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Abstract
Analyzing and modeling the constitutive behavior of materials is a core area in materials sciences and a prerequisite for con-
ducting numerical simulations in which the material behavior plays a central role. Constitutive models have been developed 
since the beginning of the 19th century and are still under constant development. Besides physics-motivated and phenom-
enological models, during the last decades, the field of constitutive modeling was enriched by the development of machine 
learning-based constitutive models, especially by using neural networks. The latter is the focus of the present review paper, 
which aims to give an overview of neural networks-based constitutive models from a methodical perspective. The review 
summarizes and compares numerous conceptually different neural networks-based approaches for constitutive modeling 
including neural networks used as universal function approximators, advanced neural network models and neural network 
approaches with integrated physical knowledge. The upcoming of these methods is in-turn closely related to advances in 
the area of computer sciences, what further adds a chronological aspect to this review. We conclude the review paper with 
important challenges in the field of learning constitutive relations that need to be tackled in the near future.

1 � Introduction and Background

1.1 � Motivation

In continuum mechanics, we distinguish between universal 
relations (e.g. balance laws) and constitutive relations that 
describe the behavior of a specific class of materials. Using 
the theory of materials (see for example [1]), useful princi-
ples can be formulated that form the basis for development 
of these constitutive relations. Within this framework, con-
stitutive models are developed based on phenomenological 
observations and/or physical knowledge, often related to 

physically motivated state variables like dislocation density 
in metallic materials. In addition, constitutive relations can 
be formulated in accordance to the second law of thermo-
dynamics which enforces thermodynamically consistent 
models. Independent of the modeling approach, material 
models contain material dependent parameters, which are 
to be calibrated using experiments, potentially accompanied 
by numerical simulations like virtual testing techniques [2]. 
Typically, the advantage of physically motivated models are 
the reduced number of material dependent parameters that 
need to be determined from experiments.

Over the past few decades, a new approach based on 
supervised machine learning techniques for modeling non-
linear material behavior has emerged, specifically using neu-
ral networks. In general, compared to complex physics-based 
models, machine learning-based models can be executed in 
near real time, which enables extensive accelerated numeri-
cal simulations. This in-turn can lead to a breakthrough in 
engineering, as it allows for more accurate and detailed 
numerical simulations on component and process level. Neu-
ral networks-based approaches offer a significant advantage 
over other supervised learning models by virtue of their abil-
ity to represent any continuous functional relation [3, 4] and 
thus model arbitrary complex material behavior. However, 
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the large number of parameters that need to be calibrated 
during the neural network training is a shortcoming.

Besides constitutive modeling, the potential of using 
machine learning models is actively being investigated 
across multiple fields of computational material science. 
Among others, these methods are used in computational 
design of materials [5–9], in design of processes [10–12], 
in development of digital twins [13] and soft sensors [14], 
and in multi-scale simulations and homogenization schemes. 
Numerical prediction in these applications often involve 
frequent execution of simulations with variations of model 
parameters [15]. The central limiting factors of classical 
modeling approach are the complexity of constitutive mod-
els and computational performance of the underlying simu-
lations. In order to improve the computational performance, 
surrogate models (i.e. learned simulations or constitutive 
models) can be set up on various levels.

Surrogate neural networks are often proposed at struc-
tural/component level [16–19], at continuum level across 
multiple length scales [15] to replace conventional consti-
tutive models, or at atomic and molecular level [20]. As 
opposed to structural surrogates, learned constitutive mod-
els, once trained, are in principle applicable across different 
structures. Methods to train such constitutive neural network 
models are proposed by various authors. We outline and 
classify these training approaches in Sect. 1.2.

The idea of using neural networks to learn constitutive 
relations dates back to the pioneering work of Ghaboussi 
et al. [21] in the early 90s. A first short but general review 
summarizing the use of neural networks in computational 
mechanics, including constitutive modeling, was published 
in 1996 by Yagawa and Okuda [22]. Due to the recent 
heightened interest in this research field, a variety of review 
and survey papers have been published. Notably reviews 
focusing on the use of machine learning methods for materi-
als discovery and design [23, 24], for engineering of materi-
als, processes, and structures [25], for multi-scale modeling 
[26] and for meta materials design [27] have been presented. 
A broad review on the application of machine learning meth-
ods in continuum mechanics has been put forth by Bock 
et al. [28]. Pertaining to constitutive models, reviews focused 
on specific material classes like composites [29], soils [30], 
alloys [31], and sheet metals specific to forming processes 
[32].

This contribution, on the contrary, is a general charac-
terization and classification of neural network methods 
for learning constitutive behavior. This review also has a 
chronological aspect, as the development of these methods 
evolved with advancements in the field of machine learning, 
such as the development of convolutional neural networks 
(CNNs) and recurrent neural networks (RNNs), see [33] for 
both, as well as physics-informed neural networks (PINNs), 
see [34] (although such approaches have already been 

proposed in the late 90s, for example in [35]). The purpose 
of PINNs in [34] however, is basically to solve differential 
equations on a domain for given boundary values, which is 
primarily not directly transferable for learning constitutive 
relations. However, the combination of the physics-informed 
part of PINNs (which can be understood as an encoding of 
a physical law described by a differential equation) and the 
neural network part (which predicts the quantities of interest 
being fully differentiable with respect to all input variables 
by using automatic differentiation [36]), can be adjusted and 
leveraged for learning constitutive relations.

The field of research on the application of machine learn-
ing to constitutive modeling is very active and constantly 
expanding. This is reflected in the increase of annually 
published papers as shown in Fig. 1. As novel papers are 
published almost on a weekly basis, we limit this review 
to works that have been published before 2022 with a few 
important contributions from 2022. From the methodic 
viewpoint, we focus solely on approaches that utilize neural 
networks for learning constitutive relations. Methods beyond 
our scope are structure-level surrogates [37–40], data-driven 
solvers [41–45], constitutive model free approaches [46–48], 
and constitutive modeling using symbolic machine learning 
[49], random forests [50] and spline interpolation [51–53] 
methods.

1.2 � Classification of Neural Networks‑Based 
Constitutive Modeling Approaches

The numerous neural networks-based constitutive modeling 
approaches proposed in literature can be distributed along 

Fig. 1   Number of annual publications (articles, preprints, chapters or 
proceedings) that contain the combination of the following keywords 
within the title or the abstract: constitutive and machine learning, 
constitutive and neural network, material model and neural network, 
material model and machine learning. The data is gathered from app.​
dimen​sions.​ai

http://app.dimensions.ai
http://app.dimensions.ai
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an axis, as depicted in Fig. 2, from purely physics-based 
to universal function approximation models. The classi-
cal feedforward neural networks (FFNNs) is placed at one 
extremum of the spectrum. FFNNs can be used to learn con-
stitutive models purely from data without any knowledge of 
the underlying physical relations. Using the universal func-
tion approximation theorem [3, 4], it has been shown that, 
given a sufficient amount of model parameters, FFNNs can 
in principle be parameterized to represent any continuous 
functional relation. In this regard, neural networks can be 
used to learn functional relations that typically originate 
from material model formulations. However, the need for a 
large set of labeled data and the lack of interpretability are 
few of the drawbacks of FFNNs in its basic form. Other 
types of neural networks fill the gap between the purely data-
driven neural network models and the conventional physical 
constitutive modeling approaches. As depicted in Fig. 2, we 
associate five general characteristics to the methods with in 
the spectrum. 

1.	 The basic requirement for building a physical constitu-
tive model is sufficient domain knowledge, more specifi-
cally, physical knowledge about the material behavior.

2.	 In contrast, for a data-driven modeling approach there is 
a need for data, covering the full spectrum of the mate-
rial behavior.

3.	 While, due to imperfections and simplifying assump-
tions, physical models are usually biased, trained 
FFNNs, under the assumption of sufficient data and 
enough model capacity, are unbiased. A universal esti-
mation of the true material behavior is possible.

4.	 Purely data-driven models learn by minimizing the dif-
ference between predictions and ground-truth data and 

usually have no incentive to extrapolate beyond the 
ground truth. Combined with the non-linearity of such 
models, this typically leads to a highly non-linear model 
behavior outside of the training region. The incorpora-
tion of physical knowledge can be used to constrain the 
model and thereby improves model robustness, espe-
cially when extrapolating.

5.	 Another important aspect is the interpretability of the 
model. Machine learning models for universal approxi-
mation of any non-trivial function involve a large set of 
parameters with no physical meaning and complicated 
influence on the approximations. Such models have to 
be seen as black boxes. Physical models, on the other 
hand, are characterized by the fact that the parameters 
and their impact are well-defined.

There are advanced techniques available in neural networks-
based constitutive modeling that surpass the use of simple 
FFNNs. In the following, we distinguish between two classes 
of approaches that incorporate domain knowledge into the 
neural networks to improve data efficiency, explainability, 
and extrapolation capabilities of the learned constitutive 
model. The first class of approach is based on the use of 
certain pre-structured layers and advanced neural network 
architectures to integrate knowledge about the temporal or 
geometric structure of the problem and data at hand. This 
includes the use of recurrent and time-convolutional neural 
network models to incorporate knowledge about the tempo-
ral structure within the data and the use of graph convolution 
and euclidean convolution to incorporate knowledge about 
spatial dependencies in the data. The second class includes 
methods to directly incorporate physical knowledge into the 
neural network in the form of differentiable layers that avoid 
violating physics constraints and thereby enable extrapola-
tion in certain limits.

Based on the application mode of neural networks-based 
constitutive modeling, two distinct use cases of learning con-
stitutive relations with neural networks can be categorized, 
as illustrated in Fig. 3. These are: 

(1)	 Direct learning is attributed to neural networks, which 
are trained directly on stress–strain data. Direct learn-
ing can be subdivided further into learning from experi-
mental data and learning from synthetic data (constitu-
tive surrogate modeling): 

(a)	 Direct learning from global experimental stress–
strain data offers means to establish unidentified 
constitutive relations directly from the data. This 
approach is particularly valuable when insufficient 
knowledge about the specific material is available 
or when purely physical constitutive models are 
challenging to acquire. This approach has a long 

Fig. 2   Methodical spectrum of named constitutive modeling 
approaches and an outline of the central trade off of these models
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standing tradition and has been widely investi-
gated since the early 90s [21]. However, a crucial 
prerequisite for direct learning is the availability 
of an adequate quantity of stress–strain data, com-
monly acquired from simple mechanical tests that 
yield one data sample per test run. In addition, 
these tests often assume stress–strain uniform-
ity along a single direction, thereby limiting the 
data generation to one-dimensional measurements 
[54].

(b)	 Learning constitutive surrogates is based on data 
sampled from reference classical constitutive 
models and aims to replace them to facilitate real 
time computations. Both direct learning from 
global experimental data and the learning of con-
stitutive surrogates can be methodically catego-
rized as standard supervised regression problems. 
However, the underlying motivation for these sce-
narios differ in that the former seeks to establish 
a constitutive relation, while the latter aims to 
replace a pre-existing, a priori given model in a 
computationally efficient framework. In addition, 
a neural network is classified as a constitutive sur-
rogate if it is a function of a history variable that 
can be obtained only using a classical constitutive 

relation, and not from experiments. Although this 
method’s ability to uncover novel material mecha-
nisms is constrained by the physics-based model 
used to generate the training data at a particular 
length scale. Utilizing this approach effectively to 
bridge multiple length scales holds the potential 
to discover mechanisms at a higher scale.

(2)	 To leverage the rich local constitutive information from 
structural tests, indirect learning utilizes numerical 
simulations in conjunction with experimental obser-
vation to train the constitutive neural network, in often 
an incremental manner. To facilitate the learning pro-
cess, an error measure is established by comparing 
simulation results with experimental data. Gathering 
experimental data is, however, challenging and time-
consuming, leading to a prevalent reliance on simula-
tions alone as proof-of-concept in literature.

1.3 � Paper Structure

The paper is structured as follows. In the remainder of this 
section we give a brief overview of machine learning and 
materials modeling background, which is assumed in the 
following sections. In Sects. 2 to 5, we introduce and discuss 

Fig. 3   Applications of neural networks in constitutive modeling: (1) direct learning of constitutive neural networks based on a experimental 
stress–strain data and b a priori constitutive models, (2) indirect learning of constitutive neural networks in an iterative training scheme
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the reviewed work. Wherein, we categorized the work 
according to the methodical spectrum from Fig. 2, where 
applications of classical FFNNs (category universal function 
approximation in Fig. 2) are reviewed in Sect. 2. In Sects. 3 
and 4, we discuss works that use advanced machine learn-
ing techniques that consider load history information and 
spatial information respectively. In Sect. 5, we review work 
on physics-informed neural networks. Finally, in Sect. 6, we 
give a summary, briefly discuss the current state of the field 
and give an outlook.

