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A B S T R A C T   

Multimodal chromatography has emerged as a promising technique for antibody purification, owing to its ca
pacity to selectively capture and separate target molecules. However, the optimization of chromatography pa
rameters remains a challenge due to the intricate nature of protein-ligand interactions. To tackle this issue, 
efficient predictive tools are essential for the development and optimization of multimodal chromatography 
processes. In this study, we introduce a methodology that predicts the elution behavior of antibodies in multi
modal chromatography based on their amino acid sequences. We analyzed a total of 64 full-length antibodies, 
including IgG1, IgG4, and IgG-like multispecific formats, which were eluted using linear pH gradients from pH 
9.0 to 4.0 on the anionic mixed-mode resin Capto adhere. Homology models were constructed, and 1312 
antibody-specific physicochemical descriptors were calculated for each molecule. Our analysis identified six key 
structural features of the multimodal antibody interaction, which were correlated with the elution behavior, 
emphasizing the antibody variable region. The results show that our methodology can predict pH gradient 
elution for a diverse range of antibodies and antibody formats, with a test set R2 of 0.898. The developed model 
can inform process development by predicting initial conditions for multimodal elution, thereby reducing trial 
and error during process optimization. Furthermore, the model holds the potential to enable an in silico manu
facturability assessment by screening target antibodies that adhere to standardized purification conditions. In 
conclusion, this study highlights the feasibility of using structure-based prediction to enhance antibody purifi
cation in the biopharmaceutical industry. This approach can lead to more efficient and cost-effective process 
development while increasing process understanding.   

1. Introduction 

At present, the monoclonal antibody (mAb) production relies on 
chromatographic purification, which is integrated into a templated 
platform process [1]. Multimodal chromatography has emerged as a 
highly selective separation method compared to using single-mode 
interaction resins [2,3]. Specifically, the application of multimodal 
chromatography in the primary capture from harvested cell culture fluid 
and subsequent polishing steps has demonstrated its effectiveness in 
separating process and product-related impurities [4–6]. The enhanced 
selectivity of multimodal resins stems from orthogonal physicochemical 
interactions with the molecule surface [7,8]. In this context, ligands 
functionalized with electrostatic, hydrophobic, aromatic, and/or 
hydrogen bonding groups are commonly used, as illustrated by the 

Capto adhere ligand in Fig. 1c [9]. 
Owing to the intricate multimodal interaction, a broad range of 

operating conditions must be assessed, as the purification is constraint to 
a narrow, molecule-specific parameter window of buffer conductivity, 
pH, modulator concentration, and temperature compared to unimodal 
chromatography, which can restrict molecule manufacturability [10, 
11]. To support process development, extensive research has been 
conducted to enhance process understanding by examining multimodal 
protein-ligand interaction alongside efficient screening methodologies. 
Macroscopic effects have been explored through batch and 
dynamic-binding experiments, which were described using thermody
namic models [12–14]. To improve the resolution of macroscopic ob
servations, domain contributions of multimeric proteins and the impact 
of amino acid substitutions in homologous protein libraries were 
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investigated [15–18]. For a molecular level of detail, spectroscopic 
evaluation of protein-ligand pairs combined with protein labeling 
techniques such as atomic force microscopy, nuclear magnetic reso
nance spectroscopy, or mass spectrometry have been employed [19–22]. 
Additionally, molecular dynamics simulations and the calculation of 
theoretical physicochemical properties shed light on the complex 
protein-ligand interactions [23–26]. To bridge the gap between the 
molecular-level of detail and macroscopic observations, quantitative 
structure-property relationship (QSPR) models were developed, 
restricted by the amount of available data [15,27–33]. Conversely, 
automated screening setups using liquid-handling stations or controlled 
pH-gradients have been utilized to support process development or 
assess molecule manufacturability profiles [34,35. 

Despite recent advancements in increasing the process understand
ing of multimodal mAb purification, the complexity and sensitivity of 
multidomain proteins towards multimodal interactions limits their 
widespread application in biopharmaceutical development [36,37]. 
Predictive tools to facilitate the integration of multimodal chromatog
raphy into the mAb purification platform and assess molecule 

manufacturability remain scarce, while demonstrating significant suc
cess in other areas of the development cycle, such as candidate screening 
or the prediction of agglomeration propensity during formulation 
development [38,39]. 

In this study, we developed a QSPR model to predict mAb retention 
in multimodal chromatography during linear pH gradient elution, as 
depicted in Fig. 1. Initially, a comprehensive dataset was acquired 
comprising antibody-specific descriptors calculated from homology 
models and chromatographic pH retention for 64 full-length mAbs, 
including multiple IgG-like derivatives. Subsequently, an empirical 
model was developed using Gaussian Process Regression (GPR) and 
thoroughly validated. Finally, the GPR model was interpreted, providing 
insights into the multimodal interaction mechanism. The validated 
model can be employed to support process development and enable a 
candidate manufacturability assessment based solely on sequence in
formation. Moreover, the mechanistic insights can contribute to the 
development of advanced adsorption models, transitioning from a 
macroscopic process understanding to the molecular level. 

2. Material and methods 

2.1. Chromatography resin, buffers, and molecules 

In this study, the multimodal strong anion exchanger Capto adhere 
(Cytiva, Marlborough, USA) was utilized during the chromatographic 
experiments. A prepacked Capto adhere HiScreen column (7.7 × 100 
mm, Cytiva) with a column volume (CV) of 4.7 mL was employed, as 
detailed in Section 2.2. The resin surface is functionalized with the N- 
Benzyl-N-methyl ethanol amine ligand, as depicted in Fig. 1c. This 
ligand exhibits multimodal functionality due to its capacity for ionic 
interaction, hydrogen bond formation, and hydrophobic interactions 
[9]. 

