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a b s t r a c t

The U.S. COVID-19 Forecast Hub aggregates forecasts of the short-term burden of COVID-
19 in the United States from many contributing teams. We study methods for building an
ensemble that combines forecasts from these teams. These experiments have informed
the ensemble methods used by the Hub. To be most useful to policymakers, ensemble
forecasts must have stable performance in the presence of two key characteristics
of the component forecasts: (1) occasional misalignment with the reported data, and
(2) instability in the relative performance of component forecasters over time. Our
results indicate that in the presence of these challenges, an untrained and robust
approach to ensembling using an equally weighted median of all component forecasts
is a good choice to support public health decision-makers. In settings where some
contributing forecasters have a stable record of good performance, trained ensembles
that give those forecasters higher weight can also be helpful.

© 2022 The Authors. Published by Elsevier B.V. on behalf of International Institute of
Forecasters. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Accurate short-term forecasts of infectious disease
ndicators (i.e., disease surveillance signals) can inform
ublic health decision-making and outbreak response ac-
ivities such as non-pharmaceutical interventions, site
election for clinical trials of pharmaceutical treatments,
nd the distribution of limited healthcare resources (Dean
t al., 2020; Lipsitch et al., 2011; Wallinga et al., 2010).
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Epidemic forecasts have been incorporated into public
health decision-making in a wide variety of situations, in-
cluding outbreaks of dengue fever in Brazil, Vietnam, and
Thailand (Colón-González et al., 2021; Lowe et al., 2016;
Reich et al., 2016) and influenza in the U.S. McGowan et al.
(2019).

These efforts frequently use ensemble forecasts that
combine predictions from many models. In a wide ar-
ray of fields, ensemble approaches have provided consis-
tent improvements in accuracy and robustness relative to
standalone forecasts (Gneiting & Raftery, 2005; Polikar,
2006). The usefulness of ensemble forecasts has also been
demonstrated repeatedly in multiple infectious disease
national Institute of Forecasters. This is an open access article under
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settings, including influenza, Ebola, dengue, respiratory
syncytial virus, and others (Johansson et al., 2019; Mc-
Gowan et al., 2019; Reich et al., 2019; Reis et al., 2019;
Viboud et al., 2018; Yamana et al., 2016). In light of
this record of strong performance, ensembles are natural
candidates for forecasts used as an input to high-stakes
public health decision-making processes.

This paper describes ensemble modeling efforts at the
.S. COVID-19 Forecast Hub (https://covid19forecasthub.
rg/, hereafter the ‘‘U.S. Hub’’), from spring 2020 through
pring 2022. Starting in April 2020, the U.S. Hub created
nsemble forecasts of reported incident deaths one to four
eeks ahead in the 50 states, Washington, D.C., and six
erritories, as well as at the national level by combining
orecasts submitted by a large and variable number of
ontributing teams using different modeling techniques
nd data sources. In July 2020, forecasts of incident-
eported COVID-19 cases were added. Of note, the U.S.
ub produces probabilistic forecasts in which uncertainty
bout future disease incidence is quantified through the
pecification of a predictive distribution that is repre-
ented by a collection of predictive quantiles. Since the
nception of the U.S. Hub, these ensemble forecasts have
een provided to the U.S. Centers for Disease Control
nd Prevention (CDC) and have been the basis of official
DC forecasting communications (US Centers for Disease
ontrol and Prevention, 2021).

.1. Related literature

A wide variety of standalone methodological approache
ave been shown to be able to make forecasts of short-
erm outbreak activity that are more accurate than naive
aseline forecasts in various epidemiological settings. Som
pproaches have used existing statistical frameworks to
odel associations between outcomes of interest and
nown or hypothesized drivers of outbreaks, such as
ecent trends in transmission or environmental factors. To
ite just a few examples, methods used include multiscale
robabilistic Bayesian random walk models (Osthus &
oran, 2021), Gaussian processes (Johnson et al., 2018),
ernel conditional density estimation (Brooks et al., 2018;
ay et al., 2017), and generalized additive models (Lauer
t al., 2018). Other models have an implicit or explicit
epresentation of a disease transmission process, such as
ariations on the susceptible–infectious–recovered (SIR)
ompartmental model (Lega & Brown, 2016; Osthus et al.,
017; Pei et al., 2018; Shaman & Karspeck, 2012; