
π

2

(
lP
d

)3
(2.25)

where lP = (λ2
Lξ0)

1/3 is the characteristic lengthscale of this effect, with the BCS
coherence length ξ0 = h̄vf

π∆ . For aluminum, lP = 6.2 nm, which results in x ∼
2 for grain sizes on the order of wgrain ∼ 3 nm, in reasonable agreement with
experimental findings (Fig. 2.2(b)).

Following Parmenters line of thinking, a number of recent theoretical works pro-
posed that the enhancement can be understood as a consequence of the electronic
shell effect [106–108]. Essentially, small isolated grains are treated as atomic nano-
clusters which, due to their finite size, have a discrete spectrum of states. If the
highest of theses states is degenerate, there is a sharp peak in the density of states
D(EF) at the Fermi level which, according to Eq. 2.24, enhances Tc. The ques-
tions whether this effect survives in a bulk granular material composed of such
nanograins, where inter-grain coupling should smear out the sharp peak, was af-
firmatively answered by Mayoh and García-García [109]. They also showed that, as
the resistivity increases, individual grains progressively decouple and the smearing
effect is reduced, explaining the increase of Tc with ρ on the left side of the dome.

2.2.2 The insulating state

When the resistivity takes on even larger values and the transparency of the barriers
is reduced, it becomes increasing hard for the film to uphold a superconducting
state due to the weakened coupling between the grains. Above a critical value,
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2 Disordered superconductors

films cooled down below Tc then become insulating instead [110]. This is know as
the (disorder driven) superconductor to insulator phase transition (SIT).

Based on earlier considerations from Anderson [111], Abeles [91] suggested that
the two relevant energy scales in a granular superconductor are the Josephson
coupling EJ and the Coulomb energy EC. On the one hand, the Josephson energy
[112]

EJ =
∆

2
R0

R□
n

, (2.26)

which in granular aluminum is identical to the phase stiffness J, attempts to lock the
phases of neighboring grains. Here, R0 is the superconducting resistance quantum.
Because the quantum variables for the phase and the charge carrier number do not
commute [Φ̂, N̂] = i, this leads to a delocalization of the Cooper pairs as mentioned
above. On the other hand, the Coulomb energy [113]

EC ≃ e2

4πϵ0ϵrd
s

s + d
2

, (2.27)

where ϵr ∼ 8.5 is the dielectric constant of the barrier [53], attempts to localize
the Cooper pairs on the grain, enhancing quantum phase fluctuations δΦ. For the
simple case of two grains weakly coupled together, Abeles came to the conclusion
that for

EJ <
EC

2
(2.28)

all Cooper pairs localize and the film will be insulating [91]. Shortly after, Efetov
[114] obtained a similar result from a full quantum mechanical model for electrons
in a system of metal grains, including phonon interaction, short and long-range
Coulomb repulsion and inter grain tunneling.

The inequality of Eq. 2.28 is generally referred to as the Anderson-Ables criterion.
For a large ratio ∆/EC ≪ 1, it predicts that there is a parametrically large number
of resistances R□

n < ∆R0/EC where superconductivity should exist even if the
corresponding film made from normal grains would be an insulator (R□

n /R0 > 1).
While this prediction was supported by some early experiments [115], many later
works found that superconducting and insulating samples can be separated solely
by their normal-state resistance [116, 117], with a critical value on the order of R0.

The discrepancy between the intuitive theoretical considerations and the experi-
mental findings was eventually resolved by Chakravarty et. al. [118], who proposed
a model that also takes into account quasiparticle tunneling [119]. They found
that in the case of strong Coulomb interaction ∆/EC ∼ 10−1 − 10−2, the virtual
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2.3 Noise and dissipation

tunneling process reduces the Coulomb interaction down to a renormalized value
ẼC ≈ ∆R□

n /R0. In this case, Anderson-Ables criterion can be rewritten as

R□
n > R0 =

h
(2e)2 = 6.453 kΩ, (2.29)

in good agreement also with later experiments on different granular materials [53,
120, 121].

For granular superconducting films near the SIT (right side of the dome), the
reduction of Tc is a consequence of already emerging phase fluctuations. This
fluctuations increase as the Cooper pairs progressively localize with deceasing
Josephson energy EJ ∝ 1/R□

n [122]. As seen in Fig. 2.2(b), the onset of this reduction
remarkably coincides with EJ < EC, i.e., the point where pairing becomes significant
locally [123]. This suggest that the superconductivity on each individual grain
remains strong in the presence of growing inter-grain barriers and solely the critical
temperature of the whole film is weakened.

When the condition 2.29 is eventually met, the fluctuations become so large that
the phase coherence across the sample is lost and the film becomes insulating. Note
that the exact value of Rc differs between materials, but is usually close to R0. More
recent experiments [53, 99] suggest that the phase transition is rather governed
by ρ = R□

n t, which could be due to the crossover into the 3D limit for films with
t ≫ ξGL. Also, while optical measurements found evidence for an superconducting
gap persisting across Tc [99], the question whether individual grains can remain
superconducting in the insulating region is not definitively answered yet.

Motivated by the mechanism at hand, the SIT in granular aluminum is commonly
interpreted as a Mott transition for the Cooper pairs [114]. Within this picture,
the Josephson energy plays the role of the width of the band. When this width
becomes less than the (effective) Colomb energy, the Cooper pairs localize and
the superconductivity is destroyed. This picture is consistent with Muon spin
spectroscopy (µSR) data showing a weak resistance dependence of the density of
states D(EF), which is predicted to behave noncritical at the Mott transition [96,
98, 124].

2.3 Noise and dissipation

Due to the purity associated with the superconducting state it seem, at first glance,
counter intuitive to assume that they are a relevant loss channel for any supercon-
ducting system. It turns out, however, that sources of noise and dissipation can be
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2 Disordered superconductors

manifold and that good microwave properties, while crucial for their application
in superconducting circuits, are not guaranteed.

In this work, noise and dissipation are studied in superconducting resonators,
whose center frequencies ωr correspond to the actual measurement signal im most
application, i.e, the particular value of ωr provides information on the state of
the circuit. For example, a resonator weakly coupled to a superconducting qubit
changes its resonance frequency depending on the state of the qubit [125] and
kinetic inductance detectors count single photons by measuring the frequency shift
they induce in a superconducting resonator via breaking of a Cooper pair [31]. To
effectively discriminate between different frequency states, narrow resonators with
low internal dissipation κi are thus desirable. Further, unwanted fluctuations of
the resonance frequency δωr on the timescale of the measurement can be classified
as (resonator) noise in this context. Combined, the signal quality of a resonator
and, likewise, the overall performance of the respective quantum circuit can then
quantitatively be described by a signal-to-noise ratio SNR ∝ (δωrκi)

−1 that becomes
worse as noise and dissipation increase. In the following, the two most prominent
candidates that are typically found to make the largest contribution are discussed:
Quasiparticles and two-level-systems.

2.3.1 Nonequilibrium quasiparticles

At non-zero temperatures and frequencies, the system can provide the energy
necessary (2∆) to break a Cooper pair with a certain probability, creating quasi-
particle excitations (QP) above the gap. There, they adhere to normal scattering
processes, which leads to a finite ac resistance of the superconducting film and
thus a increased loss rate for the resonator. Additionally, because the QP density
nqp is directly (negatively) correlated with the Cooper pair density ns, fluctuations
in the QP number result in a changing kinetic inductance and thus resonator
frequency noise (Eq. 2.19). Note that the magnitude of these effects scale with the
kinetic inductance fraction α, which is typically on the order of unity for disordered
superconductors.

The exact influence of QP on a superconducting resonator can be calculated from
the work of Mattis and Bardeen [66], who extended the BCS theory to study the
anomalous skin effect of superconductors, therein describing its electrodynamic
properties. With regards to the complex conductivity σs = σ1 − iσ2, they found that
at low frequencies h̄ω ≪ ∆ it relates to the normal state conductivity σn as

σ1(ω)

σn
=

2
h̄ω

∫ ∞

∆
dE

E2 + ∆2 + h̄ωE√
E2 − ∆2

√
(E + h̄ω)2 − ∆2

[ f (E)− f (E + h̄ω)] (2.30)
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and

σ2(ω)

σn
=

1
h̄ω

∫ ∆+h̄ω

∆
dE

E2 + ∆2 − h̄ωE√
E2 − ∆2

√
∆2 − (E − h̄ω)2

[1 − 2 f (E)]. (2.31)

Here, f (E) is the distribution function for quasiparticles which, in case of thermal
equilibrium, is given by the Fermi-Dirac distribution f (E) = 1/(eE/kBT + 1) [126].
Physically, the reactive response σ2 comes from the Cooper pairs and the dissipative
response σ1 from the QPs. For kBT ≪ ∆, the corresponding QP density can be
written as [10]

nqp = 4D(EF)
∫ ∞

∆
dE

E√
E2 − ∆2

f (E) ≈ 2D(EF)
√

2πkBT∆e−∆/kBT (2.32)

Note that as T → 0, both nqp and σ1 are linearly proportional to f (E) and thus
vanish exponentially as e−∆/kBT . Thus, for T ≪ Tc, the dissipative response of
the superconductor should be very small compared to the reactive response, i.e,
σ1 ≪ σ2.

However, QP densities experimentally measured in superconductors [19, 127],
including granular aluminum [47], are typically much higher then predicted by
Eq. 2.32. Such nonequilibrium (or excess) QP can, for example, be generated by
electromagnetic [128] and ionizing [129] radiation or high-energy impacts from
cosmic rays [20]. Theoretically, QP localization at the spatial fluctuations of the gap
edge has been suggested to effectively increase the observed QP density, an effect
that might be particularly relevant for disordered superconductors [18].

With regards to the complex conductivity, adding a thermal QP or a nonequilibrium
QP has the same effect [14]. Then, the quantity of interest is the change of the
conductance with the QP number dσ/dnqp = δσ/δT

δnqp/δT . At low temperatures (kBT ≪
∆), an approximate expression is given by

dσ1

dnqp
= σn

1
D(EF)h̄ω

√
2∆

πkBT
sinh(ξ)K0(ξ) (2.33)

and

dσ2

dnqp
= −σn

π

2D(EF)h̄ω

(
1 +

√
2∆

πkBT
e−ξ I0(ξ)

)
, (2.34)

where ξ = h̄ω/(2kBT) and In, Kn are the nth order modified Bessel function of the
first and second kind, respectively.

In microwave transmission experiments with superconducting resonators the com-
plex conductivity is usually not directly accessible. Instead, the complex surface
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2 Disordered superconductors

impedance Zs is the quantity being probed. For thin films tz ≪ λL, where the
field penetrates the entire film and the current distribution is uniform, the surface
impedance relates to the conductivity as

Zs = Rs − iXs =
1

(σ1 − iσ2)tz
. (2.35)

From Eq. 2.35 it follows that δZs/Zs = δσ/σ and one can then easily see that [130]

δZs = ι|Zs|δnqp, (2.36)

with

ι =
δσ/|σ|
δnqp

≈ 1
D(EF)π

√
2

∆πkBT
sinh(ξ)K0(ξ)

+ i
1

2D(EF)∆

(
1 +

√
2∆

πkBT
e−ξ I0(ξ)

)
.

(2.37)

Equation 2.36 and 2.37 reveal that both the surface resistance Rs and the surface
reactance Xs increase with the QP density. The latter, of course, is due to the
corresponding change in the Cooper pair density. The effect of δZs on the resonator
frequency δωr and the internal loss δκi scales with α and is therefore increased in
films with a high kinetic inductance. Finally, for α = 1, noise and dissipation relate
to the QP density as follows

δωQP
r

ωr
= −1

2
Xs(T)− Xs(0)

Xs(0)
= −1

2
Im(ι)|Zs|

Xs(0)
δnqp

δκQP
i

ωr
=

Rs(T)− Rs(0)
Xs(0)

=
Re(ι)|Zs|

Xs(0)
δnqp.

(2.38)

Thus, at any event that suddenly changes the quasiparticle density nqp, e.g., a high
energy impact or sudden change of temperature, the frequency and linewidth of
the resonator change simultaneously according to

κi = κi,0 + 2δωr
Re(ι)
Im(ι)

(2.39)

By inserting Eq. 2.39 into the usual expression for the transmission signal S21(ωr)

of a microwave resonator, which will be derived in the next section (Eq. 3.15), one
finds that the resulting trace (Inset Fig. 2.3(b)) is quenched and does not coincide
with the resonance circle.
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2.3 Noise and dissipation

Figure 2.3: Mattis-Bardeen theory for Bogoliubov quasiparticles. a) Internal loss κi of a supercon-
ducting film at various frequencies due to the activation of quasiparticles at increasing temperatures,
as described by Eq. 2.40. b)Temperature dependent frequency shift of a superconducting microwave
resonator according to Eq. 2.41. Inset: Resonator trajectory, Eq. 2.39, due to a quasiparticle generat-
ing event. For all plots ∆ = 300 µeV was assumed.

In the steady state (δnqp = 0, nqp ̸= 0), an approximate expression for the internal
losses of the resonator due to (equilibrium) quasiparticles can be given at low
frequencies and temperatures [10]

κQP
i (ω, T)

ωr
=

Rs(T)
Xs(T)

≈ σ1(T)
σ2(0)

≈ 4
π

sinh(ξ)K0(ξ)

e
∆

kBT
. (2.40)

For a typical granular aluminum sample (∆ = 300 µeV, Tc = 2 K) operated and mea-
sured in the microwave regime, this loss only becomes relevant when temperatures
exceed T ≈ 0.2Tc

Similarly, according to Turneaure et al. [131], a simple formula for the temperature
depended frequency shift due to thermally activated quasiparticles can be derived

δωQP
r

ωr
= −1

2

√
∆π

2kBT
e
− ∆

kBT , (2.41)

using the fact that Xs = ωµ0λL [130]. Note that the magnitude of the effect is
determined by the size of the superconducting gap alone. As a consequence,
measurements of the resonator frequency at different temperatures can be fitted to
obtain an estimate for ∆ (see Sec. 5.1).
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2.3.2 Two-level-systems

Besides quasiparticles, the most prominent source of noise and dissipation in
quantum circuits are tunneling two-level-systems (TLS) which are universally
observed in the amorphous circuit dielectrics, typically surface or junction oxides.
For disordered superconductors, and granular aluminum in particular, such TLS
would also be expected within the film. Microscopically, TLS are pictured as atoms
or groups of atoms with two nearly degenerate configurations (Fig. 2.4(a)). At
low temperatures, these states are connected by a coherent tunneling process. The
corresponding effective charge gives rise to an electric dipole moment that can
couple to the AC fields of quantum circuits where they are causing frequency
fluctuations and energy relaxation [22].

Standard tunneling model

Historically, TLS have first been postulated in amorphous solids in the 1970s to
explain the thermal and acoustic properties of cold glasses, which differed fun-
damentally from the predictions of the Debye model [132, 133]. The unusually
high heat capacitance, which was observed universally over a wide range of solids,
suggested the presence of additional degrees of freedom, which absorb and store
energy at low temperatures. A corresponding theory, the so-called standard tunnel-
ing model (STM), was provided by Phillips and Anderson [21, 134], linking these
degree of freedom to TLS. Independent of its physical origin, they described a TLS
as a virtual particle trapped in a double well potential (Fig. 2.4(b)). The potential is
characterized by an asymmetry energy ϵTLS and the dynamics are governed by the
purely quantum inter-well tunneling rate ∆TLS/h̄. The Hamiltonian of this system
reads

HTLS =
1
2

ϵTLSσ̂z +
1
2

∆TLSσ̂x, (2.42)

where σ̂z and σ̂x are Pauli matrices. Due to the tunneling between the wells, the
eigenstates

|Ψ+⟩ = sin
(

θ

2

)
|L⟩+ cos

(
θ

2

)
|R⟩

|Ψ−⟩ = cos
(

θ

2

)
|L⟩ − sin

(
θ

2

)
|R⟩

(2.43)
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2.3 Noise and dissipation

Figure 2.4: Standard tunneling model for two level systems (TLS). a) Illustration of the conven-
tional picture of TLS in amorphous materials: atoms tunneling between meta-stable positions. b)
Double well potential describing the dynamics of a TLS. The asymmetry energy ϵTLS and tunneling
energy ∆TLS determine the transition frequency ωTLS between the TLS eigenstates |Ψ+⟩ and |Ψ−⟩.
c) TLS frequency as a function of the potential asymmetry, which, according to Eq. 2.48, can be
tuned by electric or strain fields. The displayed hyperbolic shape is characteristic for TLS.

can be written in terms of the eigenstates in the left (|L⟩) and right (|R⟩) well, mixed
by an angle tan θ = ∆TLS/ϵTLS. The energy difference between the eigenstates is
then given by

ETLS = E+ − E− = h̄ωTLS =
√

ϵ2
TLS + ∆2

TLS, (2.44)

with ωtls, the transition frequency of the TLS. In the limit |ϵTLS| ≫ ∆TLS the virtual
particle is trapped in one minimum and well described by |L⟩ or |R⟩. For |ϵTLS| ≈ 0,
the particle is maximally delocalized and the eigenstates are a superposition of the
two well states, as illustrated in Fig. 2.4(b).

Using Wentzel–Kramers–Brillouin (WKB) theory, the tunneling energy can be
estimated as

∆TLS = h̄ωLe−λ. (2.45)

There, the tunneling parameter

λ =

√
2mTLSV

h̄2 sW (2.46)

depends on the barrier height V, the separation of the wells sW and the effective
mass of the particle mTLS. Because of the exponential scaling, the exact value for
the average frequency of the localized states ωL is usually not important. Due
to the random nature of the atomic configurations, both ϵTLS and λ are expected
to be uniformly distributed in the STM. As a consequence, the TLS density of
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states DTLS(E) ≈ D0 is found to be approximately constant. Note that this result is
obtained under the assumption that TLS do not interact with each other, which is
generally not true (see, e.g., [135]).

In the presence of static electric or strain fields, the potential landscape in the
vicinity of the TLS is modified. There, the dominant effect is typically a change
in the asymmetry of the TLS potential, while changes in the barrier height can
usually be ignored [21]. Because this coupling to both fields is linear, the modified
asymmetry energy can simply be written as [136]

ϵTLS → ϵTLS + 2dTLSE + 2γTLSS, (2.47)

resulting in a TLS transition frequency

ωTLS =
1
h̄

√
∆2

TLS + (ϵTLS + 2dTLSE + 2γTLSS)2. (2.48)

as shown in Fig. 2.4(c). Here, E is the electric and S the strain field. The electric
dipole of the TLS is then defined as d ≡ δϵTLS/(2δE) and analogously, γ ≡
δϵTLS/(2δS) is the TLS’ deformation potential.

Weakly coupled TLS

The STM proved to be very successful at predicting the behavior of amorphous
materials at the lowest temperatures. In resonant quantum circuits, TLS are typ-
ically present in the naturally forming, amorphous surface oxides (dielectrics).
For disordered superconductors, particularly granular aluminum, the intrinsically
disordered structure should also allow the presence of material defects (TLS) below
the surface of the film. As mentioned above, the dipole moment of a TLS can couple
to the oscillating fields of the resonator (with a coupling rate g), which leads to
distinct resonator behavior that can also be described in the scope of the STM.