All buffer substances were purchased from Sigma-Aldrich Co LLC 
(Saint Louis, USA), while ultrapure water was filtered with the Milli-Q 
Advantage A10 (Merck Millipore, Burlington, USA) water purification 
system. The linear pH gradients necessitated a multicomponent buffer 
system compatible with anion exchange chromatography. Conse
quently, an anionic multicomponent buffer was selected to avoid the 
introduction of unspecified counterions while providing a broad buffer 
capacity within the pH range of 9.0 to 4.0 [40]. The buffer system was 
adapted from Kröner and Hubbuch [41] and consists of 9.1 mM 1, 
2-ethanediamine, 6.4 mM 1-methylpiperazine, 13.7 mM 1,4-dimethylpi
perazine, 5.8 mM bis-tris, and 7.7 mM hydroxylamine. In addition, 125 
mM sodium chloride and 75 mM hydrochloric acid were incorporated, 
resulting in a total of 200 mM chloride counterions and a conductivity of 
20 mS/cm. The addition of sodium chloride was required to achieve 
mixed-mode behavior and increase protein solubility [42]. Furthermore, 
the increased conductivity values enabled the augmentation of cation 
exchange elution pool as load material, which is regularly employed 
prior to the salt tolerant Capto adhere resin within the antibody puri
fication process [42]. Thereafter, the equilibration and the elution buffer 
were titrated to pH 9.0 and 4.0 using 1 M sodium hydroxide. Other 
buffers used in the chromatographic experiments included 1 M acetic 
acid for column regeneration, 1 M sodium hydroxide for column 
cleaning, and 20 % ethanol for column storage. 

The study involved 64 full-length IgG derivatives (Boehringer 
Ingelheim Pharma GmbH & Co. KG, Biberach, Germany), comprising 62 
human-origin and 2 humanized murine-origin antibodies. These anti
bodies displayed an extensive range of physicochemical parameters, as 
evidenced by their widely distributed elution behavior, shown in Fig. 2a. 
The antibody set included 33 IgG1s, 20 IgG bispecifics with two single- 
chain fragment variables (scFv) appended to each heavy chain C-ter
minus (IgG(H)-scFv), 8 IgG4s, 2 Knob-in-Hole bispecifics (KiH), and 1 
KiH trispecific with a single scFv attached to the C-terminus of the Hole 
chain (KiH-scFv). The antibody expression was achieved using a stably 
transfected Chinese hamster ovary cell line, followed by capture through 

Fig. 1. QSPR modeling workflow. A three-step process is shown that includes 
a) the data acquisition for model training and testing, b) the statistical modeling 
using Gaussian Process Regression, and c) the model interpretation by evalu
ation of the identified descriptor-output correlations. The antibody structure 
depicts a modification of the PDB entry 1HZH [40]. 
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protein A affinity chromatography. After neutralizing to pH 5.5 and 
sterile filtration using a 0.2 µm filter, the protein solutions were frozen at 
− 70 ◦C. Upon thawing, the final load material was adjusted to a con
centration of 5 g/L, as determined by a NanoDrop 2000c spectropho
tometer (Thermo Fisher Scientific, Waltham, USA). Prior to sample 
application, the load material underwent buffer exchange into the 
equilibration buffer using a 5 mL HiTrap Desalting column (Cytiva) 
according to the manufacturer’s instructions. 

2.2. Linear pH gradient elution 

In this study, all 64 antibodies were eluted by a linear pH gradient 
using the multicomponent buffer system described in Section 2.1. The 
chromatographic experiments were conducted with an ÄKTA Avant 25 
(Cytiva) preparative chromatography system, controlled by the Unicorn 
7.5 (Cytiva) control software, and maintained at a residence time of 5 
min. Initially, the column was equilibrated for 3 CV with the pH 9.0 
buffer. The equilibration was followed by column loading with the 
antibody solution up to a loading density of 1.0 g/L. Subsequently, the 
antibodies were eluted by linearly decreasing the pH from 9.0 to 4.0 
within 10 CV using the elution buffer, while maintaining a constant 
conductivity of 20 mS/cm, as illustrated in Fig. 1a. The retention times 
of the molecules were determined by measuring the first moments of the 
elution peaks through the UV trace at a wavelength of 280 nm. Subse
quently, the corresponding pH values at peak retention were determined 
by correcting the online pH trace of the chromatography system with the 
offline pH measurement of the equilibration and elution buffer, as well 
as accounting for the pH sensor dead volume. Following column elution, 

a 4 CV column regeneration step, a 5 CV cleaning in place procedure, 
and 4 CV column storage step were appended. 

2.3. Antibody homology modeling 

The prediction of the antibody structures was achieved through ho
mology modeling, which was required for the subsequent calculation of 
physicochemical descriptors, as previously described by our group [43]. 
Hereto, the molecular modeling and visualization environment Maestro 
Bioluminate 4.9 (Schrödinger Inc., New York, USA) was employed for 
structure prediction, evaluation, and model refinement. 

The initial homology modeling workflow was adapted from Zhu 
et al. [44] and comprises an automated five-stage process, which in
cludes: (1) framework and complementary-determining region (CDR) 
template selection; (2) variable region model grafting; (3) CDR loop 
modeling and sidechain prediction; (4) full-length antibody modeling; 
(5) energy minimization. Within the workflow, the antibody numbering 
scheme Enhanced Chothia [45] was utilized. The modified crystal 
structure of a human IgG1, 1HZH [46], shown in the Fig. 1a/c, served as 
a full-length template for all molecules except for the IgG4 subtypes, 
which employed the human IgG4 crystal structure 5DK3 [47] instead. 
For structural prediction of the complex bi- and trispecific formats, intra- 
and intermolecular linkers were grafted using homology modeling and 
ab initio prediction to append the independently modeled scFv domains 
to the full-length mAb structures [48]. Hereafter, the initial homology 
models were further refined according to the protocol of Sastry et al. 
[49]. In brief, the protocol includes preprocessing steps to modify and 
validate the hydrogen network, bond order assignment, as well as atom 
naming and numbering. The preprocessing is followed by energetic 
optimization of terminal hydrogen atoms from the amino acid side 
chains and the assignment of protonation states of ionizable groups 
using PROPKA3 [50]. Lastly an all-atom energy minimization is con
ducted using the OPLS4 forcefield with nonhydrogen atoms being con
strained to a root-mean-square deviation of 0.3 Å [51]. 

