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When developers describe a software system with multiple models, such as architecture diagrams, deploy-
ment descriptions, and source code, these models must represent the system in a uniform way, i.e., they must
be and stay consistent. One means to automatically preserve consistency after changes to models are model
transformations, of which bidirectional transformations that preserve consistency between two models have
been well researched. To preserve consistency between multiple models, such transformations can be com-
bined to networks. When transformations are developed independently and reused modularly, the resulting
network can be of arbitrary topology. For such networks, no universal strategy exists to orchestrate the exe-
cution of transformations such that the resulting models are consistent.

In this article, we prove that termination of such a strategy can only be guaranteed if it is incomplete, i.e.,
if it is allowed to fail to restore consistency for some changes although an execution order of transformations
exists that yields consistent models. We propose such a strategy, for which we prove termination and show
that and why it makes it easier for users of model transformation networks to understand the reasons when-
ever the strategy fails. In addition, we provide a simulator for the comparison of different execution strategies.
These findings help transformation developers and users in understanding when and why they can expect
the execution of a transformation network to terminate and when they can even expect it to succeed. Further-
more, the proposed strategy guarantees them termination and supports them in finding the reason whenever
it is not successful.
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1 INTRODUCTION

The development of systems, like software systems, involves the creation and maintenance of
multiple models. Each of these models is tailored to the needs of a specific role according to its
concerns. Such a concern may be a specific functional part of the system relevant for a person, or a
specific property, such as the architecture, the implementation, or the deployment, each presented
in its own type of model such as a UML diagram or program code. Consider the development of a
mobility system that provides a unified way for customers to make a booking for a journey using
different types of transportation provided by different mobility provider companies, such as a train,
bus, taxi, and bike-sharing company. Then each of the companies has their own software compo-
nents or subsystem to integrate into this integrated system, such that each developer may only be
interested in information about one subsystem. In addition, different roles may use different tools
and according models, such as an architect using UML for a component-based and object-oriented
design model or a developer using Java code. Developers may also use API specifications of their
web services, which are even shared across the subsystems to be used in a uniform way.

All those models taken together should describe a coherent system and not contain contradic-
tory information. We say that the models should be consistent. This comprises both the consis-
tency of models for the different subsystems, e.g., by using the same API specifications for their
interoperability, but also the consistency of different models for the same subsystems, such as the
architecture being consistent with the implementation. Automatic detection and resolution of in-
consistencies is, however, still poorly addressed in current development processes that involve a
variety of models, such as automotive development [Guissouma et al. 2018].

Automatically maintaining consistency may be achieved by periodic validations of constraints
and the resolution of detected violations or by continuously preserving it. A popular and indus-
trially applied means [Weidmann and Sauer 2020] to preserve consistency are incremental model

transformations, which update models based on information that was changed in one of them,
such that performing changes to consistent models leads to consistent models again by executing
these transformations. While there has been significant research on model transformations
themselves, particularly on binary transformations keeping two models consistent, maintaining
consistency of multiple models is less researched [Cleve et al. 2019]. There are approaches for
multiary model transformations, which can transform between multiple models by means of
a single transformation. Nevertheless, one will likely also want to be able to combine multiple
transformations—binary or multiary—to maintain consistency, creating a transformation network.
Unlike using a single, overarching transformation, defining a network makes it possible to
reuse modular ones [Klare 2021], and the possibility for reuse is essential for the productive
use of transformations, in particular in industrial contexts [Bruel et al. 2020]. Additionally,
knowledge about consistency between certain types of models is often distributed across
domain experts [Klare 2018]. This can be accommodated by transformation networks, because
every domain expert can define transformations independently and according to their view on
consistency.

When transformations are not developed for a specific network but are meant to be reused
across multiple networks, they cannot be aligned with each other, and the resulting network may
be of arbitrary topology. To the best of the authors’ knowledge, no strategy that determines an exe-
cution order of transformations to maintain consistency in a network with arbitrary topology has
been presented yet. Existing work proposes, for example, defining an execution order explicitly
[von Pilgrim et al. 2008; Vanhooff et al. 2007] or deriving a topological order [Stevens 2020b]. Most
approaches restrict the supported kinds of network topologies to such in which each transforma-
tion only needs to be executed once.
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In this article, we research properties and limitations of a universal strategy that executes a trans-
formation network of arbitrary topology. We show that strategies that apply each transformation
only once or a fixed number of times are not useful in practice. At the other end of the spectrum,
we prove that not limiting the number of transformation executions does, in general, lead to
non-termination. Based on the insight that a universal execution strategy must be incomplete if
termination shall be ensured, i.e., that we have to accept that it may not find an execution
order yielding consistent models whenever it exists, we derive a useful strategy. We show that
this strategy helps developers to find the cause whenever the strategy fails to yield consistent
models. In addition, we provide a simulator that eases the evaluation and comparison of different
execution strategies, including the proposed one, to, e.g., find one that fits better for specific
networks or even for specific requirements or properties to ensure. In detail, we make the
following five contributions:

Formalisation (C1): We formalise transformation networks and execution strategies to precisely
define their expected properties.

Incompleteness Proof (C2): We prove that a universal execution strategy must be incomplete
to avoid non-termination.

Strategy Design (C3): We propose an execution strategy that improves traceability whenever no
consistent models are found.

Traceability Improvement (C4): We discuss why and under which conditions the proposed
strategy improves traceability whenever no consistent models are found.

Strategy Simulator (C5): We provide a simulator that can be used to examine and compare dif-
ferent execution strategies on different example networks.

The contributions establish fundamental knowledge about the design space of network execution
strategies, their undecidability, and difficulties in reducing incompleteness. The proposed strategy
helps transformation network developers and users to find the reasons when an execution does
not yield consistent models, and the provided simulator eases the investigation of properties of
different execution strategies.

This article is an extended version of a paper published in the 2021 proceedings of the Fun-

damental Approaches to Software Engineering (FASE) conference [Gleitze et al. 2021]. Con-
tributions C4 (Section 6) and C5 (Section 7) have been added, and examples, further discussion,
and evidence have been extended or added throughout. The contributions of the original paper
have recently also been published in the dissertation of Klare [2021] together with some of the
extensions we have made in this article.

In this article, we first introduce the problem statement in more detail (Section 2) and embed our
contributions into related work (Section 3). We discuss the design space for execution strategies
and the limitations of its extreme cases (Section 4) before proposing a practically usable execution
strategy based on the insights of the design space discussion (Section 5). The strategy is designed to
improve traceability whenever it fails, and we show how it fulfils this property in Section 6. After
giving an overview of a publicly available simulator for evaluating different execution strategies
(Section 7), we conclude our work in Section 8.

2 PROBLEM STATEMENT

In this section, we will further motivate our research by giving an example and clarifying its con-
text. We provide a simple but expressive enough formalisation for transformation networks and
execution strategies to generate a common understanding and formal basis for transformation net-
work orchestration, constituting our contribution C1. Finally, we use the formalisation to precisely
define our problem statement.
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Fig. 1. Example for a transformation network between different types of models in software development.

2.1 Motivating Example

Figure 1 describes a software project whose contributors take the roles of architects, developers,
and user experience (UX) designers. One person can take multiple roles, but every role has a
particular view on the project and uses related tools. Architects use a UML-based tool to analyse
and plan the architecture. Developers program the software in Java. These two models overlap:
Although they cannot be derived completely from each other, the implementation should follow
the architecture, and architects want to see how code changes affect the architecture. So, architects
and developers use transformations to translate changes between Java (Java) and UML, as far as
automatically possible.

UX designers develop the UI for the software. Their designs overlap with the UML model, be-
cause, first, the software’s requirements mandate certain properties of the UI, and, second, the
architecture may restrict which information can be shown at which point in the interface. The UI
design also overlaps with the code, since static parts of the UI can be derived from the UI model. Ide-
ally, changes in the UI code can even be propagated back into the UI model. Thus, transformations
are specified between the UI model and UML and between the UI model and Java.

The developers use OpenAPI [The Linux Foundation 2021] to exchange specifications of HTTP
APIs. These specifications overlap with the parsing and serialisation code. Thus, developers
specify a transformation between Java and OpenAPI to keep API specifications consistent with
their implementation in code and, for example, to generate Java stubs for added API specifications.

Finally, architects want to analyse how their architecture choices influence performance, using
the Palladio Component Model (PCM) [Reussner et al. 2016], which provides a simulator for
predicting the system’s performance based on an annotated architecture specification. The archi-
tecture specification used in the PCM overlaps with the one defined in UML. Additionally, the PCM
model contains information about performance properties and the deployment structure, which
can partially be derived from the code. Thus, architects define transformations between the PCM
and Java, as well as between the PCM and UML.

All these transformations avoid re-specification of similar information, such as the architecture
in PCM and UML, to derive information, like appropriate Java stubs from OpenAPI (OpenAPI)
specifications, and to preserve information consistency. Figure 1 shows the resulting transforma-
tion network. In every possible development scenario, different roles may be present and they
may use different tools to describe specific kinds of models. Except for rather small projects, hav-
ing more than one kind of model to describe a system is common, thus automatically preserving
their consistency by means of transformations leads to a transformation network. In this article,
we discuss how such a network can and needs to be executed, and we find an execution strategy
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for such transformations, which is needed to correctly propagate changes from one model to the
others.

2.2 Context

We discuss model transformation networks in a specific usage context. We assume that different
roles are involved in a development project, each using some models to describe their view of the
system. These models inherently overlap, because they all describe the same system, and model
transformations are used to keep them consistent. For the sake of simplicity, we only discuss binary,
bidirectional transformations between two models. They describe how consistency can be restored
by updating one model after another was modified.

To foster independent specification and reuse of transformations, we assume that they are not
tailor-made but may be general-purpose. For example, a transformation between Java and UML
class diagrams may be used across multiple projects and not for one specific software project. As
a consequence, we cannot assume that the models or transformations are or can be aligned in any
way, for example, to ensure that their execution in a specific order always results in consistent
models. Neither can we assume that the network has, or can be modified to have, a certain topol-
ogy. We do, however, assume that all transformations are in accordance to a well-defined overall
notion of consistency (reaching a consistent state would be impossible otherwise). This means, for
example, that if three pairwise transformations have been defined between three models, then they
cannot specify contradictory constraints, such as naming conventions that cannot be fulfilled at
the same time. If in our example scenario depicted in Figure 1 the transformations require for each
component in a PCM model the existence of a component in a UML component diagram with the
same name as well a class in Java code with the same name, then the transformation between UML
and Java may not specify a different naming convention, such as to add a “Component” suffix to
the Java class name. Otherwise, these constraints would be contradictory and thus no consistent
state could be reached without removing every added component. Such a notion of compatibility

and an approach to validate it has been proposed in existing work [Klare et al. 2020]. This means
that all requirements we pose on the transformations must only concern a transformation itself. A
requirement like “no transformation overwrites the result of another” would not fit our context.

Finally, we require that transformations are synchronising [Diskin et al. 2016], i.e., that they can
deal with the situation that both of their models have been changed. This requirement is essen-
tial to find an execution strategy: When propagating changes in a transformation network that
contains cycles, it will inevitably happen that both models that are connected by a transformation
will be changed. In addition, the well-researched bidirectional transformations only change one of
the models [Stevens 2010] and could in such a situation be forced to overwrite changes to yield
a consistent result. This assumption also enables concurrent modifications of models by different
project members.

2.3 Formalisation

We are not concerned with how models are structured, so we simply resort to defining a universe
M that contains all models. This general notion can be applied to any relevant modelling formal-
ism, such as the Meta Object Facility (MOF) [Object Management Group (OMG) 2015] and its
implementation in the Eclipse Modeling Framework (EMF) [Steinberg et al. 2009]. First, we
define the kind of transformations that we use:

Definition 1 (Synchronising Transformation). A synchronising binary transformation (syncx)
←→
t is

a function that updates two models:
←→
t : (M ×M) → (M ×M)
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A syncx’ image consists of fixed points:

∀a ∈ M ∀b ∈ M :
←→
t
(←→
t (a,b)

)
=
←→
t (a,b).

The universe of all syncx forM is called T.

This formalisation is a simplification sufficient for the purposes of this article. In practice, trans-
formations will, for example, be specific to certain kinds of models, i.e., for specific metamodels,
such as the UML, PCM, or Java. And they may be allowed to indicate an error instead of being re-
quired to always produce appropriate new models. Additionally, they may process changes instead
of model states, because changes can contain information that cannot be recovered by comparing
model states [Diskin et al. 2011].

Readers familiar with existing formalisms for bidirectional transformations [Stevens 2010] will
observe that there is no explicit consistency relation in the definition of a syncx. For our purposes,
the consistency relation is not part of a syncx but rather encoded implicitly in the syncx’ behaviour.
We assume that transformations are correct and hippocratic [Stevens 2010] with regard to their
implicit consistency relation, i.e., they do not change models that are already consistent, and can
then recover the relation:

Definition 2 (Consistency Relation). The consistency relation R←→t of syncx
←→
t is given by:

R←→t =
{
(a,b) |

←→
t (a,b) = (a,b)

}
.

We consider a pair (a,b) consistent according to
←→
t if and only if (a,b) ∈ R←→t .

In practice, transformations usually have access to traceability links, also known as trace links or
correspondences, since this is necessary to realise certain notions of consistency [Diskin et al. 2017].
They are used as an auxiliary artefact for a consistency relation, which is why they can, from a
theoretical perspective, simply be considered as an additional model in a consistency relation. In
consequence, models are only considered consistent with respect to a specific traceability model.

This article focuses on transformation networks that are created when combining multiple
syncx:

Definition 3 (Transformation Network). A transformation network N � ((V ,E),T ) consists of a
directed, connected, self-loop-free graph G = (V ,E) and a syncx assignment T : E → T. Any two
vertices {a,b} ⊆ V have at most one edge between them: (a,b) ∈ E =⇒ (b,a) � E. The universe
of all transformation networks forM is called U.

A transformation network captures the topology and the used transformations. There is no
inherent reason to exclude multigraphs or self-loops. We use this simpler definition because it
makes it easier to argue about the networks without restricting expressiveness. We use directed
edges instead of undirected ones to provide a notion of the “left” and “right” model for a syncx.
The edges’ direction does not indicate anything about the direction of change propagation.T will
usually be injective. Having two assignments of the same syncx would mean that there are two
pairs of models that are kept consistent in the same way, which means that either the syncx or
the models themselves are redundant. This injectivity is, however, not a formal necessity. We will
usually regard the network as given and try to find suitable model assignments:

Definition 4 (Model Assignment). A model assignment M for a transformation network N �
((V ,E),T ) is a function M : V → M.

Considering the example in Figure 1, the transformation network only describes the topology
of the transformations based on a graph whose nodes represent PCM, UML, OpenAPI, Java, and
UI, and whose edges are mapped to the transformations between them, just like depicted in that
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graphic. A model assignment then assigns actual models, such as a UML class diagram or Java code,
to these nodes. Naturally, we are particularly interested in model assignments that are consistent
according to the transformations:

Definition 5 (Consistent Model Assignment). For a transformation network N � ((V ,E),T ), a
model assignment M is consistent if and only if

∀ (a,b) ∈ E : (M(a),M(b)) ∈ RT (a,b).

The set of all consistent model assignments for N is called RN .

We use the following additional notation in this article:

• “A→ B” for the set of functions from set A to set B.
• “f: A �→ B” for a partial function f from A to B.
• “f (x) = ⊥” to mean that a partial function f is not defined at x .
• “Im(f )” to denote the image of a function f .

2.4 Problem Description

Our goal is to find an algorithm that, given a transformation network N � ((V ,E),T ) ∈ U and
a model assignment M , finds a consistent model assignment M ′ by applying transformations in
Im(T ). We call such an algorithm a (transformation network) execution strategy. It is universal if it
is parameterised by and thus defined for every network.

Definition 6 (Execution Strategy). A universal execution strategy determines an order (i.e., a
permutation with duplicates) of transformations in Im(T ) for a given transformation network N �
((V ,E),T ) ∈ U and model assignment M ∈ (V → M). The strategy realises a partial function
S : U × (V → M) �→ (V → M), whose result is yielded by executing the transformations in the
determined order.

An execution strategy finds a new model assignment by only executing the transformations of
the network, as more precisely defined by Klare et al. [2021, Definition 8]. It realises a function
because the result should be deterministic (though the following considerations and insights also
hold if it was non-deterministic and thus only realised a relation), and this function is partial
because there may be inputs for which no reasonable result can be achieved by executing the
transformations in any order. Considering the example in Figure 1 and a model assignment in
which a component was added to the PCM model of a consistent model assignment, executing
a universal execution strategy for that transformation network and the given model assignment
yields a new model assignment that is consistent again. To achieve that, the strategy may only
execute the transformations of the network in an appropriate order, for example, executing the
transformation from PCM to UML to add the component to a UML component model, and then
the transformations from PCM and UML to Java to add a class that represents the implementation
of that component. If necessary, then it may also execute the transformation between Java and
OpenAPI if the API needs to be adapted to reflect the Java class. It may even be necessary that
transformations have to be executed multiple times to finally achieve consistency of the model
assignment according to all transformations.

If S(N ,M) � ⊥, then we say that the strategy resolves N and M . If S(N ,M) = ⊥, then we say
that the strategy fails. We have two further requirements:

Requirement 1 (Correctness). An execution strategy must be correct:

∀N � ((V ,E) ,T ) ∈ U ∀M ∈ (V → M) : S(N ,M) ∈ RN ∪ {⊥}.
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Requirement 2 (Hippocracticness). An execution strategy must be hippocratic:

∀N � ((V ,E) ,T ) ∈ U ∀Mc ∈ RN : S(N ,Mc ) = Mc .

These two requirements can trivially be satisfied by a strategy that keeps already consistent
models unchanged and fails in all other cases. This shows that these are only basic requirements
that are also known as essential properties of transformations (see Stevens [2010]), but they do not
ensure that a strategy fulfilling them may be considered useful. We discuss usefulness of a strategy
in the remainder of this section.

An execution strategy will not always be able to find a consistent model assignment (i.e., there
will be N ,M such that S(N ,M) = ⊥). First, there may not be a consistent model assignment at all
(i.e., RN = ∅). Second, there may be a consistent model assignment but no execution order of the
transformations that yields the assignment [Klare et al. 2019; Stevens 2020b]. We call such inputs
unresolvable [Stevens 2020b]. Conversely, if an execution order of the transformations that yields
a consistent model assignment exists, then we call the inputs resolvable. In general, an execution
strategy may not terminate in case it does not find an execution order of the transformations that
yields consistent models. In this work, we do, however, aim at strategies that terminate always to
achieve practical applicability. In particular, in case the strategy fails, we expect it to terminate and
indicate the failure.

An execution strategy may even fail for resolvable inputs: The execution strategy may not “find”
a consistent model assignment, even though it is reachable. For example, the strategy may abort
before having executed the transformations often enough, or finding the assignment might require
an order of execution that the strategy does not consider. We will discuss why these situations can
occur and may not be avoidable in more detail in Section 4. We call such a strategy incomplete:

Definition 7 (Incomplete Execution Strategy). An execution strategy S is incomplete if it is correct
and if there can be resolvable inputs N ,M with S(N ,M) = ⊥.

The higher the probability that an execution strategy yields a result for resolvable inputs (we also
say the lower its level of incompleteness), the more useful the strategy will be. It is, however, also
desirable that the strategy is predictable, meaning that one can determine beforehand for which
inputs the strategy will succeed. For example, it would be useful to know whether a strategy yields
a result for a given network for any resolvable model assignment. Informally speaking, we would
like to have an “easy-to-check” criterion for transformation networks determining whether this is
the case, which we will define more precisely in Section 5. An even better criterion could be applied
to a single syncx, such that the strategy can resolve all inputs with a network of syncx that fulfil
the criterion. This would be ideal for the motivated context of independently developing, reusing,
and freely combining syncx to a network.

To summarise, we aim to find a correct, hippocratic universal execution strategy that is able to
keep models consistent by executing the transformations of transformation networks. The strategy
should succeed for realistic inputs with a high probability. Additionally, we aim to find criteria that
determine the cases in which the strategy will succeed.

3 RELATED WORK

Approaches for restoring model consistency have been subject to intensive research, surveyed
and classified in a feature model by Macedo et al. [2016]. The classification has been extended
specifically for the case in which multiple models are to be kept consistent by Stünkel et al.
[2021]. Model transformations are a well-researched option, and several tools and languages
have been developed to support them [Kusel et al. 2013; Samimi-Dehkordi et al. 2016; Stevens
2008]. Research has, however, mainly focused on consistency between two models. Maintaining

Formal Aspects of Computing, Vol. 35, No. 3, Article 15. Publication date: September 2023.



Termination and Expressiveness of Execution Strategies 15:9

consistency between more than two models has recently gained more attention, especially in
terms of a dedicated Dagstuhl seminar [Cleve et al. 2019]. The central approaches of multiary
transformations and networks of binary transformations can be distinguished. In Section 1, we
have discussed that multiary transformations are complex to specify and limit reusability [Klare
2021], whereas networks of binary transformations have limited expressiveness [Stevens 2020b],
which does, however, not seem to be practically relevant [Cleve et al. 2019].

Multiary Transformations. Multiary transformations, i.e., transformations relating multiple (in
general more than two) metamodels, have especially been investigated in standards or as exten-
sions of existing approaches or languages for binary transformations. The QVT standard [Object
Management Group (OMG) 2016] specifies the relational language QVT-R with support for multi-
directionality by design, but ambiguities in the standard limit practical applicability [Macedo et al.
2014]. Triple Graph Grammars (TGGs) [Schürr 1995] are bidirectional specifications based on
graph patterns, which are well-suited for model transformations [Anjorin et al. 2014]. Extensions
of TGGs to multiple models called Multi Graph Grammars (MGGs) [Königs and Schürr 2006]
and Graph Diagram Grammars [Trollmann and Albayrak 2015, 2016] consider the specification of
multidirectional rules. Although a single multiary transformation may be used instead of a com-
plete transformation network, such a transformation has two essential drawbacks. First, it requires
the transformation developer to know about and be able to express the relations between all in-
volved metamodels. Second, the more metamodels are related by a multiary transformation, the
more limited is its reusability, because it cannot be easily transferred to another project in which
a subset of the metamodels together with some other metamodels is used. Thus, a compositional
approach for transformations is beneficial. Finally, even if some relations are expressed in multiary
transformations, or even need to be expressed in such because of expressiveness reasons [Stevens
2020a], these multiary transformations will or can then be combined with further transformations
to a network, such that the work that we present is still required.