The largest contribution in this regard is made from an ensemble of (mostly) weakly
coupled TLS (g << κr), where the details of the interaction with the individual
TLS is negligible, but the density of contributing TLS is high (∼ 0.5 (GHz µm2)−1

[23, 137]). If the majority of these TLS are in their ground state, there is a finite
probability that a resonator photon is absorbed by one of the TLS. This results,
on average, in an increased loss rate κi. However, when the number of circulating
photons n exceeds some characteristic value nc, near resonant TLS (ωTLS ∼ ωr) are
excited by an effective Rabi frequency [138] ΩTLS ∝

√
n larger then their loss rate
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γTLS and the population of non excited TLSs decreases. This results in a power
depended resonator loss tangents [21]

tan(δ) =
F tan(δ0) tanh

(
h̄ω

2kBT

)
√

1 + (n/nc)β
+ tan(δ+) (2.49)

that decreases as n increases. Here, tanh
(

h̄ω
2kBT

)
is the thermodynamic average of

the TLS mean field and tan(δ+) is a residual loss rate due to, e.g., quasiparticles or
coupling to the transmission line. The dielectric loss tangent tan(δ0) = πP0d2/(3ϵ)

generally depends on the TLS spectral and spatial density P0 as well as the (mean)
dipole moment d and is dressed by a filling factor F, which accounts for the
participation ratio of the dielectric material [21]. Loss as describe by Eq. 2.49 has
been observed and analyzed for a wide range of materials and resonator geometries
[48, 139–143], where the exponent β was found to be on the order of unity.

Besides providing a loss channel for the resonator, TLS also contribute to the
dielectric constant ϵ seen by the resonator, resulting in a frequency shift described
by [144, 145]

δωTLS
r

ωr
= − F

2
δϵ

ϵ
=

F tan(∆)
π

[
Re Ψ

(
1
2
+

1
2πi

h̄ωr

kBT

)
− ln

(
h̄ωr

kBT

)]
, (2.50)

where Ψ is the complex digamma function. This equation has been used in the
past to derive values for the effective TLS density P0d2 ∝ tan(δ0) in amorphous
materials [21], usually through measurements of δϵ. In contrast to Eq. 2.49, the
effect described by Eq. 2.50 also arises due to non-resonant TLS which are not
saturated at high photon numbers. Measuring this frequency shift is thus not
limited to the single-photon regime.

Strongly coupled TLS

Due due the high TLS density in amorphous materials, there is a non-zero change
to find TLS in the spacial as well as spectral (ωTLS ≈ ωr) vicinity of the resonator
that have a large dipole moment d aligning with the resonator field Erms. In the
single photon regime, the coupling g between these TLS and the resonator can be
comparably strong and one finds that [146]

g =
∆TLS

ωTLS

dErms

h̄2 . (2.51)
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2 Disordered superconductors

Figure 2.5: Anticrossings for different parameters of the coupled resonator-TLS system. Transmit-
ted microwave signal when tuning the TLS hyperbola ωr through the resonator at ωr = 5 GHz. The
energies E± of the coupled system are described by Eq. 2.53. Top row: Simulated anticrossings for
different TLS decay rate γTLS at a constant coupling rate g = κi = 5 MHz. Bottom row: Simulated
anticrossings for different coupling strength g at a constant TLS decay rate γTLS = κi = 5 MHz.
Plots generated from Eq. 6.3.

Experiments on distributed resonators, where Erms can be particularly high, have
shown that individual strongly coupled TLS can directly be observed in the res-
onator transmission spectrum [143, 147, 148]. Such results can be interpreted based
on a full quantum mechanical analysis of the corresponding Jaynes-Cummings
Hamiltonian, which reads

H = h̄ωrr̂r̂† + h̄ωTLSσ̂z − ih̄g(σ̂− r̂† − σ̂+ r̂). (2.52)

Here, σ̂z is the third Pauli matrix and σ̂− and r̂ are the raising operators of the
resonator and the TLS, respectively. Diagonalizing Eq. 2.52 in the basis of the
combined occupation number yields the following eigenenergies for this system

E± =
h̄
2
(ωr + ωTLS)± h̄

√
g2 +

(
ωr − ωTLS

2

)2
. (2.53)

Thus, when the frequency of the resonator and the TLS come close (|ωr −ωTLS| ∼ g)
they hybridize instead of crossing each other, i.e., they are no longer separately
observable. This process is commonly referred to as "anticrossing". As shown in
Fig. 2.5, the visibility of anticrossings does, in practice, not only depend on the
coupling strength g, but also the loss rate of the TLS γTLS and of the resonator κi.
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2.3 Noise and dissipation

Due to the hyperbolic shape of the TLS transition frequency, it always crosses the
resonator mode twice (given that ∆TLS/h̄ < ωr), resulting in two anticrossings that
are symmetric around ϵTLS = 0.

Thermal fluctuators

In the STM, the interacting between different TLS is assumed to also be of a
dipole-dipole type (similar to Eq. 2.48), where the effective strength is given by the
dimensionless parameter χ0 = D0U0, where, U0 = d2/ϵ. Direct measurements in
bulk amorphous materials give values of χ ≈ 10−3 − 10−4 [149], i.e., the TLS are
only weekly coupled and thus this effect is often neglected.

However, with the advance of superconducting quantum circuits, the level of detail
with which TLS could be studied increased tremendously. Using superconducting
qubits, the strong interaction of individual TLS has been directly observed and
probed [135]. Previous to these findings, measurements of resonators with low
intrinsic loss rates showed a much weaker power dependence as predicted by Eq.
2.49 [150, 151], which was explained by TLS interacting [149, 152].

Further evidence is provided by measurements of the frequency noise of supercon-
ducting resonators [150, 153–155]. There, the magnitude of this noise decreased
with increasing readout power as ∝ n−1/2 and with increasing temperature as
∝ T−(1+µ). These findings are consistent with a generalized tunneling model [27,
28], where near-resonant resonant TLS (ωTLS ∼ ωr) are expected to interact with
surrounding two-level-fluctuators (TLF), i.e, TLS who have a much lower energy
ωTLF < kBT and are therefore subjected to slow, thermal fluctuations. The cou-
pling to these TLF causes an energy drift, bringing the resonant TLS in and out
of resonance (see Fig. 2.6(a)), which in turn causes fluctuations of the resonator
frequency δωr. In particular, this model also explains the spectral distribution of
this resonator noise, which typically decreases as 1/ f . Here, f is the frequency of
the spectral analysis (see Sec. 4.3 for details). For the individual TLF, the spectrum
is expected to have Lorentzian form, due to the stochastic nature of their switching.
However, as illustrated in Fig. 2.6(b), averaging over a large number of fluctua-
tors with varying switching times results in an overall 1/ f noise spectrum of the
resonant TLS and thus the resonator itself [156].

A key assumption of the generalized tunneling model is that, due to the interaction
being larger than expected from the STM, the TLS density of states has a weak
power law dependency DTLS(E) ∝ D0Eµ, where µ ≈ 0.3 has been derived from
experiments [132, 157]. Thus, the number of TLF is proportional to T1+µ. Generally,
resonator noise only occurs if the coupling between the TLS and the TLF is greater
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2 Disordered superconductors

Figure 2.6: Two-level fluctuators as a source of 1/f noise. a) Illustration of a TLS fluctuating due to
its interaction with a bath of thermally activated two-level-fluctuators (TLF) with energies below
kBT. A electric dipole coupling transfers these fluctuations from the TLS onto the resonator. b) Each
TLF produces a Lorentzian noise spectrum. The superposition of Lorentzian noise from TLF with
different lifetimes results in 1/f noise. Illustration inspired by Ref. [30]

then the TLS decay rate. In other words, the fluctuators must be located within
a sphere of radius Rmax = (U0/γTLS)

1/3 from the TLS, where γTLS ∝ T1+µ. As a
consequence, the volume of the sphere grows and therefore the noisy sensitivity
increases at lower temperatures, even though the number of TLF decreases.

Based on these assumptions, an analytical computation yields [27]

Sy ∝
NfD0U2

0√
1 + n/nc

1
T1+µ

1
f

, (2.54)

for the noise spectrum, where Nf is the number of sufficiently coupled fluctuators.
Note that, since nc ∝ T2(1+µ), at high powers the temperature dependence of the
spectra is constant. Resonator noise data evaluated by this model showed exponents
µ in the range from 0.2 to 0.7 [27, 149, 158], in good agreement with the presumed
scaling of the density of states. Recent experiments with superconducting qubits
further affirmed the physical model of TLF, finding evidence also for resonant TLS
predominantly coupled to only a single fluctuator, resulting in a distinct Lorentzian
peak in the noise spectrum [29, 30].
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3 High impedance superconducting
circuits

The theoretical and experimental progress made in superconducting circuits in the
past 20 years stimulated their application in an increasing variety of research fields,
including quantum information processing [159], particle detector physics [10] or
microwave photonics [160]. One of the most versatile and widely used components
in superconducting circuits are resonators, which are a crucial part of almost any
practical application. Since they are also comparable easy to fabricate and well
described theoretically, they provide a convenient platform to study how material
choices affect the circuit performance.

For their measurement, superconducting resonators (or quantum circuits in general)
usually get embedded in a microwave network. From the response of the network
to microwave signals, one can then infer information about the resonators, e.g.,
their resonance frequency. In this chapter, the theoretical framework for the analysis
of a resonant microwave network is provided. In particular, the frequency response
of high impedance resonators is studied, including a detailed description of the
influence of the usually encountered impedance missmatch in the measurement
environments and of increased probing powers.

3.1 Microwave network theory

A common technique to describe a microwave network is provided by the scattering
matrix formalism. For an arbitrary network, it relates the complex input to the
complex output voltage via [161]

Vout = SVin. (3.1)

There, the coefficients of the scattering matrix are given by

Sij =
Vout

i
Vin

j
, (3.2)
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3 High impedance superconducting circuits

where Sii is the reflection coefficient of port i and Sij is the transmission from port
j to port i. For reciprocal networks, it is easy to see that Sij = Sji for all ports.

The microwave network employed throughout this work consists of a two port
transmission line shunted by a load impedance ZR (see Fig. 3.1(a)). For the ideal
case where the transmission line ports are matched to the the Z0 = 50 Ω industrial
standard of the network, the S-matrix reads [161]

S =

(
S11 S12
S21 S22

)
=

(
(1 + 2ZR

Z0
)−1 (1 + Z0

2ZR
)−1

(1 + Z0
2ZR

)−1 (1 + 2ZR
Z0

)−1

)
. (3.3)

In particular, the load impedance ZR is provided by a distributed λ/2 resonator
formed by a open-end waveguide of lenght ly (see section 4.1). Neglecting the
coupling to the transmission line Cc, the resonance condition of such a distributed
resonator is [3]

ωr =
1

2ly
√

LlCl
=

1√
LC

, (3.4)

where Ll and Cl are the inductance and capacitance per unit lenght respectively
and the factor 1/2 incorporates the fundamental mode having a wavelength of
λ/2. By assigning an effective capacitance C and inductance L, one can translate
the distributed resonator to the lumped-element RLC-circuit sketched in Fig. 3.1(a).
For resonators made from granular aluminum films with high normal state sheet
resistances (R□

n ≳ 500 Ω), the corresponding inductance is mostly kinetic such that
L ≈ N□L□

k . Also, L is usually much larger than the capacitance, resulting in an
impedance Z =

√
L/C ≫ Z0. Hence the name "high impedance circuit".

For a superconductor, one might expect that R → 0, i.e, the resonator is lossless.
However, as discussed in the previous section, quasiparticles and surface dielectric
provide no negligible loss channels in real experiments such that R ̸= 0. These
intrinsic losses are described by the internal loss rate

κi =
Ploss
Etot

=
R
L

, (3.5)

where Etot =
1
2 LI2 is the total energy stored in the resonator and Ploss is the energy

dissipated per cycle.

The coupling of the resonator to the transmission line via the capacitance Cc is an
additional source of energy dissipation and analogous to Eq. 3.5, it can be described
by a (coupling) loss rate κr. If ωrCc is small compared to the resonator impedance
ZR ≈

√
L/C, one can write [162]

κc =
2ZRZ0ω3

r C2
c

π
. (3.6)
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3.1 Microwave network theory

Figure 3.1: Microwave response of a capacitively coupled notch-type resonator. a) Schematic
diagram of a two-port microwave network with a resonator load impedance ZR shunting the two
conductors of a continuous transmission line. The in- and output-impedance of the transmission
line is matched to the measurement lines (Z0 = 50 Ω). Inserting the total resonator impedance
into Eq. 3.3 yields the transmission Sreso

21 from port Vin
1 to port Vout

2 , as given by Eq. 3.8. b) In the
complex plane, the transmission parameter describes a circle starting and ending at S21=1. The
circle diameter approaches unity as κc/κi → ∞. c) The amplitude of the transmitted signal forms a
Lorentzian dip and the phase has a maximum roll off from −π/2 to π/2.

As expected, the coupling loss is proportional to the coupling capacitance. By
adding up the different contributions, the total loss rate of the resonator can be
defined as

κr = κi + κc = ωr tan(δ), (3.7)

which is equal to the full width at half maximum of the resonance. Note that for
comparing different resonators, the frequency independent loos tangent tan(δ) (or
quality factor Q = 1/ tan(δ)) is typically introduced.

Combining Eq. 3.3 to 3.7 yields [162]

Sreso
21 = 1 − Sreso

11 = 1 − κc

κr + 2i(ω − ωr)
(3.8)
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3 High impedance superconducting circuits

for the complex transmission coefficient for the microwave network. As shown in
Fig. 3.1b, Sreso

21 corresponds to a circle in the complex plane, which is located at 1 −
κc/2κr and has a diameter κc/κr. The corresponding amplitude signal |Sreso

21 (ω)||2
has a Lorentzian shape (Fig. 3.1c). All resonators investigated in this work are
over coupled (κc > κi), meaning most energy is lost via Cc. This results in a large
resonance circle and thus an overall strong resonator signal.

3.2 Asymmetric resonances

The derivation above and the resulting formula for the resonator transmission 3.8
are only valid if the impedances of the transmission line and the input and output
ports are matched ( Zin = Zout = Z0). In reality, however, this is usually not the
case and asymmetric lineshapes can occur, e.g., due to an impedance mismatch
between the sample holder PCB and the on-chip microstrip line (see Sec. 4.2.3).

Physically, this corresponds to a standing wave on the chip, which can be well
approximated by a cavity with a low-Q mode [146, 163]. Then, one has to consider
the case of two cavities coupled to each other, one (ωr) being the resonator and the
other (ωt) being the transmission line. The Hamiltonian for this system is

H = h̄ωrr̂r̂† + h̄ωt t̂t̂† + h̄Ω(r̂t̂† + t̂r̂†), (3.9)

where r̂ and t̂ are the photon creation operators of the corresponding cavities and
Ω is the coupling rate. The field transmission trough such a (quantum) system can
be calculated via the input-output formalism developed by Collett and Gardiner
[164], as sketched in the following.

Considering t̂1,in and t̂2,out as the input and output fields at the respective port
of the transmission line cavity, one can write the quantum-mechanical Langevin
equations of the corresponding mode as [146]

d
dt

t̂ = −iωt̂ = − i
h̄
[t̂,H]− κt

2
t̂ +

√
κt

2
t̂1,in +

√
κt

2
t̂2,in (3.10a)

and

d
dt

t̂ = −iωt̂ = − i
h̄
[t,H] +

κt

2
t̂ −
√

κt

2
t̂1,out −

√
κt

2
t̂2,out, (3.10b)

where κt is the coupling to the input and output ports, which, for simplicity but
without loss of generality, is assumed to be symmetrical. In practice, κt ≫ κr is the
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3.2 Asymmetric resonances

linewidth of the transmission line mode. Assuming only one input field (t̂1,in = 0)
and using the commutation relation for bosonic operators yields

t̂ =
√

2κt t̂1,in − 2iΩr̂
κt − 2i(ω − ωt)

(3.11a)

and

t̂ =
2κt t̂ −

√
2κt t̂1,in +

√
2κt t̂2,out + 2iΩr̂

κt + 2i(ω − ωt)
. (3.11b)

For the second equation, the boundary condition t̂1,in + t̂1,out = t̂
√

κt/2 was used.
For the resonator, it is sufficient to consider only a single port, which serves as
a loss channel (cin = 0) with loss rate κr. Solving the Langevin equations for the
resonator mode then yields

r̂ =
−2iΩt̂

κr − 2i(ω − ωr)
. (3.12)

Combining the equations above and solving for t̂2,out, the transmission parameter
can be written as [146]

Sreso
21 =

⟨t̂2,out⟩
⟨t̂1,in⟩

=
κt/2

κt
2 + i(ω − ωt) +

Ω2

κr+i(ω−ωr)

. (3.13)

It will become apparent in section 6.3 that the input-output formalism is a powerful
tool to study also more complicated Hamiltonians. For the system described by
Eq. 3.9 (Fig. 3.2(a)), the complex transmission can also be calculated by means
of conventional network theory. Using a Norton equivalent circuit, Khalil et.al.
showed that a complex coupling rate k̂c = |κc|eiΦ can account for the impedance
mismatch and found a equivalent expression for Eq. 3.13 that reads [165]

Sreso
21 = 1 − κceiΦ

κr + 2i(ω − ωr)
. (3.14)

Here, κr = κi + κc as above and κc = Re(k̂c) = 4Ω2/(ωrκt) [146]. As shown in
Fig. 3.2(b), the complex phase of k̂c corresponds to a rotation of the circle around
the origin by an angle Φ. Note that the diameter of the rotated circle is |k̂c|/κr

rather then Re(k̂c)/κr, and simply rotating the circle back on the real axis would
therefore yield an incorrect result for κi [165].

When fitting Eq. 3.14 to real data, it is necessary to adept the formula to the
experimental setup. Introducing additional prefactors that accounts for phase
offset (α0) and the net attenuation and amplification (a), the final expression for
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3 High impedance superconducting circuits

Figure 3.2: Microwave network of a resonator with asymmetric response. a) Schematic diagram of
a two-port microwave network with a resonator load and a impedance mismatched transmission line
(Zin ≈ Zout ̸= Z0). The latter can be modeled by a single mode cavity that couples to the resonator
with rate Ω. The transmission of this network can be calculated via the input-output formalism,
which connects the quantum dynamics of the circuit with the coupling rate κt to the input and
output ports (Eq. 3.13), or by means of conventional network theory (Eq. 3.14). b) Quantitatively,
the impedance mismatched transmission line can be accounted for by a complex coupling rate
κ̂c = κceiΦ , which manifest in a rotation of the resonance circle by an angle Φ and a increase of
the diameter by κc/Re(κc) = csc(Φ). c) Looking at the amplitude signal, the resonance frequency
ωr is no longer equal to the point of minimal transmission, i.e, the "center" of the resonance dip.
Consequently both, the amplitude and phase signal, are asymmetric around the resonance.
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3.3 Bifurcation

the transmission coefficient of a resonator coupled to a mismatched tranmission
line is [166]

Sreso
21 = aeiα0

(
1 − κceiΦ

κr + 2i(ω − ωr)

)
. (3.15)

This formula was used throughout this work to fit the resonator transmission in
order to determine ωr and κi = κr − κc

3.3 Bifurcation

In granular aluminum resonators, where kinetic inductance ratio (Eq. 3.15) usually
approaches unity, the resonance behaviour is dominated by L□

k . At high mea-
surement powers, where the resonator currents become increasingly large, the
nonlinearity of the kinetic inductance (Eq. 2.23) thus has a significant influence
on the resonator frequency. In particular, sweeping the measurement frequency ω

through the resonator gives rise to classic Duffing oscillator dynamics [167].