2.4. Antibody-specific descriptor calculation 

Following the antibody homology modeling, physicochemical de
scriptors were calculated from the protein structures using the molecular 
modeling and visualization environment Bioluminate 4.9 (Schrödinger 
Inc., New York, USA). The utilized descriptor set comprises 165 unique 
features derived from first principal models, as well as parameterized 
empirical models [52]. Moreover, the descriptor set can be subdivided 
into sequence-based descriptors (n = 69) devised from bioinformatic 
scales, structural descriptors (n = 59) encoding for geometric and 
electrostatic properties of the molecule, and patch-specific descriptors 
(n = 37) calculated from the hydrophobic and electrostatic energy of the 
protein surface. Herein, the surface hydrophobicity is calculated by 
employing the atomistic Wildman and Crippen logP parameters [53], 
whereas the electrostatic surface potential is calculated from partial 
charges based on the OPLS4 [51] forcefield as described by Sankar et al. 
[54]. Furthermore, proximal hydrophobic and electrostatic surface 
characteristics are combined into aggregation propensity descriptors. 
The final patch descriptors are derived by binning the calculated surface 
properties into quantifiable features based on their interaction type 
(positive, negative, hydrophobic), size, intensity, and number. 

To increase the resolution of the descriptor set further, a region- 
specific subset (n*=31) of the initial descriptor set is selected and 
calculated for 37 subdomains of the antibody structure. The antibody- 
specific subdomains comprise the light and heavy chain variable re
gions (VL, VL_Fv, VH, VH_Fv), emphasizing the complementarity- 
determining regions (CDR, CDRL, CDRH) and framework regions (FR, 
FRL, FRH), which consist of individual loops (L1, L2, L3, H1, H2, H3), 
and frameworks (LFR1, LFR2, LFR3, LFR4, HFR1, HFR2, HFR3, HFR4). 
On top of the variable region, the antibody constant regions (CL, CH1, 
CH2, CH3) and the hinge region (Hinge) are considered. Furthermore, 

Fig. 2. Distribution of pH retentions derived from linear pH elution experi
ments. a) Histogram illustrating the antibody format-specific retention, and b) 
Histogram displaying the distribution of model training and testing split data. 
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the regional descriptors are extended by seven custom regions to ac
count for the fragment variable (Fv), the fragment antigen binding 
(Fab), the fragment crystallizable (Fc), as well as the sum of the constant 
regions (CR). Additionally, the single-chain fragment variable regions 
(scFv, VLscFv, VLscFv) of the bi- and trispecific formats are considered. 
The final descriptor set comprises 1312 features per molecule including 
the initial 165 global descriptors (All) and 1147 local descriptors, 
providing detailed information about the physicochemical topology of 
the IgG-like structures. Given the large quantity of the descriptors, the 
descriptor naming scheme combines the descriptor location, interaction 
type, and binning strategy, as exhibited in Section 3.2. 

2.5. QSPR model development and evaluation 

A multivariate regression model was established to predict the linear 
pH gradient retention from the antibody-specific descriptor set. Due to 
the high dimensionality of the regression problem, with N = 1312 fea
tures per antibody, paired with the comparably small data set size of M 
= 64 observations, descriptor preprocessing, dimensionality reduction, 
and model evaluation were required. The QSPR workflow was devel
oped with and evaluated by Python 3.9.12 in conjunction with the 
machine learning package scikit-learn 1.0.2 [55]. GPR was utilized to 
predict non-linear relationships between the target vector y = {y(m)}

M
m=1 

and the feature matrix X = {X(n)}
N
n=1, while providing a heteroscedastic 

uncertainty estimation [56,57]. GPR is based on Bayesian inference and 
involves prior assumptions regarding the underlying target function y(x)
that can later be updated in course of the Bayesian update rule, shown in 
Eq. (1). 

P(y(x)|D )∝P(y|y(x),X)P(y(x)) (1) 

Within the Bayesian framework, the model predictions are derived as 
the posterior P(y(x)|D ), which is a gaussian distribution of functions 
conditioned to fit the training data D = {y,X}, as depicted in Fig. 1b. 
During model training, the prior P(y(x)) that defines the similarity and 
the smoothness between the observations is conditioned by maximizing 
the likelihood P(y|y(x),X) of the mean and the variance from the pos
terior distribution to reflect all training data. In this study, the prior is 
derived as a mixed covariance function by multiplying a linear kernel 
with a Matérn class kernel and subsequent addition of a white noise 
kernel [55,57,58]. The addition of a noise kernel is necessary to avoid 
model overfitting by specifying the uncertainty of the measured data as 
visualized by the amplitude of the posterior distribution depicted in 
Fig. 1b. Subsequently, the model is conditioned by minimizing the log 
(marginal likelihood) (LML) of the posterior distribution using the 
L-BFGS-B algorithm [59]. 

The QSPR workflow is initiated by data preprocessing, where empty, 
positional, non-informative, and redundant descriptors are discarded. 
Additionally, several operations are performed on the descriptors to 
account for the structural diversity of the IgG-like molecules. The 
regional antibody descriptors are multiplied by the frequency of the 
given region within the multimer protein, sparse antibody regions 
imputed as zero, and the descriptor regions calculated for both KiH knob 
and hole chains, averaged based on the analysis of Parasnavis et al. [18]. 
The data set is then randomly split into 80 % training data and 20 % test 
data. Lastly, the descriptors are scaled by their standard deviation (SD) 
and centered based on the training data. 

After data preprocessing, dimensionality reduction is performed by 
removing invariant descriptors, which decreases the risk of model 
overfitting and increases model interpretability [60]. Low variance 
(cov(x,x) ≤ 0.01) features are discarded, and the remaining descriptors 
are sorted based on the results of a F-test from a univariate linear 
regression model with the target variable. Hereafter, collinear features 
are removed based on Pearson correlation (ρ ≥ 0.80), and ten highest 
scoring features are selected following the F statistics. Lastly, recursive 
feature elimination (RFE) is conducted by iteratively removing the 

lowest-ranked features according to feature permutation importance 
[61]. Permutation importance is defined as the average increase in 
model deviation when accessing the model performance after shuffling a 
single feature one hundred times while keeping the remaining features 
constant. At each iteration of the RFE procedure, the LML of the current 
model and the mean absolute error (MAE) of leave-one-out cross-
validation are calculated to identify the overall best model. 

The last step of the QSPR workflow comprises model evaluation to 
increase the understanding of the underlying adsorption mechanisms of 
antibodies in multimodal chromatography, as visualized in Fig. 1c. The 
model evaluation includes an assessment of the overall model reliability 
and performance. On top of that, an investigation of the feature inter
dependence, sensitivity, and their contribution to the model predictions 
is conducted, to enable mechanistic interpretability of the model [62]. 
The model performance is assessed through inspection of goodness of fit 
to the training data and goodness of prediction of the test data, including 
an estimation of the model 95 % confidence interval per observation. 
Furthermore, fivefold cross-validation with ten repetitions is employed 
for internal validation of the training data. On the other hand, model 
reliability is analyzed by y-scrambling the full data set one hundred 
times with subsequent calculation of the MAE from leave-one-out 
cross-validation [63]. Feature interdependence is evaluated by investi
gating the pairwise relationships between model features, as well as the 
target variable. Finally, the feature sensitivity and contribution are 
assessed by means of feature permutation importance and partial 
dependence towards the model prediction [61,64,65]. 

3. Results and discussion 

3.1. Elution behavior of antibody formats 

In the course of this study, a large and structurally diverse set of IgG- 
like molecules was examined. All 64 full-length IgGs could be eluted 
from the anionic mixed-mode resin Capto adhere during linear pH 
gradients from pH 9.0 to 4.0 at a constant conductivity of 20 mS/cm. 
Fig. 2 depicts the first moments of the elution peaks from each molecule. 
Upon inspecting the elution distribution, a bimodal trend is apparent 
separating the molecules in two groups of antibodies. The first group 
elutes at a lower pH range (pH 4.00–4.99, m = 20) compared to the 
second group that elutes at a higher pH range (pH 5.71–6.81, m = 43). In 
contrast to the overall distribution mean of pH 5.72, the lower and the 
higher elution groups are centered around pH 4.59 and 6.26, with a 
single IgG1 laying in-between both groups at a pH of 5.33. To investigate 
the elution behavior further, Fig. 2a compares the retention of different 
antibody subclasses and formats that were analyzed in this study, as 
detailed in Section 2.1. The IgG1 subclass depicts the most abundant 
format within the data set and exhibits the broadest retention distribu
tion across both pH groups. Interestingly, the distribution of the struc
turally homologue IgG1 antibodies follows the same trend as the full 
data set, being centered in the higher pH group and skewed towards 
lower pH values. This observation emphasizes that multimodal elution is 
not necessarily dependent on the overall size or shape of the molecule 
but physicochemical properties that are distributed within a structural 
homologue set of proteins, as observed in multiple studies [15,16,31]. 
The IgG-scFv formats exhibit a similar trend, while displaying a nar
rower pH distribution with only two molecules eluting in the lower pH 
group despite having two additional scFv regions attached to the Fc 
domain. Moving forward, the IgG4 antibodies exclusively elute in the 
lower pH group, whereas all KiH formats elute at the upper boundary of 
the observed pH values with a maximum elution pH of 6.79. As only 
three molecules are associated with the KiH format, no inference to
wards this antibody class can be conducted. On the other hand, the main 
structural distinction between the IgG4 subclass and the other anti
bodies is given by the Fc domain, as the remaining formats share similar 
IgG1 backbones. The difference in the elution behavior arising from 
deviating Fc regions leads to the assumption that multiple binding 
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domains on the whole antibody surface exist, as reported in numerous 
studies conducted by the Cramer lab involving cationic mixed-mode 
resins [17,18,20,22,24,26]. In general, IgG4 backbones exhibit fewer 
acidic residues leading to a lower pI, as well as increased surface hy
drophobicity in comparison to IgG1 backbones [66]. These two char
acteristics align with the experimental observation of the IgG4 formats 
to elute in the lower pH group and the mechanism of hydrophobic 
charge induction chromatography (HCIC) [23,67]. According to the 
HCIC mechanism, molecules adsorb through hydrophobic attraction and 
desorb with increasing electrostatic repulsion in course of a pH modi
fication. The lower pI of the IgG4 formats would result in a reduced 
positive surface charge at an acidic pH environment, which in turn 
would lead to a reduced repulsion towards the anionic multimodal 
ligand. 

3.2. QSPR modeling of pH gradient retention 

An integral part of statistical model development is the identification 
of a predictive feature set and a suitable mapping function followed by 
the assessment of model quality. In this study, a GPR model was used to 
regress the pH retention of a large antibody set (M = 64) to their 
physiochemical properties, which were encoded into 1312 descriptors 
per molecule, as detailed in Sections 2.4 and 2.5. 

Initially, the data set was divided into training and testing data for 
the validation of the empirical model. Fig. 2b displays the distribution of 
randomly selected molecules into 20 % test set (m = 13) and 80 % 
training set (m = 51), ensuring a representative distribution of pH re
tentions and molecule formats. Within the test set, four molecules 
categorize to the lower pH group and nine molecules to the higher pH 
group. Furthermore, the test set comprises six IgG1, four IgG-scFv, two 
IgG4, and one KiH molecule yielding a robust test set selection, as listed 
in Table 1. 