1.4 � Aspects of Machine Learning and Data Science

In the following, we briefly describe the types of neural 
networks and dimensionality reduction techniques that are 
most important to methodically contextualize the literature 
reviewed throughout this paper. We refer to [33] for a more 
comprehensive and in-depth overview of the field of deep 
learning.

1.4.1 � Neural Networks‑Based Function Approximation

In this Section, we give an overview of basic neural network 
types used for constitutive modeling in the reviewed publi-
cations, including FFNNs, RNNs and CNNs. The outlined 
neural network types are depicted in Fig. 4. FFNNs are gen-
eral mappings

with model parameters � , which can be trained for non-linear 
approximation of typically real-valued functions

with x ∈ ℝ
m and y, ŷ ∈ ℝ

n . Gradient-based methods and the 
backpropagation algorithms are used to fit the parameters 
� ∈ ℝ

l from sample data to approximate f.
An FFNN consists of several consecutive neural layers

(1)ŷ = f̃ (x, 𝜃)

(2)y = f (x),

(3)ȳ = f̃ (i)(x̄, 𝜃i)

Fig. 4   Basic architectures 
for the neural network types 
discussed throughout the paper. 
a While the connections in 
FFNNs form an acyclic graph, b 
RNNs contain cyclic connec-
tions (depicted in blue color), 
which cause the output of the 
respective neurons affecting the 
subsequent input of the same 
neurons. c CNNs are designed 
to process structured data, like 
images, time series or graphs
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with parameters �i . The information flow is directed from the 
input layer f̃ (0)(x, 𝜃0) through the hidden layers to the output 
layer f̃ (I) . The FFNN can then be seen as a nested function

with 𝜃i ⊂ 𝜃 for i ∈ [0, ..., I] . In the case of FFNNs, each layer 
f (i) consists of a set of processing units, so-called neurons, 
with a subset of �i as parameters. The amount of neurons 
per layer is referred to as the width of the layer, while the 
amount I of layers in a neural network is referred to as its 
depth. The training of neural networks is typically conducted 
by mini-batch-wise application of a gradient descent-based 
algorithm [55].

While FFNNs are generally applicable, more advanced 
neural network models take advantage of the data struc-
ture at hand to improve accuracy and data efficiency. Three 
important classes of such structured data are sequential data, 
image data, and graph data. Pertaining to sequential input 
data (like for predicting nonlinear microstructure evolution 
[56]), which is often present in materials modeling as the 
material behavior is typically history-dependent, recurrent 
or time-convolution neural networks can be used. RNNs [57, 
58] have special feedback connections, which makes them 
differ from the hierarchical structure of an FFNN. While 
the input layer of an RNN takes data from the current time-
step, the recurrent connections enable information flow in 
between the time steps, and thereby the current output ŷt 
depends not only on the current input xt , but also on all 
previous inputs xt−i for i ∈ [0, t].

For long sequences, these dependencies often lead to 
problems with the flow of the gradients through the model. 
During backpropagation, the gradients flow from the output 
neurons, where the loss is calculated based on ŷt , through 
the unfolded recurrent connections to the input neurons. For 
longer sequences, this chain of calculations gets bigger and 
the gradients tend to vanish (tend to zero) or to explode (tend 
to infinity). While in the first case, the network cannot learn 
long-term dependencies, in the second case, the learning 
stability is often diminished. Due to this problem, initially 
proposed RNNs are considered impractical for complex 
tasks involving sequential data. The long short-term memory 
network (LSTM) [59] is an attempt to solve the vanishing 
gradient problem based on learned input and output gates, 
which guard the flow of information. The gated recurrent 
unit (GRU) [60] is a simplified LSTM variant with a reduced 
amount of parameters. Both, GRUs and LSTMs, have been 
shown to often perform better than conventional RNNs in 
the case of small datasets, while there is no clear superiority 
of GRUs and LSTMs over the other [61].

Another important type of deep neural network model 
is the CNN [62, 63]. In addition to the conventional fully 
connected layers, CNN models are composed of a range of 

(4)f̃ (x, 𝜃) = f̃ (I)(f̃ (I−1)...(f̃ (0)(x, 𝜃0)))

specialized layers, with the convolutional layers being the 
most significant among them. In these layers, convolution 
kernels with trainable weight parameters efficiently learn 
abstractions and features of the structured input. Especially 
in the area of computer vision, CNNs led to radical pro-
gress in terms of accuracy and sample efficiency. In materi-
als modeling, CNN models are often used in the context 
of multi-scale modeling, where image or graph data on the 
crystallographic scale are to be processed. Besides images, 
which are processed by two-dimensional convolution opera-
tions, one-dimensional convolution layers can be applied to 
sequential data [64, 65]. Graph convolution, as a generaliza-
tion of the classical convolution, enables the application of 
convolutional layers on data that have no regular (Euclidean) 
structure but are instead structured in a more general form of 
a graph, see [66] for an example in materials science.

1.4.2 � Dimensionality Reduction, Representations 
and Symmetries

When working with results from experiments and simula-
tions, often a huge amount of data is extracted, in which the 
relevant information is covered by a large amount of highly 
intercorrelating features. Moreover, material data, for exam-
ple crystallographic texture data, often hold certain symme-
tries. In the following, we give a brief overview of methods 
to deal with these characteristics of data and to reduce the 
data dimensionality.

Dimensionality reduction techniques aim to embed high-
dimensional data into a lower-dimensional embedding 
space, which is easier to process and interpret while preserv-
ing as much information as possible. The most prominent 
dimensionality reduction method is the principal compo-
nent analysis (PCA), which projects the data linearly into a 
new coordinate system of lower dimension while preserving 
most of the variation within the data. In contrast, non-linear 
dimensionality reduction such as manifold learning methods 
(e.g. Isomap [67], multidimensional scaling [68] or local 
linear embedding [69]) are based on the assumption that 
the dimensionality of datasets is artificially inflated. There-
fore, the data is extracted from a low dimensional manifold 
that is integrated within the high dimensional space of the 
dataset [70].

A prominent approach to reduce the dimensionality of 
a dataset nowadays is to use so-called autoencoder neural 
networks [71]. This method has already shown to be use-
ful for compressing microstructure information, see [8, 72]. 
Such networks consist of an encoder and a decoder part. The 
encoder in-turn consists of fully connected layers only or a 
combination of convolutional layers with pooling and fully 
connected layers, depending on the input representation. 
In both cases, the output of each layer is usually of lower 
dimension than the input, and the aim of the encoder is to 
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embed the data in a low-dimensional latent feature space, 
which is represented by a neural network layer, called the 
bottleneck layer. The decoder part consists again of fully 
connected layers, which can be combined with deconvolu-
tional layers and map the bottleneck layer to the network’s 
output layer, which is of the same dimension as the encoder 
input. The encoder and decoder parts are trained simultane-
ously, by a loss that punishes the dissimilarity of the encoder 
input and the decoder output and thereby drives the autoen-
coder to encode as much of the data information as possible 
into the low dimensional bottleneck layer.

As in other domains, such as image processing, data in 
material sciences often holds symmetries. Mathematical 
operations on the data are often equivariant or invariant with 
respect to certain transformations. The efficiency of machine 
learning methods often relies on how these invariances and 
equivariances are dealt with. The success of CNNs on image 
data, for example, depends on the consideration of shift-
invariance or equivariance by the application of a sliding 
convolution kernel, where the convolution parameters are 
learned independently of the location of the kernel. Recent 
research on deep learning through the lens of geometric 
symmetries can be found in the very active field of geomet-
ric deep learning [73]. Another approach to consider the 
assumed symmetries within the data is the augmentation 
of training data, e.g. by duplicating samples and manually 
manipulating the input, which is state-of-the-art in machine 
learning.

1.5 � Aspects of Materials Modeling

For a prolonged period, materials science has been domi-
nated by empirical, model-based theoretical, and computa-
tional research. However, in the last two decades, it has been 
extended to incorporate (big) data-driven science [74]. For 
now, material models have been developed mainly based on 
empirical investigations and theories derived from physics 
relations. In the second half of the last century, the field of 
computational mechanics evolved, which enabled model-
based evaluations for example by conducting simulations 
on different length scales, [75].

On a continuum scale, following the theory of continuum 
mechanics and thermodynamics, universal balance equa-
tions exist (the balance of mass, linear momentum, angular 
momentum, energy, and entropy), which form the basis to 
calculate unknown mechanical field quantities (for motion, 
temperature, etc.). However, for solving mechanical prob-
lems, these equations are underdetermined. To determine 
all unknowns, material-related constitutive relations (e.g. 
stress–strain relationships) are needed. These constitutive 
relations are not universal and have to be formulated depend-
ing on the material at hand and its individual deformation 

behavior (see for example [76] for an introduction to mate-
rial behavior and deformation mechanisms).

In classic continuum mechanics, different theories of 
materials behavior have been developed that describe elastic 
and viscous fluids as well as elastic, visco-elastic, plastic and 
visco-plastic solids, see [1]. A fundamental characteristic of 
elastic material behavior is that the stress state depends only 
on the actual deformation state. Inelastic material behavior, 
in contrast, depends on the entire deformation history. In 
such material models, the deformation history is typically 
represented by internal variables, such as the accumulated 
plastic strain.

For developing constitutive models, several approaches 
exist. Driven by experimental investigations, phenomeno-
logical material models describe phenomenons observed in 
experiments, such as the Hall–Petch relation describing the 
grain size dependent plastic yielding [77], the Armstrong-
Frederick model describing the Bauschinger effect in plas-
ticity, and rheological models describing linear visco-elastic 
material behavior on the macroscopic scale [1].

Material models on different length scales can also be 
formulated in the framework of thermodynamics principles. 
In such models, the modeling perspective focuses on energy 
storage and release, as well as dissipation effects. Therefore, 
thermodynamic potentials must be introduced based on the 
physical understanding of the underlying mechanisms and 
experimental observations. In addition, dissipation phenom-
ena are often addressed by using internal variables theory. If 
the second law of thermodynamics is fulfilled, the model is 
called thermodynamically consistent. Basic approaches for 
developing thermodynamically consistent material models 
can be found in [1].

As an alternative to formulating macroscopic material 
models from scratch and calibrating them to experimental 
measurements, the material microstructure and its behav-
ior can be modeled directly in a so-called representative 
volume element (RVE). By using this technique, the initial 
boundary value problem for representing the microstructural 
behavior is typically solved numerically. By virtual testing 
procedures, the deformation behavior can be analyzed on 
the basis of the Finite Element Method (FEM) [78] or fast 
Fourier transform (FFT) [79]. The advantage of using RVEs 
is that arbitrary load cases can be applied, which are often 
hard to apply in real experiments, [80–82]. The approach 
to calibrate macroscopic material models to RVE data can 
be called virtual laboratory [2]. The virtual laboratory can 
also be used to model scale transitions in whole process 
chains, as is shown in [83] on the example of dual-phase 
steel production.

Furthermore, RVE-based models can be used directly in 
Finite Element (FE) component simulations, which is typi-
cally called FE2 [84, 85]. FE2 corresponds to the case where 
on both scales, the micro and the macro-scale, coupled FE 
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simulations are performed to include the microstructural 
behavior in the simulated component. This in-turn allows 
for microstructure-driven design and optimization of manu-
facturing processes and components, [86]. However, FE2 is 
usually too time-consuming for the use in engineering. To 
overcome this issue, machine learning techniques can be 
applied, as will be presented in the following sections of 
this review. Instead of using FEM to determine the stress 
response of an RVE under external load, for example, super-
vised learning can be used to learn the stress responses for 
given deformation paths [87]. The learned model forms 
an RVE surrogate model acting on the macroscopic scale, 
which is, in contrast to phenomenological models, sensitive 
to the underlying microstructure.