Auxiliary Models. Not every multiary relation can be expressed by a set of binary ones. Adding
one auxiliary model makes it, however, theoretically possible to express arbitrary multiary rela-
tions by binary ones [Stevens 2020b]. Some work discussed which kinds of relations can be ex-
pressed with such an approach and how they can be formalised in the lenses framework [Diskin
et al. 2018; Stünkel et al. 2018]. Based on that, an approach to use such an auxiliary model to de-
fine partial commonalities of models with the same modelling language as used for defining the
models themselves has been proposed [Stünkel et al. 2020]. Other work discussed how compos-
ing such auxiliary models to express commonalities of models can be achieved [Klare and Gleitze
2019]. Such auxiliary models actually encode a multiary transformation in a model together with
binary transformations to the models to keep consistent, resulting in the same challenges as for
transformation networks. In consequence, our work on transformation networks is also required
and applicable there.

Binary Transformations. Although they cannot express all multiary relations, there are argu-
ments in favour of using networks of modular transformations, especially binary ones: They are
easier to develop when domain knowledge is distributed [Klare 2018] and they are easier to compre-
hend by a single developer [Cleve et al. 2019; Stevens 2020b]. Additionally, binary transformations
are researched well, and a variety of tools supporting different kinds of specifying them exist [Kusel
et al. 2013; Macedo et al. 2016; Samimi-Dehkordi et al. 2016; Stevens 2008]. Most formalisms and
tools consider bidirectional transformations, whereas networks require synchronising transforma-
tions, as motivated in Section 2.2. There are also approaches focused on processing concurrent
changes performed to multiple models, thus also synchronising changes, e.g., Weidmann et al.
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[2020]. These approaches, however, need to be able to deal with contradictory changes, which can-
not occur within a transformation network due to the assumptions we have made in Section 2.2.
Thus, such transformations need to be more powerful but are, for that reason, also more difficult to
specify than synchronising transformations. Still such approaches provide a means to achieve syn-
chronising transformations. In addition, non-synchronising transformations can even be adapted
to become synchronising [Xiong et al. 2013].

Transformation Chains. Transformation chains combine transformations to derive low-level
models from high-level ones across intermediate representations. Languages like FTG+PM
[Lúcio et al. 2013] and UniTI [Vanhooff et al. 2007] enable the specification of such chains. Such
languages have also been used to define workflows for the tool integration of a development pro-
cess and apply common model transformation frameworks such as VIATRA [Balogh et al. 2010].
Transformation chains are, however, usually comparably simple, as they represent chains rather
than arbitrary network topologies containing cycles. Thus, algorithms for them, in particular for
their orchestration, can, in general, not be transferred to networks of arbitrary topology. Etien et al.
consider specific properties of transformation chains. They investigate how conflicts in terms of
results depending on the execution order can be detected [Etien et al. 2012]. These results, how-
ever, do not aim to relieve developers from the task of finding an execution order manually, as we
do in this article.

Transformation Composition. Transformation composition techniques are a means to build net-
works of transformations. They can be separated into internal and external techniques [Wagelaar
2008]. Internal techniques are white-box approaches integrated into the language [Wagelaar et al.
2011], e.g., inheritance or superimposition techniques [Wagelaar et al. 2010]. External approaches
consider the transformations as black-boxes. For such transformation compositions, Lano et al.
[2014] present a catalogue of patterns that foster correct composition. Our contributions can
be seen as an external composition technique. However, composition usually considers trans-
formations between the same rather than different metamodels. From a theoretical perspective
(see Section 2.3), this could be treated equally by not distinguishing models by their metamodels.
Practical approaches, however, consider transformations between specific metamodels rather than
arbitrary models. Bergmann [2021] discusses different problems when composing transformations
to networks, e.g., transformations undoing changes. He shows that even if the single transforma-
tions operate properly and fulfil common requirements for bidirectional transformations, their
composition may not. For that reason, he introduces the property of very-well behavedness for
multidirectional transformations. Even with that property, orchestration of transformations as
discussed in this article is required. However, that property can be considered a reasonable prelim-
inary for the transformations in a network, comparable to the requirement for the transformations
to conform to a well-defined overall notion of consistency, as discussed in Section 2.2.

Transformation Termination. Several theoretical properties of transformations have been inves-
tigated, upon which termination is one of the most important. A couple of termination analyses
have been proposed, in particular for graph transformations, which analyse whether the execution
of transformation rules terminates [Ehrig et al. 2005]. For graph transformation systems, analyses
based on a mapping to Petri nets [Varró et al. 2006] have been proposed. In particular, due to unde-
cidability of the general problem of analysing termination, different termination criteria have been
investigated, which have also been combined in a single approach [Bisztray and Heckel 2014]. All
these approaches concern termination of a single transformation, more precisely of the execution
of the rules of a transformation, whereas our work concerns the combination of multiple transfor-
mations and termination thereof.
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Execution Strategies. Di Rocco et al. [2017] describe a simple strategy for orchestrating transfor-
mations, but make strong assumptions requiring that each of them is only applied once. Stevens
[2020b] proposes a strategy that also executes each transformation only once and only in one
direction. It includes a notion of authoritative models, which are not allowed to be changed, and
does not consider synchronising transformations. Likewise, Stevens [2020a] proposes to find an
orientation model defining in which direction transformations are executed. If, however, several
transformations modify the same model, then the approach leaves it to the developer to determine
an execution order after which all consistency relations hold. Such strategies are only correct if
the network is a tree or if no transformations interfere with each other. We present a simple sce-
nario in which this is already too limiting in Section 4.1. We overcome this limitation by executing
transformations more than once and thereby letting them “negotiate” a result even if they interfere,
which yields a universal execution strategy for arbitrary network topologies.

4 DESIGN SPACE FOR EXECUTION STRATEGIES

We approach the possibilities for designing an execution strategy for transformation networks by
looking at how often the strategy executes each transformation in the worst case. The extremes are
given by executing every transformation at most once and executing them an unlimited number
of times. We will find that neither of them is sufficient: We show that the first one is too limiting
to be generally applied and that the second one cannot guarantee termination. As a consequential
insight, a universal execution strategy needs to be incomplete, introduced as contribution C2.

4.1 One Execution per Transformation

Strategies proposed in recent work execute every transformation in a network at most
once [Stevens 2020b; Vanhooff et al. 2007]. As motivated in Section 2.2, we expect transforma-
tions to be developed independently and thus not to be aligned with each other. Restricting the
number of executions to one per transformation would, however, limit the possible combinations
of them, and models could not be kept consistent in desirable scenarios. We give an example for
this in the following.

We use the example of Section 2.1 and focus on the UML, Java, and OpenAPI models to consider
the scenario visualised in Figure 2: Starting with some initial or potentially empty models, an
architect creates a new UML interface ExampleService. To preserve consistency with the other
models by adding the interface to the Java code and the OpenAPI specification, he or she executes
the specified transformations. To this end, the architect applies an execution strategy that executes
every transformation once. First, the UML-to-Java transformation creates an appropriate interface
in Java. The Java-to-OpenAPI transformation recognises that the interface should be exposed via
an HTTP API and creates a matching endpoint in the OpenAPI model. Additionally, it creates a
stub implementation with parsing and serialisation code in Java. The stub implementation class,
however, can not be propagated back to UML, because the UML-to-Java transformation has already
been executed, and the execution strategy is assumed to execute every transformation only once.

As a consequential insight, we see that if we limit the number of executions to one per transfor-
mation, then transformations cannot propagate back the changes that other transformations have
made. However, in the context described in Section 2.2, it is necessary that transformations are
able to “react” to the changes made by other transformations. This offers, for instance, separation
of concerns, which is necessary for independent development of the single transformations: The
logic for a certain aspect of consistency can be put in only one transformation and other trans-
formations will propagate it throughout the network. Without such a mechanism, all aspects of
consistency would need to be implemented in all transformations and thus a transformation would
be tied to its context, i.e., the other transformations in the network. This would cause duplication
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Fig. 2. Example yielding inconsistent models after executing each transformation once. Numbers in italics

indicate the order in which changes are performed.

Fig. 3. A transformation network with n transformations reacting to each other.

of logic and reduce reusability of transformations, which would be impractical and contradict our
assumption of independent development. More precisely, in the sketched scenario, we would have
to add the logic for creating implementations of relevant Java interfaces whenever the interface
shall be exposed via an HTTP API to the UML-to-Java transformation. Then, however, the UML-to-
Java transformation would implicitly assume the presence of the Java-to-OpenAPI transformation
and would be restricted to only be used in networks, and thus in development scenarios, in which
OpenAPI is present.

We can generalise the previous example to networks of arbitrary size such that no execution
strategy will yield a consistent model assignment after executing each transformation only once:
Let the model universe be the natural numbers, i.e., M = N0. Let further for every 1 ≤ j ≤ n the
syncx

←→
ij be defined as follows:

←→
ij : (a,b) �→

{
(m + 1,m + 1) ifm = j

(m,m) else
withm � max {a,b} .

←→
ij sets both models to the higher number of the two, except if that number is j. If the higher of
the numbers is j, then

←→
ij sets both models to j + 1. This is an abstraction of syncx “reacting” to

each other: The
←→
ijs seek to set all models to the same value, except that after

←→
ij−1 was executed,

←→
ij

changes its behaviour and increments the value by one.
We now construct the transformation network Nn for n = 2k,k ∈ N+ (see Figure 3) with n

indicating the number of transformations within the network and examine how many executions
it requires to yield a consistent model assignment:

Tn = (i, i + 1) �→

{
←→
i2i if i ≤ n

2
←→
i2i−n−1 else

Nn = (([1,n + 1], {(i, i + 1) | i ∈ [1,n]}) ,Tn) .
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Lemma 1.
←→
in must be executed at least n times to resolve Nn with the initial model assignment

M1 : i �→

{
1 if i = 1

0 else.

Proof. The only reachable model assignment that is consistent is Mn : i �→ n. It is reached by
having every

←→
ij increment the highest number in the model assignment by one if that highest num-

ber currently is j. All transformations incrementing even numbers are on one side of
←→
in (except for

←→
in itself), all transformations incrementing uneven numbers are on the other side. Thus, the cur-
rently highest number must be propagated to the other side of

←→
in at least n− 1 times. Additionally,

←→
in must increment n − 1 to n. In total,

←→
in must be executed at least n times. �

Theorem 2. For any execution strategy that uses O(1) executions of each transformation, there are

inputs that the execution strategy cannot resolve.