In order to quantitatively understand this behavior, it is necessary to incorporate
the resonance shift δωr = ωr − ωr,0 due to the nonlineaer kinetic inductance into
Eq. 3.15. For a kinetic inductance fraction α = 1, the nonlinear frequency shift is
given by [168]

δωr

ωr,0
= −1

2
δL□

k

L□
k

= −1
2

I
Ic

= −1
2

Etot

Ec
, (3.16)

where Ic is the critical current and Ec is on the order of the superconductor’s
condensation energy. The total energy Etot generally depends on the number of
photons n in the resonator. However, it can also be related to the power dissipated
in the resonator via Eq. 3.5. In the steady state power is conserved and therefore

Ploss = Pin − Pout = Pin

(
1 − |S11|2 − |S21|2

)
, (3.17)

where Pin and Pout are the resonator in- and output power, respectively. Ignoring
impedance mismatch of the transmission line and recalling that S21 = 1 − S11, one
can combine Eq. 3.17 and 3.15 to find [168]

Ploss = Pin

(
2κcκi

κ2
r + 4(ω − ωr)2

)
. (3.18)
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Here, ωr is the unperturbed resonator frequency in the low power limit. With this
expression and the definition of the internal loss rate (3.5), the frequency shift due
to the kinetic inductance can be written as

δωr = − 2κcωr,0

κ2
r + 4(ω − ωr)2

Pin

Ec
=

h̄ω3
r n

1 + 4(ω − ωr)2/κ2
r

ωr,0

Ec
. (3.19)

where in the last step an expression for the average photon number on resonance

n =
2Pin

h̄ω3
r

κc

κ2
r

(3.20)

was used. The consequence of the inverse dependence of δωr on the detuning
ω−ωr in Eq. 3.19 can conceptional be understood as follows: Starting at frequencies
below the resonance, the resonator currents increase as the detuning decrease.
As a consequence, the nonlinear inductance causes the resonator to shift to lower
frequency, increasing the currents even further. This results in a positive feedback
loop that abruptly ends when the resonator jumps past the readout frequency to
an point of equivalent input power on the other side of the resonance (see Fig. ??).
There, the feedback is no longer positive and the resonator drifts back to its original
position. This behavior is usually referred to as bifurcation. In this regime, the
expression for the transmission coefficient in Eq. 3.15 is no longer valid. Thus, for
practical applications, resonators with a high kinetic inductance should be probed
with low power signals (small average photon number). Note that the exact power
where bifurcation becomes significant naturally depends on the magnitude of the
kinetic inductance (Eq. 3.16)
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4 Experimental methods

The experimental means used for the fabrication and measurements of the gran-
ular aluminum resonator samples are summarized in this chapter. First, details
on the deposition and pattering processes are given and different methods for
determining the sheet resistance of granular aluminum are compared. Second, the
various components of the experimental setup are described, including a cryogenic
refrigerator, DC and RF components and wiring as well as an appropriate housing
for the studied samples. Next, methods for measuring and evaluating noise in
superconducting resonators are outlined. Finally, electric field simulations of the
resonator and the sample holder electrode are provided.

4.1 Sample design and fabrication

Experiments with superconducting quantum circuits require growing and pattering
of appropriate films. Most of the techniques used in this process are adapted from
the semiconductor industry and therefore well established. The samples measured
in the context of this thesis were partially fabricated with commercial equipment
available in the KIT Nanostructure Service Laboratory and partially with home-
made tools.

4.1.1 Thin film preperation

In the first step of the sample preparation, a granular aluminum thin film is
deposited on a 430 µmsapphire substrate using a reactive DC magnetron sputtering
processes. The substrate is placed in a vacuum chamber filled with argon working
gas, facing a ultra pure aluminum cathode surrounded by a ring shaped anode.
When very high voltages on the order of hundreds of volts are applied between
anode and cathode, free electrons start to flow and ionize the argon atoms, i.e., a
plasma is ignited. The positively charged argon ions reach the aluminum target at
very high velocity, removing cluster of aluminum atoms that evaporate towards the
substrate. To increase the sputtering rate, magnets are placed behind the cathode
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4 Experimental methods

Figure 4.1: Homogeneity of granular aluminum thin-films at room temperature. Spatial distri-
butions of the normal state sheet resistance R□

n for two 20 nm granular aluminum films deposited
on 15 × 15 mm2 chips with and without rotation. The sheet resistance R/N□ is determined by
measuring the total resistance R of the displayed test structure (N□ = 30) at each spatial position.
In samples that are not rotated during deposition there is a noticeable resistance gradient between
two of the opposing corners.

to confine the plasma electrons on a spiral track close to the surface of the sputter
target [169].

In order to grow granular films, oxygen gas is added to the chamber during the
sputtering process. Then, some of the free aluminum atoms are oxidized into
AlOx, while others form grains with a natural oxide barrier on the substrate,
resulting in the peculiar structure detailed in section 2.2. If the partial pressure
of the oxygen gas is increased, more oxygen gets implanted. As a consequence,
the oxygen barriers in the granular film will be less transparent and the resistivity
higher [3].

For the further processing, it is desirable to have a very homogeneous sample, such
that circuits elements have comparable and also predictable properties. Because
the sputter process is dynamic, gases are not necessary equally distributed within
the chamber, and some regions of the sample are either lesser oxidized or thinner.
To tackled this problem, a step motor was used to slowly rotate the substrate
during deposition. The effectiveness of this approach was tested by measuring 36
dumbbell-shaped test structures made from the same granular aluminum film,
equally distributed over a 15x15 mm2 area in the center of the chip.1 Each test
structure consists of two contact pads connected by a 5 µm wide and 150 µm long

1 The total size of the sapphire substrate is 20x20 mm2, but the edges are neglected because they can not
be processed properly. The 15x15 mm2 center area is typically cut into nine (identical) 5x5 mm2 chips
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4.1 Sample design and fabrication

constriction, giving a total of N□ = 30 squares of material (Fig. 4.1). The resistance
between the pads is measured with a probe station at room temperature. Then,
the sheet resistance of the film at the position of the test structure is determined
by dividing this resistance value by the number of squares, R□

ts = Rprobe/30. As
shown in Fig. 4.1, the film grown under rotation is much more homogeneous, while
the other sample shows a noticeable resistance gradient towards two corners.

The test structures described above are patterned with the same lithography meth-
ods as the microstrip resonator circuit employed throughout this work: After a
thin film of granular aluminum was sputter deposited on a sapphire substrate, the
whole film is covered with AZ5214 resist and the desired structures are defined by
optical exposure through a chromium hard mask. Subsequently, the areas of the
film not covered by the resist are removed by an argon-chlorine based inductively
coupled plasma (ICP) dry etching process (see Appendix A for details on the
fabrication parameters). Because the high kinetic inductance of granular aluminum
is not necessarily wanted for the feedline, it is shunted with pure aluminum using
a liftoff process. Finally, the backside of the substrate is coated with a thin layer of
superconducting niobium in order to have a clean, well defined ground. 2

4.1.2 Sample parameters

The results presented in this work were obtained from measurements on a total of
thirteen resonators, distributed over five different samples: three samples (A-C)
that only differ in the sheet resistance (and thickness) of the granular aluminum
films, and two samples (D+E) that were fabricated as a stack of two layers with
different sheet resistances. There, the lower layer has a R□

n well below R0 = 6.4kΩ
and therefore becomes superconducting. The top layer has R□

n ≫ R0 and instead
becomes insulating below Tc. One can easily achieve such a two layer structure by
instantly increasing the oxygen partial pressure half way through the evaporation
process.

Together, all samples host a total of thirteen ultra-compact λ/2 resonators with
lengths between 300 µm − 500 µm at a constant width of 2 µm. They are placed in
the vicinity of a single, 280 µm wide transmission line running straight trough the
center of the chip (compare Fig 4.2). The dominant coupling between the resonators
and the transmission line is capacitive and chosen such that κc/κi ≪ 1 (κr ∼ κc).

2 Niobium was chosen for the backside metallization over aluminum because it further suppresses
quasiparticle dissipation due to a higher Tc.
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Figure 4.2: Sample layout and structure. Right panel: Optical photograph of a single 2 µm wide
and 440 µm long resonator, capacitively coupled to the global on-chip transmission line. Right
panel: Sketch of the sample cross-section. For the transmission line, the granular aluminum film is
shunted by a pure aluminum layer to achieve a 50 Ω matching.

The thickness of all granular aluminum films is on the order of the coherence
lenght (ξGL ≈ 10 nm ∼ tz [34]), which places them in the two dimensional limit.

The frequency of the resonators predominantly depends on the kinetic inductance
and therefore, on the sheet resistance (Eq. 2.17) of the film. As mentioned above, the
resistance can be controlled by the oxygen partial pressure during the sputtering
process. However, for large sheet resistances R□

n > 1 kΩ, the dependence of the
sheet resistance on the oxygen partial pressure is exponential, which is problematic
for the controllability and reproducibility, since small variations in humidity or
temperature have a significant impact.

To make the process more controllable, both film thickness tz and the resistance
Rsc are monitored during the film deposition [100]. The former is measured via
a quartz oscillator that is placed in close vicinity to the sample. If material is
deposited on the quartz, its frequency changes proportional to the additional mass.
The corresponding conversion factor can be calibrated using a profilometer. To
monitor the resistance, thin stripes of silver are applied to two sides of the sapphire
substrates prior to the evaporation of the granular aluminum films. These stripes
are contacted via metallic clamps when the substrate is mounted in the sputter
chamber.

Figure 4.3(a) shows the thickness and sheet resistance of sample B, measured
during the deposition of the granular aluminum film. Above a critical thickness of
a few nanometers the resistance R□

sc of the sample can be described by a model for
fine-grained polycrystalline thin films [170], trough which the final resistance at
the desired thickness can already be estimated. By adjusting the oxygen pressure,
the final resistance can thus still be influenced during deposition. Note that due
to the quadratic shape of the sample, the measured resistance is approximately
the sheet resistance, i.e., R□

sc ≈ Rsc. While this gives a good estimated for the
sheet resistance of the resonators, the measured value is influenced by the contact
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4.1 Sample design and fabrication

Figure 4.3: Different methods for determining the sheet resistance of granular aluminum films.
a) In situ measurement of the sheet resistance during the sputter deposition. The inset shows, for
different samples, the ratio between the resistance value R□

sc extracted from the in situ measurement
and the sheet resistance obtained from averaging over different on-chip test structures R□

ts (see
Fig. 4.1). b) Simulated resonance frequencies as a function of the normal state sheet resistance for
resonators of different lengths. Comparing the measured to the simulated resonance frequencies
yields a sheet resistance value R□

sim for each individual resonator. c) Measured conductance curve
for sample E, which consist of two granular aluminum layers. The ratio between the slope at the
bottom (blue line) and the slope at the top (red line) layer is used to estimate the sheet resistance of
the top layer from Eq. 4.1.

resistance between the film and the silver stripes as well as the conductance through
the plasma.

A better estimate can be obtained from test structures (Fig. 4.1(a)) distributed
over the chip after the film was processed optically. There, the increased number
of squares gives additional statistical confidence and the contact resistance is
neglectable. Indeed, a comparison between the average sheet resistance measured
over different test structures R□

ts and the corresponding resistance values obtained
from the sputter chamber R□

sc (inset of Fig 4.3(a)) reveals a noticeable discrepancy
for multiple samples.

However, due to unavoidable inhomogeneities on the sub millimeter lenght-scale
the exact sheet resistance of the resonator structures can also deviate from the test
structure values. Therefore, a 3D planar high-frequency electromagnetic software
(SONNET) is employed to compare the measured resonator frequencies ωr with
simulations of geometrically identical resonators with different sheet resistances
R□

n (Fig 4.3(b)). Finding the value where the simulated and measured resonance
frequency agrees yields a good estimate for R□

n of the particular resonator.
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Table 4.1: Geometry (lenght ly, film thickness tz, constant width wx = 2 nm) and thin film properties
for all measured resonators with a fundamental resonance frequency ωr. The sheet resistance of
the film R□

n can be obtained from test structures (R□
ts , averaged over chip) or simulations (R□

sim). If
two values are stated, they correspond to the (superconducting) bottom and (insulating) top layer,
respectively.

Reso. ωr/2π (GHz) ly (µm) tz (nm) R□
ts (kΩ) R□

sim (kΩ) L□
k,sim (nH)

A1 10.565 406 25 0.5 0.59 0.45
A2 10.740 390 25 0.5 0.61 0.47
B1 5.494 505 22 1.4 1.39 1.05
B2 6.154 440 22 1.4 1.49 1.14
B3 6.793 390 22 1.4 1.53 1.17
C1 4.069 406 30 3.5 3.97 3.03
C2 4.663 337 30 3.5 4.32 3.30
C3 5.780 287 30 3.5 3.76 2.87
D1 8.006 505 24+18 0.9 0.65+12 0.5
D2 9.010 440 24+18 0.9 0.69+12 0.53
D3 9.995 390 24+18 0.9 0.71+12 0.54
E1 7.839 505 23+17 0.9 0.68+190 0.52
E2 8.872 440 23+17 0.9 0.72+190 0.55

For sample D and E, only the resistance of the superconducting bottom layer can
be determined from simulations. The resistance of the top layer is extracted from
the conductance vs. thickness curves measured during the sputter process. After
fitting a straight line to the curve before and after changing the oxygen pressure
(Fig. 4.3(c)), the resistance of the top layer can be calculated as

R□
top =

mbtm
mtop

R□
btm =

mbtm
mtop

R□
sim (4.1)

where mi is the slope of the line corresponding to respective layer. Note that the
transition from the superconducting to the insulating film is fluent rather then
abrupt and the result of Eq. 4.1 strongly depends on the data segments chosen for
the two fits. Therefore, the resistance values that can be obtained for the top layer
are only a rough estimate.

The geometric characteristics of all granular aluminum resonators are listed in
Table 4.1. Further properties of the films can be calculated from the resistivity
ρ = R□

simtz = R□
n tz of the film. An estimate for the London penetration depth at low

temperatures T ≪ Tc(ρ) ≈ 2 K is given by λL ≈ 1.05 × 10−3
√

ρ/2 = 4.5 ± 2.1 µm
[171]. This means that the films (t ≪ λL) are transparent for AC and magnetic
fields and the currents flow through the entire film when the resonator oscillates.
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The penetration depth of DC electric fields it much more difficult to estimate due
to the granular structure of the film, which is partly a dielectric. However, the lower
limit should be given by the Thomas-Fermi length of a clean superconductor with

similar properties. Such calculations yield λTF ≈
√

2λ2
LE∗

F/(3c2m∗
e) = 2.1 ± 0.1 nm,

which is on the order of the grain size. Here E∗
F ∝ ρ−0.7 and m∗

e ∝ ρ0.44 are the
effective Fermi Energy and charge carrier mass as defined in Ref. [98], respectively.
From λL, on can also estimate the superconducting charge carrier density of the
granular films ns = m∗

e /(2µ0e2λ2
L) = (4.85 ± 1.76)× 1024 m−1, which is orders of

magnitude below pure aluminum.

One of the few available indicators for the degree of disorder in a thin film is the
Ioffe-Regel parameter [172]

kFl = h̄(3π2)2/3/(e2ρn1/3
n ), s (4.2)

where nn is the number of charge carries in the normal state, l is the mean free
path and kF is the radius of the Fermi sphere. As pointed out in Ref. [173], su-
perconductivity in granular aluminum is destroyed due to disorder for a critical
value of (kFl)c ∼ 0.01. Materials where disorder predominantly occurs on the
atomic scale usually do no longer become superconducting below (kFl)c ≈ 1. Using
n = 1/(µHρe), where µH ∝ ρ−0.5 is the Hall mobility of granular aluminum [96],
yields values ranging from 0.14 to 0.8, meaning all films are highly disordered.
Thus, one can expect the mechanisms described in Sec. 2.2.2 and Sec. 2.1.2 to
become experimentally relevant.

4.2 Measurement environment

Superconducting quantum circuits have to be operated at cryogenic temperatures
for two main reasons. First, the sample needs to be cooled down below the transition
temperature Tc to enable the desired effects of superconductivity, including a
(almost) dissipationless AC current. Second, the temperature of the system should
be lower then all relevant energy scales, i.e., the resonator frequencies, to be able
to observe quantum effects. Commercial cryostats reach base temperatures on the
order of a few millikelvin, which places a physical lower limit for the resonator
frequencies of about 1 GHz = 50 mK. At the same time, the energy stored in the
resonator should not be sufficient to break Cooper pairs into quasiparticle, meaning
the resonator frequency must be well below the superconducting gap of (granular)
aluminum ∆ ∼ 40 GHz − 80 GHz. As a consequence, superconducting quantum
circuits are typically operated in the microwave regime between 2 GHz − 20 GHz.
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Besides the physical motivation, this also has a rather practical reason: Components
suitable for the microwave regime are commercially available.

4.2.1 Cryogenic setup

The low temperature experiments presented in this work were performed in a
Bluefors LD250 3He/4He dilution cryostat. Figure 4.4(b) illustrates the working
principle of this multi stage cooling unit [174]. To pre-cool the cryostat to a few
kelvin, a mechanical two stage pulse tube is used. 3 The advantage of this cryocooler
is that all moving parts can be installed at roomt temperature and away from the
fridge, such that vibrations do not interfere with the experiments.

In order to reach temperatures in the mK regime, a mixture of 4He and 3He is
used as additional coolant. The mixture is continuously circulated in a closed
cooling cycle where a Joule-Thomson valve further reduces its temperature via
isenthalpic expansion. Below ∼ 870 mK, the mixture undergoes a spontaneous
transition separating into two liquid phases that accumulate in the mixing chamber:
A 3He rich phase with low density floats on top of a dilute phase with ∼ 7% 3He
admixture, where the 3He atoms move through the superfluid 4He with nearly
no resistance. On the still stage (∼ 700 mK) the isotopes of the dilute phase are
separated by thermal evaporation of 3He, which has a boiling point well below
that of 4He. Using a turbomolecular pump, the 3He is extracted from the still and
briefly pumped to room temperature, where it is cleaned by a cold trap before
reentering the fridge. To compensate for the evaporated molecules, 3He of the rich
phase has to flow to the diluted phase. The latent heat of this mixing process cools
the cryostat.