2 � Universal Function Approximators: Fully 
Connected Neural Networks for Learning 
Constitutive Relations

In this section, we discuss work that uses fully connected 
neural networks to learn constitutive models, so-called con-
stitutive neural networks (also called neural constitutive 
laws [88] or neural network constitutive models [89]. The 
section is structured into two subsections according to the 
application cases mentioned in Sect. 1.2. The use of FFNNs 
to directly learn the constitutive behavior of materials from 
global experimental stress–strain data as well as from syn-
thetic simulation data is presented in Sect. 2.1, and work on 
indirect training schemes with the goal to learn constitutive 
neural networks from structural experiments is introduced 
in Sect. 2.2. The presented approaches are discussed briefly 
in Sect. 2.3.

2.1 � Direct Learning

Ghaboussi et al. proposed the use of FFNNs for constitutive 
modeling in a series of early works [21, 90]. In [21], the 
application of FFNNs on experimental data of concrete is 
proposed. The experimental datasets of biaxial monotonic 
loading from [92] and uniaxial cyclic loading from [93] is 
used for training and evaluation of FFNNs. For the mono-
tonic biaxial loading case, both, stress-controlled and strain-
controlled models, are put forth. In case of stress-controlled 
models, the neural network predicts the strain increment Δ� 
based on stress–strain states �(t−i), �(t−i) sampled from previ-
ous time steps and the current stress increment Δ�:

In strain-controlled models, increments of strain are pro-
vided as inputs and increments of stresses are obtained as 
outputs, given by the relation

(5)(Δ�1,Δ�2) = f (�1, �2, �1, �2,Δ�1,Δ�2, ��).

where �� and �� are the neural network parameters. The 
strain-controlled model has the advantage of being directly 
usable in FE simulations. For uniaxial cyclic loading, a two-
layer constitutive neural network which takes in two previ-
ous points on the stress–strain curve, in addition to the cur-
rent point is proposed. The history of the stress–strain curve 
is important to capture the cyclic behavior. In the results, the 
authors show the ability of the neural networks to generalize 
to unseen proportional and non proportional stress paths for 
monotonic loading, but it falls short for unseen low stress 
cyclic loading path.

As a methodic extension to previous work, Ghaboussi 
et al. [90] proposed the nested adaptive neural network 
(NANN). The NANN is an FFNN, with a special struc-
ture of successively learned nested stages. The NANN, as 
depicted in Fig. 5a, consists of a base module, which cor-
responds to a strain-controlled constitutive FFNN

The basis module is extended by gradually trained additional 
modules

of path-dependent deformation data for discrete time steps 
(t − i) to form higher level NANNs, where � are the associ-
ated neural network parameters. The method is tested on 
experimental data of triaxial compression tests of sand, for 
which the authors show how the prediction quality increases 
depending on the NANN level. Although the proposed archi-
tecture enables training constitutive neural networks from 
data describing variable length paths, the model complexity 
(i.e. the number of trainable parameters) grows linearly with 
the maximum level of the NANN and the method is there-
fore limited to short stress–strain paths. Due to the variable 
length input, the proposed method can be seen as a precur-
sor of the later proposed applications of RNNs, which are 
discussed in Sect. 3. 

Unlike in [21] and [90], where the internal material 
state is assumed to be captured sufficiently by discrete 
samples from the deformation history, Furukawa et al. [91] 
proposed to represent the material state in a state space 
model and to train a so-called implicit constitutive neural 
networks. Inspired by control theory, the implicit consti-
tutive neural network acts as a surrogate of a dynamical 
system

Where, for visco-plastic material models, Furukawa et al. 
defines the state

(6)(Δ�1,Δ�2) = f (�1, �2, �1, �2,Δ�1,Δ�2, ��),

(7)Δ�(t) = f (Δ�(t), �(t), �(t), �).

(8)Δ�(t) = f (�(t−i), �(t−i), �)

(9)ẋ = f (x, u).
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as a combination of the visco-plastic strain �vp and inter-
nal variables � , such as the back stress and drag stress. The 
stress plays the role of the control input u . As shown in 
Fig. 5b, the neural network models the influence of stress 
on the internal variables and strain rate, while the stress 
for the next time step is derived analytically. The proposed 
framework is instantiated for visco-plasticity and tested on 
pseudo-experimental uniaxial cyclic-loading data, which 
are sampled from the Chaboche’s constitutive model [94], 
and on experimental data of steel on elevated temperature 
under the assumption of fixed strain rates and known elastic 
responses. Although comparable results of the implicit con-
stitutive neural network to that of 1D Chaboche’s constitu-
tive model have been shown, its validity is not proven for a 
higher dimensional case, and for non proportional complex 
stress states.

Further, Lefik and Schrefler [95] proposed history-
dependent constitutive neural networks to model material 
behavior of super-conducting fibers under biaxial loading 

(10)x = (�vp, �)

with hysteresis. Several points on obtained stress–strain 
curves are used to describe the material state. For training, 
data from numerical simulations are used, for which a rota-
tion data augmentation technique is applied to cover invari-
ances within the data and to preserve objectivity of the con-
stitutive model. The rotation operation is performed without 
additional constraints in the cross section of the fiber, where 
the material model behaves isotropic. Therefore, common 
rotation matrices R were applied to the relevant quantities, 
like for example to the stress tensor

The elasto-plastic constitutive neural network is applied to 
reproduce the behavior simulated in one dimension, as well 
as the homogenized behavior of super-conducting fibers 
from a two-dimensional simulation. The former results are 
compared to experimental results.

Al-Haik et al. [96] proposed the use of FFNNs to predict 
the relaxation of polymeric matrix composites depending on 
constant strain and temperature conditions. The model maps 
from strain, temperature, and process time to the relaxation 
stress and is trained on data from stress relaxation tests of 
a carbon fiber epoxy composite. The authors highlight that 
their model is in general more accurate than an explicit con-
ventional visco-elastic model, in particular for temperatures 
near the glass transition temperature.

In more recent work, FFNNs are applied to learn from 
direct stress–strain data from various metallic materials 
[97, 98] and polypropylene [99]. By Gorji et al. [97], FFNN 
models are learned on pseudo-experimental data of sheet 
metal generated by using (a) the Zerilli-Armstrong model 
for temperature and strain rate-dependent hardening and (b) 
a J2 plasticity model used to simulate biaxial monotonic 
loading. The results show a good agreement of the FFNN 
response with responses of the J2 model for uniaxial notched 
tensile tests. Furthermore, Jordan et al. [99] used FFNNs 
with Bayesian regularization [100] to model the temperature 
and strain rate-dependent behavior of polypropylene based 
on experimental uniaxial loading data with varying tempera-
ture and strain rates. The FFNN learns the mapping from the 
viscous strain, viscous strain rate, and temperature to true 
stress. The comparison with a state-of-the-art conventional 
thermo-elastic visco-plastic model, which is calibrated to the 
experimental data, reveals a predominance of the FFNN in 
terms of accuracy and computational performance.

Also, for the direct learning setting, du Bos et al. [98] 
proposed and evaluated an alternative procedure, in which 
neural networks are trained to map from strain paths to cor-
responding stresses. The estimated stress paths are interpo-
lated afterwards to reconstruct the stress–strain curve. In 
difference to the majority of the methods referenced above, 
which perform predictions of the material behavior at each 

(11)�rot = R⊤
�R, with R⊤R = 1.

Fig. 5   Early approaches to constitutive neural networks. a The nested 
adaptive neural network architecture introduced in [90] Copyright© 
1998, Elsevier. b Embedding graph of the implicit constitutive neural 
network introduced in [91] Copyright© 1998, John Wiley and Sons
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time step based on current and previous conditions, the pro-
posed model aims to predict the global stress–strain rela-
tion for a given strain path in one pass. To reach a good 
model performance with a reduced input and output space, 
the sampling technique is optimized by minimizing the 
interpolation error. The method is evaluated on strain paths 
from reverse loading cases applied to isotropic and rate-
independent elasto-plastic solids, for which it is shown to 
reach an acceptable prediction quality in the low data regime 
(in particular, 100 samples were used). Model training and 
evaluation was carried out on pseudo-experimental data.

When it comes to metallic materials, neural networks 
were used quite early for directly learning the hardening 
model from experimental high-temperature deformation 
data. In hot forming processes, many interrelated and non-
linear hardening and softening phenomena such as work 
hardening, dynamic recovery, and recrystallization deter-
mine the constitutive flow behavior. The underlying mecha-
nisms are significantly affected by temperature and strain 
rate. In this situation, conventional models with empirically 
fitted constants are often inaccurate or the applicable tem-
perature and strain rate range is very limited [102, 103]. 
The parameters that define thermomechanical treatment also 
play a significant role for the microstructure and mechanical 
features of the hot formed product [104]. Therefore, accurate 
hardening models are an important requirement for process 
optimization and process analysis [105–107]. In several 
works, neural networks are proposed as black box models 
for modeling the flow behavior of various types of steels 
[101–103, 106, 108–112], aluminium alloys [113–116], tita-
nium alloys [107, 117], magnesium alloys [104] and pure 
aluminium [105].

Already in the mid 90s, Rao and Prasad [101] trained a 
constitutive neural network on experimental data of medium 
carbon steel deformations under a variation of constant strain 
rates and temperatures. As depicted in Fig. 6, the neural net-
work learns to map directly from the strain and the respec-
tive processing conditions to the flow stress. The model is 
shown to outperform a semi-empirical constitutive model. 
Similarly, Li et al. [107] trained and evaluated a constitutive 
neural network to predict the flow stress of a titanium alloy 
at elevated temperatures based on experimental data. Chun 
et al. [113] also proposed constitutive neural networks to 
predict the flow stress during hot compression and rolling of 
aluminium alloys. Hodgson et al. [108] proposed a constitu-
tive neural network that includes additional input parameters 
such as the work hardening and evaluated it on experimental 
hot torsion data of 304 stainless steel. It is shown that the 
model with additional parameters clearly outperforms both, 
a constitutive neural network without the additional param-
eters and a conventional phenomenological model.

Moreover, Mandal et al. [109] proposed the use of a 
neural network to predict the flow stress of austenitic 

stainless steels from hot compression test data. Unlike the 
above mentioned publications, in [109], the constitutive 
neural network also takes into account the alloy compo-
sition and can thereby be used to optimize the composi-
tion in addition to the hot forming parameters. Data from 
various grades of austenitic stainless steels are used and 
the composition is represented by the normalized amount 
of the most common elements. To be able to generalize 
across the composition, the amount of samples used for 
training and testing lies above 2000, which is about one 
magnitude above the amount of data used for training 
in the above mentioned works dealing with flow stress 
prediction. In addition to a quantitative evaluation of the 
model, a sensitivity analysis of the neural network was 
carried out to estimate the relative importance of the input 
parameters, especially the chemical composition.

Furthermore, Lin et al. [102] trained a neural network 
to predict the constitutive flow behavior of 42CrMo steel 
on data from hot compression tests. Sun et al. [117] also 
trained a constitutive neural network on data of compres-
sion tests but of a titanium alloy. The model predictions 
show good agreement with the experimental data and the 
model is shown to clearly outperform a conventionally 
used hyperbolic sine model. Ji et al. [103] trained a similar 
constitutive neural network on isothermal hot compression 
data of Aermet100 steel. The trained neural network is 
compared with a conventional Arrhenius-type constitutive 
model with strain compensation, which it outperforms in 
terms of accuracy. The measured mean absolute percent-
age error (MAPE, describing the mean over the relative 
regression errors) achieved by the conventional model is 
7.62 while it is 2.58 for the constitutive neural network. At 
this point, however, we want to remark that while MAPE 
is a popular metric in studies of high-temperature defor-
mation neural networks, it is known to be biased when 
used for model comparison as it assigns higher penalties 
to negative errors than to positive errors [118]. Therefore, 
and due to issues with close-to-zero values MAPE is not 

Fig. 6   Early general network structure for flow stress prediction intro-
duced in [101] Copyright© 1995, Elsevier
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commonly used in typical machine learning tasks and 
regression analysis nowadays.

Anyhow, regarding the learning of the behavior of Aer-
met100 steel, in [103], it is shown that, in contrast to a 
trained constitutive neural network, the conventional model 
performance collapses in the instability regimes, where 
the physical mechanisms differ from the ones in the stable 
regime. The constitutive neural network manages to accu-
rately predict the constitutive flow behavior over the whole 
experimental range of temperatures and strain rates. In a 
similar manner, in [110] the constitutive neural network 
approach is compared to a modified Zerilli-Armstrong and 
a strain-compensated Arrhenius-type model on hot compres-
sion experiments of T24 steel. Again, the result of the com-
parative study is that the constitutive neural network outper-
forms the conventional approaches (with a MAPE of 0.45 for 
the constitutive neural network, 2.72 for the Arrhenius-type 
model and 5.22 for the Zerilli-Armstrong model). However, 
it is pointed out that this comes at the cost of interpretability 
and the requirement of high-quality data.