Proof. Follows directly from Lemma 1: The network Nn requires O(n) executions of at least
one transformation for the input given in Lemma 1. �

The example network in Figure 2 is a simplification of a realistic transformation scenario as
given in Section 2.1 and Figure 2, which we generalised to the network Nn . In consequence of
Theorem 2, we can expect that transformation networks can, in general, not be resolved with O(1)
executions of each transformation.

4.2 Unlimited Executions

We have considered an execution strategy that executes each transformation only once or even a
constant number of times. As an opposite extreme, we now consider an execution strategy that
allows an unbounded number of transformation executions. Thus, it executes transformations as
long as they still change models and terminates once no more changes occur. This overcomes
the shortcoming that we observed with limiting the number of executions to a constant. We will,
however, show that we cannot guarantee termination of such an execution strategy. To this end,
we prove that it is undecidable whether the strategy will terminate by simulating Turing machines
with transformation networks.

Given a Turing machine tm over some alphabet Σ, we construct a transformation network
Ntm � ((V ,E),Ttm) and a model assignment Mtm,x that are resolvable if and only if tm halts
on input x ∈ Σ∗. In consequence, if we found an execution strategy that terminates for every input
and yields consistent models for every resolvable input, then we could use that strategy to solve
the halting problem for Turing machines. We assume that tm contains no self-loops as well as no
cycles of length 2, i.e., that each transition and each sequence of two transitions changes the state
of tm. This is without loss of generality, since duplication and triplication of each state resolves
such self-loops and cycles, respectively, (see Klare [2021]). The constructed models consist of a
timestamp, the tape content, and the tape position (i.e.,M = N0 × Σ∗ ×N0). The network Ntm has
tm’s states as vertices and exactly one directed edge (in arbitrary direction) between each pair of
states that have a transition between them. The transformations increment the timestamp, change
the tape content, and update the tape position according to tm’s transition if and only if the source
model’s timestamp is higher than the target model’s timestamp. Thus, each transformation exe-
cution emulates one execution step of tm and stores the state of tm after that execution step in
the model changed by the transformation. More formally, let Tr(a,b) ⊆ Σ × {−1, 0, 1} × Σ be the
transitions defined between the states a and b (with −1, 0, and 1 indicating the head movements
“left,” “stay,” and “right”). We defineTtm withw |p←r � w[0 ..p − 1] · r ·w[p + 1 .. |w | − 1] such that
a transformation between the two models α � (ta ,wa ,pa) and β � (tb ,wb ,pb ) encoding a Turing

Formal Aspects of Computing, Vol. 35, No. 3, Article 15. Publication date: September 2023.



15:14 H. Klare and J. Gleitze

machine state with ta , tb denoting the timestamps, wa ,wb denoting the tape contents, and pa ,pb

denoting the tape positions, is defined as follows:

∀ (a,b) ∈ E : Ttm (a,b) (α � (ta ,wa ,pa) , β � (tb ,wb ,pb ))

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
α ,

(
ta + 1, wa |pa←r , pa + d

) )
if ta > tb ∧ ∃ (wa [pa] ,d, r ) ∈ Tr (a,b)( (

tb + 1, wb |pb←r , pb + d
)
, β

)
if ta < tb ∧ ∃ (wb [pb ] ,d, r ) ∈ Tr (b,a)

(α , β) else.

Let s be the initial state of tm. We set

Mtm,x : v �→

{
(1,x , 0) if v = s

(0, ε, 0) else.

We encode the initial tape content and tape position of tm in the model representing the initial
state of tm. Then the network is designed in a way such that there is always only at most one
transformation to execute, which emulates the next execution step that tm would have performed.
We show this emulating behaviour in the following lemma:

Lemma 3. Executing the transformations of Ntm with initial model assignment Mtm,x until no

transformations change the model assignment anymore terminates if and only if tm halts on input x .

If executing the transformations terminates with the final model assignment Mf , then the model with

the highest timestamp in Im(Mi ) contains tm(x) as tape content.

Proof. We can see by induction over the model assignmentsMi , i ∈ N0 created while executing
the transformations, i.e., each Mi representing the model assignment at execution time i:

(1) There is exactly one v ∈ V such that the model Mi (v) � (t ,x ,p) has the highest timestamp
t of all models in Im(Mi ). This is, by design, always the model that has been changed by the
previously executed transformation.

(2) There is at most one edge (a,b) ∈ E whose transformation is inconsistent, i.e., (Mi (a),
Mi (b)) � RTtm(a,b). This follows from the definitions of tm and the last executed transforma-
tion. Additionally, a = v or b = v , because otherwise there would have been two transforma-
tions to which models in Im(Mi−1) are inconsistent. We assume without loss of generality
a = v .

(3) If (a,b) exists, then m′ � Mi+1(b) will contain the same tape content and the same tape
position as would result if tm was executed one step from statev with tape contentx and tape
positionp. This represents the emulating behaviour of tm’s transitions by transformations in
Ntm. Additionally,m′will be the model with the highest timestamp of all models in Im(Mi+1).

(4) (a,b) does not exist if and only if tm would halt in statev with tape content x and position p.

In consequence of (1)–(4), if and only if tm halts, there is only a single order of the transformations
in Ntm in which they can be executed, and its execution yields consistent models. �

Theorem 4. Let S be an execution strategy that executes transformations until a consistent model

assignment is reached. There are inputs for which it can not be decided whether S will terminate.

Proof. Given that we can always decide whether S will terminate, we could use it to decide the
halting problem for a universal Turing machine, as follows from Lemma 3. That problem, however,
is undecidable. �
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This construction does not only show that there is no universal execution strategy that finds an
execution order of transformations that yields consistent models whenever such an order exists. It
makes it even unlikely that we can find a practicable criterion that transformations have to fulfil
to ensure success of an execution strategy like we have motivated in Section 2.4. Such a criterion
should apply to a single transformation, since we want to allow their independent specification and
reuse, as motivated in Section 2.2. And such a criterion must, at least, ensure that no transformation
network Ttm can be constructed out of a Turing machine tm, since an execution strategy would
otherwise still not be guaranteed to terminate. The definition of the syncx in Im(Ttm) is, however,
structurally simple, such that it is unlikely that a syncx fulfilling the hypothetical criterion would
still be apt for most practical use cases.

As another option to avoid undecidability, we could restrict the models’ size. The models could
then no longer store an unbounded tape and, thus, the transformation network construction could
only simulate space-restricted Turing machines. There is, however, no reasonable bound for a
necessary model size, to which they could be limited. In consequence, determining a universal space
bound for models would be a theoretically insufficient, arbitrary, and thus impractical restriction.
In practical implementations, it may still be reasonable to specify a model size bound, depending
on the usage context to ensure termination in case of unexpected errors, such as implementation
faults within transformations. But this would neither solve the theoretic problem nor guarantees
to work even in the context it is supposed to be used in as soon as models’ size exceeds that bound.

As a different point of view, one could question whether it is relevant if an execution strategy
can be guaranteed to terminate. Execution strategies will be used to tell users whether changes
they made can be incorporated into the other models automatically. In consequence, users should
reliably and timely get a response. We might compare this situation to merging changes in version
control systems. There, users also want a reliable and timely response on whether their changes
could be incorporated automatically or whether they need to resolve conflicts manually.

Since finding a criterion for transformations to ensure termination of a universal execution
strategy seems unlikely due to the given arguments, though we did not show that it is impossible,
we have to accept that such an execution strategy may not be successful in every case. For practical
applicability, we still want to ensure that its execution terminates, such that we have to define an
abortion criterion for the strategy. To this end, we will discuss in the following how such a criterion
that leads to useful properties can be defined.

5 A USEFUL EXECUTION STRATEGY

We have shown that without a restricting criterion for transformations, which will likely limit
their practical applicability, every universal execution strategy will be incomplete: There will be
inputs for which it fails, even though there would have been an execution order that leads to a
consistent model assignment. In this section, we discuss how to find an appropriate execution
order and bound and finally present the tracing strategy, constituting contribution C3.

5.1 Execution Order: Providing Traceability

The number of transformation executions an execution strategy permits is negatively correlated
with its level of incompleteness, because allowing more executions increases the number of tested
execution orders and thus increases the chance to achieve a consistent model assignment. In conse-
quence, increasing the number of transformation executions an execution strategy permits lowers
its level of incompleteness, i.e., the percentage of cases in which it fails. In contrast, the effects of
different orders in which transformations can be executed are not as easy to categorise. The au-
thors developed a model transformation network simulator, which we detail in Section 7. It allows
to construct transformation networks and to define execution strategies, which can be applied
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step-by-step. All examples presented in this article are also modelled in the simulator. For each
examined systematic execution order, such as a depth-first or breadth-first selection, the authors
found categories of networks on which the order performed worse than another one in terms of
incompleteness. In consequence, the level of incompleteness is not a good sole criterion to evaluate
orders by. And even if there was a strategy that reduces the level of incompleteness in contrast to
all other strategies, there are further properties that are even more important for practical appli-
cability, which we discuss in the following.

We know that a universal execution strategy will inevitably be incomplete, i.e., it will possibly
fail for resolvable inputs. In practice, it will be important how well an execution strategy provides
traceability in such cases, i.e., how well it helps users to understand where and why the strategy
failed with the selected execution order. Such reasons can, for example, be errors within a single
transformation, errors in their interplay, or a too early abortion of the execution. The order plays
a decisive role in this regard, which is why we focus on finding a strategy that improves the
order. Imagine, for instance, that the strategy executed transformations in an arbitrary order until
some limit is reached. Users might then be confronted with a situation where all transformations
have been executed, but the last model assignment is only consistent according to some of them.
There would be no clear pattern and little clues for users where to start investigating the failure’s
cause. To improve traceability, the authors thus propose the following principle for an execution
order, which is based on incrementally increasing the size of the subnetwork of already executed
transformations:

Principle 1 (Incremental Subnetwork Consistency). Ensure consistency among the transforma-
tions that have already been executed before executing a transformation that has not been exe-
cuted yet.

Since a syncx can change both models, executing it may result in models that are inconsistent
according to the syncx that have been executed previously. We have seen this behaviour in the
exemplary scenario sketched in Figure 2 and explained in Section 4.1: The addition of a UML
interface is propagated to a Java interface by the UML-to-Java transformation, to which the models
are consistent afterwards. This interface is then transformed to an HTTP API in OpenAPI, for
which, in turn, a stub implementation for serialisation is created in Java. Both these changes are
performed by the Java-to-OpenAPI transformation, as a syncx is allowed to change both models.
Then, the models are again inconsistent according to the UML-to-Java transformation because of
the stub implementation class being only present in Java code but not in the UML model. Following
Principle 1, inconsistencies with already executed transformations should be addressed first. Thus,
if there is also a Java-to-PCM transformation, like in the motivating example in Figure 1, then this
transformation would only be executed after consistency to both other transformations has been
restored. In effect, a strategy applying the principle will maintain a subnetwork of syncx with a
consistent model assignment and try to expand the subnetwork transformation by transformation.