Thereafter, a two-staged feature selection was conducted using the 
training data to reduce 1102 preprocessed descriptors to six features. 
The first stage involved filter methods to efficiently discard the majority 
of uninformative or convoluted descriptors. Initially, low variance 
(cov(x,x) ≤ 0.01) features were removed, reducing the feature number 
to 1083. The remaining features were sorted according to their unimodal 
interaction towards the target variable, using linear regression models. 
Multicollinear descriptors with significant Pearson correlation (ρ ≥
0.80) were removed, as suggested by Sankar et al. [52]. Although 
collinearity not necessarily diminishes model predictiveness, the 
removal of multicollinear descriptors was required to improve mecha
nistic interpretability. From the remaining 413 features, ten descriptors 
were selected based on their linear relationship towards the pH reten
tion, as depicted in the bottom x-axis of Fig. 3. The selected features 

provided insights into the multimodal binding mechanism of IgG-like 
molecules, as well as relevant antibody domains. Mostly 
charge-related descriptors were selected, with eight out of ten de
scriptors encoding for electrostatic interactions. The two remaining 
descriptors gave insight into hydrophobic contributions. The small 
representation of hydrophobic descriptors could be a result of the weak 
pH dependency of hydrophobic attraction compared to electrostatic 
interaction [24,68]. The strongest linear relationship was observed for 
the isoelectric point (pI) of the molecules termed “pI_model_pKA_based”, 
which categorizes as a global and structure-based descriptor. The other 
descriptors were either pointing towards the Fab domain or the constant 
region, as well as local descriptors within both regions. Furthermore, 
solely structure-based and patch descriptors were identified during the 
first stage of feature selection, while the relationship towards 
sequence-based descriptors deemed less significant. Comparable global 
descriptors have been identified in multiple studies, including the 
structure-based molecule pI [15,27,28,30–32]. Interestingly, no 
aggregation-propensity descriptors were selected, which in theory 
should be able to encode for adjacent electrostatic-hydrophobic in
teractions as observed for Capto adhere in a previous study [32]. On the 
other hand, proximal interactions have not been reported in a more 
recent study concerning Capto adhere, selecting from a significantly 
larger pool of initial descriptors compared to the previous study [69]. It 
remains an open question whether adjacent patch interactions are not as 
pronounced in Capto adhere binding as reported for multimodal cationic 
resins [16,31] or if the current class of proximal descriptors [30,54] is 
not sufficiently parameterized to describe multimodal anionic in
teractions. In addition, no descriptors from the custom scFv region were 
chosen during the filter process, which could indicate a minor role of this 
region in antibody binding. A possible explanation for the less signifi
cant role of the scFv domain compared to the Fv domain of the bispecific 
mAbs could be related to steric constraints due to the engineered inter- 
and intrachain linkers limiting the configurational flexibility of this re
gion [70]. To answer these questions, more research is required to 
investigate local ligand interactions as by using recent labeling methods 
[22]. 

In the second stage of feature selection, recursive feature elimination 
(RFE) was employed based on model performance, as illustrated in 

Table 1 
Overview of goodness of test set prediction and model uncertainty.  

Molecule Observed 
[pH] 

Predicted 
[pH] 

Residual 
[pH] 

SD 
[pH] 

CI95 [pH] 

IgG1 (1) 4.18 4.23 0.05 0.44 3.36–5.09 
IgG1 (2) 4.45 4.69 0.24 0.29 4.12–5.25 
IgG4 (3) 4.7 4.75 0.05 0.53 3.72–5.79 
IgG4 (4) 4.98 5.00 0.02 0.57 3.89–6.11 
IgG-scFv 

(5) 
5.83 6.17 0.34 0.27 5.65–6.70 

IgG1 (6) 5.94 6.26 0.32 0.39 5.50–7.01 
IgG-scFv 

(7) 
6.12 6.48 0.36 0.25 5.98–6.97 

IgG-scFv 
(8) 

6.13 5.71 0.42 0.26 5.20–6.22 

IgG-scFv 
(9) 

6.22 6.15 0.07 0.27 5.61–6.68 

IgG1 (10) 6.32 5.88 0.44 0.26 5.38–6.38 
IgG1 (11) 6.51 6.70 0.19 0.34 6.05–7.36 
IgG1 (12) 6.71 6.44 0.27 0.25 5.94–6.93 
KiH (13) 6.79 6.56 0.23 0.36 5.84–7.27  

Fig. 3. Recursive feature elimination with cross-validation of training data. 
Starting with ten features on the right-hand side of the figure, a model is 
initially fitted using all available features. At each iteration, the model is 
evaluated by calculating the cross-validation mean absolute error (MAE CV), 
the standard deviation (SD) of cross-validation scores, and the log(marginal 
likelihood) (LML) of the given model. The feature with the lowest permutation 
importance is eliminated per iteration, as indicated on the bottom x-axis. Once 
all but one feature is removed, the best model with the lowest log(marginal 
likelihood) is selected. 
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Fig. 3. A GPR model with a mixed covariance function was utilized to 
estimate the target function. The Bayesian method was chosen to ac
count for both linear and nonlinear feature contributions in the multi
modal binding mechanism, while accurately estimating heteroscedastic 
prediction uncertainty, as previously observed in cation exchange 
chromatography [43]. During the RFE process, GPR models were 
sequentially fitted to the training data, starting with the ten most sig
nificant descriptors on the right-hand side of Fig. 3 and ending with a 
single feature for the final model on the left-hand side of the figure. At 
each iteration, the feature with the lowest permutation importance or 
the smallest impact on model accuracy was removed. The calculation of 
feature permutation importance was required since no meaningful 
model weights could be extracted from the non-linear GPR model. 
Simultaneously, the log(marginal likelihood) of the model conditioning 
and the cross-validation mean absolute error of model prediction were 
recorded at each iteration. 