Bobbili et al. [114] trained a constitutive neural network 
to model the flow behavior under a high strain rate of 7017 
aluminum alloy on data from the split Hopkinson pressure 
bar test [119]. In contrast to the majority of the publica-
tions in this section (where compression tests with strain 
rates up to 50 s−1 are considered), in [114], the experimen-
tal data covers strain rates between 1500 s−1 and 4500 s−1 . 
The trained constitutive neural network is compared to a 
Johnson-Cook model [120], and it is shown that the constitu-
tive neural network outperforms the conventional baseline 
(with a MAPE of 2.58 for the constitutive neural network 
and 10.62 for the Johnson-Cook model).

More recent work on hot deformation constitutive neural 
networks include [104–106, 116]. Sani et al. [104] proposed 
a neural networks-based approach for modeling the behavior 
of cast magnesium (Mg-Al-Ca) alloy and compare it with a 
conventional hyperbolic sine-based model on hot compres-
sion experimental results. It is shown that the hyperbolic 
sine functions accurately predict the stress–strain curves for 
cases in the high temperature and low strain regime, but 
are biased for cases with low temperature and high strains, 
where twinning effects play an important role. The trained 
neural network on the other hand is shown to accurately pre-
dict the relationship over the whole strain-temperature range. 
Li et al. [116] compared the neural network approach with 
a phenomenological Arrhenius-type model and a physics-
based model for work hardening and dynamic recovery on 
data from hot compression tests of 6082 aluminum alloy. 
As in the already mentioned comparative studies, the neu-
ral networks-based approach outperforms the conventional 
approaches according to the statistical metrics used, while 
the conventional methods have advantages in terms of model 
interpretability.

Moreover, Rezaei Ashtiani and Shayanpoor [105] pro-
posed to use the initial grain size as an additional feature, 
besides strain, strain rate, and temperature, to predict the 
aluminum flow behavior under hot working conditions. Neu-
ral networks are trained based on data from isothermal hot 
compression tests of AA1070 specimens with varying initial 
grain sizes in the range 50–450 μm. Within the application 
study, the trained neural networks are used to determine 
processing maps and stable process regions depending on 
the initial grain size. While analyzing the relative sensitiv-
ity of the input parameters to the outputs, it is shown that 
temperature and initial grain size are most significant for 
the learned mapping, which is in accordance to well-known 
experimental observations, e.g. the Hall–Petch relation. Of 
course, this outcome mainly confirms that these effects are 
represented by the underlying data. As in [105], Kumar et al. 
[106] trained a neural network model and used it to create 
various processing maps, such as strain rate sensitivity maps, 
for 9CR-1Mo steel. Particularly, flow stress neural networks 
are proposed and compared to a linear interpolation stress 
correction scheme. In the results, the predominance of the 
neural network model is shown.

In general, the approaches to directly learn from global 
experimental stress-strain data heavily rely on idealized lab-
oratory experiments, where deformation is kept homogene-
ous, and loading paths are nearly proportional. However, at 
the component level, deformations are heterogeneous, and 
the stress state and strain path often fall outside the experi-
mental range. While the neural networks demonstrate prom-
ising results and occasionally outperform classical constitu-
tive relations, their applicability beyond the training domain 
remains unproven. This is where the classical constitutive 
relation’s advantage lies, as it can extrapolate predictions 
effectively. It’s worth noting that a trained constitutive neural 
network has rarely been applied to predict at the component 
scale. Including the established constitutive relationship 
would help mitigate this issue, in addition to accelerating 
the current modeling strategies. This however comes at the 
cost of loss of universality of the neural network, as this is 
constrained by the constitutive equations. In the following, 
we review works on learning constitutive surrogates with the 
help of classical constitutive equations.

For building constitutive surrogates, neural networks are 
trained on data sampled from simulation results by using 
a reference constitutive model. The neural network surro-
gate model which is thereby obtained is used to replace the 
reference model in future simulations with the motivation 
to accelerate the simulation. Early works that use FFNNs 
to act as surrogate constitutive models includes [121–123]. 
In recent years, some works propose and discuss FFNNs 
as surrogate constitutive models [6, 124–127]. This revival 
of the usage of neural networks for constitutive modelling 
was, however, initialized by the work of Le et al. in 2015 
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[128]. Therein, an FFNN-based homogenization approach 
was proposed for hyper-elastic materials.

In some of the previously discussed works in indirect 
learning, the integration of constitutive neural networks into 
FE simulations via user-defined material subroutines was 
utilized [129, 130]. Hashash et al. [121] addressed numerical 
implementation issues in this context. Therein, an explicit 
formulation of the material stiffness matrix is proposed, 
which is derived from constitutive neural networks and leads 
to a more efficient convergence behavior of FE simulations 
incorporating constitutive neural networks. However, Yang 
et al. [131] pointed out, among other scenarios, that load-
ing–unloading sequences are not considered in training the 
model proposed in [121].

Jung and Ghaboussi [122] trained a rate-dependent iso-
tropic constitutive FFNN, which maps from strains, stresses, 
and strain rates of the current and previous discrete time step 
and the previous rate of stresses to the current rate of stresses 
to model visco-elastic behavior. The network is trained from 
synthetic creep and relaxation test data, sampled for vari-
ous step sizes, and then evaluated on data from concrete 
beams. It is pointed out that the approach performs well with 
variable time steps, in opposition to previous rate-dependent 
constitutive neural networks (e.g. [91]). Yun et al. [123] pro-
posed the use of various internal material state variables 
in combination with the stress–strain information of the 
last time step as additional neural network inputs to predict 
the cyclic hysteresis behavior of materials. The proposed 
neural network is trained on simulated cyclic loading data 
of concrete and steel parts, implemented into the FE mate-
rial model, and tested on structural simulations. The model 
showed superior prediction performance compared to earlier 
developed neural network constitutive models. The approach 
was evaluated on various uniaxial cyclic experiments and 
it is pointed out that the model showed the capability to 
learn post-limit material behavior, e.g. buckling, tearing, and 
yielding. Though, the influence of varying time step incre-
ments on the neural network prediction is not addressed.

A study on the performance of FFNNs is presented by 
Bessa et al. [6] at the example of learning the material 
behavior of a 2D hyper-elastic composite. Particularly, this 
study investigates both, learning the material behavior on 
the basis of a constant RVE (including a comparison with 
the performance of a Gaussian process model [132]) and 
for varying microstructure features. Moreover, this publica-
tion highlights the importance of the design of experiments, 
the importance of modeling uncertainty and the benefits of 
such machine learning-based surrogate models. In another 
work, Stoffel et al. [124] compared two approaches to predict 
the highly dynamic behavior of shock-wave loaded plates. 
Both approaches involve the use of FFNNs. While in the 
first approach a (structural) FFNN is trained on experimen-
tal data to predict the structural deformation directly, in the 

second approach a constitutive neural network that aims to 
model the visco-plastic behavior is trained on simulation 
data and is implemented into FE code. The proposed con-
stitutive surrogate maps from stress, backstress, and plastic 
strain tensor components to the plastic strain rate and back-
stress rate tensor components and eliminates the need for 
an iterative solution of the constitutive behavior. The direct 
comparison shows that the results of the neural networks-
based constitutive surrogate are much more accurate than 
the results of the structural FFNN and reduce the computa-
tional effort of the FE simulation. In contrast, the effort for 
implementing the structural FFNN is much lower as it can 
be trained on experimental data only, and does not require a 
numerical simulation model.

Huang et al. [125] proposed a combination of the proper 
orthogonal decomposition and per-component constitutive 
neural networks to model hyper-elasticity and plasticity. The 
constitutive neural networks are trained on simulation results 
of 2D and 3D unit cell data with the accumulated absolute 
strain as a history variable to represent the material state. 
In the 3D case, data is sampled from a homogeneous cubic 
specimen under triaxial loading-unloading conditions, where 
the end-point A′ of each loading path is sampled randomly 
from a unit sphere as depicted in Fig. 7a. To highlight the 
generalization abilities of the trained neural networks, the 
models are applied to various 2D and 3D structural FE simu-
lations by using the automatic differentiation and deriva-
tion toolbox AceGen [133] to derive the tangent matrix. As 
shown for a 3D bar necking example in Fig. 7b, the results 
of these simulations are in good overall agreement with 
the results obtained when using the reference constitutive 
model.

Furthermore, Zhang and Mohr [126] proposed a constitu-
tive neural network for von Mises plasticity with isotropic 
hardening. The neural network maps from the current stress 
and plastic work to the elasto-plastic tangent matrix and 
the Young’s modulus without making a priori assumptions 
about the yield surface, flow rule, or hardening law and is 
combined with modified algorithms for uniaxial loading and 
plane stress loading. The approach is shown to be able to 
sufficiently reproduce predictions of a J2 plasticity model, 
including large deformation responses for complicated 
multi-axial loading-unloading paths. However, the transi-
tion between elastic and plastic domain had to be artificially 
smoothed, which can lead to over or underestimation of ini-
tial yield stress. Also, Jang et al. [127] proposed a neural 
networks-based surrogate of a J2 constitutive model, in 
which linear elastic loading and unloading is covered by a 
conventional physics-based model, while a nonlinear plas-
tic correction is covered by the neural network. Due to this 
decoupling, the neural network can be trained efficiently 
based on one-element simulations and can be applied to a 
wide range of simulations. The trained model is verified on 
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single-element simulations and tensile simulations of a dog-
bone structure. Finally, a cup drawing simulation, depicted 
in Fig. 7c, is conducted based on the neural network model.

The usage of FFNNs as surrogates for conventional con-
stitutive models is often accompanied by the need for a high 
amount of data and does not always lead to the aimed accel-
eration of the simulation speed. In their study, Zhang and 
Mohr [126] showed that ten to hundred thousand data points 
have to be sampled for an accurate J2 surrogate model for 
strains up to 20% . In the 3D case described above, Huang 
et. al [125] trained a model on samples from 8100 loading 
paths and emphasized that only loading is considered in the 
3D case since the amount of data that would be needed to 
include unloading is too high. When it comes to simulation 

acceleration, Jang et al. [127] reported a speed increase of 
11% when using the neural network-based constitutive sur-
rogate in comparison to the reference model. In [125], even 
a decrease in computational performance is reported. Stoffel 
et al. [124] reported a halving of the simulation time due to 
the proposed integration scheme. However, in computation-
ally more complex scenarios, such as plasticity calculations 
on the microstructure level of polycrystals, constitutive neu-
ral networks are reported to provide a massive acceleration 
of simulations [134, 135].

On the micro-scale of polycrystalline materials, FFNNs 
are applied in the context of constitutive modeling also. Sal-
menjoki et al. [136] proposed neural networks to learn a 
model of the behavior of micro-scale crystalline structures 

Fig. 7   a Training data genera-
tion strategy and b exemplary 
results, utilizing the general 
constitutive surrogate described 
in [125] in an FE simulation of 
a tensile bar Copyright© 2020, 
Elsevier. c Comparison of con-
stitutive neural networks-based 
FE simulation results of a cup 
deep drawing process with the 
results of the original analysis 
based on a J2 plasticity model, 
from [127] Copyright© 2021, 
Elsevier
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from two-dimensional discrete dislocation dynamics simu-
lations. The work considers solids plastically deformed 
in a sequence of strain bursts, forming a staircase-like 
stress–strain curve, as shown on the right of Fig. 8a. The 
neural networks are trained to predict these curves from fea-
tures originating from the initial dislocation configuration of 
the crystalline solid, which is depicted on the left of Fig. 8a, 
where red and blue symbols represent positive and negative 
Burgers vectors, respectively. Numerical experiments are 
conducted to quantify the approximation quality in various 
settings. The quality is found to be highly affected by the 
system size and, according to the authors, is surprisingly 
good for large-strain deformation dynamics.