To exemplify how Principle 1 provides traceability, suppose that an execution strategy applying
that principle fails after having executed the set of syncx E ⊆ T. Let

←→
t ∈ E be the last syncx that

was executed for its first time. This means that consistency according to all
←→

t ′ ∈ E \ {
←→
t} has been

restored before
←→
t was executed, but after executing

←→
t no execution order of the syncx was found

that restores consistency according to all
←→

t ′ ∈ E. The strategy can then inform users that integrating
←→
t into the subnetwork induced by E failed. Furthermore, it can inform users that a result that is
consistent according to the syncx in E \ {

←→
t} exists. By that, users gain valuable information for

handling the error: First, when trying to understand the error, they can ignore any syncx that is
not in E. Second, some aspect of consistency that is present in the consistency relation realised by
←→
t but absent in the consistency relations realised by the syncx in E \ {

←→
t} hinders the strategy from
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creating a consistent result. Third, when users try to find a consistent model assignment manually,
they can start with the consistent result that exists for E\{

←→
t} instead of having to start from scratch.

5.2 Execution Bound: Reacting to Each Other

Due to Theorem 2, we need to restrict the number of transformation executions with a function in
ω(m) with m being the number of syncx in the input network. Such a limit should be reasonable
to support most practical use cases and is thus a tradeoff: Not allowing enough transformation
executions reduces the usefulness of the strategy, since not all relevant networks can be resolved.
Allowing too many executions might make the strategy run for a long time before aborting, with-
out adding much value.

In Section 4.1, we have motivated that syncx should be able to “react” to each other. We have
seen that this excludes any bound in O(1) for the number of executions per transformation, but to
guarantee termination, we can also not allow transformations to react to each other indefinitely. If a
syncx

←→
t changes the models and the other already executed syncx have reacted to those changes by

adapting the models to be consistent according to them as well, then
←→
t should not react by changing

the models again. Because if
←→
t changed the models again, then this could easily result in executing

the same sequences of transformations repeatedly and there would likely be no consistent result.
We call transformations in a network N that behave in the described way N -converging. This

is not a property of a transformation on its own but relative to its network N . Thus, it cannot be
achieved just by proper construction of the individual transformations and, unfortunately, there
is also no simple way to check it statically. Nevertheless, it captures the sensible expectation for
transformations explained above. We induce an execution bound for an execution strategy by only
requiring it not to fail if all syncx are N -converging. We will see how this execution bound behaves
in combination with Principle 1 in the subsequently presented execution strategy.

Definition 8 (N -convergence). Let N � (G,T ) be a transformation network. A syncx
←→
t ∈ Im(T )

is N-converging if for every initial model assignment and each subset of the syncx Tp ⊆ Im(T )
with

←→
t ∈ Tp the resulting model assignment is consistent according to

←→
t whenever

←→
t has been

executed after a sequence of the syncx in Tp that contains each permutation of those syncx as a
(not necessarily continuous) subsequence.

We only require that the sequence of transformation executions contains each permutation, but
allow other executions in between. As an example, assume a network N of N -converging syncx

←→
t1,

←→
t2, and

←→
t3. After executing them in the order

←→
t1
←→
t2
←→
t3
←→
t1
←→
t2
←→
t3, the current model assignment may still

be inconsistent according to
←→
t1, because

←→
t1 was not executed after the order

←→
t3
←→
t2. After executing

←→
t1 once more, the resulting model assignment must now be consistent according to all syncx:

←→
t1

was executed after the two orders of other syncx
←→
t2
←→
t3 and

←→
t3
←→
t2. Likewise,

←→
t2 was executed after

←→
t1
←→
t3 and

←→
t3
←→
t1, and

←→
t3 was executed after

←→
t1
←→
t2 and

←→
t2
←→
t1.

5.3 The Tracing Strategy

We derive a concrete strategy that realises the discussed design choices, namely, Principle 1 and
guaranteed termination when fulfilling Definition 8. Algorithm 1 gives pseudocode for such a
strategy, which we call the tracing strategy. At a high level, it acts like this: Given a changed model
assignment, the strategy picks the next candidate syncx to execute. After executing the candi-
date, the strategy calls itself on the subnetwork formed by the already executed syncx. By that,
it propagates the changes of the last execution throughout the subnetwork and ensures that they
are consistent according to the executed syncx. Finally, the strategy executes the initial candi-
date again to ensure that the changes added during the subnetwork propagation are consistent
according to the candidate. If that repeated execution of the candidate generates new changes
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ALGORITHM 1. The tracing strategy in pseudocode.

1 Procedure propagate (network, changes):

2 executed← ∅

3 accumulatedChanges← changes

4 Invariant: accumulatedChanges applied to network consistent to executed

5 while network.select (candidate | candidate � executed ∧ accumulatedChanges.adjacentTo (candidate)) do

6 candidateChanges← candidate.execute (accumulatedChanges)

7 subnetwork← network.edgeInducedSubgraph (executed)

8 propagationChanges← propagate (subnetwork, accumulatedChanges ∪ candidateChanges)

9 candidateChanges← candidate.execute (propagationChanges)

10 if candidateChanges.adjacentToAny (executed) then

// Only happens if candidate is not network-converging

11 fail (executed, propagationChanges)

12 accumulatedChanges← propagationChanges ∪ candidateChanges

13 executed← executed ∪ candidate

14 return accumulatedChanges

in any model that is kept consistent by an already executed syncx, then the execution fails, because
the candidate does not fulfil the definition of being N -converging, as we will see in the following.
In that case, the procedure returns the already executed syncx to which consistency was restored
by the also returned changes to support a user in examining the reasons for the strategy to fail.
We will discuss this benefit in more detail in Section 6. If the models are consistent according to
the candidate, then the strategy picks the next one, while a further candidate exists. In effect,
the strategy realises Principle 1 in a recursive fashion and ensures that each permutation of all yet
executed syncx is executed at every recursion level.

Figure 4 depicts an exemplary execution of the strategy for a network with four models and
four transformations. We assume that after an initially consistent state of the models, the topmost
one was modified. The strategy then picks the top left, the top right, the middle, and the bottom
left transformation, and after executing each of them in that order, it recursively executes itself
on the subnetwork of the particular already executed transformations. Since each recursion only
treats the subnetwork of previously executed transformations, the network gets smaller at each
recursion level.

Unlike the formalisation in Section 2.3, the algorithm is based on changes instead of model states.
Changes contain information that cannot be recovered by comparing model states [Diskin et al.
2011] and are processed by change-driven transformations (see Bergmann et al. [2012]). Thus, in
practice, we want to support change-based execution. Since changes just provide further informa-
tion compared to only having changed model states but the latter can still be derived by applying
the former, the previous formal considerations still hold for transformations that process changes.
The algorithm also uses changes to determine potential candidates for the next transformation to
execute: It only picks candidates that are adjacent to a model that was changed. The input changes
describe all changes that occurred since the last model assignment M that was known to be con-
sistent. The procedure returns accumulatedChanges that, when applied to M , yield a new model
assignment M ′. For our formalisation, M ′ is the algorithm’s output.

To realise an execution strategy according to Definition 6, the algorithm has to be determin-
istic. To achieve that, in particular the selection of a candidate in Line 5 has to be implemented
deterministically. This can, for example, be achieved by predefining an order of the transformations
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Fig. 4. Exemplary execution of the tracing strategy for a change in the topmost model, depicting the itera-

tions (horizontal) and recursion steps (vertical).

in a network so the selection yields the same transformations in every execution of the algorithm
for the same inputs. Although we consider an execution strategy as deterministic in the definition,
we have stated in Section 2.4 that this is not even a necessary, but may only be a reasonable require-
ment, such that it would also be valid if the proposed strategy operated non-deterministically.

We discuss some implementation details for the tracing strategy further below. First, we prove
that the strategy has indeed the motivated properties. We assert that it terminates always, deter-
mine its execution bound, and show its correctness (Requirement 1) and hippocraticness (Require-
ment 2), as required in Section 2.4. In addition, we prove that the strategy fulfils the motivated Prin-
ciple 1 and that it is successful when the transformations fulfil Definition 8 of being N -converging.

Theorem 5. The tracing strategy terminates for every input.

Proof. Because all called functions terminate, only the loop (Line 5) and the recursive call in
Line 8 can lead to non-termination. Let m denote the number of edges of the network N . The set
executed is initialised to be empty (Line 2) and grows by one element in every iteration of the loop.
The loop is executed no more than m times, because after m iterations there is no transformation
that is not in executed and, thus, the loop condition cannot be fulfilled.

The recursive call receives a network that is smaller than network N in terms of the number
of edges, because it does not contain the current candidate. If network N is empty, then the
algorithm will not enter the loop and not make a recursive call. Hence, the recursive stack never
gets higher thanm.

In total, both the number of recursive calls as well as the number of loop iterations are limited
by the number of transformations in the network, such that the tracing strategy terminates for
every input. �

Theorem 6. The tracing strategy executes transformations at most O(2m) times.

Proof. Let T (m) denote the number of transformation executions the algorithm invokes
for a network N with m edges. The set executed is initialised to be empty and grows by one
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transformation every loop iteration (Line 13). It follows that the recursive call in Line 8 receives
a network that is one transformation larger each time. Thus, we find:

T (0) = 0

T (m) = 2m +
m−1∑
i=0

T (i) = 2 + 2T (m − 1) = 2 (2m − 1) ∈ O (2m) . �

Next, we show that the strategy fulfils the fundamental Requirements 1 and 2 regarding correct-
ness and hippocraticness, which we defined in Section 2.4.

Theorem 7. The tracing strategy is correct.

Proof. We assume the contrary, i.e., that the strategy produces a model assignment M for net-
work N such that M � RN . That means there is an edge (a,b) ∈ E such that (M(a),M(b)) � R←→t ,
where

←→
t � T (a,b). We distinguish these three cases:

(1)
←→
t was never executed: Then accumulatedChanges never contained any change adjacent to a
or b (Line 5). Since the initial changes were relative to a consistent model assignment, the
model assignments of a and b were consistent as well, i.e., we know that (M(a),M(b)) ∈ R←→t .

(2)
←→
t was executed and no other transformation adjacent to a or b was executed afterwards: Then
the execution of

←→
t yields consistent models, such that (M(a),M(b)) ∈ R←→t per definition.

(3)
←→
t was executed and another transformation ←→u adjacent to a or b was executed afterwards: Be-
cause ←→u was executed after

←→
t,
←→
t was in executed when ←→u was the candidate. So

←→
t’s last

execution was in the recursion after ←→u’s first execution in Line 6. Afterwards, ←→u was only ex-
ecuted in Line 9. If ←→uwould have changedM(a) orM(b), then the strategy would have raised a
failure. Hence,M(a) andM(b) are the same as after the execution of

←→
t, and (M(a),M(b)) ∈ R←→t .

All cases lead to a contradiction. �

Theorem 8. The tracing strategy is hippocratic.

Proof. The strategy only produces changes by executing transformations, which, per definition,
only generate changes if the models are not in their consistency relations. �

Finally, we verify that we have indeed realised Principle 1 and that the strategy does not fail for
a network N of only N -converging transformations according to Definition 8.

Theorem 9. The tracing strategy ensures consistency among the transformations that have already

been executed before executing a transformation that has not been executed yet (see Principle 1).