In practice, cooling powers of about 10 µW can be reached, which allows for a
base temperature of ∼ 10 mK. Limiting factors are the thermal connection between
adjacent stages, heat input through the mixture and thermal radiation. The latter is
suppressed by installing metallic shields at each stage. Additionally, the cryogenic
chamber is evacuated to ∼ 10−6 mbar during the cool down process, which avoids
direct heat transfer trough gas molecules. When cold, the fridge itself serves as a
sufficient pump by trapping gases on its cold surfaces.

3 An alternative are so-called ’wet’ cryostats, where reservoirs of liquid nitrogen and 4He are used for
pre-cooling. However, due to the additional effort necessary for their operation, such systems are less
popular nowadays
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Figure 4.4: Experimental and cryogenic measurement setup a) Schematic containing all instru-
ments, microwave components and wiring used in the spectroscopy measurements. The sample
transmission S21 is probed using a vector network analyzer (VNA), whose signal is attenuated
before and amplified after the sample. Low pass filters are used to protect the quantum circuit
from high energy radiation. Three independent voltage sources enable control over additional
experimental parameters (see text for details). b) All experiments are performed inside a commercial
dry dilution cryostat. A two stage pulse tube is used to pre-cool the system. A mixture of 4He
and 3He circulating in a closed cooling cycle produces latent heat through the continuous phase
transition of 3He molecules inside the mixing chamber, resulting in base temperatures down to
10 mK.

4.2.2 Microwave setup

All resonator experiments presented in this work rely on measuring the microwave
transmission through the sample (Section 3). Experimentally, this task is fulfilled by
a vector network analyzer (VNA), which generates a single-frequency microwave
signal at its output-port and reference its amplitude and phase to the signal received
at the input-port. By rapidly sweeping the frequency of the signal, this allows direct
probing of the S21(ω) parameter of a two-port network.

Coaxial cables guide the microwave signal from the VNA to the sample mounted
at the base temperature of the cryostat (Fig. 4.4a)). To avoided heat transfer into
the cryostat, these cables are made of a metal with a low thermal conductivity, e.g.,
stainless steel. To reduce the high power signal of the VNA to the few photons
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necessary for probing quantum effects in superconducting circuit, attenuators are
installed throughout the microwave lines. To manage the thermal load, they are
distributed over various temperature stages. Each of them adds Johnson-Nyquist
noise to the signal, which results in a final noise temperature

Tn = T1 +
N

∑
i=1

Ti+1

∏
j=1
i aj

, (4.3)

where Ti is the temperature of the Nth stage (T1 = 10 mK) and aj is the corre-
sponding attenuation factor. According to Eq. 4.3, electronic noise is dominated
by the temperature of the base, which is a another reason to keep it as low as
possible. Together with the damping of the superconducting cables (Appendix B),
the total attention of the cold cryostat sums up to ∼ 70 dB at 8 GHz, reducing the
photon number by a factor of ten million. Before and after the sample, additional
commercial (18 GHz cutoff) and home made low pass filter are installed to suppress
parasitic, high-energy infrared radiation which is not filtered by the PTFE dielectric
inside the attenautors and coaxial lines.

To be measurable by room temperature electronics, the output signal of the sample
passes through an amplification chain on its way back to the VNA. The first ampli-
fier, installed at base temperature, is a quantum-limited traveling-wave parametric
amplifier (TWPA) [175]. It adds about 15 − 20 dB amplification at a very low noise
level.4 At 4 K and 70 K, two high-electron-mobility transistors (HEMT) are mounted
to amplify the signal further.

4.2.3 Sample housing

The 5 × 5 mm2 chips are installed in a custom-made, two piece copper sample
holder (Fig. 4.5). There, SMP connectors feed the signal from the microwave lines
to microstrip PCBs which are wire-bonded to the ends of the on-chip transmission
line. Instead of gluing the chip to the sample holder, which is the most common
method, it is fixated with four clamps, one at each corner. This allows the sample
to be bent, which is useful for the investigation of two level defects [176].

For this purpose, a voltage controlled piezo-actuator is placed at the bottom of
the sample holder by a custom made, H-shaped mount. A hole in the sample
holder allows for contact between the piezo and the sample backside through a

4 An additional microwave line is necessary to drive the TWPA, which is not shown in the sketch of the
setup (Fig. 4.4)
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+-

+-

Figure 4.5: Sample holder design and functionalities. a) Sketch of the copper sample holder. A
piezo actuator connected to a zircon sphere (purple) and a DC electrode (red) are used to apply
strain to the sample as well as an global electric field. b) The sample chip is fixated inside the bottom
housing of the sample holder by a clamp on each corner. Microstrip PCBs guide the microwave
signal from the SMP connectors to the on-chip transmission line. c) Closed sample holder with
H-shaped piezo mount screwed to the backside. d) Sample holder lid. The DC electrode is glued to
the center pin of a SMA connector, which terminates inside a recess and is galvanically insulated
from the rest of the (grounded) sample holder.

zircon sphere, which decouples the piezo from the electric ground and ensures a
point-like contact. Prior to installing and cooling down the sample, this contact is
tightened via a screw at the center of the piezo mount which can move the piezo
stack (see Ref. [177] for details). Then, applying a voltage extends the piezo and
thus puts strain on the sample (Eq. 2.48)

Also for TLS tuning experiments [178], a DC electrode is placed inside a recess
of the sample holder lid, where it is glued to the center pin of a SMA connector
(Fig. 4.5d). When the potential of this electrode is raised, an electric field is gener-
ated that points towards the grounded backside metalization of the sample and
thus interferes with the resonator films. The voltages for the piezo Upiezo and the
electrode Uelec are generated by two independent sources at room temperature
(Fig. 4.4). For these DC lines, also appropriate low-pass filters (300 kHz π − filter,
1 kHz T − filter) are installed.

4.3 Noise measurement techniques

Generally, different methods and techniques for measuring low frequency noise
(sample rate ≤ 500 Hz) in superconducting quantum circuits exist. The state of the
art setup for tracking the frequency fluctuations δωr(t) of a microwave resonators
is the Pound loop [179]. This setups uses a power detector in combination with
PID controller to constantly lock the measurement frequency to the resonance
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frequency. These adjustments can directly be translated into the changes of the
resonance frequency over time.

A more convenient alternative is using a VNA to continuously measure the phase
response with the probe tone fixed to the average resonator frequency ω0 = ωr

(continuous wave mode). If the time dependent frequency fluctuations δωr(t) =
ωr(t)− ω0 are small compared to the internal loss δωr/κi ≪ 1, the phase response
of the resonator can be approximated as

arg (Sreso
21 (ω)) =− arctan

(
2

ω − ωr(t)
κr

)
+ arctan

(
2

ω − ωr(t)
κi

)
≈− 2

ω − ωr(t)
κr

+ 2
ω − ωr(t)

κi

(4.4)

and it is easy to see that a change in the measured phase response

δϕ(t) ≈ κr − κi

κrκi
δωr(t) (4.5)

can be directly mapped to δωr(t).

4.3.1 Frequency fluctuation tracking

For some samples studied in this work, frequency fluctuations on the order of
the resonator linewidth (∼ 0.1κr) are observed, where the linear approximation of
the phase brakes down and yields ambiguous results. At the same time, the sole
amplitude signal is insensitive to the direction of the shift (Fig. 4.6(a)). To over-
come both problem, a alternative VNA measurement scheme was developed that
uses the total (amplitude and phase) transmission data Smeas

21 . Its core principals
are illustrated in Fig. 4.6(b). In the first step, the resonance circle Sreso

21 (ω) of the
resonator under investigation is measured and fitted. It will serve as a lookup
table for the actual measurement. In the second step, the timetrace is recorded by
continuously measuring the complex transmission Smeas

21 (ω0, t) with the frequency
fixed to the average resonance frequency ω0 = ωr. There, the data acquisition rate
is, to sufficient precision, equal to the inverse of the VNAs bandwidth. When the
resonator frequency ωr(t) changes during the data recording, the resonance circle
gets effectively rotated in the complex plane of the measurement frame, which
places Smeas

21 (ω0(t)) somewhere on the circle trajectory. Because of additional noise
that is not purely from a shift of the resonance frequency, e.g., from the amplifi-
cation electronics, the measured data points are rather scattered along the circle
trajectory. In the third step, these data point are projected on the prerecorded reso-
nance circle, which is then inverted to find the corresponding resonator frequency
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Figure 4.6: Frequency tracking scheme. a) Schematic drawing visualizing the measurement of
the resonator frequency fluctuations δωr using only the amplitude of S21. When recording at a
fixed frequency ω0, a shift of the resonance frequency corresponds to a change in the measured
amplitude signal |S21|2. Knowledge of the initial resonance shape (black line) allows mapping from
the new |S21|2 value to the new center frequency of the resonator ωr. b) Since the amplitude signal
is not sensitive to the direction of the frequency shift, the scheme is extended to the complex plane.
Left panel: Distribution of the complex transmission data from a fixed frequency measurement at
ω = ω0. Left panel: Each data point is projected (over a distance dm) on a prerecorded resonance
circle Sreso

21 and subsequently mapped to the corresponding resonance frequency ωr.

ωr(t). Mathematically, ωr(t) is then defined as the frequency that minimizes the
expression

min
ω∈[ω0−ϵ,ω0+ϵ]

|Sreso
21 (ω)− Smeas

21 (ω0, t)|, (4.6)

where 2ϵ is the frequency span of the prerecorded resonance circle. In the last step,
the frequency fluctuations are calculated as δωr(t) = ωr(t)− ω0.

4.3.2 Power spectral density

Once the frequency noise trace of a resonator is recorded, the question naturally
arises how to properly analyses and quantify the data in order to draw physi-
cal conclusions and to allow for a comparison between different resonators and
samples. The most simple approach is calculating the average noise power

Pδωr =
h̄
N

N

∑
n=1

δωr,n(t)2 (4.7)

of the signal, where N is the total number of measured data points δωr,n(t). While
this can be a sufficient measure for the frequency (in-)stability of a resonator, it
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Figure 4.7: Average noise power dilemma. Example containing two artificial time series of fre-
quency fluctuations δωr(t) with different spectral signatures but an identical average noise power.

completely neglects the temporal information of the signal, i.e, the order in and rate
at which the data points δωr,n(t) were taken. As a consequence, two time series can
have an identical same noise power despite an obvious difference in their spectral
composition (Fig. 4.7).

Such limitations are overcome when looking at the power spectral density (PSD)
instead, which quantifies the power of the frequency components composing a
signal by means of Fourier analysis. For a discrete system with a finite number of
samples (N ↛ ∞), the PSD can be estimated from

Sδωr( f ) ≃ 1
N fs

|
N

∑
n=1

δωr,n(t)ei2πn f / fs |2 =
1

N fs
|

N

∑
n=1

ˆδωr,d( f )|2, (4.8)

where fs is the sampling rate and ˆδωr,d( f ) is the discrete-time Fourier transform.
Conceptually, the PSD describes how much a signal is fluctuating on a certain
timescale. While increasing the number of samples improves the approximation in
Eq. 4.8 and, according to Nyquist–Shannon sampling theorem, allows resolving
slower fluctuations, it does not reduce the variance of the PSD [180]. A popular
algorithm that is employed for this purpose is Welch’s method [181]. Therein, the
original data set is split into L overlapping segments of length M, with the overlap
typically chosen to be 50% (see Fig. 4.8 for a visualization of Welch’s method).
Then, a window function is applied to the individual segments. Throughout this
work, the Hann(ing) window [182]

w(n) = 0.5 − 0.5 cos
(

2πn
M − 1

)
0 ≤ n ≤ M − 1 (4.9)

was used, though other windows are available which, here, yield identical results
(Appendix C.2). After the segments are windowed, the periodogram, Eq. 4.8, of
each segment is calculated by computing the discrete Fourier transform (DFT).
There, the window function helps to avoid edge effects in the DFT, but affords more
influence to the data at the center of the window then at the edges. The purpose of
the overlap is to mitigate this loss of information. In the last step, all periodograms
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Figure 4.8: Welch’s method for calculating the power spectrum. a) To calculate the power spectral
density (PSD), a time signal (here: fluctuations of the resonance frequency δωr) is first split into
overlapping segments. b) Each data segment is then windowed by an appropriate function (here:
Hann window), which reduces edge effect in the fasst Fourier transform (FFT) that is subsequently
computed. c) Averaging over the square of all Fourier transforms yields the Welch PSD, which is
much smoother then than simply calculating the FFT for the whole time series. The trade-off is a
smaller spectral window.

are averaged, which finally reduces the variance. The spectral frequency range
covered by the PSD calculated from Welch’s method is,

1
Tseg

< f <
fs

2
, (4.10)

where Tseg = M/ fs is the measurement time of all data points within one segment.
Thus, the lowest resolvable frequency is determined by the choice for M (or L),
rather then the total measurement time Tmeas = N/ fs.

Various type of noise can be differentiated by the shape of their power spectrum
[11], which often follows a simple power law S( f ) = h∗−1/ f n. Here, h∗−1 describes
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the signal power at 1 Hz. Uncorrelated noise, which originates, e.g., from thermal
noise of resistors, has a flat PSD (n = 0) and is refereed to as white noise [183]. In
solid-state quantum devices, noise often decreases as 1/ f (n = 1) [12], i.e, it has a
higher power towards lower frequencies. Such signals are refereed to as pink noise
5, or, more commonly, as 1/ f noise. Another special type of noise, which has a
Lorentzian spectrum of the form

S( f ) =
4 Ĩ2τ0

1 + (2π f τ0)2 (4.11)

is a random telegraph signal (RTS). The corresponding time series is characterized
by random transitions between two or several distinct states with an average
lifetime τ0 (left panel Fig. 4.7, see Sec.C.1 for mathematical details). In certain
scenarios, such as donor traps in semiconductors [184] or TLS in dielectrics, 1/ f
noise is believed to originate from the superposition of multiple RTS fluctuators
with varying lifetimes τ0 (see, e.g., Fig. 2.6(b)). In the opposite limit, a large number
of fluctuators with (almost) identical τ still result in a noise spectrum which retains
its Lorentzian shape, but the distinct states get smeared out in the time signal
which becomes Gaussian instead. In this case, the RTS is commonly referred to as
generation-recombination (g-r) noise, which in superconductors occurs due to the
continuous formation and braking of Cooper pairs [128].

4.3.3 Allan deviation

A different tool that can equally be used to quantify the frequency instability
of oscillators is the Allan deviation [185]. Historically, it has been developed for
signal analysis as an improvement of the standard deviation (STD), which has
the problem of monotonically increasing without limit when the data set contains
non-white noise with a power law spectra. To find the Allan deviation, a time series
of fractional frequency shifts y(t) ≡ δωr is divided into M adjacent segments yk(t)
of duration τ (see Fig. 4.9). If yk is the average value of the kth segment, the Allan
deviations of a finite data set can be estimated as

σy(τ) =

[
1

2(M − 1)

M−1

∑
k=1

(yk+1 − yk)
2

] 1
2

. (4.12)

Note that squared difference is taken between adjacent values of yk, compared
to the STD, where one would subtract the total mean ymean = ∑ yk/M from each

5 The noise color is chosen in analogy to the respective frequencies of visible light
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Figure 4.9: Allan deviation. a) Using Allan’s technique to analyze the characteristics of a noisy
signal, the corresponding time series is split into adjacent segments of identical lenght τ. The
average value of each segment is then used to calculate the Allan deviation according to Eq. 4.12.
b) Varying the lenght of the segments, one obtains the noise level on different time scales, i.e., the
noise spectrum.

value instead. By evaluating the Allan deviation for different τ values, the strength
of the fluctuations on various time scales can be calculated. For a discrete time
series, a natural choice is τ = n/ fs, where fs is the sampling rate and n ∈ [1, N/2]
is limited by the total number of data points N = nM. In practice, the estimate
of the Allan deviation, Eq. 4.12, can be greatly improved by using overlapping
segments [186, 187]. This so-called ’overlapping Allan deviation’ is the preferred
estimator in electronics and telecommunication.

The Allan deviation(time domain) is related to the PSD (frequency domain) by the
integral [188, 189]

σ2
y(τ) =

∫ ∞

−∞

4 sin4(π f τ)Sy( f )
(π f τ)2 d f . (4.13)

Comparing the two, the Allan deviation has the advantage of being more easily
applicable to non-stationary processes. Additionally, it often allows for a clearer
separation of random telegraph signals (RTS) from the noise background. However,
it is usually easier to identify and understand different types of noise in from the
power spectral density, which, at the same time, is less susceptible to artifacts in the
measurement data. Nowadays, where computational power is no longer a limiting
factor, the PSD is thus the preferred tool in most works, including this one.
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4.4 Electric field simulations

When performing TLS field tuning experiments (Chapter 6) with the electrode
built into the sample holder (Fig. 4.5), only the value of the applied voltage Uelec ∈
[−200 V, 200 V] is well known. However, for a physical interpretation of the data,
knowledge of the corresponding electric field Eelec(Uelec, x) at x, the position of
the TLS, is required. For this reason, the electrostatic finite element solver Maxwell
provided by the ANSYS Electromagnetics Suite (Release 2021 R2) was employed for
(numerical) simulations of the field distribution. Figure 4.10(a) shows a cut view of
the three-dimensional (3D) simulation model containing the sample holder, the DC
electrode as well as the chip hosting the resonator(s) and a transmission line.

Since the thickness of the granular aluminum film is a factor of ∼ 104 smaller
then the distance between sample and DC electrode, a field simulation along
the resonator film edge in the full 3D model would require a technically not
feasible amount of memory. For this reason, the problem was mapped onto a
two-dimensional (2D) model (Fig. 4.10b)), where the top electrode is replaced by an
effective electrode which accounts for the actual field geometry. Using a coarse 3D
simulation, one finds that the average potential at the effective electrode equates to
U∗

elec ≈ 0.3Uelec, assuming that the charge number on the resonator is conserved
and the transmission line is effectively grounded (RTL→GND ≈ 70 Ω).

Figure 4.10c) shows the electric fields at the end of a resonator for Uelec = 1 V
obtained from the 2D simulation, where the film as well as the ground plane on
the other side of the sapphire substrate were treated as a perfect conductors. The
corresponding absolute field values at a positional axis xr along the film edge,
where the fields are strongest, are plotted in Fig. 4.10c) (black line). Note that the
choice for the shape of the film edge, while motivated by the dry etching process
used in the sample fabrication [177], is arbitrary and can differ in reality, potentially
leading to errors in the absolute field values. This does, however, not affect the
significance of the findings and the general interpretation of the data, as discussed
in Chapter 6.