Furthermore, Ali et al. [134] proposed FFNNs as fast 
surrogate models for the computationally expensive crys-
tal plasticity Finite Element Method (CPFEM), where the 
homogenized response of the RVE is of interest. As depicted 
in 8b, the neural networks learn the stress–strain relation 
together with the texture evolution model. The neural net-
works are trained and evaluated based on data from experi-
mentally validated rate-dependent CPFEM simulations of 
single crystals and polycrystal aluminum alloy AA6063-
T6 under uniaxial tension and shear. The results show a 

good agreement with the CPFEM results and an immense 
decrease in calculation time (of up to 99.9%).

Ling et al. [137] compared two neural network approaches 
for constitutive modeling in the case of known symmetry 
and invariance properties. While the first approach is based 
on an augmentation of the dataset to exploit the knowl-
edge about the symmetries, the second approach is based 
on a proposed invariant representation of the input data. 
Besides the application of the approach to the modeling of 
a turbulent flow, the proposed methods are evaluated on a 
crystal-elasticity case study, with cubic crystal symmetry. 
The approach described in [137] is generalize by Jones et al. 
[138] to embed further constraints and invariances for stress 
and plastic flow and show that this can reduce the amount 
of training required.

2.2 � Indirect Learning

Learning constitutive neural networks directly from global 
experimental stress–strain data is a straightforward and 
easy-to-implement way towards a machine learning consti-
tutive model, if some preconditions are fulfilled. To create 
a dataset that is sufficient for neural network training, the 
constitutive relationships of interest have to be identifiable 
in sufficient quality, and a sufficient quantity of experiments 
to measure the data must be carried out. As stress fields in 
structural components are typically not measurable, train-
ing relies on the global material response measured. This 
means that each sample of the training set corresponds to 
one experiment, conducted usually under the assumption of 
uniform loading and homogeneous material behavior. Con-
sequently, the direct learning approach is often restricted to 
simplified scenarios, such as the modeling of uniaxial and 
biaxial loading or the modeling of hardening behavior only. 
Compared to such tests, where each experiment is supposed 
to produce one stress–strain sample, results from structural 
experiments are rich in implicit constitutive information. 
The main goal of indirect learning of constitutive neural net-
works is to utilize this information and thereby enable neural 
network constitutive modeling in more complex scenarios.

Besides the direct usage of FFNNs on experimental data 
for implicit constitutive modeling, Ghaboussi et al. [129] 
proposed an early framework for indirect learning. Within 
the training framework, global load-deflection data from 
structural tests (i.e. by applying load on a truss structure) 
are used, combined with an FE simulation of the structural 
test with an embedded FFNN as constitutive model. After 
pre-training the FFNN on data from a linear elastic model in 
the first step, the FFNN is trained in an iterative bootstrap-
ping procedure, which is called autoprogressive training by 
the authors in [129]. As depicted in Fig. 9, each iteration of 
the autoprogressive training consists of two nested loops to 
generate training data:

Fig. 8   a The mapping (learned in [136]) from the dislocation config-
uration of a crystalline solid to the staircase-like stress–strain curve 
(reassembled from [136], CC-BY). b Plot of the crystal constitutive 
neural network mapping introduced in [134], which learns the stress–
strain relation together with the crystal evolution model Copyright© 
2019, Elsevier
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•	 In the outer loop, load increments from the global load-
deflection curve are applied to the FE model of the 
structural component.

•	 For each applied load increment, in an inner loop, the 
FE model with the embedded FFNN is used to compute 
the actual deflection. To meet the measured deflection, 
displacement corrections (the difference between actual 
and target deflection increment) are applied in an itera-
tive procedure. As training data for the FFNN, stress–
strain data at local material points of the structure are 
extracted, which follow from this iterative procedure. 
The inner loop ends, when the stress–strain data con-
verges and the displacement correction is sufficiently 
small.

In [129], it is stated by the authors that the procedure 
described above may need to be performed several times of 
the full range of the applied load in order to train the neural 
network material model satisfactorily. The autoprogressive 
framework is introduced on a simple truss structure example 
and tested based on a more complex structural setting of 
graphite epoxy lamina, however with the assumption that the 
behavior of epoxy lamina is not path dependent. Follow-up 
works that build upon the autoprogressive algorithm apply 
it to sand under non-uniform triaxial compression [130] 
and to model soil behavior from field measurements exca-
vations [139]. Methodical extensions of the autoprogressive 
algorithm were proposed by Yun et al. [140], who focused 
on hysteretic material behavior and by Shin et al. [89] to 
improve the overall robustness of the training framework. 
The autoprogressive framework was expanded by Yun et al. 
for applications with cyclic loading and hysteretic behav-
ior [140]. To model such behavior, a neural networks-based 
material model using a novel algorithmic tangent stiffness 
formulation was proposed.

The adopted autoprogressive procedure was applied to a 
structure of hysteretic beam-column connections [141] and 
it was shown that the trained neural network model has a 
superior learning capability compared to the previous direct 
neural networks-based material models. Moreover, the neu-
ral network was shown to be able to successfully extract the 
local cyclic behavior from the global responses measured 
in synthetic and real experiments and is capable to gener-
alize to unseen cyclic motions. In this context, Shin and 
Pande [89] proposed a more robust variant of autoprogres-
sive training. The proposed training scheme is depicted in 
Fig. 10. A central difference to the original autoprogres-
sive training ([129]) is that the neural network is retrained 
only once per load pass by using only data from the current 
load pass. Also, the strain correction in the original autopro-
gressive training is complemented with a stress correction 
scheme to enable the successful training of strain soften-
ing. The authors of [89] investigated furthermore how the 
location and number of global monitoring points influence 
data efficiency and prediction accuracy. The autoprogres-
sive framework relies on a proper initialization of the neural 
network parameters for fast convergence [142], e.g. based 
on an approximate linear elasticity matrix [89]. Moreover, 
as shown in Fig. 10, two FE simulations are needed per 

Fig. 9   Illustration of training data generation for the autoprogressive 
training procedure following [129]

Fig. 10   Model architecture of the robust indirect approach introduced 
in [89] Copyright© 2000, Elsevier
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iteration. In the so-called stress correction scheme (which is 
contrary to the strain correction scheme), the first simulation 
is load controlled and yields a displacement field, which is 
the basis for the second displacement controlled simulation 
yielding a stress field. The neural network is trained on the 
resulting strain–stress pairs until the observed and predicted 
displacement field match. However, such coupled simula-
tions potentially lead to computational issues for applica-
tions with complex structural simulations [54].

In the context of dual phase steels [143], in multi-scale 
modeling [144–146] and laminates [142, 147], several meth-
ods for indirect learning were proposed in recent years. 
However, as [144, 146] involve the explicit formulation of 
energy principles, we classify them as physics-integrated 
surrogate models, which are discussed in Sect. 5.2. The 
other approaches mentioned are discussed in the following. 
Li et al. [143] trained a neural network as part of a modified 
Johnson-Cook model that reflects the non-monotonic strain 
rate and temperature effects on strain hardening of dual 
phase steel from experimental tensile test data. As before, 
the training of a constitutive neural network is accomplished 
in a bootstrapping process. First, the neural network is ini-
tialized by pre-training on user estimations of the material 
behavior under different temperatures and strain rates. In 
the second step, the pre-trained network is embedded into 
a 3D FE simulation and trained in the bootstrapping pro-
cess, where the cost function is derived from the difference 
between the predicted and experimentally measured total 
forces, assuming a linear variation of axial stresses over 
cross-sectional areas. Although the authors measure the 
strain distribution on the surface experimentally, this has 
not been included in the error function for neural network 
training. The rich local information of strain distribution is 
lost here, which if used would increase the accuracy and 
generalization of the FFNN to a heterogeneous field. Based 
on the same approach, Pandya et al. [148] trained a model 
to describe the rate-dependent plastic behavior of aluminum 
7075 in a hot stamping process.

For various examples from lamination, Liu et al. [142, 
147] learned constitutive relations based on experimental 
data by combining neural networks with lamination theory, 
which is implemented into differentiable FE code. The goal 
thereby is not to learn a general stress–strain model, but 
instead more context-dependent models such as shear con-
stitutive relations and the failure initiation criterion [142] or 
the damage accumulation law [147] of laminates. Although 
the results are very convincing, the requirement of differenti-
ability of the used FE code leads to a very elaborated devel-
opment process in the case of more complex FE problems 
[54]. In [54], a method is proposed to replace the custom FE 
code with the commercial Abaqus FEM solver. The training 
procedure of the so-called Abaqus Deep Neural Network is 
outlined in Fig. 11. Within this approach, a neural network 

(with parameters � ) that maps from strains to the Jacobian 
of �(�)

is included into the Abaqus FE simulation and is trained 
based on the difference between displacements observed in 
experiments and displacements computed by the FE simula-
tion. The central contribution of [54] is the utilization of the 
so-called Abaqus design sensitivity analysis functionality to 
compute the gradient of the computed displacements with 
respect to the constitutive neural network and the integra-
tion of this functionality into backpropagation. The proposed 
method was applied to learn the progressive damage con-
stitutive law of a fiber-reinforced composite and the linear 
constitutive laws of its constituents based on structural-level 
data for a specific loading scenario.

The indirect learning approach using FFNNs has rarely 
been employed to tackle path-dependent elasto-plastic or 
plasticity-driven ductile damage problems. The auto-pro-
gressive method, while intriguing, demands significant com-
putational resources and necessitates expertise in both, FEM 
and constitutive modeling. In their work, Li et al. [143], pre-
sent an framework for adaptively identifying the flow stress 

(12)f̃ (�,�) =
𝜕�

𝜕�

Fig. 11   Model architecture of the Abaqus Deep Neural Network 
approach introduced in [54] Copyright© 2021, Elsevier
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but make the assumption that the plastic flow behavior is 
already known. It would be interesting to explore the entire 
elasto-plastic flow behavior in this context.

2.3 � Discussion

As shown in this section, the use of FFNNs to learn consti-
tutive models from experimental or simulated data is very 
popular. However, due to long-term effects, the state and 
behavior (e.g. hysteretic) of materials often depend on the 
load history. Various methods to represent the current mate-
rial state for FFNNs were proposed and discussed. Exam-
ples, as discussed, include the use of past values from sam-
pled isolated time-steps [21, 95, 121], the use of aggregated 
values [125] and the use of additional internal hardening 
variables [91] or the use of processing time-step [96].

However, neural networks are limited to fixed input map-
pings, while the load history is of variable length. Methods 
that face the problem by aggregating the history through 
subsampling [21, 95, 121] or using accumulated values 
[125] typically accept some degree of information loss 
by making assumptions about the history of internal vari-
ables. A first attempt in the constitutive modeling context to 
solve this problem by using a more flexible neural network 
architecture is the NANN approach. However, the NANN 
approach is limited to short sequences, as the number of 
model parameters highly depends on the sequence length. In 
contrast, advanced modeling techniques like RNNs and time 
convolution approaches are promising alternatives to solve 
these issues as in the case of RNNs the number of model 
parameters is independent from the sequence length and 
in the case of time convolution, the number of parameters 
required for learning temporal patterns is greatly reduced.

Furthermore, among the papers reviewed in this section 
that focus on direct learning, many address the learning of 
flow stress curves for different materials. Learning such 
curves is a 1D regression problem and can actually be solved 
by comparatively simple neural networks. While applying 
such is a reasonable proof-of-concept for the applicability 
of using neural networks in materials modeling, it, how-
ever, raises the general question of when applying machine 
learning is advantageous to classic models. In this specific 
case, an advantage of neural networks is their characteris-
tic of being able to be fitted to any flow curve. However, a 
huge advantage in execution time is not to be expected. In 
contrast, fitting one out of a plethora of already developed 
analytical functions should result in similarly good curve 
approximation while at the same time forming derivatives 
is much more straightforward. In other cases, like in higher-
dimensional regression problems, in contrast, the use of 
machine learning is more beneficial as the effort to find ana-
lytical functions increases with an increase in dimensions, 

see for example the modeling of complex yield functions in 
[149] and [150].

3 � Advanced Neural Networks 
for Constitutive Modeling: Considering 
the load history by learning 
from time‑series

In this section, we outline and discuss work that utilizes and 
introduces advanced neural network models for processing 
sequential data in the context of constitutive modeling. As 
we are not aware of published indirect learning approaches 
that utilize such advanced neural networks, we present 
approaches for direct learning of advanced neural networks 
for processing sequential data in the following Sect. 3.1 only. 
In Sect. 3.2, a brief discussion of the presented approaches 
is given.