Proof. After the recursive call in Line 8, the current model assignment is consistent according
to all executed transformations (Theorem 7) and no changes to models adjacent to an executed
transformation are allowed after the recursive call. Hence, executed is either empty or the cur-
rent model assignment is consistent according to all syncx in executed whenever the algorithm
executes a new transformation in Line 6. �

To prove that the tracing strategy always succeeds if the syncx of the input network N fulfil Def-
inition 8 of being N -converging, we first show a lemma about the order in which transformations
have been executed after running the strategy.

Lemma 10. After running the tracing strategy for an input network N of only N -converging

syncx, the sequence of executed syncx contains each permutation of those syncx (not necessarily

continuously).
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Proof. We show the lemma by induction over the number m of edges in network N . First, we
note that when calling the algorithm on a network N with m transformations, the first m − 1
iterations of the loop act identically to executing the algorithm on a network without the last
candidate. Second, we note that the second part of the loop condition, “accumulatedChanges.
adjacentTo (candidate)” (Line 5), does not change the algorithm’s result apart from controlling the
order in which the syncx are executed. If any syncx was never executed because of this condition,
then executing it would not have changed any model. Hence, we assume without loss of generality
that all syncx in network N will get executed by Algorithm 1.

The lemma statement is trivially true for m = 1. Assume that the statement is true for all net-
works of size 1 ≤ n < m but not true for a network of size m. That means after executing the
last iteration of the loop, there is an order o of the m syncx in network N in which they have not
been executed yet. Let

←→
t be the candidate of the last iteration. Let j be the index of

←→
t in o. Per

induction assumption, the order o[1] . . . o[j −1] has been executed in the previous iterations of the
loop. Afterwards,

←→
t was executed in Line 6. Per induction assumption, the order o[j + 1] . . . o[m]

has been executed in the recursive call (Line 8) of the last iteration. This happened after Line 6.
Hence, the transformations have been executed in the order o. This is a contradiction. �

Theorem 11. If the input network N of the tracing strategy consists only of N -converging syncx,

then the tracing strategy does not fail.

Proof. Calling the algorithm on a network N with m transformations, the first m − 1 itera-
tions of the loop act identically to executing the algorithm on a network without the last can-
didate (see proof for Lemma 10). Thus, when reaching Line 10 all permutations of transforma-
tions in executed ∪ {candidate} have been executed according to Lemma 10. This is even the
case when reaching Line 9, because candidate has already been executed in Line 6 after the
previous loop iteration has executed all permutations in executed, such that all permutations
of transformations in executed ∪ {candidate} have been executed before Line 9. Then due to
Definition 8 for N -convergence, the models are consistent according to all transformations in
executed ∪ {candidate} when reaching Line 9, such that candidateChanges produced in Line 9
will be empty and the condition leading to a failure (Line 10) will never evaluate to true. �

The tracing strategy only guarantees to yield a consistent model assignment if all transforma-
tions are N -converging. Unfortunately, we cannot provide an approach to achieve N -convergence
by construction or to validate N -convergence for a network of transformations. We have, how-
ever, also discussed that every universal execution strategy needs to be incomplete and will thus
fail in certain cases. In consequence, even if a network N contains transformations that are not
N -converging, the tracing strategy is still incomplete and at least fails based on the notion of a sen-
sible and well-defined property rather than in an arbitrary state. In addition, following Principle 1
eases finding the reasons why the strategy fails, as we will discuss in more detail in Section 6.

The exponential worst-case performance of the strategy is no limitation and does only represent
a bound to ensure termination. In cases in which the strategy terminates, we expect the repeated
execution of each transformation to perform only few changes in reaction to the changes made by
other transformations, as otherwise their execution will unlikely converge to a consistent model
assignment, i.e., the transformations are unlikely to be N -converging.

In its current formulation, the tracing strategy does not prevent the transformations from over-
writing the initial user changes. This seems inappropriate: The transformations could simply revert
the user changes to produce a consistent model assignment, which may usually not be the expected
behaviour. Other authors address this issue by forbidding changes to models that have been edited
by users [Di Rocco et al. 2017; Stevens 2020a, b]. Stevens calls these models authoritative [Stevens
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2020b]. However, there are practical use cases where changes to models that were edited by the
users should be allowed—the example we presented in Section 4.1 is one of them. An option would
be to lock only the changes made by users instead. As soon as a transformation makes a change
that would effectively overwrite the users’ changes, the execution strategy raises an error. This is a
kind of monotony requirement, which, however, limits practical applicability [Klare 2021, pp. 212].

We might argue that users sometimes make changes that rely on a certain unchanged part
of the model. If the transformations overwrite that part, then the user changes are contradicted
without overwriting the changes themselves. Such a situation might, however, indicate that there
is a relevant aspect of the desired consistency relation that the transformations have not taken
into account. Then, the transformations need to be improved rather than the execution strategy
changed.

The presented tracing strategy provides a universal execution strategy for transformation net-
works, which ensures termination by being incomplete and realises Principle 1 as an inductive ap-
proach for restoring consistency by incrementally adding transformations for which consistency
is restored. We assume this approach to improve traceability of the reasons whenever the strategy
fails to find consistent models, which we will discuss in more detail and for which we will provide
evidence in the following section.

6 REASONING WITH THE TRACING STRATEGY

In Section 5, we have proposed the tracing strategy as an execution strategy for model transfor-
mation networks. The strategy is proven correct, i.e., it terminates for every input and, if not
failing, the returned models are always consistent. We have motivated the strategy with its ability
to improve traceability in cases in which it fails, i.e., in which it does not yield consistent models.
This can be the case for two reasons: First, an execution order of the transformations that yields
consistent models may exist but the strategy cannot find it because of undecidability reasons (see
Theorem 2). Second, there may not even be an execution order of the transformations of a network
for given inputs that yields consistent models.

In this section, we aim to show that the tracing strategy actually helps transformation develop-
ers to find the cause for the execution strategy not being able to execute the transformations in
an order that yields consistent models, introduced as contribution C4. To do so, we quantitatively
examine the number of transformations a developer has to consider in such a situation and quali-
tatively analyse how he or she is supported in finding the relevant transformations to investigate.
We discuss the improvement in traceability by the proposed strategy at a general example for the
first of the two reasons. From this scenario, we derive a universal, systematic criterion for how
the strategy improves traceability, which we substantiate with a metric. In a practical scenario
aligned with the one depicted in Figure 1, we then generalise how the criterion and the improve-
ment in traceability also applies in an example for the second failure reason. This reason is that
no execution order of the transformations that yields consistent models exists due to some kind of
incompatibility between the transformations. The ideas and examples in this section are partially
based on those presented in the dissertation of Klare [2021].

6.1 Traceability at an Example

According to the discussion in Section 5, we expect the tracing strategy as specified in Algorithm 1
to improve traceability. Traceability is, in particular, improved by reducing the number of trans-
formations the developer or user of a transformation network has to consider when the strategy
fails to deliver consistent models. This is achieved by systematically adding transformations to
the execution incrementally after consistency to the already executed transformations has been
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Fig. 5. A network of transformations that can require an arbitrary number of executions to find consistent

models, depending on the value x and the input models. Each of the models a, b, c , and d represents a single

number, i.e., a,b, c,d ∈ N0.

restored, as defined in Principle 1. In this section, we give a comprehensible impression of how
this kind of traceability is achieved by discussion at an example.

Figure 5 depicts an abstract scenario with a transformation network consisting of five transfor-
mations that preserve consistency between four models. For reasons of simplicity, we only consider
models in this section and disregard the abstraction of model assignments that assign actual mod-
els to the nodes of an abstract graph describing the transformation network topology according
to Definitions 3 and 4. The universe of the four models a, b, c , and d is the natural numbers, i.e.,
M = N0. Four of the transformations, namely,

←→
tab,

←→
tbc,

←→
tcd, and

←→
tda, set the number of both mod-

els to the value of one of the models, such that both have the same value. Thus, their induced
consistency relations are the pairs of models being the same number. The transformation

←→
tac sets

the value of the model c to the value of the model a incremented by 1 if a < x , to the value a
decremented by 1 if a > x , and to the value of a if a = x for some fixed but arbitrary x .

As a consequence, the only models that are consistent according to all induced consistency
relations are a = b = c = d = x . For any initial value of a, these consistent models can, for example,
be found by executing the sequence

←→
tac,

←→
tcd,

←→
tda for |a−x |+1 times, such thata = c = d = x , followed

by
←→
tab and

←→
tbc, such that b = x as well. This is sufficient, because

←→
tac increments or decrements the

models’ value in each iteration by 1, and the other transformations propagate this value back to a.
Thus, an execution order of the transformations that yields consistent models exists. Since x is an
arbitrary value, an arbitrary high number of executions of

←→
tac can be required to find consistent

models. To ensure termination of an execution strategy, the number of executions it performs has
to be limited, as also implemented in the proposed tracing strategy. Thus, any useful execution
strategy applied to the scenario will not find resolutions for several inputs, although they are
resolvable (see Section 2.4).

An execution strategy with an artificial termination criterion will fail in an unexpected state, in
which the models may be arbitrarily inconsistent, and without any guarantee for the usefulness
of the state in which it fails to identify the reason for the failure. The tracing strategy fails under
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more systematic conditions due to the subsequent addition of transformations to be executed, pro-
viding more insights into the reasons for failing. One such condition is that the execution closes a
cycle of transformations that do not interoperate properly. In the example, this situation is given
by the transformations

←→
tac,

←→
tab, and

←→
tbc whenever the initial value a � x : There is no execution

order of the transformations that yields models consistent to them. The only consistent models are
a = b = c = x but none of the transformations is able to change a or b. Thus, as soon as the execu-
tion of any of the three transformations closes a cycle, i.e., as soon as a transformation becomes
executed such that the graph induced by the already executed transformations, in this case

←→
tac,

←→
tab,

and
←→
tbc, contains a cycle, the algorithm fails. Since consistency to previously executed transforma-

tions could be preserved, there is a fault in any of the transformations in the cycle closed by the
last executed transformation, i.e., candidate, or in their interaction. It is, however, impossible to
say which transformation contains a fault, because it is unclear whether the consistency relation
induced by

←→
tac is actually not as intended and should thus be adapted or whether, for example,

←→
tab

and
←→
tbc should be adapted. This is a semantic decision by the developer of the transformations.

There are further reasons for the algorithm to fail beyond closing cycles. We will discuss in
the following under which conditions we can actually expect closing cycles to be the only case in
which the algorithm fails. If the algorithm can only fail when the last candidate transformation
closes a cycle with the executed transformations, then the transformations a user or developer
has to consider to find the cause for failing are systematically limited: As soon as the algorithm
fails, the user or developer receives the information that transformation was executed last and
led to the failure together with the current state of the models. There is at least one consistency
relation that is violated such that the algorithm aborted, and this relation must belong to one of
the transformations within the cycle containing the fault. In consequence, the transformation user
or developer only needs to consider the transformations in that cycle for finding the fault. He or
she knows which consistency relation was violated and can thus restrict him- or herself to the
elements concerned with the violated consistency relation. In this case, both cycles that may be
closed by adding

←→
tac (the one with

←→
tab and

←→
tbc as well as the one with

←→
tda and

←→
tcd) are of length 3,

such that independent from the order in which the tracing strategy executes the transformations,
only 3 out of the 5 transformations must be considered when the algorithm fails. In general, the
number of transformations to consider is limited by the closed cycle’s length. Using an execution
strategy that may fail in an arbitrary state, there is no clue which transformations caused the
failure.

6.2 Possible Execution States in Failure Cases

Although the previous considerations suggest that only closing cycles in the graph induced by the
executed transformations leads to failures of an execution strategy, this is not necessarily the case.
Consider again the scenario from Figure 5. We discuss the execution of the tracing strategy for a
transformation network with x > 1 and initial models a = 1, b = 3, and arbitrary values of the
others. Assume that the strategy starts executing

←→
tbc in the first iteration (Line 5), then afterwards

c = b = 3, which is the initial value of b. Then assume that the strategy selects and executes
←→
tac

in the second loop iteration, such that afterwards c = a + 1 = 2. Then the recursive execution
of the strategy in Line 8 executes the executed transformations again, which is

←→
tbc and which

resets c to c = b = 3 again, because b � c and thus the models are not consistent according to
←→
tbc.

After returning from the recursion in Line 9,
←→
tac is executed again and resets c to c = a + 1 = 2,

such that a change adjacent to
←→
tbc is generated and the validation in Line 10 leads to a failure of

the algorithm in Line 11. An iterative execution of only
←→
tac and

←→
tbc will never terminate, because

the execution of one transformation always leads to an inconsistency according to the other. In
consequence, failing in this case is intended behaviour of an execution strategy.
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In the discussed scenario, one might argue that the transformations are somehow incompatible,
because the execution of the two mentioned transformations will never result in models consistent
to both of them. There is, however, always an execution order of all transformations in the network
that terminates, i.e., every input is resolvable.

Generalising from the example, there is no necessity for closing a cycle in the network induced
by the candidate and the executed transformations for the tracing strategy to fail, because a
transformation does not consider which model was changed and updates the other model accord-
ingly, but it only takes the models’ states and updates both of them. In the scenario, model c is
always changed by both transformations, although the transformations are executed because of a
change of c . Updating the model that was changed and led to an execution of the transformation
can, however, always be necessary, even if the other model is updated as well, as we have moti-
vated with Figure 2. In consequence, every iteration in the tracing strategy adding the execution
of a further transformation can result in a failure (Line 11), no matter whether it closes a cycle or
not.

6.3 A Criterion for Improved Traceability

The tracing strategy can only fail if some model is changed multiple times, because when failing
some models need to be inconsistent (the ones connected by the last executed candidate transfor-
mation) as detected in Line 10, for which consistency was already restored when first executing
the candidate transformation in Line 6, such that another transformation must have changed one
of the models again. This can occur because of a cycle in the executed transformations, like in the
first discussed scenario in Section 6.1, or because of transformations that also modify the model
whose previous change introduced an inconsistency, such as

←→
tbc updating c even if only c was

changed before, like in the second discussed scenario in Section 6.2.
In practice, transformations may also consider which models have been changed, thus not only

considering the models’ state but also the changes since their last consistent state, as an extension
of Definition 1 (see Klare et al. [2021]). Such a transformation can decide in which direction an
update has to be performed and avoid behaviour like in

←→
tbc, which always reverts changes of c

even if b was not changed. If a network consists of transformations that after a change of one
model only update the other one, then only closing cycles can lead to a failure, because only then
the changed model is adjacent to a transformation that has already been executed and thus leads to
other transformations being executed. In that case, it is beneficial to first close cycles by choosing
the next transformation within the algorithm in Line 5 to ensure that it fails as early as possible.
Even if transformations in practice will not always only modify one model after the other was
changed but may also update the originally changed model, as motivated for the behaviour of a
transformation between Java and OpenAPI in Figure 2, we may expect that in many cases an update
of one model is sufficient to restore consistency, as also defined in common notions of bidirectional
transformations, e.g., Stevens [2010]. Then, the aforementioned strategy of identifying the cause
for the algorithm to fail by investigating only the transformations in the cycle of the executed
transformations closed by the last candidate applies.

We have shown that the first execution of a transformation can lead to a failure in rather different
situations, such as the discussed scenario of closing a cycle but also the simple case of executing
only two adjacent transformations. From these insights, we can construct situations in which the
tracing strategy only fails after executing all transformations. This may even be due to a specific
execution order. For example, for x = 2 and a = b = c = d = 0, the tracing strategy fails when
choosing the execution order

←→
tab,

←→
tbc,

←→
tcd,

←→
tda,

←→
tac only after each of the five transformations was

executed. Still, we can derive a systematic criterion for the expected number of transformations
that need to be considered when the tracing strategy fails for a specific transformation network
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and actual model assignments, and we can show why it is beneficial compared to other execution
strategies.

Usually, identifying the cause of a failure of the transformations’ execution will not require all
transformations to be investigated but only a specific subset of them. This may actually not only
depend on the subset ofk of them transformations in the network but also on their execution order,
like we have seen in the second scenario as discussed in Section 6.2, such that the execution of these
k transformations only fails if they are executed in a specific order. With an arbitrary execution
strategy, it is unclear when such a problematic order of transformations is executed. In particular,
this may happen after arbitrary other, unrelated transformations have been executed, which can,
in the worst case, be all other transformations in the network. Any strategy that executes further
transformations although consistency according to the already executed transformations has not
yet been achieved is prone to executing many or even all transformations before failing, since it is
unclear when a possible termination criterion applies and restricts the number of already executed
transformations. In consequence, the expected value for the size of the subset of transformations
being executed before the strategy fails will be nearm with such a strategy.

In contrast, the tracing strategy fails as soon as each of the k transformations has been executed,
because due to Principle 1 these transformations then have been executed in every possible order,
including the problematic order. In the worst case, the selection of transformations in Line 5 hap-
pens in a completely random way. Then the probability that the r th of the k problematic transfor-
mations has been executed after executing any e of them transformations in the network, denoted
as eventX , is given by the negative hypergeometric distribution. We are interested in the case that
the last of the k transformations has been executed, such that r = k , which gives us the probability:

P(X = e) =

(e−1
r−1

)
×
(m−e

k−r

)(m
k

) =

(e−1
k−1

)(m
k

) .
The expected number of transformations that need to be executed for the tracing strategy to fail
because of the k problematic transformations is then given by the expected value of X:

E(X ) =
m∑

e=k

e ×

(e−1
k−1

)(m
k

) = m + 1

k + 1
× k .

In consequence, using the tracing strategy with a random selection of the next candidate trans-
formation to execute, we can expect the strategy to fail after m+1

k+1 × k of the m transformations
have been executed when there is a problematic execution order of k of the transformations like
we have seen in the previous example. Applied to the scenario in Figure 5, we can expect the
tracing strategy to fail on average after executing 6

3 × 2 = 4 transformations, because the two
transformations

←→
tbc and

←→
tac are problematic when executed one after another.

The tracing strategy thus systematically reduces the number of transformations a developer
needs to consider whenever the strategy fails by the realisation of Principle 1. In practice, we may
even improve this by a reasonable selection of the next candidate transformation to execute, such
as a transformation closing a cycle rather than executing a transformation to a further model that
has not been changed before. We have discussed before why we expect closing cycles to be prone
to produce failures and under which conditions that is the only case in which the algorithm can
fail.

As a further improvement, we may execute the tracing strategy multiple times and investigate
only the pass in which the lowest number of transformations was executed before the algorithm
failed. This can even further improve traceability by reducing the number of transformations to
consider. Although this approach may also be applied to any other execution strategy, it will be
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Fig. 6. Consistency relations between basic components in PCM models, components in UML component

models, classes in UML class models, and classes in Java models.

more beneficial when executing the tracing strategy because of its lower expected value for the
number of transformations to be executed until a failure occurs.

6.4 Generalisation to Incompatible Transformations

In Section 2.2, we have discussed that we assume transformations to be in accordance with some
well-defined overall notion of consistency, such that there are no incompatibilities between the
transformations that prevent them from finding consistent models. A formal notion of compati-
bility has been introduced in Klare et al. [2020], which is based on the idea that for every model
element whose consistency is constrained by a transformation, there must be a consistent set of
models containing that element. This ensures that the consistency relations induced by the trans-
formations do not contradict each other such that they can never be fulfilled.

Figure 6 depicts a simplified scenario from component-based software engineering according
to the one in Figure 1 using different representations of software components and their realising
classes. Components represented in a PCM model and in a UML component model are kept consis-
tent with each other and with a representation as classes in UML class diagrams and Java code. All
model elements are reduced to their names for reasons of simplicity. The example contains con-
sistency relations, which are defined by the power sets of pairs of components and classes such
that all models are considered consistent when they contain the same number of classes and com-
ponents, respectively, that fulfil some constraint regarding their names. These constraints require
the existence of classes and components with equal names, except for the constraint between UML
components and UML classes, which requires an “Impl” suffix to be appended to the class name, ac-
cording to the pattern proposed by Langhammer [2017]. We consider these relations incompatible,
because (except for the empty sets) no models fulfil the defined constraints and are thus consistent
according to these relations. This also conforms to the notion of incompatibility defined in Klare
et al. [2020].

Since there are no consistent models according to these relations, any transformations that pre-
serve consistency according to the relations will not be able to yield consistent models (despite
returning the empty models). Each of the transformations may add or remove the “Impl” suffix
or repeatedly add elements with a further “Impl” suffix to locally restore consistency, such that
the models infinitely alternate between the same states or diverge with new states containing an
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increasing and, if not aborting, infinite number of elements. Thus, every input will be unresolvable
and, in particular, every execution strategy will fail.

However, the independent development and modular combination and reuse of single trans-
formations can easily lead to a transformation network that contains such incompatible transfor-
mations. The situation depicted in Figure 6 can easily occur if different people, potentially with
different roles, develop the individual transformations or reuse them from other projects, since
these people or projects rely on slightly different notions of when models shall be considered con-
sistent. These notions are then reflected in the consistency relations or the transformations that
induce them. Even worse, compatibility is, in general, undecidable and can only be proven in spe-
cific situations and for specific kinds of relations [Klare et al. 2020], such that when combining
transformations their compatibility can be validated in many cases, but is usually unknown.

The discussed improvements in traceability through the tracing strategy even apply in case the
transformations are incompatible, because the reason why inputs are unresolvable, be it a prob-
lematic behaviour of the transformations, such as in the example in Figure 5, or incompatibilities
in the underlying or induced relations, does not influence the behaviour of the tracing strategy. As
soon as a cycle including

←→
tUcoUcl is closed during the execution of the tracing strategy, i.e., as soon

as the subnetwork induced by the executed transformations contains a cycle including
←→
tUcoUcl,

the strategy will fail. This is because the three relations of each of the two simple cycles in the
transformation network including

←→
tUcoUcl are already incompatible and thus the transformations

will not yield consistent models for them. According to the criterion introduced in Section 6.3, we
expect the tracing strategy to fail on average after 6

4 ×3 = 4, 5 transformations have been executed,
thus restricting the number of transformations a developer has to consider to find the cause of the
failure accordingly.