Because the exact position of the TLS xr is generally not known, it is convenient to
only consider the maximum field strength at the film edge Ez = |Eelec(xr)|max =

3144 m−1 × Uelec
6. The advantage of this conversion is that the (parallel) electric

6 Simply modeling the DC electrode and the ground below the sample as a plate capacitor partially field
by the sapphire substrate dielectric (ϵr ≈ 11) yields a global field strength of Ez/Uelec = 1754.4 m−1,
on the same order of magnitude as the simulated value.
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4.4 Electric field simulations

Figure 4.10: Electric field simulation model and results. a) Cut view of the 3D simulation model.
The sample box hosts a sapphire chip with a single superconducting resonator and the global
transmission line. b) Simplified 2D model used to simulate the electric field distribution along the
edge of the resonator film. The voltage on the effective electrode U∗

elec(Uelec) is determined from
the 3D simulation. c)-e) Absolute values of the electric field distributions Eelec (left) and Erms (right)
generated by the the sample box electrode (Uelec,simu = 1 V) or the root means square voltage of the
resonator (Urms,simu = 1 µV), respectively. In d), the strength of the respective field in a distance of
3 nm from the film edge is shown.

dipole of the TLS directly appears in Eq. 2.48, instead of an effective coupling
strength to the applied voltage (p∗Uelec → 2dEz).

An alternative way to access the dipole moment of the TLS is from the strength of
the coupling to the resonator (Eq. 2.52), which requires knowledge of the single
photon mean field produced by the resonator modes (Erms(Urms, x)). Since the
quantity of interest is, again, the maximum field strength, it is sufficient to consider
the static case where Urms has the maximum vale. There, the capacitance between
the resonator and the transmission line are negligible to first order (Cc/C ≲
0.3), thus the mean field can also be simulated in the 2D case. To calculate the
corresponding voltage Urms, it is convenient to model the distributed resonator with
lumped elements. For the λ/2 resonator used in this work, the current is maximum
in the middle while the voltage between resonator and ground is maximum at both
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4 Experimental methods

ends. Thus, one can approximate the resonator as an inductance L that is shunted
to ground at both ends by an capacitance C/2, which yields [40]

Urms =

√
α

8π

h̄ωr

e

√
Z
Z0

. (4.14)

for the root mean square voltage. Here, α is the fine structure constant and Z =

ωrL□
k ly/wx is the impedance of the wx = 2 nm wide resonator stripe, resulting,

on average, in Urms ≈ 15 µV. For the simulation, the potential of the resonator is
simply raised to Urms while the voltage on the electrode is set to zero. The field
distribution obtained for Urms ≈ 1 µV is shown in Fig. 4.10e), and the corresponding
absolute field values as a function of xr are plotted in Fig. 4.10(d) (purple line). The
concentration of the field at the film corner facing the substrate (xr = 0) is typical
for thin film circuits, and most of the observable TLS are expected to reside there
[6].
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5 Resonance frequency fluctuations

In this chapter, which is based on Ref. [190], measurements of the general properties
of all granular aluminum resonators and their low frequency noise are presented.
These quantities are studied for increasing temperatures, probing powers and with
respect to the sheet resistance of the different sample. In addition, dissipative
aspects of the resonator noise are investigated. The chapter is concluded by a
discussion of different mechanisms that potentially explain the spectral distribution
of the observed noise, which differs from noise spectra typically measured in more
conventional resonators made out of (pure) aluminum or niobium.

5.1 Resonator frequencies and linewidths

As discussed in Sec. 2.3, the resonance frequency (ωr) and linewidth (κr) of mi-
crowave resonators made from superconducting films are influenced significantly
be the presence and distribution of quasiparticles (QP) and two level systems (TLS)
in the particular film. Consequently, studying these influences allows drawing
conclusions about the structural and superconducting properties of the resonator
material and its surface oxides.

In this work, to obtain all relevant resonator parameters (κr, κc, ωr), Eq. 3.15 is
fitted to the measured resonance circle, as described in Ref. [166] (see also inset
Fig. 5.1(a)). The loss rates measured for all resonators at an average resonator
photon number n ∼ 100 and base temperature of T=25 mK are listed in Tab.
5.1, normalized by the respective resonance frequency. Because for all resonators,
energy loss is dominated by the coupling to the transmission line (κr ∼ κc), there
is a rather large uncertainty when calculating the internal loss rate κi = κr − κc.
Using the fact that κi ≪ κr, one can merely make an estimate for the internal
losses κi/ωr = O(10−5) of the studied granular aluminum resonators, which are
in agreement with earlier measurements [3, 47, 48].
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5 Resonance frequency fluctuations

Table 5.1: Total (κr) and coupling (κc) loss rates of the resonators at an average photon number
n, normalized by their resonance frequency ωr. The dressed dielectric loss tangent F tan(δ0) is
extracted from a fit of Eq. 2.49 to κr(n), as shown in Fig. 5.1. Brackets indicate values with large
errors σx/x ≤ 1, x being the measured quantity.

Reso. ωr/2π (GHz) R□
n (kΩ) κr/ωr × 10−4 κc/ωr × 10−4 F tan(δ0)× 10−5

A1 10.565 0.59 2.22 2.09 1.93
A2 10.740 0.61 2.51 2.43 0.73
B1 5.494 1.39 3.35 3.33 1.0
B2 6.154 1.49 3.73 3.65 1.89
B3 6.793 1.53 3.85 (3.85) 1.61
C1 4.069 3.97 1.49 1.38 2.88
C2 4.663 4.32 1.75 1.64 5.21
C3 5.780 3.76 2.61 2.47 2.98
D1 8.006 0.65+12 2.16 2.15 2.0
D2 9.010 0.69+12 3.29 3.26 (12.93)
D3 9.995 0.71+12 2.97 (2.97) 1.75
E1 7.839 0.68+190 2.01 1.88 1.3
E2 8.872 0.68+190 0.5 (0.67) 1.32

5.1.1 Power dependence

A more robust quantity is the dielectric loss tangent tan(δ0), which quantifies how
the resonator loss rate scales with the average number of photons n, due to a bath of
TLS in the resonator dielectric. This behavior is shown for resonator C1 in Fig. 5.1(a).
Fitting Eq. 2.49 to the data yields F tan(δ0) = 2.88 × 10−5 for the dielectric loss
tangent dressed by the filling factor of the dielectric F. Assuming that the majority
of TLS reside in a 4 nm thick, amorphous aluminum oxide layer (ϵr ∼ 10) on
the resonators surface, finite element simulations within ANSYS Maxwell yields
F = 10−4, in agreement with values published for comparable resonator geometries
[47]. With this, the TLS density can be estimated at P0 = 3ϵr tan(δ0)/(πd2) ≈
2.5 × 105 GHz−1µm−3 (PV = P0/V ≈ 1 × 106 GHz−1), choosing d = 0.5 eÅ for the
average TLS dipole moment. This density is significantly larger than values ranging
from 200 − 1000 GHz−1µm−3 typically quoted for bulk dielectrics [178, 191]. A
possible explanation for this discrepancy was provided by Grünhaupt et.al. [47],
suggesting that the quality of granular aluminum microstrip resonators is limited
by excess quasiparticles, not by surface dielectric loss. Alternatively, one might
assume that the resonator fields actually penetrate the whole superconducting film
of the resonator (t ≪ λL) [192], which for granular aluminum partially consists of
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5.1 Resonator frequencies and linewidths

Figure 5.1: Resonator loss tangent. a) Photon number dependent loss rate κr of resonator C1. Solid
line is a fit to Eq. 2.49, which yields the dressed loss tangent F tan(δ0). Inset: To obtain the resonator
parameters, Eq. 3.15 is fitted to the complex resonator transmission data. b) Dressed loss tangents
for all resonators versus their respective normal state sheet resistance R□

n and resonance frequency
ωr. Dashed line indicates the expected scaling due to interacting TLS (µ = 0.3).

an amorphous oxide. In this case, the participation ratio F would be significantly
larger, resulting in smaller values for the dielectric loss tangents and TLS densities.

The fitted loss tangents for all resonator are listed in Tab. 5.1 and plotted in
Fig. 5.1(b) as a function of the resonance frequency and normal state sheet resis-
tance, respectively. Within the error margin (∼ 30%, error bars omitted for clarity),
no noticeable frequency dependence can be observed. This potentially agrees with
both, the STM which proposes a constant DOS (µ = 0), or a model of weakly
interacting TLS (µ = 0.3). The weak frequency dependence of the latter is indicated
by a dashed line. Regarding the dependence on the sheet resistance, a slightly
higher loss tangent can be observed for the resonators from sample C, which is
made from the film with the highest oxygen concentration. However, the difference
is not significant enough to substantiate potential interpretations.

5.1.2 Temperature dependence

While increasing the sample temperature can actually reduces the dielectric loss
through TLS (see Eq. 2.49 and Eq. 2.54), the total loss rate of the resonator will still
increase due to thermally activated quasiparticle. Such behavior can be observed
in Fig. 5.2(a), which shows the relative internal loss rate of resonator C1 measured
for increasing sample temperatures. Since the theoretically expected behavior
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5 Resonance frequency fluctuations

Figure 5.2: Temperature dependent resonator behavior. a) Relative change of the internal loss
rate κi of resonator C1 for increasing temperature. Solid line is a fit to Eq. 2.40. b) Simultaneously
measured resonance frequency shift for resonators C1-C3 as a function of the sample temperature.
The data can be modeled by Eq. 5.1.

described by Eq. 2.40 does not take into account nonequilibrium QP or TLS, the
observed discrepancies at low temperatures are expected. At the same time, at
higher temperatures, the total loss is no longer dominated by the coupling alone
as κi → κc and the extracted values become more precise, resulting in a better
agreement with the theoretical curve.

Together with the broadening of the resonance, one can observe a change of the
resonance frequency when altering the sample temperature (see Fig. 5.2(b)). At
low temperatures, the dielectric constant seen by the resonator is increased du to
the resonant interaction with TLS. This effect gets diluted at higher temperatures
where incoherent processes, induced by the TLS bath, start to play a role [22].
At even higher temperatures, the growing number of quasiparticles increases
the kinetic inductance of the film significantly, resulting in a distinct shift of the
resonance towards lower frequency [130]. Thus, the dependence δωr over the whole
temperature range can be described by

δωr(T)
ωr

=
δωQP

r (T)
ωr

+
δωTLS

r (T)
ωr

+
δωTLS

r (T0)

ωr
, (5.1)

where T0 is a reference temperature, accounting for the fact that ωr deviates from
the unperturbed resonance frequency (which is generally unknown) at T = 0. The
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5.2 Resonator noise data

Figure 5.3: Resonator noise data. a) Raw complex transmission data from a fixed frequency mea-
surement containing O(106) data points. Black line is a fit to the prerecorded resonance circle
S21, reso( f ). The data is processed by means described in Sec. 4.3.1 to obtain the resonator’s fre-
quency fluctuations. b) Extracts from the frequency fluctuation time series of resonator C1 and B1,
recorded at a bandwidth of 500 Hz and an average photon number n ∼ 2 × 103. Figure adapted
from Ref. [190].

QP and TLS contributions are given by Eq. 2.41 and Eq. 2.50, respectively . Fitting
Eq. 5.1 to data from resonators C1-C3 yields an average value of ∆ = 296 ± 3 µeV
for the superconducting gap of granular aluminum, in agreement, within 10%,
with measurements on comparable films [47, 53, 99].

5.2 Resonator noise data

Frequency fluctuations of resonator A1, B1-B3 and C1-C3 were measured using
the tracking method detailed in section 4.3.1. In short, the complex transmission
coefficient S21 was continuously measured at a fixed frequency ω0 ≡ ωr. Fig-
ure 5.3(a) depicts the resulting distribution of data points in the complex plain.
Using knowledge of the pre-measured resonance circle Sreso

21 (ω), each data point
(Smeas

21 (ω0, t)) can be mapped to the corresponding resonance frequency ωr(t) at
that point in time, allowing to calculate the resonator noise as δωr(t) = ωr(t)− ω0.

A typical noise time trace sets contains O(106) measurement points, taken at a rate
of 500/s, which is sufficient to cover the relevant timescales while keeping the data
overhead low. Extract of such data sets taken for resonator C1 and B1 are shown
in Fig. 5.3(b). The evident difference in the time series is representative for the
overall, qualitative picture: Compared with the other samples, the fluctuations of
the resonance frequency δωr are much more pronounced in the resonators with
the highest sheet resistances (C1-C3), where values up to δωr/κr = 0.1 can be
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5 Resonance frequency fluctuations

Table 5.2: Average noise power Pδωr of selected resonators, measured at n = 2 × 103.

Reso. A1 B1 B2 B3 C1 C2 C3
Pδωr (10−25W) 0.53 0.23 0.80 0.83 2.32 6.71 6.29

observed. Quantitatively, this is supported by the average noise powers measured
for the different resonators (Tab. 5.2).

Upon closer inspection of Fig. 5.3(b), one finds that the resonator randomly switches
between discrete positions in frequency space, which can be evidence for both, a
multi-level RTS signal (g-r noise) or simply 1/ f noise. To discriminate between the
two, the power spectrum of the resonator noise will be studied in the subsequent
sections.

5.3 Power spectral density

Figure 5.4(a) shows the fractional noise spectrum Sy = Sδωr /ω2
r of resonator C1,

calculated from Welch’s method. Similar to a pure aluminum resonator (Rn ∼ 0.3 Ω)
measured under identical conditions (Fig. 5.4(c), T = 25 mK, n ≈ 5 × 105), the spec-
trum follows a distinct 1/ f trend. The granular aluminum samples shows, however,
a orders of magnitude higher noise amplitude. Additionally, in the region between
0.1 Hz and 10 Hz, its spectrum noticeably deviates from the 1/ f trend. The spectral
shape of these low frequency excess fluctuations is reminiscent of a Lorentzian,
i.e., it indicates a RTS (see Sec. 4.3.2). At higher temperatures (Fig. 5.4(b)), the
nose of the Lorentzian clearly shifts towards higher frequencies. To track this shift
even when increasing temperatures up to 400 mK, the data acquisition rate was
increased from 500/s to 4000/s for T > 200 mK.

Adding up the different contributions and, in addition, including a white noise
floor1, the full fractional noise spectrum can be modeled by

Sy =
4I2τ0

1 + (2π f τ0)2 +
h−1

f
+ h0, (5.2)

with the amplitude of the RTS I, the 1/ f noise h−1, and the white noise h0, respec-
tively.

1 White noise can, e.g, originate from various electronic components, like amplifiers or attenautors, in
the form of shot noise [193, 194]
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5.3 Power spectral density

Figure 5.4: Fractional noise spectra. a) Low temperature (T=25 mK) fractional noise spectrum of
resonator C1 shows a 1/ f dependency (dashed line), masked by RTS excess noise below 10 Hz
(dotted line). Solid line is a fit to Eq. 5.2. b) Noise spectrum of the same resonator at T=375 mK.
c) For comparison: Noise spectrum of a microwave resonator made from pure aluminum (ωr =

8.15 GHz, κr ∼ 0.2 Mhz) measured with the same experimental setup under identical conditions.
Figure adapted from Ref. [190].

5.3.1 1/f noise background

By fitting Eq. 5.2 to the fractional noise spectrum, as shown by the solid red lines in
Fig. 5.4(a) and (b), the individual contributions to the frequency fluctuations can be
quantified and subsequently studied further. For this purpose, noise measurements
were performed for different resonators while sweeping the sample temperatures
and average resonator photon numbers n. For the temperature sweeps, a con-
stant high-power value of n ≥ 2 × 103 was chosen, while the power sweeps were
conducted at a constant base temperature of 10 mK.

The results for the 1/ f noise amplitude h−1 are plotted in Fig. 5.5. With respect to
the photon number, one can observe a power law dependence where a comparison
to h−1 ∝ 1/nβ (solid lines) yields β = 0.36 (A1), 0.15 ± 0.06 (B1 − B3), 0.12 ±
0.07 (C1 − C3). The stated values were calculated from the mean of all resonators
on the same sample. On the contrary, when the temperature is increased instead,

63



5 Resonance frequency fluctuations

Figure 5.5: 1/ f noise amplitude. First and second panel: 1/ f noise amplitude h−1 as a function
of the photon number and the sample temperature. Straight lines are a fit to 1/nβ , shaded area
indicate the standard deviation of all data points from the particular sample. Third panel: 1/ f noise
amplitude at n ∼ 2 × 103 versus the sheet resistance of the respective resonator. Figure adapted
from Ref. [190].

the 1/ f noise does barely change within the standard deviation of the sample data
(shaded area). Solely a slight decrease of h−1 can be identified at high temperatures
> 250 mK, which could be a consequence of the adjusted data acquisition rate in
this temperature range and the resulting deformation of the overall noise power
spectrum (Fig. 5.4(b)). Finally, comparing the amplitude of the pink noise at n =

2 × 103 between different samples reveals a noticeable correlation between h−1 and
the normal state resistance of the film.

The observed 1/ f scaling of the resonator noise is a well described within the
generalized tunneling model (Eq. 2.54). The model further predicts that the cor-
responding noise amplitude h−1 scales with β = 0.5 at high photon numbers and
β → 0 as the photon number decreases [28], which overall agrees with the observed
behavior. Also, the temperature independence of h−1 is expected within the model,
due to the relatively large photon numbers used in the temperature sweeps.

Regarding the overall noise level, granular aluminum structures appears to be much
more susceptible to 1/ f type fluctuations then resonators made from aluminum
[195] (see also Fig. 5.4(c)) or comparable materials like Nb [27] or NbN [196], where
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Sy(1 Hz) is typically on the order of 10−15.2 This discrepancy reflects the unusually
high loss tangents measured for the granular aluminum films (Sec. 5.1.1), and
might similarly be explained by the participation of TLS from the amorphous AlOx

within the film. Assuming that the number of TLS increases with the thickness of
the inter-grain AlOx barrier, this picture could also offers an explanation for the
increase of the 1/ f amplitude with the films sheet resistance.

5.3.2 Random telegraph signal

For the amplitude I and lifetime τ0 of the RTS signal, no clear dependence on n can
be observed, despite photon numbers spanning over several orders of magnitude
(Fig. 5.6). Unfortunately, resonators C1-C3 bifurcate if the number of photons gets
to high and thus no data points are available for n ≫ 103. At the same time,
samples A1 and B1-B3 miss data points at low photon numbers due to the fact
that there, the increasing pink noise amplitude (h−1/1 Hz ≳ 4I2τ0) obscures the, in
comparison, small RTS signal. However, comparing values between resonators at
n ∼ 2 × 103, where the data points overlap, reveals that the RTS fluctuations are
more pronounced in the samples with the higher sheet resistance, which, again,
agrees with the initial observations (Fig. 5.3(b)).

With regards to the sample temperature, I behaves similar to the 1/ f amplitude, i.e.,
it is approximately independent of T over the whole range (Fig. 5.6(a)). However,
one has to consider that I ∝ δRTS × δωr/δRTS, where δωr/δRTS is proportional
to the coupling between the RTS fluctuators and the resonator and δRTS is the
amplitude of the RTS process, which generally depends on the number of fluctua-
tors, e.g., in the case of g-r noise, on the quasiparticle density [128]. Both quantities
may have an opposite temperature dependency which cancel out for the overall
contribution to I.

