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Abstract: The work presented in this paper describes the preparation and the electrochemical appli-
cation of functionalized chitosan-entrapped carbon paste electrodes (CH/CPE) for lead ions (Pb2+)
detection in industrial wastewater. The chitosan was first functionalized using TiO2 and CuO, which
were both metal oxides that were obtained by extracting it from waste products derived from shrimp
shells. The analytical performance of the as-prepared electrodes, CH/CPE, TiO2-CH/CPE, and
NiO-CH/CPE, for the detection of lead (II) was examined using electrochemical impedance spec-
troscopy (EIS) technique in the 0.1 M KNO3 electrolyte solution. The effect of experimental conditions,
including polarization potential, frequency, and pH, are optimized to maximize the sensitivity of the
measurements. The developed impedimetric sensors provided a linear response over a concentration
range of 10−6 to 10−4 M with a detection limit of 3.10−7 M based on S/N = 3. The DFT computational
analysis demonstrated that chitosan biopolymer possesses the ability to adsorb Pb (II) ions that
are present in wastewater. Chitosan and the derivatives of chitosan, have the potential to remove
heavy metals from industrial effluent in a manner that is both economical and eco-friendly to the
environment. Chitosan is a biopolymer that is abundantly renewable.

Keywords: chitosan; lead (II) detection; metal oxide; sensor; wastewater

1. Introduction

Lead is a highly toxic metal and a harmful pollutant that affects public health and the
environment [1–5]. Due to its toxicity even at low levels, the usage of lead was prohibited
or regulated in many industries. However, in some countries, the continued use of lead
in paints [6,7], pigments [8], gasoline [9,10], ammunition [11,12], ceramic glazes [13,14],
aviation fuel [15], batteries [16], mining [17], smelting [18], and recycling activities [19] is
still representing an important environmental pollution and health issue.

As an example, Fe3+ plays a key role in several biochemical reactions and is considered
a vital element for survival. However, a high accumulation level of Fe3+ could result in
liver damage, heart diseases, and diabetes.

Indeed, significant amounts of heavy metals such as mercury (Hg) would lead to renal
failure, hearing damage, and nerve disorders in the human body. Pb and cadmium (Cd)
enter the environment through the metallurgical industry [20,21], burning of fossil fuels [22],
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and wastewater releases [23,24]. Lead is not biodegradable and resists corrosion [25],
leading to its accumulation in air, water, and soil [26]; therefore, the development of reliable
methods to detect and remove lead is of utmost importance [27–34]. However, the direct
detection in the samples of trace-heavy metals such as lead (Pb) and cadmium (Cd) is a
difficult task, mainly due to their very low concentrations, often below the detection limit
of available techniques [35]; including spectroscopic methods, such as atomic emission
spectroscopy (AES), atomic absorption spectroscopy (AAS), chromatography methods, etc.
However, these methods have limitations for their widespread applications due to their
high cost, time consumption, and sophisticated operations.

Nowadays, the development of advanced technologies, abundant unique sensing
platforms based on MS, colorimetry, electrochemistry, surface-enhanced Raman scattering
(SERS), and fluorescence have been reported to detect trace metal ions.

The reported results showed that MS and SERS with ultrahigh sensitivity gave ex-
act molecular information. The colorimetric and fluorescent sensors allow simply and
intuitively observing the changes generated by the target metal ions. Furthermore, elec-
trochemical sensors are suitable for simultaneous detection of various metal ions due to
their distinctive and fast responses to different metal ions. Moreover, in order to enhance
the sensitivity and selectivity of metal–ion sensors, nanomaterials have been extensively
applied in sensor constructions, such as noble metal nanoparticles, porous nanomaterials,
semiconductors, etc.

In recent decades, the use of metal oxide has been grown in different applications; for
example, the perovskite oxides have been used as a catalyst to produce green hydrogen,
which was reported by Daqin Guan and co-workers [36]. Similarly, Guan et al. reported that
the tensile-strained RuO2 has been used as a catalyst for the proton-exchange membrane in
water electrolysis [37]. Recently in 2023, transition metal oxides (TMOs) have been used
in Li-S battery application which contribute to the high-rate and long-durability of the
battery [38].

The monitoring of lead contamination levels in wastewaters is crucial for the effec-
tive control of lead pollution [38]. The World Health Organization (WHO) recommends
maintaining the concentration of lead as low as possible (the safe limit of Pb content in
wastewater is 0.01 ppm) [39]. Several methods have been developed to remove lead from
wastewater, such as ion exchange [40–42], adsorption [43–47], reverse osmosis [48–50],
precipitation [51–53], electrocoagulation [54–58], and electrodialysis [59,60].

The detection of lead in wastewater can be achieved using a variety of analytical
devices such as chromatographs and spectrophotometers [61–63], but they are generally
complex, expensive, and often difficult to use—these disadvantages show the need for an
alternative approach to classical instruments [64,65].

Chemical sensors represent a powerful analytical tool for simple, inexpensive, reliable,
rapid, and selective detection of heavy metals [66–70]. Currently, chemical sensors are
widely used in various applications that include biomedical instrumentation, detection of
industrial emissions, electrochemical sensing devices, environmental pollution, and water
quality monitoring [71,72].

Particularly in recent times, there has been a lot of interest in sensors that are based on
electrochemistry because of their potential as on-site environmental pollution monitors.
The creation of an electrochemical sensor needs the optimization of two different compo-
nents: a selective part and a transducer system. Among different transduction techniques,
electrochemical impedance spectroscopy is considered as one of the most versatile and
powerful methods for determining the electrical properties occurring at the sensor–analyte
interface [73–75].

The development of theoretical approaches used to investigate the interaction proper-
ties for the detection of environmental pollution has been discussed in a series of papers.
Currently, the density–functional theory (DFT) is largely used in computational approaches
to confirm and complete experimental findings, and specifically to describe the interaction
mechanism between the pollutant and the developed system.
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In this study, we investigated the behavior of developed electrochemical sensors
based on chitosan and functionalized chitosan by TiO2 and NiO for the detection of lead
ions found in industrial wastewater. Chitosan and its derivatives, as biodegradable and
non-toxic natural polymers, may exhibit interesting sensing properties.

2. Materials and Methods
2.1. Chemicals and Reagents

Chitosan is extracted from shrimp Parapenaeuslongirostris shells (Figure 1a), collected
from local fish restaurants in Skikda City (Algeria), by a chemical process following the
protocol of Benhabiles et al. [76]. Chemicals used for the chitosan preparation process are
hydrochloric acid (HCl 36%), sodium hydroxide (NaOH, 99%), and hydrogen peroxide
(H2O2, 30%) (purchased from Prolabo). Acetic acid (CH3CO2H), tin oxide (TiO2), and nickel
(II) oxide (purchased from Sigma–Aldrich) were used for the functionalization of chitosan.
In order to make the carbon pastes, high-quality graphite powder with a mesh size of 325,
supplied by Asbury Carbons, and paraffin oil with a purity level of 99% were required as
ingredients. There was no treatment of any of the compounds before usage. In each of the
tests, distilled water was utilized throughout the preparation and analysis processes.
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Figure 1. Shrimp of Parapenaeuslongirostris: (a) shells and (b) powder.

2.2. Preparation of Chitosan

The shrimp wastes were prepared for use by first having their legs and antennae
removed and were then washed multiple times in warm water (70 ◦C) to eliminate any
organic residues, and at last were air-dried for an entire night (Figure 1a). In the end, the
waste samples were reduced to a powdery consistency by being ground in a porcelain
mortar and pestle (Figure 1b).

The preparation process involves four steps: first, deproteinization is achieved in
sodium hydroxide (2.5 N, NaOH) solution at a solvent to solid ratio (v/w) of 10/1 mL/g at
75 ◦C during 6 h. The product is then decanted under vacuum, washed thoroughly with
distilled water until the pH reaches a neutral value (pH = 7) and is oven-dried at 80 ◦C for
3 h. The second step consists of demineralization by acid treatment to eliminate calcium
carbonate and calcium phosphate naturally present in shrimp shells [77]. Hydrochloric
acid of 1.7 N is used with a solvent to solid ratio of 10/1 mL/g at ambient temperature
during the 6 h. The final product, chitin, is given a quick rinse in running water before
being dried in an oven at 80 degrees Celsius for 3 h. The subsequent procedure is referred
to as “decolorization,” and its purpose is to remove the pigments from the chitin using
reagents, such as ether, ethanol, sodium hypochlorite, or hydrogen peroxide. In this study,
a 30% concentration of hydrogen peroxide of was used at ambient temperature for 10 min.
After that, the samples were washed thoroughly with tap water to remove any residual
impurities and oven-dried at 80 ◦C for 3 h. The last step was deacetylation by concentrated
sodium hydroxide (50%) solution with a solvent to solid ratio of 10/1 mL/g at ambient
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temperature for 48 h. By removing the acetyl group from the chitin in this stage (Figure 2),
the goal was to transform the chitin into chitosan. Chitosan, the product that was obtained,
was put through a filter, washed with distilled water until the filtrate became neutral, and
then oven-dried at a temperature of 50 ◦C overnight.
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2.3. Preparation of Functionalized Chitosan

Functionalization of chitosan aims to improve its properties, including electronic,
mechanical, and electrochemical properties, to develop new materials for diverse applica-
tions [78]. In general, this functionalization is achieved by acid treatments, as chitosan is
only soluble in acidic solutions and does not disperse easily in water [79]. In this study, chi-
tosan was placed in 200 mL of 5% (v/v) acetic acid solution for 24 h to form a homogenous
suspension. The experiments were carried out at room temperature (~22 ◦C) with constant
stirring (200 rpm). Next, 10% (w/v) of active substance X (X = TiO2, NiO) was gradually
added to mix with the suspension under constant stirring. Duration of the experiment
was 24 h at ambient temperature. The obtained mixture was then washed several times by
distilled water, filtered under vacuum, and dried in an oven at 100 ◦C.

The choice of the two metal oxides (TiO2 and NiO) for functionalizing chitosan was
based on their distinct properties, such as binding affinity with surfaces capable of undergo-
ing complexation, ion exchange, and electrostatic interactions with lead ions. Furthermore,
their catalytic abilities enable them to catalyze redox reactions involving lead ions, leading
to amplified signals in electrochemical sensing methods. Additionally, their biocompat-
ibility and chemical stability make them suitable for integration with chitosan without
compromising the composite’s overall properties.

2.4. Preparation of Chitosan Modified Electrodes

A carbon paste electrode (CPE) was chosen to prepare our functionalized chitosan-
based electrodes, as it is simple to manufacture and suitable for preparing modified elec-
trodes with admixtures of different substances; thus, giving the material certain charac-
teristic properties [80]. The electrodes were prepared by mixing a desired weight (20%)
of functionalized chitosan and 70% of selected carbon material (graphite powder) with
paraffin oil, as a binder, using an agate mortar and pestle for 30 min until a homogeneous
mixture was obtained. This ratio was carefully chosen to achieve an optimal balance
between the enhanced binding properties of functionalized chitosan and the electrical
conductivity of graphite powder.

The synthesized mixture was then introduced into a PVC tube of an appropriate length
of 12 cm. Electrical contact was established via passing a thin copper wire from the opposite
end through the paste. The outer surfaces of the electrodes were polished with alumina
to remove the excess of solidified material and achieve a flat surface. After the electrodes
were polished, they were thoroughly rinsed with distilled water and air-dried.