6.5 Discussion and Validity

The scenarios and the derived criterion give us useful and systematic insights about the usefulness
of the tracing strategy in terms of its ability to improve traceability after a failure. In the following,
we summarise these insights and discuss the validity of our discussion and its implications.

6.5.1 Insights. We have seen at different execution scenarios for the transformation network
depicted in Figure 5 that the tracing strategy can fail in different situations, such as closing a cycle
within the already executed transformations but also the execution of a chain of (potentially even
only two) transformations. We have argued that under specific assumptions these kinds of situa-
tions can be restricted. For example, having transformations that after a change of one model only
update the other one, closing a cycle within the already executed transformations is the only situ-
ation in which the strategy can fail. In other cases, independent from the actual network topology,
the strategy may fail after having executed all transformations.

Nevertheless, in general, if an execution strategy fails, then this will usually already be the
case for a subset of the transformations in the transformation network. Thus, even for a subset of
the transformations, no execution order can be found that yields consistent models. This is why
and where the tracing strategy provides an essential benefit by the implementation of Principle 1
that ensures that the set of transformations to which consistency has been restored is increased
incrementally. In consequence, as soon as the subset of transformations, for which no execution
order that restored consistency can be found, has been executed, the tracing strategy fails. We
found that for a network containing n transformations with a subset of k ≤ n transformations
for which no execution order that yields consistent models exists, the tracing strategy will fail
on average after executing n+1

k+1 × k transformations. This systematically reduces the number of
transformations to consider in case of a failure compared to other execution strategies, which have
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no systematic approach of selecting the executed transformations, such that on average most of
the transformations will have been executed when such a strategy fails.

As a further insight, we can improve the strategy’s behaviour in case we know that transfor-
mations do, at least in most cases, only update one model after the other was changed and do not
change both or even only the one that has been modified before. In those cases, we know that the
tracing strategy can only fail if cycles are closed in the subnetwork induced by the already exe-
cuted transformations, such that first closing cycles is beneficial to provoke early failures. As an
example, consider the scenario in Figure 6. If we first execute

←→
tPUco and

←→
tPUcl, then it is beneficial

to then execute
←→
tUcoUcl to close a cycle, as the tracing strategy then already fails. Executing the

transformations to Java first delays the failure of the algorithm. Thus, the selection of the next
candidate in Line 5 should consider transformations to which changes of both related models
have already been performed first.

6.5.2 Validity. The tracing strategy systematically limits the expected number of transforma-
tions that need to be considered when it fails to find an execution order of the transformations
that yields consistent models. We expect this to improve efficiency in finding the cause of such a
failure, because traceability improves when fewer transformations need to be considered. There
are, however, threats to the validity of this conclusion that need to be considered.

First, we assume that the lower the number of transformations to consider after a failure, the
easier it is to find the causing fault. Although this relation is a sensible expectation, as considering
unrelated transformations will likely increase complexity and required time for the process of
identifying the cause of a failure, this is a potential threat to validity. To mitigate this threat, we did
not only focus on the metric regarding the expected number of transformations to be considered,
but we also presented qualitative arguments and discussed further quantifiable improvements,
such as possible restrictions when the transformations fulfil specific requirements regarding which
models they may change upon execution.

Second, we have compared the proposed tracing strategy with possible other execution strate-
gies for transformation networks that do not ensure consistency according to already executed
transformations before executing further ones. In this comparison, we can expect an improve-
ment in the average-case number of transformations to consider in case of a failure. There may,
however, be another strategy that performs better or at least equal to the proposed one in all cases,
which is a threat to external validity of the results. We have mitigated this issue by systematically
deriving the strategy based on the well-defined Principle 1, which systematically improves the in-
vestigated kind of traceability. Beyond traceability, we have developed a simulator (as mentioned
in Section 5 and to be detailed in Section 7) for evaluating different execution strategies, but we
found each strategy to be outperformed by at least one other strategy regarding its ability to find
an execution order that yields consistent models in at least one scenario. Thus, we do not expect
another strategy to be systematically better than the one we proposed, but, in the best case, only
to perform better in specific situations in terms of the ability to find an execution order that yields
consistent models.

Both kinds of validity can be improved by empirical evaluation, which is why we plan to perform
a controlled experiment in which the information delivered by the tracing strategy and by other
strategies are presented to different groups of developers. Evaluating how long they take to find
and fix faults, e.g., in terms of the time they take or the number of steps they need, and how
successful they are in both situations helps us to validate the expected improvement in traceability,
i.e., the efficiency in finding the cause of a failure, and improve evidence of our conclusions from
the given scenario-based discussion. Additionally, qualitative statements from interviews can be
evaluated. Such an experiment requires high effort in terms of its conduction and evaluation, but
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Fig. 7. Screenshot of executing the UML, Java, and OpenAPI example (see Figure 2) in the simulator.

also because of the required presence of adequate transformation networks of proper size and
complexity.

7 A SIMULATOR FOR EXECUTION STRATEGIES

During their research on execution strategies, the authors noticed that evaluating and comparing
how different strategies behave is difficult. Since the goal was to find a universal strategy, many
representative examples had to be considered. Once models and transformations are more com-
plex than the simplest of examples, it becomes challenging to keep track of which changes the
transformations apply to which models.

To address this challenge, the authors developed a model transformation network simulator,
introduced as contribution C5. It allows to construct transformation networks and to define ex-
ecution strategies. A strategy can be applied step-by-step on a network. The simulator gives a
graphical representation of the network’s state and allows users to follow along as the strategy
executes. This is exemplarily shown in the screenshot in Figure 7, which shows an execution step
of the transformation network as depicted in Figure 2. The graphical representation helps to pro-
vide an understanding of how a strategy behaves. One can construct examples for which different
strategies yield different results and thereby find their boundaries.

The simulator uses a simple metamodelling mechanism and change representation. Compared
to full-fledged modelling frameworks, it makes it easier to define models and transformations.
It is not based on a heavyweight framework such as EMF with all its dependencies and even a
specific IDE, but can be used in plain Java-based languages and thus facilitates rapid prototyping
and easy reproducibility. Nevertheless, the simulator supports all features the authors consider
relevant to simulate realistic scenarios: model objects with attributes and references; change-based
transformations; change types for model object addition, deletion, and feature modification; and

Formal Aspects of Computing, Vol. 35, No. 3, Article 15. Publication date: September 2023.



Termination and Expressiveness of Execution Strategies 15:31

traceability links. The simulator is realised as a web application and programmed in Kotlin. It
is available online [Gleitze 2020a] with the source code at GitHub [Gleitze 2020b]. All examples
presented in these papers are also modelled in the simulator and can there be tried out interactively.

The authors used the simulator, for example, to compare different orders for execution strate-
gies regarding their level of incompleteness. The simulator helped to come to the conclusion that
each of them is inferior to others in at least one situation, as discussed in Section 5. The simu-
lator’s benefit is that it enables researchers and developers to produce comparable, reproducible,
and comprehensible realisations of different strategies with low effort. It is, thus, supposed to help
moving general research on transformation network execution strategies forward. Any contribu-
tions to the simulator, be it models, transformations, strategies, or technical improvements, are
most welcome.

8 CONCLUSION AND FUTURE WORK

Transformations can be used to keep multiple models describing a single software system con-
sistent. Developing them independently and reusing them across different projects requires the
possibility to dynamically compose them to a network. A universal execution strategy then needs
to decide in which order these transformations have to be executed to restore consistency of all
models according to every transformation.

In this article, we have discussed influencing factors for designing such a universal execution
strategy for model transformation networks. It involves determining an order to execute the trans-
formations in and a bound for the number of executions. We have proven that every universal
execution strategy that guarantees termination needs to be incomplete, i.e., it will possibly fail for
certain cases in which an execution order of transformations that yields a consistent solution ex-
ists. We have argued that providing traceability in cases where an execution strategy fails should
be a central design goal. As a result, we have proposed the tracing strategy, which is proven correct
and terminates for every input. Additionally, we have shown that this strategy has a well-defined
bound for the number of transformation executions to ensure a reasonable level of incompleteness
and that it actually improves traceability of failures in case the strategy does not yield consistent
models. Finally, we have presented a simulator for transformation networks, which is publicly
available and can be used to recapitulate the scenarios presented in this article but also to evaluate
further execution strategies at different scenarios.

Our findings on execution bounds and the behaviour of the proposed execution strategy have
been provided in a formalised way to prove the insights and expected properties of the strategy.
In consequence, this article provides fundamental knowledge about the design space and relevant
design goals of transformation network execution strategies. While the statements on correctness
and well-definedness are proven, those on the usefulness of the strategy in terms of improving
traceability were derived by argumentation. By construction, the number of transformations to
consider in case the algorithm fails is restricted by the number of already executed transforma-
tions. In addition, we have provided evidence for improving traceability by deriving from example
scenarios that the execution usually already fails for a subset of the transformations, and then
the expected number of executed transformations when executing the complete network until a
failure occurs is limited by the size of this subset of transformations.

In future work, the authors want to examine how the strategy can be further optimised: It might,
for example, be improved by backtracking and by selecting the next candidate transformation
more carefully, taking the network topology and nature of the changes into account. Since early
executed transformations will be executed most often, it might be beneficial to start with those
that are most likely not to cause conflicts. Etien et al. present heuristics for identifying such trans-
formations [Etien et al. 2010, 2012], which might prove valuable in this regard. In addition, this
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article only discussed networks of binary transformations. The presented execution strategy, how-
ever, does not rely on the transformations being binary and may work just as well for networks
with multiary transformations. Future research could investigate whether there are relevant dif-
ferences when applying the execution strategy to networks of multiary transformations. Finally,
the tracing strategy is proven successful as long as the transformations fulfil the definition of be-
ing N -converging, which is a sensible notion for the allowed interaction of transformations. This
property can, however, neither be easily guaranteed nor analysed. We have argued why this is still
a reasonable property, but a property that can at least be analysed at design time to avoid failures
during execution would be interesting for theoretic considerations, even if it impractically restricts
expressiveness of transformations.

The authors also plan to provide further evidence of practical applicability of the proposed
strategy in terms of the usefulness of its provided properties in a controlled experiment. In such
an experiment, the strategy is compared to others by letting different groups of developers apply
them to multiple scenarios and investigating their required effort to identify the cause of failures.
Beyond applicability, the authors plan to evaluate performance of the strategy, in particular by
showing that the worst-case performance in O(2m) is actually not a practical problem. To this end,
they implement the strategy in the Vitruvius framework [Klare et al. 2021] for consistent system
development, in which transformations are currently orchestrated by a simple depth-first selection
strategy. Additionally, they plan to provide an extension of the established benchmark framework
for bidirectional transformations BenchmarX [Anjorin et al. 2020] to the multi-model case for both
the validation of the strategy proposed in this article as well as the possibility to compare different
transformation approaches and different execution strategies based on a common benchmark.

VERIFIABILITY

We provide the artefacts of the transformation network simulator (see Section 7), namely, the
sources and a generated ready-to-use web application, in a dedicated reproduction package [Klare
and Gleitze 2022]. In this simulator, the tracing strategy presented in this article as well as other
execution strategies for comparison are implemented and can be executed on different example
scenarios, containing the one based on UML, Java, and OpenAPI that we have depicted in Figure 2.
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