Upon evaluating Fig. 3, a distinct trend for both the LML and the 
cross-validation MAE, along with its standard deviation is displayed, 
identifying the optimal GPR model as the one using six features. The 
LML of model conditioning ranged from 34.698 for the sixth to 51.133 
for the final RFE iteration. Meanwhile, the cross-validation MAE fell 
within a pH range of 0.265 pH for the sixth to 0.421 pH for the penul
timate iteration. Furthermore, the SD of cross-validation was lowest at 
the selected model at 0.215 pH, indicating increased model robustness 
compared to the largest SD observed for the final RFE iteration with a 
MAE SD of 0.373 pH. Overall, the cross-validation score appeared more 
susceptible to variation in identifying the most predictive model 
compared to the Bayesian likelihood, thus demonstrating the advantage 
of the Bayesian approach, not only for feature mapping, but also for 
feature selection. 

The six selected features comprised the molecule pI as a global 
charge-related descriptor, three local charge descriptors within the 
antibody Fv domain, namely “LFR4_Positive_Patch_Energy_gt50”, 
“CDR_Negative_Patch_Energy”, and “CDR_Positive_Patch_Energy”, as 
well as electrostatic and hydrophobic contributions from the constant 
region and the Fab domain through the descriptors “CR_Hy
drophobic_SASA”, and “Fab_Zeta_Potential”. According to the descriptor 
naming scheme, “LFR4_Positive_Patch_Energy_gt50” is defined as the 
summation of all positive patches within the antibody LFR4 region with 
a patch area larger than 50 Å2. Interestingly, the selected features 
included two custom descriptors, encoding for the antibody constant 
region and its Fab domain. In contrast, the local descriptors within the 
constant region were discarded, despite multiple studies highlighting 
the importance of the Hinge region and the CH2–CH3 interface in 
multimodal interaction [20-23,26]. Furthermore, the removal of the 
descriptors from the constant region and the Fab domain had less impact 
on the LML and the cross-validation MAE compared to the removal of 
local descriptors within the Fv domains. This finding emphasizes the 
significance of the Fv domain, particularly the CDRs, for antibody 
binding to multimodal chromatography resins, as observed by multiple 
authors for cationic MMC [16–18,24,31,33]. A comprehensive evalua
tion and interpretation of the model features will be provided in Section 
3.3. 

Following the feature selection, the predictiveness of the final QSPR 
model was evaluated via internal and external model validation. 
Accordingly, the goodness of fit to the training data and the goodness of 
prediction for the test data were assessed, as depicted in Fig. 4. Both the 
training set and the test set, consisting of 80 % (m = 41) and 20 % (m =
13) of the antibodies from the full data set are displayed. Furthermore, 
the pH observations and predictions of the test set, as well as molecule 
residuals and uncertainties are listed in Table 1. Again, an agglomera
tion of data points into a lower eluting and a higher eluting pH group is 
evident. The upper part of the figure compares the observed and pre
dicted pH retention, while the lower part focuses on the distribution of 
the molecule residuals. Additionally, linear fits to the scattered training 
and test set molecules are displayed to enable a quick assessment of 

model performance against a theoretical ideal model with zero error in 
predictions. On the top figure, the heteroscedastic 95 % CI for each 
molecule is indicated, while the lower figure presents uniformly 
dispersed residuals, signifying the absence of systematic model errors. 
The model’s uncertainty varies between one and two pH units, while the 
overall accuracy demonstrates a maximum deviation of 0.44 pH for IgG1 
(10), as outlined in Table 1. This increased uncertainty, in comparison to 
the prediction accuracy, was necessary to avoid model overfitting, as 
discussed in Section 2.5. The source of this uncertainty might be 
attributed to the descriptor set’s inaccuracy to fully capture the pH 
sensitivity of multimodal protein adsorption [3,7,13,24]. 

When evaluating the model performance metrics, the fit of the final 
GPR model to the training data achieved a coefficient of determination 
of R2 = 0.954, with a MAE of 0.132 pH, and an average SD of model 
uncertainty of 0.281 pH. Internal model validation of the training data 
through five-fold cross-validation with ten repetitions resulted in a mean 
Q2 of 0.780 and a MAE of 0.279 pH. Lastly, the pH retentions of the 
external test set could be predicted with a Q2 of 0.898, a MAE of 0.231 
pH, and an average SD of model uncertainty of 0.344 pH, as detailed in 
Table 1. Comparing the results of the model training and testing, similar 
scores were achieved for the R2 and external Q2, despite showing a 
decreased model accuracy of approximately 0.1 pH, as well as an 
increased uncertainty in the model predictions. The similarity of these 
quality metrics underlines the robustness of the empirical model, as 
significantly diverging training and test results would suggest model 
overdetermination. The model’s robustness is further supported by the 
y-scrambling results in Appendix Fig. A1, which indicates a less than 1 % 
probability of achieving the model performance by chance. Continuing 
with the internal model validation, a divergence between the model fit 
and cross-validation scores is apparent. Larger divergence during cross- 
validation is a common phenomenon of empirical models and becomes 

Fig. 4. Goodness of pH elution prediction (R2, Q2). The upper part of the figure 
compares the predicted with the experimental pH elution for the molecules in 
the random training and the testing data. An ideal model is represented by a 
straight line, where predicted and experimental observations have zero error. 
For each molecule, the 95 % confidence interval (CI95) of prediction is calcu
lated. The bottom part of the figure displays a residual plot, with the y-axis 
normalized to the absolute deviation of model prediction. 
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especially pronounced for small data sets, as the missing data used for 
subsampling can impair model performance. 

Upon examining the 95 % CI of the model predictions, comparably 
large intervals are apparent for the molecules eluting in the lower pH 
group. When evaluating the SDs listed in Table 1, the three largest model 
uncertainties were observed for the molecules IgG4 (4), IgG4 (3), and 
IgG1 (1) in a descending order, with SDs of 0.57, 0.53, and 0.44 pH, 
respectively. The elution pH of both IgG4 formats within test set was 
predicted with the highest uncertainty among all molecules examined. 
The substantial 95 % CI of the two IgG4s may indicate an antibody 
format-dependent uncertainty captured by the empirical model, as all 
formats except the IgG4 type molecules shared IgG1 backbones, as 
previously discussed. Exemplarily, the KiH antibody was predicted more 
accurately than the IgG4 formats, despite its bispecific or trispecific 

functionality. Conversely, the molecule with the third largest uncer
tainty was a standard IgG1, eluting at the lower end of the pH spectrum. 
This observation could be attributed to the scarcity of data points in 
close vicinity to the IgG1 (1), compared to molecules in the higher 
eluting pH, potentially leading to impaired model performance. 