The RTS lifetime τ0, on the other hand, shows a strong temperature dependency
above 200 mK, where, depending on the sample, it decreases by several orders of
magnitude. The decreases is approximately exponential, following

τ0(T) ∝ e
const.
kBT , (5.3)

as indicated by the black line (Fig. 5.6(b)). Above 200 mK, τ0 saturates around
100 ms in almost all samples. Note that the onset of the dependence roughly
coincides with the point where the thermal energy is on the order of the resonator
frequencies (kB200 mk/h̄ = ωr ≈ 4 GHz).

2 In all these resonator noise measurements, also no traces of an RTS signal were found in the PSD.
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Figure 5.6: Random telegraph signal amplitude and lifetime. a) Amplitude I and b) lifetime τ0

of the RTS as a function of the photon number n (measured at T=10 mK), sample temperature T
(measured at n = nmax.) and resonator sheet resistance R□

n (measured at T=10 mK, n ≈ 2 × 103).
Solid line indicates an exponential temperature dependence of τ0 above 200 mK (not a fit). Figure
adapted from Ref. [190].

5.4 Allan analysis

To support the finding presented in the previous section, the Allan deviation σy

of the frequency fluctuations was calculated in addition to the PSD. In Fig. 5.7(a),
σy(τ) for data from resonator C1 at different temperatures is plotted. There, it is
straightforward to identify the RTS as a distinct peak centered around τ0, while
the 1/ f component of the noise is actually flat in the Allan representation. As a
consequence, it is comparably easy to directly observe the temperature dependent
shift of τ0 from the data.
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5.4 Allan analysis

Figure 5.7: Noise evaluation based on the Allan deviation. a) Allan deviation σσ(τ) of resonator
C1 plotted at different temperatures. Here, the point of highest deviation marks the lifetime τ0

of the RTS signal. b) Allan deviation at two specific temperatures, 10 mK and 250 mK. Solid lines
are a fit to Eq. 5.4. c) Lifetime of the RTS τ as a function of temperature, extracted from noise
measurements on C1 by fitting either the Allan deviation, the fractional noise spectrum (PSD) or
both combined. Figure adapted from Ref. [190].

Using Eq. 4.13, the Allan deviation equivalent of the noise spectrum model (Eq. 5.2)
can be written as [197, 198]

σy(τ) =
Iτ0

τ

(
4e−τ/τ0 − e−2τ/τ0 + 2

τ

τ0
− 3
)1/2

+
√

2h−1 log(2) +

√
h0

2τ
, (5.4)

using consistent naming for all noise parameters (I, τ0, h−1, h0). A fit of Eq. 5.4 to
the Allan deviation at 10 mK and 250 mK is shown in Fig. 5.7(b), to illustrate the
agreement between theory and data. Further, the values for τ0 extracted from all
fits on the temperature sweep data of C1 are shown in Fig. 5.7(c), together with the
values obtained from fitting the PSD or PSD and Allan deviation combined. At low
temperatures, all fits yield comparable τ0 values and, more importantly, show the
same temperature dependency. At high temperatures, however, the fits to Eq. 5.4
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do no longer converge properly due to a secondary peak appearing on the right
side of σy(τ) (Fig. 5.7(a)). The amplitude of these peaks increases with temperature
while the corresponding lifetime decreases. Since at temperatures above 300 mK
thermally activated quasiparticle play a more prominent role, it is reasonable to
assume that they are the origin of the secondary peaks (Eq. 2.32).

5.5 Dissipative properties

In addition to evaluating the time traces by means of Allan deviation or PSD,
one can directly study the measured data points in the complex plane to identify
whether the mechanism causing the noise δωr is dissipative. If so, the resonator
loss rate should increase proportional to the frequency shift δωr ∝ δκi, meaning the
measured data points follow a non-circular trajectory. Otherwise, all data points
are expected to roughly overlap with the prerecorded resonance circle S21, reso( f ).
An example for a mechanism that causes both, a shift of the resonance frequency
as well as an increased internal loss in superconducting resonators, is the creation
and recombination of quasiparticles (QPs), as discussed in section 2.3.1.

Figure 5.8(a) shows a typical set of resonator noise data in the complex plane
(same as Fig. 5.3(a)), together with the prerecorded resonance circle (black line)
and the expected trajectory of quasiparticles noise at T = 100 mK (red line). It
is apparent that the recorded data shows limited sings of dissipation, following
the resonance circle rather then the quasiparticle path. An alternative way to
visualize this behavior is shown in Fig. 5.8(b), where the projection distance dm =

|S21, reso(ω0) − S21, meas(ω0)|, i.e, length of the shortest path between each data
point n and the prerecorded resonance circle, is plotted over the corresponding
frequency shift . There, a comparison between the measured distribution (turquoise)
and the quasiparticles distribution predicted by theory (red) shows, again, a limited
agreement for the relevant frequency shifts δωr/2π ≥ 100 kHz.

While the mapping distance should ideally be zero for all frequency values, this
is never the case in practice, where additional sources of (predominantly am-
plitude) noise, e.g., from the amplifiers in the experimental setup, influence the
measurement. Nevertheless, data points where |dm| equals more then 10% of the
maximum mapping distance κc/2κr (= radius of resonance circle) only make up a
small percentage (∼ 3%) of the overall data and the errors that can occur in the
noise analysis from incorrectly projecting them on the resonance circle are likely
negligible.
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Figure 5.8: Dissipative noise. a) Noise data from resonator C1. Black line is a fit to the prerecorded
resonance circle S21, reso( f ), red line indicates the trajectory expected for QP related noise. b) Shortest
distance dm between each data point and the resonance circle, as a function of the corresponding
frequency shift. Red area indicates the distribution expected for QP related noise. c) QP noise
measured during a single cooldown of an additional resonator on sample A. Figure adapted from
Ref. [190].

To verify that noise can indeed be dissipative, the noise data measured on an
additional resonator of sample A is shown in Fig. 5.8(c). There, the data points
tightly following the trajectory theoretically predicted by Eq. 2.39, suggesting that
it suffered from particularly strong QP poisoning. Note that this behavior was only
observed once, and never in any of the primarily analyzed resonators (Tab. 5.1).
However, similar noise trajectories have been measured for aluminum resonators
exposed to a photon flux, which is expected to continuously breaks Cooper pairs
into QPs [17].

5.6 Discussion

While the measured 1/ f likely originates from one or several TLS, the physical
mechanism behind the RTS is less clear. At first, it seems natural to attribute both
noise components to the same origin. Indeed, it has been shown in superconducting
qubits [29, 30] as well as superconducting resonators [198] that a nearly resonant
TLS can produce a dominant Lorentzian noise spectrum. However, a reduction of I
with n similar to h−1(n) would be expected as the resonator eventually decouples
from the TLS, which is not observed in the data (Fig. 5.6). Further, due to the
random nature of these defects, it is statistically unlikely to find a dominate TLS
with nearly identical switching time for all resonator on a sample.

Earlier measurements studying the noise properties of narrow aluminum resonators
demonstrated that QP generation and recombination also produces a Lorentzian
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noise spectrum [128, 199]. In this case, the exponential decrease of the lifetime
depicted in Fig. 5.6 would be expected naturally, as the QP density nqp increases
with temperature and it becomes more likely to find a partner for recombination
(Eq. 2.32). At the same time, the measured τ0 values are comparable to quasiparticle
lifetimes previously observed in granular aluminum [47]. However, related studies
showed that the response of a superconducting resonators to a change in the quasi-
particle number δωr/δRTS is almost temperature independent and δRTS ∝ Nqp

[14, 200] . Consequently, the noise amplitude I should increase with temperature,
contrary to its actual behavior shown in Fig. 5.6, where I is approximately constant
or even decreases with increasing temperature instead. In addition, the lack of
dissipation associated with the fluctuations, as discussed in Sec. 5.5, speaks against
a quasiparticle related origin.

The strong dependence of the RTS amplitude on the sheet resistance suggest that the
origin of the RTS rather lies in the granular structure of the film, i.e., the interplay
between the Josephson coupling and the Coulomb repulsion. While more exotic
TLS and quasiparticle processes have been found in highly disordered samples
approaching the SIT [47, 201–204] (see also Sec. 6.5), they are subjected to the
same concerns brought forward for conventional atomic defects above. A scenario,
that would, however, be imaginable is g-r noise due to trapped charges. If the
sheet resistance of the films increases, one can make the argument that statistically,
there must be some grains (or clusters of grains) that are no longer coherently
coupled to the rest of the films [114]. Charges tunneling on and off these islands
temporally alter the total kinetic inductance of the film, thus leading to frequency
fluctuations. Moreover, because they do not contribute the resonator currents
while trapped, they do not necessarily lead to dissipation, even if these charge
where quasiparticles. From straightforward calculations (similar to Appendix B
in Ref. [32]) one can show the fraction of grains that has to participate in charge
trapping NG,trap/NG,tot = 2δωr/ωr = O(10−6) should be directly proportional to
the relative frequency shift. This could explain the increased RTS noise amplitudes
in resonators with higher sheet resistances, i.e., samples closer to the SIT, where
finding weakly coupled grains is more likely.

Another mechanism that becomes relevant in this regime are collective (phase)
modes of the superconducting condensate, as discussed in Sec. 2.1.2. In granular
aluminum, evidence of such modes has been found in THz spectroscopy [53, 76] and
STM measurements [52]. With regards to frequency fluctuations, it was previously
argued that modes extending down to zero frequency can be the thermally exited,
leading to fluctuations also in higher energy modes due to mode-mode interaction
[77]. However, the approximations made in the some of these calculation where
rather crude, and more precise theories need to be developed [78, 205].
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6 Experiments with applied electric
fields

Two-level-systems in quantum circuits, particularly in fixed-frequency resonators,
are usually studied indirectly by measuring noise and dissipation, as shown in
the previous chapter. However, when the coupling between resonator and TLS is
sufficiently large and the TLS is not far detuned from the resonator, observing a
direct interaction is possible. In this chapter, such observations are reported for
granular aluminum resonators, facilitated by electric and strain field tuning. A
quantitative analysis of the most strongly coupled specimens reveals potentially
novel TLS with anomalously large dipole moments residing near the surface of the
films, particularly in oxygen rich samples. Consequently, the connection between
these TLS and the resonators excess noise is studied. In the final discussion,
different microscopic pictures for these unconventional TLS are considered.

6.1 Transmission spectrum

The standard experiment that allows to directly observe the interacting of TLS
with a microwave resonator, according to Eq. 2.53, are measurement of the trans-
mission coefficient Sreso

21 in a spectral window ∆ω around the resonance frequency
(resonator transmission). In this work, ∆ω/2π = (ω − ωr)/2π ∈ [−2 MHz, 2 MHz]
was typically chosen, with a resolution of 401 individual frequency points. During
such a measurement, electric and strain fields can be applied to the resonators
using a DC electrode and piezo actuator (see Sec. 4.2.3 for details). These field
modify the frequency of the TLS according to

ωTLS =
1
h̄

√
∆2

TLS + (ϵTLS + 2dEz + γ∗Upiezo)2, (6.1)

allowing them to be tuned through the resonances of the studied microwave
resonators. Equation 6.1 is a modified version of Eq. 2.48, where the electric field
vector E has been replaced by the maximum field value along the film edge
Ez(Uelec), which linearly depends on the voltage Uelec applied to the DC electrode
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6 Experiments with applied electric fields

Figure 6.1: Resonance behavior under electric fields. Transmission amplitude |S21|2 in a ∆ω/2π =

4 MHz window around resonator E1 versus the measurement time or electric field Ez. When an
electric field is applied, pronounced anticrossings appear in the resonator spectrum.

(see Sec. 4.4 for details). Effectively, this field only couples to the perpendicular
component of the TLS’s electric dipole moment d = |dTLS| cos(θ), where cos(θ) =

E·dTLS
|E||dTLS|

< 1. Thus, the dipole moments stated thought this chapter are only a lower
estimate for the total dipole moment of the TLS dTLS.

Since the conversion from the piezo voltage Upiezo to the strain field S is not so
straightforward, the deformation potential is replaced by an effective coupling
strength γ∗. For the field tuning experiments performed in the scope of this work,
Ez values up to 629 kV/m (40 Vpiezo) were applied, also in reverse polarity. Note
that in the following discussion, the abbreviation TLS will be used as a general
term to describe coherent quantum two level system, which not necessarily have to
originate from atomic defect.

6.1.1 Electric fields

Figure 6.1 illustrates (using actual measurement data) how the resonator trans-
mission changes when a static electric field is applied. For Ez = 0, the resonator
remains relatively stable (Tab. 5.2) over the displayed four hour period. The qual-
itative picture changes noticeably once a increasing electric field is applied: At
distinct field values Ei

z, avoided level crossings between the resonator and multiple
TLS appear.

Within the experimental data, these TLS can be separated into two classes: strongly
and moderately coupled. The strongly coupled TLS, which are the ones predomi-
nantly visible in Fig. 6.1, produce a gap large compared to the resonator linewidth
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6.1 Transmission spectrum

Figure 6.2: Traces of moderately coupled two level systems. Transmission amplitude |S21|2 in a
∆ω/2π = 4 MHz window around resonator E1 versus Ez in two selected field ranges. Dashed lines
follow visible traces of two moderately coupled TLS (Eq. 6.1) with d = {1.9 eÅ, 1.18 eÅ}. White
arrows indicate resonator-TLS anticrossings.

κ. An analysis of these TLS based on the corresponding anti-crossings will be
presented in Sec. 6.3. The moderately coupled systems are less pronounced, but
make up most (> 98%) of the overall count of anticrossings. Such anticrossings are
highlighted in Fig. 6.2. When, on rare occasions, the symmetry point of these TLS
is close to ωr and their loss rate is low (γTLS ≲ 1 MHz), the trace of the hyperbolic
TLS spectrum (Eq. 6.1) is even directly visible in the transmission data. A fit to the
two hyperbolas indicated by dashed lines in Fig. 6.2 yields TLS dipole moments of
d = {1.0 eÅ, 1.18 eÅ}.

One can get an estimate for the field-density PE of strongly to moderately coupled
TLS in the different resonators by counting all visible avoided level crossings
and hyperbolas and normalizing the count to the total range of the electric field
sweep. Corresponding results from selected electric field sweeps are listed in
Tab. 6.1. Note that a representative count was not possible for sample C, where
anticrossings of moderate strength are obscured by the pronounced frequency
fluctuations. In general, densities obtained this way are two orders of magnitudes
larger then the respective field-densities PE,s which only take into account strongly
coupled TLS. However, both PE and PE,s strongly depend on the experimental
implementation of the DC electrode and, more importantly, do not account for
the increased visibility of TLS with larger dipole moments, i.e., hyperbolas with
steeper slopes. A better estimate, suitable for comparison to other experiments
with similar dielectric volumes, is given by the spectral TLS density

PV = ∑
i

∆Ez,max

d̃i
. (6.2)
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6 Experiments with applied electric fields

Here, i is the index over all observed TLS and d̃i is a visual estimate for their
slope with respect to the electric field, which was tuned over a total range of
∆Ez,max = 1258 kV/m. Selected spectral density values are also listed in Tab. 6.1.
They are several orders of magnitude (∼ 104) smaller then the densities estimated
from the loss tangent data, suggesting that the reported TLS have only a minor
effect on the total dielectric loss, which instead, is likely dominated by a bath of
weakly coupled TLS that are not directly observable.

Table 6.1: Measured TLS densities with respect to the electric field (PE) and the energy spec-
trum (PV), separately listed for all resonators with different sheet resistance values R□

n . The PE,s
only counts strongly coupled TLS. On sample C, TLS counting was hindered by the pronounced
frequency fluctuations.

Reso. R□
n (kΩ) PE (MW/m)−1 PV (GHz)−1 PE,s (MV/m)−1

A1 0.59 ∼ 140 ∼ 21 1.6
A2 0.61 - - 0.4
B1 1.39 ∼ 290 ∼ 34 2.0
B2 1.49 ∼ 250 ∼ 27 2.4
B3 1.53 - - 2.0
C1 3.97 - - 4.0
C2 4.32 - - 4.8
C3 3.76 - - 4.0
D1 0.65+12 ∼ 220 ∼ 25 2.4
D2 0.69+12 ∼ 260 ∼ 43 1.6
D3 0.71+190 - - 2.0
E1 0.68+190 ∼ 450 ∼ 29 4.4
E2 0.72+190 ∼ 410 ∼ 33 3.2

6.1.2 Strain fields

When mechanical strain is applied to the samples instead of an electric field,
the qualitative picture remains the same, as shown in Fig. 6.3(a). However, the
prevalence of pronounced anticrossing from strongly coupled TLS is noticeably
reduced in these experiments. This could either be due to a reduced sensitivity of
these TLS to strain tuning, or the strain field generated per Volt applied to the piezo
is comparably low, i.e, γ∗Vpiezo ≪ dEz. Further, strain measurements are always
hysteretic due to piezo creep. As a consequence, measurements with electric fields,
which also allow determining the TLS’ electric dipole, were favored in this work.

In addition to the occurrence of anticrossings, the strain field also results in a
linear shift δωr of the resonator frequency, as shown in Fig. 6.3(b) for resonator
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6.2 Resonator broadening

Figure 6.3: Resonator strain tuning experiments. a) Transmission amplitude |S21|2 in a∆ω/2π =

4 MHz window around resonator E1 versus the voltage Upiezo applied to the piezo actuator. b)
Resonance frequency ωr shifting as a function of the piezo voltage.

E1. For this sample, a maximum frequency difference of 200 kHz over the whole
measurement range (∆Upiezo = 80 V) can be observed. A possible explanation for
this behavior comes from the strong dependency of the film’s transport properties
on the inter-grain coupling, which naturally changes when the sample is bent.
Because the dependency on the strain is linear rather than random, it seems likely
that only a single pair of neighboring grains, which dominates the transport of the
resonator currents [34], is relevant in this process.

6.2 Resonator broadening

Due to their (typically) short lifetimes, TLS tuned on resonance present a very
effective loss channel, resulting in a measurable resonance broadening. This effect
has long been used to reveal and study TLS traces (Eq. 6.1) over a large frequency
range using tunable qubits [25, 135]. While such traces are generally not acces-
sible with fixed-frequency resonators, measuring the increase of κr provides a
single measure for the identification of an TLS anticrossing (instead of having to
inspect the whole resonator spectrum), which is advantageous when additional
experimental parameters.

In Fig. 6.4 the dependency of the TLS-resonator interaction on the average resonator
photon number is studied. At low photon numbers (n = O(102)), a roughly 50%
increase of the resonator’s loss rate, i.e., resonator broadening, is visible at two
distinct electric field values. As the photon number increases, the corresponding
peaks become progressively less pronounced. At n > 104 they are no longer
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6 Experiments with applied electric fields

Figure 6.4: Power dependence of the resonator TLS coupling. Normalized loss rate κr/κr,0 of
resonator E1 as a function of the electric field Ez and the average resonator photon number n. Near
an anti-crossing, κr is enhanced significantly. At higher photon numbers (n > 103) the enhancement
progressively gets washed out and eventually disappears.

visible and κr is approximately constant over the observed electric field range.
Such behavior is only expected for a quantum two-level-system, who can absorb
one single photon at a time. Thus, as the number of photons circulating in the
resonator surpass a certain threshold, it is no longer sensitive towards loosing a
single one of them to the TLS. Consequently, there is strong evidence that the
observed anticrossings indeed stem from coherent TLS and are not due to, for
example, on chip resonances, which could absorb more than one photon and would
not disappear as n increases. Note that, for the same reasons, the anticrossings
are only visible in the resonator spectrum if the data is measured at low photon
numbers, typically n ≤ 500.