3.1 � Direct Learning

In an early series of works by Oeser and Freitag [151], Graf, 
Freitag et al. [152, 153], and Freitag et al. [154], RNNs are 
applied to constitutive surrogate modeling tasks. In [151], 
RNNs are proposed as part of fractional material models 
to learn the history-dependent stress state of rheological 
materials with fading memory, where the effects of applied 
stress states on structural behavior gradually diminish over 
time. The RNN model is applied to synthetic creep test data, 
for which the better run time behavior in comparison to the 
exact solution of a fractional differential equation is high-
lighted. Based on this work, in [152, 153, 155], RNNs are 
combined with fuzzy structural analysis and the so-called �
-level optimization [156] for history-dependent structural 
and constitutive models, which reflect measurement and pro-
cess uncertainties. In [152], an RNN is used to map from 
loads and environmental influences of a reinforced concrete 
plate to structural responses. Both, inputs and outputs, of 
the RNN are fuzzy variables to reflect the uncertainty of 
the measurements, in the loading process itself and in the 
environmental influences. The approach is evaluated on the 
long-term responses of a reinforced concrete plate under 
dynamic loading.

While in [152] models reflect the material behavior on 
the structural level, in the follow-up work [153, 155], the 
approach is applied to learn constitutive surrogates for fuzzy 
FE models [157]. The approach is applied to learn a surro-
gate of a linear elastic constitutive model in [155] and from 
a fractional Newton element to simulate visco-elastic mate-
rial behavior as well as from a fuzzy FE analysis of a three-
dimensional structure under long-term loading in [153].

For various single-scale applications, different types of 
RNNs have been proposed [158–161]. Gorji et al. [158] 
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proposed and evaluated GRUs as a substitution for conven-
tional physics-based plasticity models in the large deforma-
tion regime. The model is trained based on single-element 
simulations using a Yld2000-2d yield model with homoge-
neous anisotropic hardening and evaluated in various set-
tings, including arbitrary multi-axial loading paths. Besides 
the homogeneous studies, the GRU-based model is trained 
and evaluated on results from a unit cell analysis of a two-
dimensional foam. Zhang et al. [159] proposed an LSTM-
based approach to model the cyclic behavior of sand under 
drained and undrained conditions. The proposed model con-
sists of two separate LSTM networks. One network mimics 
strain-controlled and the other mimics stress-controlled soil 
behavior. The input and output variables of the proposed 
models are depicted in Fig. 12a, where pi, qi, �i

v
, �i

d
 are the 

mean and deviatoric stresses, volumetric and axial strains at 
time step i and additional variables L1, L2, L3 describe the 
current loading stage. Further, the features m and e0 were 
introduced, to describe the drainage and the initial void ratio 
of sand. In the presented study, the model is trained on syn-
thetic data of drained and undrained sand and is employed 
to simulate the behavior of real sands under cyclic loading. 
The model is evaluated on experimental data. As part of the 

evaluation, the trained model is shown to be able to accu-
rately predict history-dependent effects such as shear strain 
accumulation and densification.

More recently, Zopf and Kaliske [162] proposed to com-
bine constitutive neural networks and RNNs with the so 
called micro-sphere description [163] to model the finite 
strain behavior of rubber-like materials. The micro-sphere 
model enables the reduction of the stress–strain dependency 
of polymer chains to only one dimension and thereby allows 
to train constitutive models with data from uniaxial load-
ing tests to drastically reduce the experimental effort. The 
proposed model consists of both, an FFNN for pure elastic 
behavior and an RNN for inelastic behavior. The model is 
implemented into an FE model which is evaluated on experi-
mental data of uncured elastomers.

Bonatti and Mohr [160] proposed a special recurrent 
architecture for constitutive sequence models, which is 
designed to combine a high model capacity with an arbitrar-
ily small material state representation. The recurrent archi-
tecture is used to learn a general stress–strain model and 
consists of special quadratic layers followed by a simplified 
LSTM layer, which learns an implicit state representation 
of the material state. The state variables are connected to 

Fig. 12   Sequential data 
processing constitutive neural 
networks: a LSTM-based 
models for describing cyclic 
behavior of granular materials 
[159] Copyright© 2020, John 
Wiley and Sons, b so-called 
smart constitutive law approach 
introduced in [166] Copyright© 
2021, Elsevier
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the next time step input and gated layer. Various separate 
constitutive surrogates are trained on the basis of the pro-
posed architecture on data from FE simulations of single 
elements. Besides isotropic-hardening and mixed-hardening 
elasto-plastic models, the evaluation studies include mod-
els of crushable foam and hyper-elastic rubber with internal 
damage. Besides the evaluation of the reproduction quality, a 
study of the correlation between the implicitly learned state 
variables and the state variables of the conventional models 
shows the ability of the LSTM-based model to learn physi-
cally meaningful state spaces. Recently, Bonatti et al. [164] 
published an enhanced version of the model and showed 
that it can be used as an efficient and accurate constitutive 
surrogate for FE simulations.

Abueidda et  al. [161] studied and compared various 
sequence models to predict the strain and temperature 
history-dependent behavior in two different applications. 
LSTM, GRU, and time CNNs are trained on data from an 
elasto-plastic cellular periodic material and a more complex 
thermo-visco-plastic steel solidification problem. In contrast 
to other sequence constitutive models, which are supposed to 
be implemented into an incremental FE solution procedure, 
in [161], the neural networks are used to predict the entire 
response sequence in one pass.

Up to this point, we discussed methods that learn path-
dependent material models at the macro-scale, where the 
model represents the material in a homogenized sense. 
In the following, however, we discuss a second group of 
approaches namely models that learn the behavior of the 
material from RVEs, wherein the microstructure is spatially 
discretized. In computational homogenization, the computa-
tional bottleneck is the evaluation of the micro-scale model 
per integration point [165]. Due to various microscopic 
effects, the stress–strain relationship on the macro-scale is 
typically history-dependent [166]. RNN-based constitutive 
surrogate modeling approaches are recently proposed to 
solve these issues in a data-driven manner [15, 165–167]. 
Wang and Sun [15] integrated LSTM networks on differ-
ent length scales into numerical models and investigated 
the computational efficiency of this hybrid approach using 
a multi-scale hydro-mechanical simulation of a multi-per-
meability porous material.

A popular approach is to utilize RNNs to learn a surro-
gate for homogenizing RVEs [87] and use the trained model 
as constitutive law in macro-scale simulations [165–167]. 
Mozaffar et al. [87] proposed this approach first and used 
RNNs to learn homogenization models for elasto-plastic 
composite materials. Therein, the RNN model is trained to 
map from the deformation path and microstructural descrip-
tors to homogenized stresses and a quantity that the authors 
called plastic energy. The method is applied to two types of 
composites, for which it is shown to be accurate and effi-
cient. Ghavamian and Simone [165] trained LSTM-based 

RVE surrogates to accelerate FE2 simulations of history-
dependent materials and applied it to virtual strain-softening 
experiments with a Perzyna-type visco-plasticity descrip-
tion. In contrast, Wu et al. [167] proposed GRU-based mod-
els as basis for meso-scale surrogates for an FE2 simulation 
of a fiber reinforced composite under random cyclic loading.

Further, Logarzo et al. [166] introduced a so-called smart 
constitutive law approach, in which an LSTM is trained as 
a surrogate model on RVEs consisting of an elasto-plastic 
material matrix with hard elastic inclusions. Besides the 
homogenized stress components, the LSTM maps to the 
localized (maximum) plastic strain and von Mises stress. 
This localized information can be used in the application 
context, e.g. for predicting premature failure. The trained 
surrogate model is used as constitutive model in a structural 
FE analysis, as is depicted in Fig. 12b. Using the FE simula-
tion, the machine learning-based approach is compared to a 
concurrent multi-scale scheme, in which the microstructural 
boundary value problem is solved explicitly for each inte-
gration point. The surrogate model was shown to be very 
accurate, as the coefficient of determination (R2-score) at the 
last of the 200 applied load increments was relatively high 
(above 0.989) for all stress components. Despite paralleliza-
tion of the concurrent microstructure level calculations over 
36 computing cores, the multi-scale scheme needed over 
three days to complete, while it took the machine learning-
based approach less than 19 min to finish on a high-end 
GPU.

To model path-dependent elasto-plastic crystal behavior, 
Heider et al. [168] proposed special RNNs combined with 
a reference frame invariant formulation of the loss function. 
Based on synthetic data generated from crystal plasticity 
simulations, it was shown that the model results are highly 
dependent on the choice of the input representation and the 
loss function. It was furthermore shown that accurate results 
can be achieved with the right choice of the proposed frame-
invariant loss in combination with some of the also proposed 
graph representations of the input data. Albeit the model was 
proven for a geometrically linear small strain case.

3.2 � Discussion

Generally, for training RNN models, a sufficient amount 
of various non-linear strain paths and corresponding stress 
values is necessary. All of the reviewed papers present 
their own way of generating training data, which is suf-
ficient for proving the introduced approaches. However, it 
is challenging to determine the superiority of one method 
over another. Therefore, it is crucial to establish bench-
marking problems to evaluate the effectiveness of each 
method accurately. As the possibilities to sample strain 
paths is unlimited, appropriate approaches need to be 
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developed in order to provide comparable datasets. These 
can for example be to limit sampling on sub-spaces for 
applications in certain domains (e.g. metal forming) or to 
apply adaptive data generation and model training. Such 
sampling approaches furthermore enable the generation 
of standardized datasets that facilitate benchmarking. In 
contrast, another possibility for training models is the 
application of indirect learning. However, we have not 
found an indirect learning approach for RNN models in the 
reviewed literature. Learning indirectly from experiments 
would be an important extension to existing approaches, 
also tackling the data generation issue mentioned above.

In addition for path-dependent problems, the time step 
in FEM plays a crucial role in determining the accuracy 
and stability of the numerical simulation. Generally, irre-
spective of the path dependency, a small time step allows 
for better accuracy, but increases the computational cost 
of the simulation. On the contrary, a large time step can 
lead to numerical instability and loss of accuracy. In addi-
tion, in process simulations for example, variations in 
contact conditions necessitate different time step require-
ments. The path dependency amplifies this issue further, 
and hence is of importance. Commercially available FE 
solvers have the capability to automatically adjust the time 
step based on the system’s state to optimize computational 
costs and maintain model accuracy. Except for [160, 164], 
there is a lack of research on how dynamically changing 
the time step affects RNNs. There are not many robust 
methods available to train RNNs in a way that mitigates 
the influence of the time step. This is a crucial aspect in 
driving the integration of neural networks into FEM and 
structural analysis beyond the academic community.

Moreover, while RRNs have been widely used for 
processing sequential data due to their ability to capture 
temporal dependencies, they suffer from several caveats. 
One issue is the vanishing or exploding gradient problem, 
which hinders the effective propagation of information 
across long sequences, leading to difficulty in learning 
long-term dependencies. Additionally, RNNs are com-
putationally expensive and challenging to parallelize. 
Transformer models which utilize the attention mecha-
nism [169] have emerged as a powerful alternative to 
address these shortcomings. Attention allows the model 
to selectively focus on relevant parts of the input sequence, 
enabling better capture of long-range dependencies with-
out the mentioned gradient problems. Also, transformers 
process the entire input sequence in parallel, making them 
highly efficient and scalable. These properties have made 
transformer-based models already state-of-the-art in vari-
ous machine learning domains, e.g. for natural language 
processing tasks [170] and subsequently in other time 
series processing applications [171].

4 � Advanced Neural Networks 
for Constitutive Modeling: Considering 
spatial information by learning 
from images

Neural networks-based constitutive modeling approaches 
discussed so far operate typically without spatially inte-
grating neighborhood relationships. However, in some 
applications it is crucial to consider the local neighbor-
hood (or the sub-scale structure of a material) to accu-
rately predict local quantities. CNNs are typically used for 
this purpose, hence we primarily discuss work presenting 
CNN-based models for constitutive modeling taking into 
account spatial information in the following. As we are 
not aware of published indirect learning approaches in 
this context, we review only approaches for direct learn-
ing in the following Sect. 4.1. In Sect. 4.2, the presented 
approaches are discussed briefly.

4.1 � Direct Learning

Neural networks with convolutional layers have been pro-
posed, e.g. to map RVE images in 2D [135, 172] or 3D 
[173, 174] or from graph representations [175] to homog-
enized stresses [172, 173], localized stresses [135], or the 
elastic energy functional [175]. In the following, we dis-
cuss these works in chronological order.