In conclusion, the predictive power of the QSPR model relies on both 
the density and the overall number of molecules sharing similar physi
cochemical surface characteristics. In comparison to peer studies on 
(homologue) proteins libraries using a single resin system, our model 
demonstrates a superior performance [15,27,28,30,31]. However, pre
vious models only employed a third of the number of molecules used in 
this study. Considering the performance and broad applicability of the 
validated model in accurately predicting pH retention for a wide range 
of commercially available antibodies based solely on their amino acid 

Fig. 5. Pairwise relationship and distribution of model features and pH elution. The diagonal subfigures display the univariate histograms of the model features, as 
shown on the bottom x-axis. The off-diagonal subfigures illustrate the bivariate relationship between model features, while the bottom row presents the relationship 
between the target variable and the model features. Features are sorted in descending order based on their absolute Pearson correlation coefficient (p) towards the 
target variable within the training data, indicated in the upper left corner of each subplot. All subfigures differentiate between antibody formats. 
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sequence, two potential applications emerge. First, the model can be 
employed to predict an initial pH set point for the anionic mixed-mode 
resin Capto adhere during early process development, which is espe
cially advantageous for multi-domain proteins as mAbs concerning the 
pH-sensitivity of their domain contributions to chromatographic reten
tion [24]. Second, it can serve as an in silico screening tool for identi
fying molecule manufacturability in regards to downstream 
purification. 

3.3. Model inspection and interpretation 

After the final QSPR model was established, the feature contributions 
within the model were further analyzed to investigate the interaction 
mechanism of the antibodies to the anionic multimodal resin illustrated 
in Fig. 1c. Throughout this study, in particular charged-based de
scriptors within the variable region appeared correlated to the multi
modal interaction. Therefore, a model inspection was conducted, 
identifying interdependencies between the selected features, to support 
the mechanistic interpretability of the final model. Fig. 5. depicts the 
histogram of the standardized and mean centered feature values for the 
entire data set on the top diagonal axes (column a – f), as well as the 
pairwise relationship of model features on the off-diagonal axes (row 2 – 
6). Additionally, the pairwise relationship of the model features to the 
target variable is appended to the figure bottom (row 7) and sorted 
according to the linearity of the training set features to the pH retention. 
Furthermore, the different molecule formats are indicated in each sub
plot and the Pearson correlation coefficient p, calculated from the entire 
data set. 

When evaluating the individual feature distributions shown in the 
top diagonal axes of Fig. 5, similar trends to the pH retention introduced 
in Fig. 2a are evident. In both figures, the IgG1 and IgG-scFv formats 
display the broadest distribution throughout the parameter space, 
whereas the IgG4 and KiH formats show a clustered behavior. Notably, 
the distribution of the molecule pI, shown in subfigure (a1) of Fig. 5 is 
comparable to the distribution of the target variable, shown in Fig. 2a. 
The similarity between the molecule pI distribution and the pH retention 
distribution is supported by their strong positive linear correlation of p =
0.74 shown in Fig. 5, subfigure (a7). The skewed and bimodal distri
bution of the pH retention shown in Fig. 2a appears to be primarily 
influenced by the molecule pI. In this context, the abundance of elevated 
pI values within the full data set, in contrast to the significantly lower pI 
values of the IgG4 formats, could explain the bimodal appearance of the 
pH retention distribution. The global pI, however, depends on individual 
contributions from the antibody subdomains. Consequently, further 
insight into the antibody interactions can be obtained by inspecting the 
zeta potential distribution of the Fab domain in Fig. 5, subfigure (c3), as 
well as the hydrophobic accessible surface area (SASA) distribution of 
the constant region shown in subfigure (d4). The IgG4 formats exhibit a 
reduced zeta potential of their Fab regions, while the three KiH formats 
define the upper limit of zeta potential. The surface charge of the Fab not 
only translates to an increased pI, as assessed by their positive correla
tion in subfigure (a3), but also correlates positively to the pH retention, 
as depicted in subfigure (c7). Moreover, the Fab zeta potential is 
correlated to the electrostatic surface potential of the CDRs encoded via 
their positive and negative patch energy, shown in subfigure (b3) and 
(c6). Upon inspecting the distribution of hydrophobic SASA from the 
antibody constant region in subfigure (d4), again, two groups are 
apparent. The first group represents less hydrophobic molecules with a 
IgG1 backbone, while the second group is comprised of IgG4 antibodies 
exhibiting increased surface hydrophobicity, which it is expected 
considering the conserved nature of the Fc domain. In this context, the 
hydrophobic clustering behavior might obscure the true importance of 
the constant region to the multimodal binding by weakening the linear 
relationship of its contribution. 

In conclusion, the strong correlation of the pH retention to Fab 
domain, and particularly, the antibody CDRs does not explicitly imply a 

Fab-first binding orientation but suggests a complex interaction mech
anism that could depend on multiple binding domains on the entire 
antibody surface. This assumption is supported by the strong correlation 
of the global pI to the pH retention and the results published by Rob
inson et al., studying domain contributions and pH dependency of the 
multimodal antibody interaction [17,24]. 

Intriguingly, the energy of large positive patches in the LFR4 region 
shown in Fig. 5, subfigure (e7) exhibited no significant correlation with 
the target variable, other features, or clustering behavior. However, it 
was removed second to last during the RFE process depicted in Fig. 3, 
indicating the potential relevance of this region. 