2.5. Fourier Transforms Infrared Spectroscopy (FTIR)

The degree of N-deacetylation (DD) of chitosan samples was determined by the
method of Sabnis and Block [81] using FTIR spectroscopy. The spectra were obtained using
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a Perkin Elmer 1600 spectrometer from the 4000 to 400 cm−1 frequency range. The DD was
calculated using the equation proposed by Baxter et al. [82]:

DD = 100 − [100 × (A1655/A3450)/1.33] (1)

where DD is N-deacetylation degree and A1655 and A3450 are the absorbance band maxima
of the chitosan infrared spectrum at 1655 cm−1 of the amide-I band and 3450 cm−1 of the
hydroxyl band, respectively. The factor 1.33 denotes the value of the ratio A1655/A3450 for
fully N-acetylated chitosan [83,84].

2.6. Electrochemical Measurements

Electrochemical impedance spectroscopy (EIS) measurements for the detection of lead
(II) on the prepared chitosan-based electrodes were performed in a conventional three-
electrode system at room temperature. A platinum (Pt) wire was used as counter electrode
(CE), and a saturated calomel electrode (SCE) was used as the reference electrode (RE). All
potentials are referred to this electrode. A Voltalab PGZ 301 potentiostat was used to run
the experiments.

The working electrode (WE) was incubated for 10 min; then, it was washed and
placed in the electrochemical cell containing 0.1 M potassium nitrate (KNO3) as the sup-
porting electrolyte.

3. Results and Discussion
3.1. FTIR Analysis

FTIR is the most suitable technique for a quick and simple characterization of DD
of chitosan. This parameter is extremely important as it influences the properties of the
macromolecular chains of the polymers and their behavior in solution, namely the solubility
of the chitosan, the flexibility of the macromolecular chains, and the polymer conformation.
Figure 3 depicts the infrared spectrum of the chitosan sample. It displays a series of bands:
the peak noticed at 1555 cm−1 corresponds to N–H bending of the secondary amide II band
of –CONH– whereas the amide I band resulting from hydrogen and hydroxyl interactions
(due to the deacetylation of chitin) is observed at 1655 cm−1. Small peaks around 2900 cm−1

are assigned to the –CH2– and –CH3 groups. –OH, stretching vibrations of water, and
hydroxyls as well as –NH stretching vibrations of free amino groups, are observed at
3100–3500 cm−1. Using the Baxter equation (Equation (1)), the DD of the produced chitosan
was found to be 53.33%.
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3.2. Detection of Pb (II)

The electrochemical impedance spectroscopy (EIS) technique was used to investigate
the electrochemical detection of lead. The optimal experimental conditions, in terms of
polarization potential, frequency, and pH, were first determined. Indeed, these parameters
are known to have a significant effect on the response of impedimetric sensors.

Figure 4a shows the impedance spectra in the Nyquist plots of the CH/CPE electrode
at different potentials (−100, −200, and −400 mV) over a range of frequency from 0.1 Hz to
100 kHz and a sinusoidal excitation signal amplitude of 10 mV. At negative voltages, there
is a clear decrease in total impedance. The Warburg straight line at the low-frequency side
is reduced as the potential decreases, disappearing at −400 mV and being replaced by a
well-defined semicircle. This means that at this potential, the charge–transfer resistance is
lower and mass transport has no significant effect on the electrode response. A very similar
behavior has been obtained with the TiO2-CH/CPE and NiO-CH/CPE electrodes; hence,
the polarization potential of −400 mV and frequency range from 0.1 Hz to 100 kHz were
retained for the rest of this study.
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Figure 4b shows impedance spectra of the CH/CPE electrode recorded at different pH
values: 2, 3, 4, 6 and 10. The pH was adjusted by adding KOH and HCl to the electrolyte.
As can be seen, the electrode showed very different responses depending on the pH value.
The best response, in terms of lower charge–transfer resistance, was obtained at pH = 6;
therefore, this value of pH was chosen for further study.

The electrochemical response of the CH/CPE, TiO2-CH/CPE and NiO-CH/CPE
electrodes for the detection of lead ions (Pb2+) was examined using EIS measurements in
0.1 M KNO3 electrolyte in the presence of different concentrations of the target analyte.