In his work, Frankel et al. [173] proposed an RNN with 
convolutional layers for the first time in order to predict 
the homogenized stress of oligocrystals from the strain 
history and a 20 × 20 × 20 voxel image of initial grain 
orientations. In another work, Vlassis et al. [175] proposed 
a graph convolution-based neural network to predict the 
elastic energy functional for polycrystals under deforma-
tion. The polycrystal is represented by a graph, in which 
each node encodes a single crystal with its features, such 
as e.g. orientation and volume, and the edges encode the 
crystal connectivity. While the representation of crys-
tallographic data as voxelized images is sensitive to the 
grid resolution and noise, the embedding into graphs fol-
lowed by graph convolution enables to encode rotational 
invariances and frame indifference priors into the model. 
Thereby, convolution-based deep learning can be applied 
efficiently.

As shown in Fig. 13, the geometric encoder consists of 
graph convolution layers and dense layers and transforms 
the graph into a feature vector, which is concatenated with 
the deformation tensor in Voigt notation and processed by 
dense layers to finally predict the energy functional. The 
proposed loss term, furthermore, incorporates the gradi-
ents of the reference function with respect to the input 
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based on so-called Sobolev training [176] in order to not 
only approximate the constitutive functions output but 
also its derivatives. This provides additional supervision, 
which leads to more sample-efficient training. Besides, 
the accurate stress tensor is obtained, as it is the gradi-
ent of the function with respect to the deformation tensor. 
In [175], it was shown that the proposed graph-encoding 
and neural architecture can leverage the crystallographic 
information in a reference frame indifferent manner and 
in consistency with the known thermodynamics princi-
ples. The usage of Sobolev training to guarantee being 
consistent with thermodynamics can, however, be seen as 
incorporating physical knowledge into the neural network 
learning process, which is a central point of many models 
that are summarized in Sect. 5.

Yang et al. [172] proposed a CNN to predict the homog-
enized stress–strain curve for a composite microstructure 
under uniaxial loading. The microstructure is represented 
by a 2D binary image, which encodes the distribution of 
a soft and a hard phase. The network is trained to predict 
principal components, from which the stress–strain curve 
can be obtained by reverting the a priori applied PCA 
transform. Mianroodi et al. [135] proposed a U-net type 
CNN as a surrogate of spectral simulations of inhomoge-
neous microstructures. The proposed neural network maps 
from 2D patches of local material properties (Young’s 
modulus, Poisson ratio, yield strength) to 2D patches of 
according local von Mises stresses. When trained on 950 
samples, the reported MAPE is 3.8% in the case of elastic 
and 6.4% in the case of elasto-plastic materials. Thereby, 
an immense performance gain compared to the spectral 
simulations can be observed. In this particular use case, 
the constitutive neural network approach is 103 times 
faster than the reference solver for elastic materials and 
8300 times faster for elasto-plastic materials.

4.2 � Discussion

As in Sect. 3, we did not come across any approach that uses 
indirect learning in the context of CNNs. However, it cannot 
be concluded that indirect learning is not applicable to the 
approaches described in this section. For instance, indirect 
learning may be accomplished in a 2D setting using in-situ 
EBSD or SEM measurements, followed by a simulation 
involving a CNN that attempts to match the surface deforma-
tion. However, for 3D microstructures, the only viable means 
of monitoring the 3D deformation field would be through 
high-energy accelerators, which is seldom accessible.

Nevertheless, as a first step towards the application of 
such models to real data, experimental data can be used to 
evaluate models that are directly learned from synthetic data. 
However, it is worth noting that all the methods discussed in 
the reviewed literature pertain exclusively to academic syn-
thetic data. The validation of CNN models using real-world 
data remains limited. Achieving this is indeed challenging, 
as synthetic training data needs to be very similar to experi-
mental data (including realistic microstructure representa-
tions). However it may be feasible to accomplish this at the 
surface level using advanced CPFEM in combination with 
in-situ EBSD measurements.

In general, CNNs are designed to work well on grid-like 
data, and can therefore be applied to 2D or 3D images of 
materials. However, there are certain limitations and chal-
lenges associated with the usage of CNNs. First, CNNs 
alone cannot be employed for sequence data processing. This 
necessitates the integration of other neural network layers, 
such as RNNs (e.g. for an effective analysis in the case of 
path dependencies). Another critical aspect of using CNNs 
for materials data is the computational expense associated 
with 3D convolutions, particularly with high-resolution 3D 
data. The data has to be represented as voxelized data, which 

Fig. 13   Architecture of the graph convolution model for energy functional prediction of polycrystals introduced in [175] Copyright© 2020, Else-
vier
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typically increases the computational burden and memory 
requirements. To address this challenge, graph-based CNNs 
have emerged as a promising alternative, particularly when 
values can be aggregated at the crystal level. By exploiting 
the local and global connectivity patterns within the crystal, 
graph-based CNNs can overcome some of the limitations 
of traditional CNNs. However, it is essential to carefully 
consider the specific requirements and characteristics of the 
data at hand when selecting the appropriate model.

5 � Physics Integrated Neural Networks 
for Constitutive Modeling

This section deals with constitutive modeling based on inte-
grating physics knowledge into the neural network learning 
process. The advantage of integrating physics is twofold: 
On the one hand, physics-informed models typically need 
fewer data to train than pure black-box approaches and, on 
the other hand, the models can extrapolate in a certain man-
ner (e.g. extrapolation is consistent with integrated physics 
relations). Direct learning methods are presented in the fol-
lowing Sect. 5.1 and indirect learning methods are presented 
in Sect. 5.2. A brief discussion on the presented approaches 
is given in Sect. 5.3.

5.1 � Direct Learning

From all the literature reviewed, we found only one work 
that introduces a model with integrated physics relations that 
was trained on experimental data (however, it can also to be 
trained on simulation data) [177]. In the approach described 
therein, the neural network loss function is customized such 
that predictions do not violate specific physical relations. 
This is achieved by integrating physical constraints into 
the learning process by adding penalty terms to the loss 
function. In the example of learning hyper-elastic material 
behavior, four constraints are applied particularly, which 
ensure that (i) the stress components remain zero when no 
strain is applied, (ii) the conservation of energy holds, (iii) 
the symmetry of the stiffness matrix for linear elasticity is 
retained and (iv) the material isotropy for nonlinear elastic-
ity is hold.

In contrast to [177], many works exist that train constitu-
tive surrogates. In this regard, we start with the approach 
described in [178], which is similar to the one introduced in 
[177] but evaluated using simulation data alone. In [178], 
a loss term is added to the neural network loss function to 
ensure being consistent with thermodynamics by punish-
ing violations of the conservation of energy and the entropy 
inequality. The presented model was analyzed by training 
the network on simulation data of an Oldroyd-B-fluid and 
a hyper-elastic tyre. A different approach was described in 

Haghighat et al. [179], which uses PINNs [180] as the basis 
for a framework to solve material-related differential equa-
tions. A boundary value problem solver incorporating elasto-
plastic material behavior and damage formulations was 
developed and applied to a plate deformation problem. In 
[179], the authors stated that their approach can be applied 
to stress–strain data from meso- or micro-mechanical as well 
as molecular dynamics simulations. However, the PINN-
based framework is only applicable to homogeneous stress 
and strain distributions.

Other approaches aim to set up models that learn ther-
modynamically consistent constitutive relations by map-
ping strain states to corresponding energies and deriving 
the stress states downwards. Consistency with thermody-
namics is commonly obtained by predicting thermodynamic 
quantities (e.g. energies) instead of predicting stress com-
ponents, as is done, for example in [146]. Earlier works 
already account for this while applying neural networks 
to learn hyper-elastic materials behavior, see [181, 182]. 
In general, hyper-elasticity is suited well for learning, as it 
is state-dependent and thermodynamics quantities can be 
approximated using standard FFNNs (without the need for 
storing internal history variables).

The first method we draw attention to was recently pro-
posed by Masi et al. [183, 184], who introduced so-called 
thermodynamics-based neural networks. These are special 
neural networks that incorporate thermodynamics princi-
ples to learn the constitutive behavior of strain-rate depend-
ent processes at the material point. The thermodynamics 
principles, namely the balance of energy and the dissipation 
inequality, can be written in the form of the following two 
equations [184]:

and

with � describing the energy potential, D describing the 
rate of mechanical dissipation and �i describing kinematic 
variables.

Basically, thermodynamics-based neural networks consist 
of two connected FFNNs. The inputs for the first network 
are values of stress, strain, strain increment, and internal 
variables at a certain time increment, which are mapped 
to the increment of the internal variables. These and the 
strain increment are fed to the second neural network, which 
predicts the energy potential of the subsequent time incre-
ment. On this basis, the dissipation rate, as well as the stress 
increments (Eqs. 13 and 14), are evaluated from the network 
output using automatic differentiation. The dissipation rate is 

(13)� =
��

��

(14)D = −

N
∑

i=1

𝜕𝜓

𝜕𝜁i
𝜁̇i,
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forced to be positive or zero (depending on the material) dur-
ing training to be consistent with the first and second laws of 
thermodynamics. In his work, Masi et al. [184] showed that 
the approach can be used to model 1D elasto-plastic material 
behavior with kinematic softening. In the example problem 
in [184], it was shown that thermodynamics-based neural 
networks perform better than pure black-box neural network 
approaches, such as the ones described in Sect. 2. Moreover, 
the results showed that the trained thermodynamics-based 
neural networks are accurate even for data points that are 
relatively far from the training range.

Similar to thermodynamics-based neural networks, but 
with a different neural network structure, Linka et al. intro-
duced so-called constitutive neural networks in [185]. The 
inputs for the constitutive neural networks are the right 
Cauchy-Green tensor and (if necessary) non-kinematic infor-
mation, such as microstructure or process conditions. On this 
basis, several sub-neural networks learn to predict invariants 
of the right Cauchy-Green tensor and the structure tensor. 
These are used to predict the strain energy in a subsequent 
neural network. The strain energy is in-turn used to derive 
the stress and stiffness tensor via automatic differentiation 
(as is done for the thermodynamics-based neural networks 
mentioned above). The applicability of constitutive neural 
networks to engineering problems is furthermore discussed 
in [185]. Therein, two use cases are analyzed, which are (i) 
predicting effective material properties of a matrix-inclusion 
composite RVE and (ii) accelerating macroscopic FE simu-
lations of hyper-elastic material behavior. It was shown that 
the implementation of the trained constitutive neural net-
work models into FE software is simple and computationally 
efficient. Moreover, it was shown that constitutive neural 
networks are data efficient and the trained models are robust 
against noise.

Another approach that is based on thermodynamics for-
mulations is the so-called thermodynamics-informed neural 
network, introduced by Vlassis and Sun [186]. In contrast 
to thermodynamics-based neural networks and constitu-
tive neural networks, only a simple FFNN is used therein, 
however, Sobolev training [176] is applied to integrate 
knowledge about derivatives in the loss function of the neu-
ral network (similar to [175], which is already mentioned 
in Sect. 4). The loss function is customized, such that a 

mapping from strain values to hyper-elastic energy func-
tionals can be learned while including constraints for stress 
and stiffness values. Furthermore, in [186], it was shown 
that yield functions and plastic flow can be learned from 
simulation data of polycrystal RVEs using thermodynamics-
informed neural networks. The thermodynamics-informed 
neural network approach has been developed further for 
learning rate-dependent, pressure-sensitive plastic behavior 
in [187]. It is pointed out, in contrast to the models presented 
in Sect. 3, that this method is better interpretable and allows 
for a modular design of the material models by for example 
treating elastic and plastic behavior separately in different 
networks. As an exemplary engineering use-case, an FE 
simulation is conducted on the macro-scale that incorporates 
a constitutive surrogate on the micro-scale trained on FFT 
simulation data of a polycrystal RVE.

Another neural networks-based approach to mention in 
this section is the approach described by Fernandez et al. 
[188], which maps the right Cauchy-Green tensor on poten-
tial energies to predict hyper-elastic material behavior (simi-
lar to the approaches described in [181, 182]). In [188], the 
approach was compared against a neural network that maps 
the right Cauchy-Green tensor on the corresponding stress 
components in a deformation problem of a meta material. 
By comparing the approaches, it was concluded that the 
approach mapping on potential energies has the best gener-
alization capabilities, which is in accordance with the find-
ings in the works presented above.