In a second experiment, the resonator broadening in a wide electric field range
was monitored for over 50 hours (Fig. 6.5). The measured TLS resonances, i.e.,
the electric field values Ei

z at which κr is increased, fluctuate noticeable over this
period. One can observe a telegraphic-like switching pattern for one of the TLS,
sudden jumps to a different frequencies or slow drifting. This, together with the
presence of correlated TLS resonance fluctuations, seen ,e.g., at Ez > 42 kV/m
between hours eleven and thirteen, are the expected signatures of interacting TLS
[27, 28, 30, 206].
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6.3 Anticrossing analysis

Figure 6.5: Temporal stability of several TLS. Normalized loss rate κr/κr,0 of resonator E1 as a
function of the electric field Ez measured over a two day period. The data reveal various types of
temporal fluctuations discussed in the text.

6.3 Anticrossing analysis

By applying input-output theory to the combined Hamiltonians of Eq. 2.52 and
Eq. 3.9, one can obtain an analytical expression for the transmission spectrum of
an asymmetric resonator strongly coupled to a two-level-system [146]. Adopting
the form of Eq.3.15, this expression reads

Santi
21 (ω, Ez) = aeiα0

1 −
κc
2 eiΦ

κr
2 + i(ω − ωr) +

g2

i
(

ω− 1
h̄

√
∆2

TLS+(ϵTLS+2dEz)2
)
+

γTLS
2

 ,

(6.3)

including the dependency of the TLS frequency on Ez. By fitting this formula to an
anticrossing, all relevant TLS parameters can be extracted. There, the quantities
of particular interest are the coupling strength between resonator and TLS g, the
parallel component of the TLS dipole moment d as well as the TLS linewidth γTLS,
which relates to the coherence time of the TLS as T2 = 2/γTLS.

From the eleven fitting parameters used in Eq. 6.3, six describe the resonator
([a, α0, κc, Φ, κr, ωr]) and five characterize the TLS that is tuned through the res-
onance ([g, ∆TLS, ϵTLS, d, γTLS]). Having such a large number of free parameters,
the analysis is rather susceptible to overfitting. To avoid such behavior, fitting is
performed in two steps. First, a reduced model |Santi

21 (ω, g = 0)| = |Sreso
21 (ω)| is
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6 Experiments with applied electric fields

Figure 6.6: Anticrossing analysis a) Top panel: Transmission amplitude of resonator E1 interacting
with a strongly coupled TLS that is tuned through resonance by the applied electric field Ez. Bottom
panel: Fit of Eq. 6.3 to the experimental data. Colored arrows mark the individual traces displayed
in b).

fitted to the bare resonance at a selected electric field value where all strongly
coupled TLS are far detuned from the resonator. The parameters obtained this
way are then fixed for all further analysis performed on that particular resonator.
In the second step, the full model |Santi

21 (ω, Eelec)| is fitted to the 2D amplitude
transmission data in the vicinity of the anticrossing of interest.

For both steps, a standard non-linear least squares method is used. In addition to
this two step process, only symmetric anticrossing pairs were selected for fitting,
which practically fixes the value of ∆. The results of a typical fit are shown in
Fig. 6.6. As illustrated by the cuts through the 2D data, the minimum of the
transmission shows deviations from the unperturbed resonance (∆ω = 0) with
opposite signs, as expected on the two sides of an anticrossing. Note that due to the
logarithmic scale, deviations between data and fit near the transmission minimum
appear exaggerated.

6.3.1 TLS parameters

In total, 86 fits were performed on all pronounced anticrossings measured during
two cooldowns of all samples (see D.2 for a extended selection of anticrossing
fits and D.1 for tables containing all relevant fit parameters). Figure 6.7(a) shows
the corresponding distribution of TLS linewidths, ranging from 0.2 to 80 MHz.
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6.3 Anticrossing analysis

With an average linewidth value γTLS/2π ≈ 14 MHz corresponding to a coherence
times of hundreds of nanoseconds, this range is, while rather broad, comparable to
TLS lifteimes found in similar studies on superconducting qubits [178, 207] and
distributed microwave resonators [143, 146, 147].

The values obtained for the coupling strength g and the parallel dipole moment d
are plotted in Fig. 6.7(c). There is a strong correlation between the two quantities
(r = 0.62), as expected for g ∝ Ermsd.1 Using Eq. 6.2, the average spectral density of
the strongly coupled TLS can be calculated to be PV,g ≈ 0.01 (GHz)−1, which is,
again, much lower than the respective density including moderately coupled TLS
(Tab. 6.1).

The shaded area in Fig. 6.7(c) indicates the parameter space, in terms of dipole
moment and coupling strength, that would be expected for conventional atomic
defect type TLS [21, 22]. The numerous experiments studying those systems typi-
cally find TLS with electric dipoles dAD below a maximum value of roughly 2 eÅ
[6, 23, 148, 208–211]. Here, in granular aluminum, the most strongly coupled TLS
show, however, order of magnitude larger dipole moments up to 40 eÅ, suggesting
an alternative microscopic origin.2

Further, looking at the difference between the TLS measured on the individual
samples, one can make several noteworthy observations. First, in Fig. 6.7(c), TLS
with a coupling strength of g/2π > 2 MHz are only observed on samples without
an insulating top layer (A-C). This supports the assumption that these novel TLS are
(also) located near the film surface. Since resonant modes, i.e, the oscillating charge
carriers, preferably exist in the lower, superconducting layer, the resonator fields
are reduced inside the insulating top layer. Consequently, TLS near the film-air
interface are exposed to reduced values of Erms. Second, as illustrated by Fig. 6.7(d),
the number of strongly coupled TLS increases with the normal state sheet resistance
Rn (indicated by darker color shades), i.e, the transparency of the inter-grain oxide
barrier. Considering the field distribution discussed above, this trend partially
holds true even for the insulating layers. In particular, the TLS density in sample E
is noticeable higher then in sample A, despite an almost identical superconducting
layer. Similarly, the average TLS dipole moment (d) and coupling strength (g) are

1 The TLS linewidth is also correlated with both, the coupling strength g (r = 0.75) and the dipole
moment d (r = 0.39). There, the stronger correlation with g seems to rather be an artifact of the fitting
procedure then of an physical origin, given that κr < γTLS , i.e, the resonator can not be the main loss
channel of the TLS.

2 Note that d is only a lower estimate for the electric dipole of the measured TLS, assuming it is parallel
to the electric field. Thus, even when allowing for large errors in Fig. 6.7(c), this overall conclusion
still holds.
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6 Experiments with applied electric fields

Figure 6.7: Properties of all individually analyzed TLS (N=86). a) Histogram of all measured TLS
linewidths γTLS . b) Field density PE,s of strongly coupled TLS found on the individual samples
(A : 0.6 kΩ, B : 1.5 kΩ, C : 4.1 kΩ, D : E : 0.7 + 12 kΩ, E : 0.7 + 190 kΩ). Error bars indicate
variations between different resonators and cooldowns. c) Distribution of the extracted resonator-
TLS coupling strengths g and parallel TLS dipole moments d. Single layer samples are colored
in shades of blue, two-layer samples in shades of yellow. Darker shades indicate higher sheet
resistance. Hatched area marks the parameter space expected for conventional atomic defects type
TLS. Inset shows the average values for d and g measured on each sample.
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6.3 Anticrossing analysis

higher in samples with higher sheet resistance (see inset Fig. 6.7(c)). Considering
the selection process of only fitting pronounced anticrossings, this effect could
be correlated with the differences in the TLS densities. Either way, one can attest
a prevalence of TLS with large dipole moments to films with increasing oxygen
concentrations.

6.3.2 TLS location

For the anticrossing analysis presented so far, the actual position of the TLS along
the film edge was disregarded. Instead, all TLS were expected to be subjected to the
maximum field Ez. This allowed for a direct conversion of the measured, effective
coupling strength p∗ = 2dEz/Uelec, to the parallel electric dipole moment d (see
Sec. 4.4 for details). However, treating the problem in a more general way, one has
to write the following equation for the parallel TLS dipole moment

dp∗ =
p∗Uelec

2|Eelec(Uelec, xr)|
, (6.4)

where xr is the TLS’ position along the film edge. While the distribution of the
electric field is known from simulations (Fig. 4.10d)), the problem in Eq. 6.4 is to
obtain xr. For this purpose it is necessary to use additional experimental data, i.e.,
the extracted coupling strength. Considering that near the symmetry point of the
TLS hyperbola h̄ωTLS = ∆TLS, it follows from Eq. 2.51 that

dg =
h̄g

|Erms(Urms, xr)|
, (6.5)

where dg is the component of the TLS’ electric dipole moment parallel to the
resonator field. Because Erms ∥ Eelec at the film surface, dg and dp∗ should be
identical for each individual TLS and one can explicitly solve Eq. 6.4 and Eq. 6.5
for xr by minimizing

min
xr∈[0,50]

|dg(xr)− d∗p(xr)|. (6.6)

The resulting distribution of TLS positions is plotted in Fig. 6.8(a). Contrary to
an earlier work resolving the positions of conventional defect type TLS at the
various interfaces of a coplanar waveguide qubit circuit [6], the TLS studied here
do not concentrate at the bottom film edge (xr = 0). Instead, they are rather equally
distributed along the film edge, while some even reside on the top surface. Whether
this discrepancy originates in the different nature of these TLS or the different
field distribution remains unknown. Also note that, because of the assumptions
necessary for Eq. 6.6, the analysis is limited to the film-air interface.
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Figure 6.8: Resolving TLS locations through electric field matching. a) Histogram of the TLS
positions along the film edge obtained from Eq. 6.6. b) Comparison between the distributions of
TLS dipole moments calculated either from the coupling to the electrodes electric field (d∗p) or the
coupling to the resonator (dg), using knowledge of the TLS location xr. Inset shows the overlap
between the distributions as a function of the resonator field amplitude seen by the TLS in the
two-layer sample (Erms,top), relative to Erms,top = Erms. The histograms in a) and b) are generated
for Erms,top = Erms,bottom/2.

Reinserting the obtained xr values into Eq. 6.4 and Eq. 6.5 yields two distri-
butions for the TLS dipole moments, dp∗ (xr) and dg(xr), which, for consistency,
should be identical. Figure 6.8(b) shows these distributions. There, discrepancies at
large dipole values could be explained by local variations of the field due to the
nanoscopic structure of the film. For a good agreement, one also has to consider
that the TLS residing in the top layer of sample D and E are likely subjected to
smaller resonator fields. The inset in Fig. 6.8(b) shows the mean deviation between
the two distributions, assuming a reduction of the Erms field for all TLS from
the two layer samples. The deviation is smallest for Erms,top = Erms,bottom/2, but
remains reasonable up to a factor of ten when compared to the average dipole
moment d = 15 eÅ.

Finally, the two methods for obtaining the dipole moments from the slope of the
TLS hyperbola, either using the maximum electric field (d) or considering the
field distribution and TLS location (d∗p), should be compared. Taking Erms,top =

Erms,bottom, the mean deviation can be calculated to ∑86
n=1 |d − d∗p|/N = 2 eÅ, which

is even smaller than the deviation between d∗p and dg. This result not only validates
the initial approach to evaluate all TLS at the position with the maximum field,
but also attests to the solidity of the presented data.
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6.4 Field dependent frequency fluctuations

Figure 6.9: Noise spectroscopy of a strongly coupled TLS. a) Loss rate κr of resonator C3 as a
function of the electric field. The red dot indicates the field value chosen for the noise spectroscopy.
a) Fractional noise spectrum in the vicinity of an anticrossing (Ez = 40.24 kV/m), recorded at
different resonator photon numbers n. Solid line is a fit to Eq. 5.2. a) Average lifetime τ0 of the
RTS signal manifesting as a Lorentzian in b), as a function of n. For photon numbers n ≤ 103, the
Lorentzian disappears (τ0 = 0) and the noise spectrum is well described by 1/ f noise over a white
noise floor.

6.4 Field dependent frequency fluctuations

In Sec. 6.2, the strong temporal instability of the strongly coupled TLS were re-
vealed, including signatures of random telegraph signals (RTS). To study these
fluctuations further, the techniques presented in Sec. 5 were utilized in combination
with the DC electrode. The corresponding experiment is conceptualized as follows.
First, the resonator linewidth is monitored for a range of electric field values to
identify TLS anticrossings by a reduction in κr (Fig. 6.9(a)). Second, a specific
electric field value in the vicinity of one anticrossing, where the influence of the
TLS on the resonator is significant enough is chosen. It is crucial not to tune the TLS
to close to the resonator, because then the two systems hybridize an the resonator
can no longer be measured individually (Eq. 2.53). Third, the low frequency noise
of the resonator (strongly coupled to a particular TLS) is recorded.
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Figure 6.10: Resonator noise spectrum versus electric field. a) Fractional noise spectrum of res-
onator C3 under an applied electric field, similar to data taken at Ez = 0 (Fig. 5.4). Solid line is a fit
to Eq. 5.2 and the arrow indicates the position of the TLS Lorentzian peak measured in Fig. 6.9. b)
Amplitude I and lifetime τ0 of the resonator RTS as a function of the electric field.

Figure 6.9(b) shows the corresponding fractional noise spectra of resonator C3,
measured at two different photon numbers. To avoid a drift of the TLS resonance
during the resonator frequency tracking, the overall measurement time was greatly
reduced, resulting in a smaller spectral window. For n = O(102), the noise spectrum
shows clear signatures of an RTS on top of a 1/ f noise background. A fit to
Eq. 4.2 yields a average lifetime of the RTS fluctuations on the order of 10 ms,
approximately independent of n at low photon numbers (fig. 6.9(c)). This result
is close in value to earlier measurements revealing the fluctuation rate of TLS
coupled to superconducting qubits [212]. It is, however, smaller than the τ0 values
of the field-independent RTS fluctuations found across all samples (Fig. 5.6(b)).
As expected, at high photon numbers n ≳ 103, the resonator decouples from
the TLS and the noise spectrum reverts to a 1/ f noise between 1 Hz an 100 Hz.
This contradicts the behavior of the fluctuations studied in Sec. 5, which remain
unchanged even at very high photon numbers n > 104 (Fig. 5.6(a)).

To further investigate a possible connection between the observed TLS and the
power independent RTS, the (full) resonator noise spectrum was measured at
nine field values equally spaced within ∆Ez,max, including Ez = 0. The results
are summarized in Fig. 6.10. Not only does the RTS consistently appear in the
noise spectrum at all field values, but its characteristics (amplitude I, lifetime
τ0) also remain virtually unchanged. It is thus unlikely that the physical process
causing these fluctuations couples to the resonator via a electric dipole-dipole
type interacting, like TLS typically do, because a sufficiently large field would
eventually tune the dipole away from the resonator. Note that an interpretation
assuming a different coupling mechanism, e.g, due to localized charges modifying
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the current transport channels within the resonator film, could also be in line with
the observed power independence of the excess fluctuations studied in Sec. 5.

6.5 Discussion

As mentioned above, the majority of TLS measured in this work is only moderately
coupled to both the resonator and the DC field, and can well be attributed to
an atomic defect (AD) type origin. However, some TLS, which appear as very
pronounced anticrossings, show anomalously large dipole moments and require a
different macroscopic picture. Some potential candidates are illustrated in Fig. 6.11
and will be discussed in the following.

In two very recent publications, TLS with electric dipole moments of similar size
have been observed in amorphous silicon [213] as well as tantalum [214] by apply-
ing a low frequency electric-field bias, which results in frequency dependent res-
onator loss due to a Landau-Zener type interaction [215]. The authors of Ref. [213]
interpreted their findings in the scope of a two-TLS model [216]. There, TLS are
separated, similar to this work, into a weakly and a strongly interacting variety,
where the latter can have very large electric dipole moments. For these large TLS,
an Efros-Shklovskii-type mechanism due to phonon mediated TLS-TLS interaction
creates a gap in their energy spectrum at the relevant energies if the system is in
the equilibrium [217, 218]. While, consequently, they are usually not observed in
experiments with static fields (like the ones presented here), it has been shown
that granularity can modifies the phonon spectrum [219, 220], which might hinder
TLS-TLS interactions and lift the gap. For this mechanism to be effective, such TLS,
which might be formed by tunneling nanoclusters (TN) containing hundreds of
atoms [221], have to sit between the grain boundaries rather than on the surface
of the film. Since the expected static field penetration depth on the order of the
Thomas-Fermi lenght λ > λTF ≃ 2 nm is comparable to the thickness of the films,
i.e, the global field Ez does not only penetrate the surface oxide but also the oxide
between the grains, this picture does not contradict our findings.

However, the increased densities of strongly coupled TLS in films with higher sheet
resistances (Fig. 6.7(b)) suggest that the underlying physics is rather related to
the suppression of superconductivity in these films than structural phenomena,
which are less sensitive to changes in Rn. A potential candidate in this regard are
quasiparticles (QP) that have been trapped within local minima of the gap δ∆,
which can arise, e.g., from weak magnetic impurities or film inhomogeneities [52,
98]. Within this trap, the QP only has few bound states and as a results, behaves
similar to a TLS (see Fig. 6.11). Such behavior has recently been reported for
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Figure 6.11: Potential TLS candidates near the surface of a granular aluminum thin film. Left
panel: Illustrative side view of the sample showing the relevant electric fields. Right panel: Sketch
of the granular aluminum film surface, illustrating conventional atomic defects (AD, blue) as well
as potential candidates with larger dipole moments (red). The latter includes charges trapped on or
between grains (TC), tunneling nanoclusters of atoms (NC), or quasiparticles trapped in spatial
variations of the superconducting gap (QP).

disordered niobium nitride (NbN) films [201], where the measured dipoles were
on the order of 1 eÅ. Due to the, in comparison to granular aluminum, increased
coherence length (ξ0,grAl ≈ 2ξ0,NbN) but reduced charge carrier of NbN, one can
expect wider (∼ ξ3

0) traps which are also shielded by less charges in granular
aluminum, allowing for much larger dipole sizes. At the same time, the traps
(δ∆/kB ≈ 500 mK) can be expected to be shallower in granular aluminum, which
has a smaller gap than NbN (∆grAl ≈ 0.2∆NbN). As a consequence, the spectral
distribution of the TLS frequencies, which approximately scales as ∆ξ2

0, should be
comparable in both materials.

