KIT | KIT-Bibliothek | Impressum | Datenschutz

Privacy‐preserving peak time forecasting with Learning to Rank XGBoost and extensive feature engineering

Semmelmann, Leo 1; Resch, Oliver 2; Henni, Sarah 3; Weinhardt, Christof ORCID iD icon 1
1 Institut für Wirtschaftsinformatik und Marketing (IISM), Karlsruher Institut für Technologie (KIT)
2 Physikalisches Institut (PHI), Karlsruher Institut für Technologie (KIT)
3 Institut für Programmstrukturen und Datenorganisation (IPD), Karlsruher Institut für Technologie (KIT)

Abstract:

In modern power systems, predicting the time when peak loads will occur is crucial for improving efficiency and minimising the possibility of network sections becoming overloaded. However, most works in the load forecasting field are not focusing on a dedicated peak time forecast and are not dealing with load data privacy. At the same time, developing methods for forecasting peak electricity usage that protect customers' data privacy is essential since it could encourage customers to share their energy usage data, leading to more data points for the effective management and planning of power grids. Hence, the authors employ a dedicated Learning to Rank XGBoost algorithm to forecast peak times with only ranks of loads instead of absolute load magnitudes as input data, thereby offering potential privacy-preserving properties. We show that the presented Learning to Rank XGBoost model yields comparable results to a benchmark XGBoost load forecasting model. Additionally, we describe our extensive feature engineering process and a state-of-the-art Bayesian hyperparameter optimisation for selecting model parameters, which leads to a significant improvement of forecasting accuracy. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000163920
Veröffentlicht am 15.11.2023
Originalveröffentlichung
DOI: 10.1049/stg2.12137
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Programmstrukturen und Datenorganisation (IPD)
Institut für Wirtschaftsinformatik und Marketing (IISM)
Physikalisches Institut (PHI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 2515-2947
KITopen-ID: 1000163920
Erschienen in IET Smart Grid
Verlag Institution of Engineering and Technology (IET)
Band 7
Heft 2
Seiten 172-185
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Vorab online veröffentlicht am 22.10.2023
Nachgewiesen in Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page