To further investigate the descriptor contributions and finalize the 
mechanistic interpretation, the partial dependences of the features 
within the GPR model were analyzed, as depicted in Fig. 6. Partial 
dependence allows for examining the strength and form of non-linear 
feature contributions to a multivariate model, as well as identifying 
feature interdependencies. In brief, a single factor perturbation is per
formed by marginalizing all but one feature and permutating it within 
the full feature range. Subsequent recording of output predictions for a 
single molecule result in its individual conditional expectation (ICE), 
while averaging over all ICEs yields the partial dependence of the 
feature. Consequently, heterogeneous behavior of the ICEs can reveal 
feature interdependencies. However, during the interpretation of partial 
dependence, it is crucial to consider multicollinearity within the 
inspected feature set, as implausible parameter pairs can form, such as 
the simultaneous occurrence of strong positive and strong negative 
patch energies in a specific region [71]. 

The partial dependences of the model features shown in Fig. 6 share 
the same order as displayed in the bottom row of Fig. 5 and follow 
similar relationships suggested by the scattered data. The feature dis
tributions of each descriptor are indicated by deciles lines on the x-axis. 
Additionally, comparable permutation importance’s are calculated in a 
range in between 0.12 and 0.18 pH for each feature and are displayed on 
the upper left corner of the subplots already employed during the RFE. 
Furthermore, a distinction between the training and test set is made, 
which implies robust model performance based on comparable func
tions of the partial dependences throughout the full feature space. Upon 
inspecting the ICE lines, all but the molecule pI and the hydrophobic 
SASA of the constant region shown in subfigure (d) display pronounced 
heterogeneous behavior. This behavior can be explained for the Fab and 
the CDR descriptors based on their mutual linearity, as discussed earlier. 
Moreover, the feature collinearity leads to underestimation of permu
tation importance, which implies a dominating role of the variable re
gion during the multimodal interaction when adding up their individual 
permutation importance’s. Only the heterogeneous ICE lines of the en
ergy from large positive patches in the LFR4 region shown in subfigure 
(e) provide further insight into a potential interaction mechanism. It 
appears that for early eluting molecules during the pH gradient, 
increasing the positive patch energy in the LFR4 region, an area in- 
between the L3 loop and the VL-CL interface, has a negligible effect 
on the pH retention. Conversely, an increase of positive patch energy in 
the LFR4 region shifts the retention of strong binding molecules more 
than one pH unit. In conclusion, the ICE lines of the large positive 
patches in the LFR4 region suggest that the LFR4 region can contribute 
to a significant binding domain, as recently identified by Parasnavis 
et al. [18]. Furthermore, the contribution of the LFR4 region to the 
antibody binding is dependent from the LFR4 surface charge, leading to 
an increased adsorption in the absence of strongly repelling positive 
patches. 

Considering all feature contributions, the multimodal antibody- 
ligand binding appears to be driven by linear contributions of electro
static attraction and repulsion from the CDRs but further depends on 
significant binding domains throughout the entire antibody surface, as 
implied by the strong relationship to the global pI and the constant re
gion. A significant role of adjacent electrostatic-hydrophobic patches in 
Capto adhere binding was not observed but might be attributed to 
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inadequate descriptors to encode for multimodal anionic interaction, as 
discussed in Section 3.2. 

4. Conclusion 

In this study, we developed a QSPR model to predict pH gradient 
elution in multimodal chromatography using a diverse set of therapeutic 
antibodies. In total 64 IgG-derivates were included, categorized into five 
therapeutic antibody formats, which exhibited distinctive chromato
graphic behavior. Throughout the QSPR workflow, physiochemical 
characteristics tailored for antibody description were derived from ho
mology modeling and regressed to the pH retention. A rigorous feature 
selection was conducted, reducing the initial descriptor count from 1312 
to six in course of a two-staged feature selection process. The utilization 
of GPR as a Bayesian modeling approach proved advantageous due to its 

strong model performance, heteroscedastic uncertainty estimation, and 
non-linear feature identification. 

Our experimental results demonstrate that the IgG backbone signif
icantly impact chromatographic retention, as indicated by the compa
rable elution behavior of the IgG4 molecules. However, the main driver 
of multimodal interaction is presumed to be in the antibody Fv domain, 
as homologous IgG1 derivatives showed diverging elution trends. The 
feature dependencies of our QSPR model support these findings and 
shed light on a complex adsorption mechanism in multimodal chroma
tography. The proposed mechanism originates from the CDR region but 
involves the entire antibody structure due to a combination of electro
static and hydrophobic contributions. 

The overall model performance and its mechanistic interpretability 
allow for its application in an accelerated process development of IgG- 
like purification based solely on sequence information. Our model can 

Fig. 6. Partial dependence of pH elution from model features of training and test data. Each subfigure depicts the model response when permutating the features in 
their normalized feature range. The individual conditional expectation lines represent the target prediction for each molecule, while the partial dependence of the 
feature is given by their mean values. The feature permutation importance (PI) towards the target prediction is shown in the upper left corner of each subplot. The 
decile lines at the bottom of each subplot indicate the frequency of the feature values within the data set. 
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replace the experimental screening of initial process pH in multimodal 
chromatography, which is particularly beneficial for the material and 
time-constrained early process development. Furthermore, our model 
can serve as an in silico screening approach to identify candidates suit
able for purification by multimodal chromatography. Lastly, the iden
tified feature dependencies could aid in the development of improved 
mechanistic chromatography models by considering a molecular level of 
detail. In this context, multiscale modeling through the correlation of 
mechanistic isotherm parameters to molecular-level descriptors could 
be considered as an intermediate step. To enhance current QSPR models 
and address the structural diversity of engineered biologics, future 
research should target the development of global descriptors to 
encompass multimodal surface interactions, as well as protein topology, 
independent from molecule structure. 
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Appendix 

Fig. A1

Fig. A1. Significance of y-scrambled cross-validation for pH elution prediction. The cross-validated error of the original data set is plotted against the cross-validated 
error during 100 permutations of the target variable. The p-value represents the probability of obtaining the original cross-validation score by chance, serving as an 
indicator of the true dependency between the target variable and the model features. 
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