In Ref. [201], quasiparticle TLS were, among other things, identified because they
rearranged under mild thermal cycling, a behavior that is not expected for atomic
defects. Such studies were also performed in the course of this work (see D.3), but
did not yield conclusive results. There, the problem was that due to the extensive
frequency fluctuations of the strongly coupled TLS (Fig. 6.5), one can not reliably
distinguish between thermal rearrangement and temporal instabilities. At the same
time, these fluctuations could be explained by the expected shallower δ∆, which
would be more susceptible to thermal reconfiguration. Finally, note that the QP
traps, which naturally occur on the film surface, could also exist in the insulating
layer covering sample D and E, where superconductivity might still exist locally
[99, 114, 222].

Historically, a popular concept to explain very strongly coupled TLS are tunneling
charges (TC). So far, evidence for there existence has been found in Josephson
junctions [223, 224] and Nb+Pt resonators [149]. In granular aluminum films,
it is easy to believe that localized charges occur naturally when the the sample
approaches the SIT and the Coulomb repulsion surpasses the Josephson coupling
[114] (see also Sec. 2.2.2). One can estimate that by simply hopping between
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adjacent grains which are separated by a ∼ 2 − 3 nm thick oxide barrier, a single
Cooper pair could from dipoles exceeding 100 eÅ. In reality, the dipole would, of
course, appear noticeably smaller due to electrical shielding by the surrounding
condensate. While this simple estimation yields dipoles on the same scale as
those observed, the problem with the trapped charges is that the typical grain
charging energy on the order of several Kelvin does not agree with the observed
TLS frequencies. However, theoretical calculation have shown that hopping charges
can be dressed by phononic states of neighboring grains [225] or virtual tunneling
processes [118], renormalizing the TLS energy.

The localization of charges near the SIT is directly linked to local fluctuations of
the phase of the superconducting order parameter, which favors the emergence of
phase modes. In particular, the random distribution of grains and barrier widths
in granular aluminum naturally gives rise to a broad distribution for the local
phase stiffness Jij = EJ [76], spawning low-energy phase modes with an effective
dipole moment (Eq. 2.14). Physically, such modes could be thought of as Cooper
pairs coherently hopping across several grains [78]. The expected localization
lenght of these modes on the order of the coherence lenght (ξGL ≈ 10 nm) should
provide sufficiently large dipole moments. Note, however, that it is not entirely clear
whether a interaction between the collective modes of the Cooper pair condensate
and the resonator mode would necessarily have to be of a dipole-dipole type [77].

Since a few strongly coupled TLS are also observed in the strain tuning experiments,
one has to consider how the potential candidates discussed above would couple to
a strain field: Within the two-TLS model, this coupling is not only assumed but also
detailed [216]. For trapped quasiparticles, it seems reasonable to assume that stress
locally modifies the phonon spectrum and thus the landscape of gap fluctuations.
Similarly, bending the sample modifies the distance and thus coupling between
grains, leading to modified tunneling probabilities (i.e., phase stiffness) for trapped
charges. Note that both these effect might also play a role in the observed change
to the (AC) transport properties of the films with applied strain (Fig. 6.3(b)).
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The goal of this thesis was to answer the following two questions: "Do noise and
dissipation in granular aluminum resonators increase with the sheet resistance of the sam-
ple?" and "Can (excess) TLS be directly measured in granular aluminum films?". Both
these question could be answered affirmatively. For this purpose, multiple granular
aluminum films were sputtered at different oxygen partial pressures and subse-
quently structured into resonant microwave circuit using standard lithographic
techniques. There, different mechanism to determine the sheet resistance of the
sample were implemented, ensuring a confident estimate. The superconducting
samples with the highest oxygen concentration were fabricated to have sheet resis-
tance values close to the superconductor to insulator transition. To be able to also
study films on the insulating side of this transition, two samples were fabricated
with an additional, insulating top layer.

To measure the noise properties of the resonators, a frequency tracking technique
using the complex sample transmission together with a pre-recorded resonance
circle was developed. With this tool, time series of the resonator’s frequency
fluctuations were measured and subsequently analyzed by means of the power
spectral density and the Allan deviation. Compared to pure aluminum resonators,
the granular aluminum samples showed much higher 1/ f noise amplitudes and,
in addition, signatures of a random telegraph signal (RTS) in the noise spectrum.
In particular, the strength of these excess fluctuations increased with the sheet
resistance of the respective resonator film. Further, the 1/ f noise amplitude showed
a power law dependence on the resonator photon number n, in agreement with two-
level-system (TLS) theory. When the sample temperature was increased instead, an
abrupt reduction of the RTS lifetime was observed.

Subsequently, a custom made sample holder was employed to apply electrical and
mechanical fields to the resonator films. Measuring the sample transmission while
sweeping the strength of these fields revealed a large number of anticrossings, i.e.,
signatures of resonator-TLS interaction. The majority of anticrossings only showed
signs of a week interaction and overall agrees with the standard TLS picture of
tunneling atoms. However, a comprehensive analysis of the more pronounced
anticrossings based on a quantum mechanical Jaynes–Cummings model revealed a
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potentially novel type of TLS with anomalously large dipole moments reaching
(measured) values up to 40 eÅ. Studying and comparing multiple samples showed
that more of these TLS are observed if the sheet resistance of the film is increased.

In conclusion, the findings presented in this work demonstrate both the potential,
but also the limitations of using granular aluminum in quantum circuits, where
the investigated losses can, e.g, compromise the quality of a detector signal or
introduce additional decoherence in nearby qubits. Possible mechanisms explaining
the measurement data were extensively discussed at the end of the respective
chapter. There, the universally observed dependence on the sheet resistance favors
explanations that are linked to the granular structure of the material as well as
the vicinity to the superconductor to insulator transition (SIT). While this would
render efforts to mitigate loss and dissipation in highly oxidized samples almost
impossible, it offers a unique possibility to study some of the mechanisms governing
the SIT in granular materials, which are not yet comprehensively understood.

To definitively answer the question of the origin of the excess telegraph fluctuations
and the giant TLS, additional theoretical and experimental effort is required in
the future. For example, one could further discriminate between different TLS
candidates by applying magnetic fields to the samples. In particular, TLS due to
trapped quasiparticles are expected to have a strong dependency on the magnetic
field due to its influence on the superconducting gap [201]. At the same time,
a distributed resonator geometry like those presented in Ref. [143] or Ref. [148]
might be useful to study granular aluminum films on the insulating side of the SIT
more extensively. However, to draw fundamental, physical conclusions from the
experimental results, additional theories have to be developed, e.g., concerning the
microwave dynamic of trapped charges and collective modes near the SIT. In the
meantime, the different measurement methods and evaluation tools gathered for
this work offer a blueprint for similar investigations of related materials, providing
further insights into the peculiarities of superconductivity in disordered films as
well as their value for superconducting microwave applications.
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Appendix

A Fabrication parameters

Table A.1: Granular aluminum evaporation. All films were deposited in a dynamic sputter process
with a plasma voltage of Uspt = 400 V (Pspt = 50 W). The film resistance is controlled by the flow of
the ArOx gas at a constant flow of pure Ar (15 sccm), but also depends on the final film thickness
tf. For the two layer samples (D+E), the ArOx flow as abruptly increased upon reaching the desired
thickness (∼ 25 nm) of the bottom layer. Note that samples A, D and E were deposited after some
slight modifications have been applied to the sputter chamber, compared to sample B and C.

sample rate (nm/s) ArOx flow (sccm) ArOx flow top layer (sccm) tf
A 0.0476 2.55 - 24
B 0.0513 3.55 - 22
C 0.0588 3.70 - 30
D 0.0476 2.55 3.0 24+18
E 0.0476 2.57 3.57 23+17

Table A.2: Resist application. To cover the films with a ∼ 1.2 µm thick AZ5214E resist, the spin-
coater first rotates with a speed of vr for time tr to equally distributed the resist over the chip, and
then accelerates with a to the final speed vs which determines the thickness of the resist. After
a time ts at full speed, the chip is removed from the spincoater and subsequently softbaked at
temperature TB for a time tB .

resist a (rpm/s) vr (rpm) tr (s) vs (rpm) ts (s) TB (°C) tB (s)
AZ5214E 7500 500 5 6000 60 110 50
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Table A.3: Optical exposure. Optical light at a fixed intensity from a XeHg lamp (wavelength
λ = 365 nm) is used to expose the resist through a hard mask covering the desired structures.

resist process intensity (mW/cm²) duration (s)
AZ5214E positive 13 5

Table A.4: Resist Development. Previously exposed areas of the resist get dissolved by a developer
(positive process). To avoid damage to unexposed areas, the development is limited to a certain
duration and eventually terminated by an appropriate stopbath.

resist developer duration (s) stopbath
AZ5214E AZ Developer (+H20 1:1) 33 water

Table A.5: Film Etching. An inductively coupled chlorine based ion plasmas is used for isotropic
etching of all areas of the granular aluminum film not covered by resist. There, the ratio between
the etching gasses as well as the chamber pressure p are fixed. Separate RF and ICP generators
provide control over ion energy and ion density. For two layer samples (D+E), the etching time is
increased from 50 s to 90 s. After etching, the remaining resist is removed by a solvent (aceton or
NEP).

system p (mTorr) gasses (sccm) rf power (W) ICP power (W) time (s)
ICP 10 Ar/CL (2/12) 100 200 50(+40)
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Cable attenuation

B Cable attenuation

To estimate the average photon number on resonance from Eq. 3.20, knowledge of
the resonator input power is required, which can be calculated from

Pin = PVNA − Att.. (B.1)

Here, PVNA is the output power of the VNA and the total attenuation Att. is the sum
of all installed attenuators (20 dB + 10 dB + 10 dB + 10 dB = 50 dB, Fig. 4.4) plus
the attenuation from the microwave cable. Figure B.1 shows the total attenuation
of all used measurement lines, corrected for the fact that (at 10 GHz) the stainless
steel wires have 23.5 dB/m at room temperature (where the transmission spectrum
was measured) but 14.7dB/m at 4 K.

Figure B.1: Microwave transmission line spectra. Amplitude transmission spectra of the two
microwave lines used to guide the readout signal from the network analyzer to the sample. For each
line, the resonators measured on that particular line are marked, together with the total attenuation
at their respective resonance frequency.
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C Noise measurements details

C.1 Noise spectrum of a RTS

In this section a short derivation of the Lorentzian spectrum of a random telegraph
signal (RTS) is provided [226]. Usually, the RTS is defined as a random signal,
that might be in one of two state, called 0 and 1 in the following. The probability
of making a transition from 0 to 1 in a short time dt is dt/σ0 and similarly, dt/σ1
is the probability to make a transition from 1 to 0. Thus, σ0 and σ1 are the mean
lifetimes of the respective states and the corresponding probabilities to be in that
state are σ0/(σ0 + σ1) and σ1/(σ0 + σ1). In experimentally measured RTS data,
state 1 usually only occurs for a small fraction of the time and σ1 ≪ σ0 will thus be
assumed in the following.

To obtain the noise spectrum, it is useful to first calculate the autocorrelation
function and then apply the Wiener–Khinchin theorem. Assuming that the signal
x(t) may take on the values x0 = 0 and x1 = A, the autocorrelation function can be
written as

rxx(s) = ⟨x(t)x(t + s)⟩
= ∑

i,j
xixj × P(x(t) = xi)× P(x(t + s) = xj given x(t) = xi)

= A2 σ1

σ1 + σ0
P11(s)

≈ A2 σ1

σ0
P11(s).

(C.1)

Further, one can derive the probability for an even number of transitions in the
time increment s + ds,

P11(s + ds) = P10(s)
ds
σ0

+ P11(s)(1 −
ds
σ1

), (C.2)

from the sum of two mutually elusive events: (1) the probability P10(s) for an
odd number of transitions during s followed by one transition in ds and (2) the
probability for an even number of transitions in s and no transition in ds. Solving
Eq. C.2 in the limit ds → 0 and for σ1 ≪ σ0 yields

P11(s) ≈ e−s/σ1 . (C.3)
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Finally, inserting Eq. C.3 into Eq. C.1, the spectrum can be calculated from the the
Fourier transform of the autocorrelation function (Wiener–Khinchin formula)

S( f )σ1≪σ0 =
∫ ∞

−∞
rxx(s)e−2πi f sds

=
A2

π

σ1

σ0

1
σ1

(2π f )2 +
(

1
σ1

)2

=
A2

π

σ1

σ0

σ1

1 + (2π f σ1)2

(C.4)

For Ĩ2 ≡ A2σ1/(4πσ0) and τ0 ≡ σ1 Eq. C.4 is identical to Eq. 4.11, which is the
most commonly used expression.
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C.2 PSD window comparison

In Welch’s algorithm for the power spectral density (PSD) (see Sec. 4.3.2), the over-
lapping segments are tapered by a window function before the Fourier transform
is performed. Because, generally, the choice of the particular window can have an
(unwanted) effect on the final spectrum [227], their influence on the noise analysis
was investigated for this work. However, as shown in Fig. C.1, the noise spectra
does not depend on the choice of the window function. Thus, the standard Hanning
window was used throughout this work.

Figure C.1: Welch windows comparison. a) Selection of window functions. b) Resonator noise
spectrum calculated with Welch’s method, using the respective windows shown in a). Some spectra
were shortend to highlight the overlap.
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D Additional TLS data

D.1 TLS parameter

Table D.1: TLS key parameter. Tunneling energy ∆TLS and asymmetry energy ϵTLS (both in units
of µeV) obtained from fits to all pronounced anti-crossings measured on samples A-C. The effective
coupling to the applied electrode voltage [p∗ ] = GHz/V is proportional to the TLS dipole moment
(see Sec. 4.4 for details).

TLS ∆TLS ϵTLS p∗ TLS ∆TLS ϵTLS p∗

A1(#1) 43.66 205.05 0.48 C3(#6) 16.65 1325.22 1.71
A1(#2) 43.66 241.59 0.85 C3(#7) 16.51 601.68 1.64
A1(#3) 42.91 518.44 0.81 C3(#8) 16.37 1034.91 2.99
A1(#4) 43.2 41.45 0.29 C3(#9) 16.66 53.77 0.93
A2(#5) 42.47 476.89 1.03 C3(#10) 16.58 539.32 4.05
B2(#1) 22.64 291.21 0.94 C3(#11) 18.86 1206.17 2.36
B2(#2) 22.65 260.66 1.01 C3(#12) 18.86 522.9 1.9
B2(#3) 22.1 282.83 0.94 C3(#13) 19.15 293.22 1.12
B2(#4) 19.92 803.3 2.43 C3(#14) 19.14 264.34 1.32
B2(#5) 22.66 106.11 1.73 C3(#15) 19.26 17.71 0.68
B2(#6) 24.39 1450.41 2.09 C3(#16) 19.22 49.13 0.98
B3(#7) 25.33 935.19 1.31 C3(#17) 18.99 305.79 0.95
B3(#8) 25.27 67.89 0.52 C3(#18) 7.68 75.88 0.13
B3(#9) 25.42 9.55 0.08 C3(#19) 19.08 1076.7 1.9

B3(#10) 24.77 435.52 1.62 C3(#20) 19.02 431.86 1.13
B3(#11) 25.23 872.6 1.14 C3(#21) 19.1 805.78 1.56
B3(#12) 27.03 1559.71 1.99 C3(#22) 23.75 1117.0 1.49
B3(#13) 27.39 552.53 1.4 C3(#23) 23.26 6.74 1.53
B3(#14) 27.87 44.87 0.55 C3(#24) 23.54 156.46 1.77
B3(#15) 28.05 21.66 0.32 C3(#25) 23.85 82.84 0.88
B3(#16) 28.01 125.53 0.54 C3(#26) 23.62 387.13 1.02
C3(#1) 16.81 1241.58 1.54 C3(#27) 23.64 91.1 1.24
C3(#2) 16.62 814.5 2.2 C3(#28) 23.62 835.63 3.78
C3(#3) 16.64 1025.05 3.96 C3(#29) 23.25 810.83 2.41
C3(#4) 16.79 36.24 0.76 C3(#30) 23.48 2222.08 3.18
C3(#5) 16.51 83.78 2.59 C3(#31) 23.62 1961.71 2.78
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Table D.2: TLS key parameter. Tunneling energy ∆TLS and asymmetry energy ϵTLS (both in units
of µeV) obtained from fits to all pronounced anti-crossings measured on samples D+E. The effective
coupling to the applied electrode voltage [p∗ ] = GHz/V is proportional to the TLS dipole moment
(see Sec. 4.4 for details).

TLS ∆TLS ϵTLS p∗ TLS ∆TLS ϵTLS p∗

D3(#1) 33.12 34.04 0.12 E2(#2) 32.19 134.56 4.28
D3(#2) 32.9 49.38 0.09 E2(#3) 32.16 576.16 4.78
D3(#3) 32.88 745.26 0.99 E2(#4) 32.28 536.71 3.73
D3(#4) 32.75 217.21 0.83 E2(#5) 32.26 713.99 3.73
D3(#5) 33.1 37.12 0.12 E2(#6) 32.4 201.34 0.28
D3(#6) 33.03 426.07 0.76 E2(#7) 32.41 83.49 0.21
D3(#7) 33.1 408.25 0.67 E2(#8) 31.77 166.93 1.31
D3(#8) 36.68 119.15 0.52 E2(#9) 32.01 477.9 1.57
D3(#9) 37.2 271.47 1.4 E2(#10) 32.27 680.56 1.9

D3(#10) 36.81 60.96 0.23 E2(#11) 36.64 2017.75 2.7
D3(#11) 36.96 134.67 0.51 E2(#12) 36.59 1113.33 1.99
D3(#12) 41.3 550.39 1.37 E2(#13) 36.69 257.15 0.39
D3(#13) 41.2 861.65 1.25 E2(#14) 36.59 1260.49 1.9
D3(#14) 41.26 388.15 2.2 E2(#15) 36.67 792.18 1.14
D3(#15) 38.67 314.63 1.58 E2(#16) 36.44 581.81 0.91
D3(#16) 40.6 488.87 0.98 E2(#17) 36.14 487.04 0.75
E2(#1) 32.38 2879.02 3.63 E2(#18) 36.64 833.11 1.17
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D.2 Anticrossing gallery

Figure D.1: Anticrossing gallery. Selection of transmission spectra from different resonators
strongly coupled to a TLS. The experimental data can be fitted by input-output theory (Eq. 6.3)

.
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D.3 Thermal cycling

In Ref. [201], the argument was made that the spectral reconfiguration of TLS
after mild thermal cycling is evidence for TLS originating from trapped quasipar-
ticles rather than atomic defects. For the TLS investigated int his work, similar
experiments were performed. A shown in Fig. D.2, a slight shift of the TLS traces
(dark line) can be observed after cyling the sample to 1.8 K for several minutes.
However, simply waiting between two measurements seems to have a similar effect
(Fig. D.2(c), see also Fig. 6.5). Thus, possible effects due to the reconfiguration
of the gap ∆ are obscured by existing temporal fluctuations, i.e., thermal cycling
experiments do not provide further information.

Figure D.2: Spectral reconfiguration of TLS. a) Resonator (C3) loss rate over time as a function of
the electric field. Dark traces indicate an increased loss rate due to the interaction with a TLS. b)
Same as in a), but after thermal cycling the sample to 1.8 K. c) Same as in b), but after a 24 h wait.
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