A very different approach, compared to the physics-
informed approaches mentioned above, are the so-called 
deep material networks (DMN) [189]. DMNs are neural 
networks that learn homogenization operations to obtain 
the effective stiffness or compliance tensor from micro-
scale simulation data (experimental data is also possible but 
cumbersome to gather). In contrast to thermodynamically 
consistent models, DMNs incorporate geometric informa-
tion from RVEs. In its original version, DMNs consist of 
building blocks that have a tree-based structure, see Fig. 14. 
Each building block is a two-layered neural network which 
gets the micro-scale stiffness or compliance tensor for every 
phase as input and transforms it to the homogenized quan-
tity, including a rotation operation to incorporate orientation 
dependence.

Fig. 14   Building block of a DMN and homogenization scheme as is introduced in [189]. D denotes the compliance matrix of the individual 
materials (with volume fraction f

1
 and f

2
 ) and D the homogenized compliance matrix for a rotation � . Copyright© 2019, Elsevier
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In [189], Liu et al. applied DMNs to homogenizing sim-
ple two-phase 2D-microstructures. The DMNs used therein 
were constructed out of binary tree building blocks. By 
training the DMNs on data from linear elastic homogeniza-
tion simulations, it was shown that the approach is able to 
extrapolate to nonlinear plasticity and finite strain hyper-
elasticity. For solving 3D problems, Liu and Wu [190] intro-
duced novel building blocks that include 3D rotation opera-
tions and applied them to crystal plasticity among others. 
Further extensions to DMNs have been introduced in [191] 
to incorporate strain localization enabled by cell division 
operations and in [192] for including interfacial effects via 
so-called cohesive layers. The ability of DMNs to enable 
fast multi-scale FE simulations has been shown in [193] and 
[194], both using examples of fiber reinforced composite.

5.2 � Indirect Learning

In this section, we focus on approaches that learn constitu-
tive relations indirectly with integrated physics knowledge. 
In particular, all of the models presented in the following 
integrate physics knowledge aiming to ensure being con-
sistent with thermodynamics. In this regard, in [146], an 
RNN-based approach is described that infers the Cholesky 
factor of the tangent stiffness matrix of a deformed mate-
rial. The prediction of the tangent stiffness matrix guaran-
tees the approach to be consistent with the second order 
work criterion, that in-turn guarantees a more numerically 
stable model. Training can be done directly using pairs of 
stress–strain values or indirectly on the basis of measure-
ments by evaluating balance equations during training. 
However, it is pointed out that measuring comprehensive 
stress–strain data only from experiments is challenging. The 
RNN-based model has been shown to successfully approxi-
mate and replace elasto-plastic and hyper-elastic material 
models in 1D and 2D FE simulations.

An alternative approach based on FFNNs that learns 
constitutive relations indirectly is described in [144]. In 
the approach described therein, neural network models are 
used to learn constitutive relations by evaluating balance 
equations (the loss function equals zero when the external 
forces and the relevant internal quantities are in balance), 
similar to [146]. However, in contrast to [146], the approach 
described in [144] does not require special physics relation 
to be incorporated in general. In this regard, in the applica-
tion example, a neural network model is trained to relate 
principal stretches of a hyper-elastic material model to the 
first Piola-Kirchhoff stresses. It is pointed out that the neu-
ral network can be made thermodynamically consistent by 
predicting the hyper-elastic energy (instead of predicting 
the stress components) and use automatic differentiation to 
derive the stress components. However, this alternative has 
not been applied in the paper.

Besides [146] and [144], an early approach, in which 
FFNNs are trained indirectly using an energy-based loss 
function has been described already in 2011 by Man & Furu-
kawa [195]. Therein, neural networks are supposed to learn 
the relation between stress and strain on a continuum basis. 
The learning process and the obtained constitutive models 
are evaluated at FE simulations of structural components 
that substitute real experiments.

5.3 � Discussion

One advantage in learning directly from global experimental 
stress strain data and indirect learning of constitutive equa-
tions is that modeling assumptions and simplifications usu-
ally done in classic material modeling do not constrain the 
learned constitutive model and, hence, make the model more 
generally applicable. Therefore, constitutive relations need 
to be learned on the basis of experimental data. Gathering 
’enough’ experimental data in materials science is, however, 
demanding, which led to the idea of incorporating physical 
knowledge in the learning process, aiming to make models 
more reliable and data efficient. By doing so, the original 
advantage of universality vanishes depending on how much 
the machine learning models are constrained by the incor-
porated physical relations. Consequently, there is a trade-
off between improving prediction accuracy and constrain-
ing learned constitutive models by incorporating physical 
knowledge. In this regard, however, we cannot assert our 
ability to provide recommendations on the appropriate level 
of physics to be integrated into neural network constitutive 
models. This depends on the quality and amount of available 
training data, which is to be assessed by the user.

Additionally, incorporating physical constraints while 
learning from experimental data is challenging. Although 
these learning scenarios come from the original intention of 
learning constitutive models (Fig. 3), only few works exist 
that describe corresponding approaches. The most straight-
forward approach described in the reviewed papers (and the 
only one that has been tested on experimental data in a direct 
learning scenario) is by modifying the neural network loss 
function in order to punish violations of physical constraints. 
Indirect learning, in contrast, opens more possibilities for 
incorporating physical knowledge into the learning process, 
as the neural network models can learn various relations 
out of which the material model is composed of (instead 
of just relating stress and strain). In this regard, few more 
elaborate approaches have been introduced in the reviewed 
papers, like inferring the Cholesky factor of the tangent 
stiffness matrix or using automatic differentiation. It can, 
however, be expected that there are many more possibilities 
to decompose the material model and incorporate physical 
constraints.
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6 � Summary and Outlook

The modeling of the constitutive behavior of materials 
using supervised learning methods, especially neural net-
works, is a fast-growing research field. As is shown in 
this review paper, many groundbreaking works have been 
published in the last years. For example, the modeling of 
path-dependent material behavior using recurrent neural 
networks, homogenization using convolutional neural net-
works, and integrating physics knowledge into the learn-
ing process. From a current point of view, the developed 
approaches are impressive and show the potential of learn-
ing algorithms in materials modeling. However, apart from 
the recent modeling advances, several challenges remain, 
which in our opinion are:

•	 Benchmarking: There is a need for standardized bench-
marks to test and compare machine learning approaches 
for learning constitutive relations against each other. 
Benchmarks, which are common practice in machine 
learning (e.g. the MNIST and ImageNet datasets in 
computer vision [196, 197]), are designed to meas-
ure the efficiency of learning approaches and thereby 
enable comparability. This is necessary for engineers 
to make the right model decision for their application 
scenario. Although some of the discussed papers are 
published with associated code (e.g. in [144, 147, 160, 
161, 188]) and some related benchmark datasets exist 
(such as the Mechanical MNIST [198] or MatBench 
[199]), to the authors knowledge there is no widely 
used benchmark dataset for the comparative evaluation 
of constitutive neural networks.

•	 Sampling: The space of possible loading conditions 
for material models is generally very large. Therefore, 
and, as performing numerical simulations and experi-
ments to obtain information about material behavior 
is often time-consuming, sampling is crucial, see for 
example [6]. To tackle this issue, intelligent sampling 
algorithms, e.g. from the field of active learning [200], 
can be used for data generation and model training, see 
[201, 9] and [82] for application examples.

•	 Measuring prediction quality: Another effect of the 
large space of possible loading conditions is that 
learned constitutive models cannot be fitted accurately 
for any imaginable loading path. Hence, measures to 
estimate the prediction quality are essential for engi-
neers to assess simulation results. Such measures are 
given intrinsically when applying probabilistic mod-
els, such as Gaussian processes, see for example [6, 
201]. For descriptive machine learning models, how-
ever, such measures have to be still established. One 
approach can be found in [202], where a separate 

machine learning model is used to estimate the error 
of a previously trained constitutive surrogate.

•	 Data accessibility: Having reliable data is the basic 
requirement for learning adequate constitutive relations. 
However, data accessibility and management (in par-
ticular respecting FAIR-principles [203]) is still an open 
challenge in materials sciences [204]. Database solutions 
are already under development (see for example [205–
207] or relevant websites, such as www.​mater​ialsc​loud.​
org, www.​nomad-​lab.​eu or www.​mater​ials-​marke​tplace.​
eu) but far away from common use in engineering and 
industry. In this context, also the fusion of multi-fidelity 
data sources (e.g. experiments and numerical simula-
tions) is an important research topic, see [208].

•	 Knowledge integration: Integrating knowledge into 
the learning process is a prominent way to tackle data 
sparsity and to improve extrapolation capabilities of 
machine learning models. Besides the presented ways 
for knowledge integration, in general, many ongoing 
research focuses on integrating knowledge into learning 
processes and thus to create so-called grey-box mod-
els, [209]. Regarding the learning of constitutive equa-
tions, additional knowledge can originate from all kinds 
of balance and conservation relations or physical con-
straints, such as convexity or monotonicity. First solution 
approaches that incorporate convexity have been intro-
duced for hyper-elastic material behavior in [210]. While 
for monotonicity no such approaches are known by the 
authors in the materials modeling domain, however, in 
applied machine learning, approaches have already been 
proposed, such as in [211].

•	 Extrapolation: One of the main limiting factors in 
machine learning in general is the inability of trained 
models to extrapolate. The problem of extrapolation 
can, however, be addressed by methods mentioned in 
the above presented bullet points. These are: an efficient 
sampling to prevent from the need to extrapolate, meas-
ures for the prediction quality of models to detect and 
prevent from extrapolation, and, finally, the integration 
of physical knowledge into the learning process to enable 
model extrapolation within certain limits.

•	 Interpretability: A further general issue for using 
machine learning methods (especially neural networks) is 
interpretability [212]. The lack of interpretability makes 
it hard for engineers and scientists to analyze and under-
stand model behavior. However, typically, integrating 
knowledge into machine learning algorithms improves 
interpretability. Besides knowledge integration, methods 
are already under development that improve the interpret-
ability and explainability of neural network constitutive 
model predictions [174, 213].

•	 Countering error accumulation: In numerical simula-
tions, the system response from an applied load is calcu-

http://www.materialscloud.org
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lated incrementally (stress increments follow from strain 
increments, etc.). Therefore, errors in stress predictions 
lead to errors in subsequent increments and so on. The 
effect of error accumulation is studied in several consti-
tutive neural network papers, including [166, 173, 214]. 
In [214], it was shown that error accumulation can be 
mitigated by regularizing constitutive neural networks. 
A further way to reduce error accumulation is to incor-
porate physical knowledge into the machine learning 
model to force predictions to be consistent with physics 
constraints.

Finally, we want to conclude this review paper by empha-
sizing that the reviewed works are only the beginning of 
the era of learned constitutive models. While already plenty 
of approaches exist for building surrogates of classic con-
stitutive models, recently developed approaches that learn 
from experimental data are rare. Especially for applying 
deep learning and integrating physics, there is still room for 
further developments. However, currently, machine learn-
ing (and artificial intelligence) research receives a great 
deal of attention and machine learning methods quickly 
become replaced by new state-of-the-art methods. At the 
same time, the model complexity and demand of computa-
tional resources is growing. Consequently, this leads to an 
increased demand for interdisciplinary teams when adapting 
such models in specific scientific domains such as materials 
sciences. Further, in materials sciences, as we have seen 
throughout this paper, model evaluation is particularly dif-
ficult, as conducting experiments is often time-consuming 
and expensive.

Due to these facts, the adaption of new machine learning 
methods to problems in the materials science domain takes 
time. Recent examples are transformer architectures, which 
are based on the attention mechanism introduced in 2017 
[169] and can consider long-range dependencies in sequen-
tial data without the need for recurrence. In constitutive 
modeling, first results were very recently published show-
ing advantages of transformer models to recurrent neural 
networks [215]. Therefore, and in order to push forward the 
state-of-the-art neural networks-based constitutive modeling 
and to accelerate development, standard ways for machine 
learning adaption and implementation into commercial 
software codes need to be established aiming to facilitate 
interdisciplinary work. Nevertheless, the speed with which 
the field of learning constitutive models has evolved in the 
last decade makes us look forward to new developments in 
this regard as well as to developments tackling the above 
mentioned challenges in the near future.
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