Figure 5a–c show the Nyquist plots of the impedance spectra corresponding to the
three electrodes. A sharp decrease in total impedance, for all three cases, is clearly seen
after addition of Pb2+ ions, indicating a good sensitivity of the developed electrodes to
changes in analyte concentration.
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Figure 5. Impedance spectra in the Nyquist diagrams in 0.1 M KNO3 in the presence of different
concentrations of Pb2+ recorded on: (a) CH/CPE, (b) TiO2-CH/CPE, and (c) NiO-CH/CPE electrodes.
(d) Equivalent electric circuit proposed to fit the impedance spectra.

The impedance spectra were fitted using the equivalent circuit shown in Figure 5d.
The given model is a combination of three parts. The first part is a series resistance of
the electrolyte solution, Rs. The second part at high frequency sides, which is attributed
to the electrode/film interface, is reproduced by a film capacitance, Qf, and a film resis-
tance, Rf. The third part at the low frequency, which is attributed to the film/electrolyte
interface, is reproduced by a charge–transfer resistance, Rct, in parallel with a double-layer
capacitance, Qdl.

To evaluate the performance of the electrodes for lead ions determination, the evolution
of charge–transfer resistance, Rct, is used. The fitted values of Rct are summarized in Table 1.
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Table 1. The values of the Rct in equivalent circuit fitted in the Nyquist plots of Figure 5 as a function
of Pb2+ concentration.

[Pb2+]
CH/CPE TiO2-CH/CPE NiO-CH/CPE

Rct (Ohm.cm2) Rct (Ohm.cm2) Rct (Ohm.cm2)

0 11,476 7032 15,385
10−6 10,422 4811 9744
10−5 8435 4692 8585
10−4 4703 4610 5423

Table 1 reveals that the Rct gradually reduces as the concentration of Pb2+ ions in the
solution increases; hence, this suggests that the charge–transfer is improved when there is
a larger concentration of Pb2+ ions in the solution. This can be seen for all three electrodes.
In fact, the current flow increases as the ionic concentration rises, while the charge–transfer
resistance falls. This is because there are more ions participating in the electric conduction
process as the ionic concentration rises. The sensing performance of the electrodes is figured
out by first plotting calibration curves, which are performed with the help of the correlation
that exists between the amount of the ions present in the solution and the charge–transfer
resistance. The calibration curves of the sensors, shown in Figure 6, present the variation of
charge–transfer resistance, Rct0−Rct, versus the added concentration of Pb2+ ions where
Rct0 is the charge–transfer resistance of the electrolyte solution without Pb2+ ions.
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These results indicate that functionalized chitosan demonstrates improved perfor-
mance in terms of –charge–transfer compared to non-functionalized chitosan. This en-
hancement becomes particularly pronounced in the low lead ion concentration range
(<10−5 M) for TiO2, while the influence of NiO addition can be observed across all tested
concentration ranges.

The limit of detection (LOD) was determined from the formula 3σ/s where σ is the
standard deviation of the intercept and s is the slope of the calibration curve.

In order to evaluate the analytical performance of the impedimetric sensors that were
constructed, a comparison was made with the analytical performance of other sensors from
the published literature that were utilized for the measurement of Pb2+ ions. As can be
observed in Table 2, not only did our sensors have a straightforward preparation procedure
and a low cost of manufacture, but they also displayed a wide linear range and a low
detection limit.
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Table 2. Comparison of various electrode materials for Pb2+ sensing.

Electrode Material Analytical Method Linear Range (M) LOD (M) Reference

Poly (dimethylsiloxane) microchip Indirect amperometry 5.10−6 to10−3 1.3.10−6 [85]
Poly (1,8-diaminonaphthalene) modified CPE Differential pulse voltammetry 2.10−7 to 10−5 1.4.10−7 [86]
ZYMCPE on ITO Cyclic voltammetry 2.5.10−8 to 10−7 1.7.10−8 [87]
Bismuth/glassy carbon composite Anodic stripping voltammetry 5.10−7 to 10−7 10−8 [88]
Antimony film electrode Anodic stripping voltammetry 10−7 to 7.10−7 4.10−9 [89]
CH/CPE, TiO2-CH/CPE, NiO-CH/CPE EIS 10−6 to 10−4 3.10−7 This work

3.3. Selectivity Study

The selectivity of the developed impedimetric sensors toward Pb2+ ions was tested
in the presence of Cd2+ interfering ions at different concentrations. The typical Nyquist
plots of impedance spectra of Pb2+ solution in the absence and presence of Cd2+ are shown
in Figure 7a–c.
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The impedance spectra of all three electrodes in the presence of Cd2+ ions did not
show any noticeable change in responses, which indicates that the electrodes have a good
selectivity to the analyte of interest.

3.4. DFT-D3 Calculations of Intermolecular Interactions

We carried out a computer analysis making use of DFT calculations in order to verify
the outcomes that were achieved. Using the periodic DFT approach that is included in
the Vienna Ab initio Simulation Package (VASP 5.4.1), an investigation into the selectivity
of chitosan for the adsorption of Pb2+ and Cd2+ ions was carried out. [90]. The general-
ized gradient approximation (GGA) was used with the Perdew−Burke−Ernzerhof (PBE)
function [91]. The cutoff energy for the plane wave basis set used in this study is 500 eV.
The convergence criteria for the geometry optimization were 2.0 × 10−4 Å for maximum
displacement and 0.05 eV/Å for maximum force. The Monkhorst−Pack scheme is used to
generate a grid of (3 × 3 × 1) k-points. The dispersion effect is added using the Grimme
approach [92]. The unit cell used in this study consists of 12 carbon, 8 oxygen, 22 hydrogen
and 2 nitrogen atoms (Figure 8a). The slab model was employed where the vacuum size of
30 Å was set along the z-axis to avoid the heavy metal interacting with its nearby images.
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Cd2+-chitosan complex (c).

The different possible adsorption sites of lead and cadmium cations were optimized.
The more stable optimized structures are presented in Figure 8b,c. The interaction energy
(∆Ei) were then calculated using the following equation:

∆Ei = EMC
2+ − (EC + EM

2+)

where EMC
2+ is the total energy of the heavy metal cations adsorbed on chitosan molecule,

EC is the total energy of chitosan, and EM
2+ is the energy of isolated cations. Therefore,

negative interaction energy suggest that the adsorption process is exothermic, and that
the detection of metal cations leads to stable configurations. On the other hand, positive
adsorption energy suggest that unstable configurations may emerge from the detection of
metal cations. Figure 8b,c present the geometries that are the most stable for the various
complexes formed by lead and cadmium ions that are adsorbed on chitosan, along with
the energy that are associated with those geometries. Data gathered in Figure 8 indicate
that the Pb2+/chitosan complexation is an exothermic process, as calculated adsorption
energy is negative (−91.41 kJ/mol), and that the interaction with Cd2+ is unfavorable, as
the interaction energy is positive (107.19 kJ/mol). Therefore, the chitosan is only capable of
adsorbing lead ions (Pb2+) when exposed to wastewater that also includes cadmium.
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4. Conclusions

An environmentally friendly method that is based on the valorization of chitosan
recovered from discarded shrimp shells has enabled the development of a straightforward
and economical method for the fabrication of impedimetric sensors for the detection of
the lead ions Pb2+. In this study, we demonstrated that the extracted chitosan could be
functionalized with various metal oxides (TiO2 and NiO), which would then result in
the production of active materials. In addition, we demonstrated that electrochemical
impedance spectroscopy is a method that is both suitable and effective for the analytical
sensing of lead (II) ions, even at extremely low concentrations. The results of the DFT
show that there is a powerful contact between the lead ion and the nitrogen atom of
the chitosan molecule. This association has an adsorption bond length of 2.57 Å and an
adsorption energy of −91.41 kJ/mol. The prepared chitosan and functionalized chitosan-
based electrodes displayed good analytical performance as impedimetric sensors with a
large linear range (10−6–10−4 M) and low limit of detection (3.10−7 M); hence, they look
promising for wastewater monitoring applications.
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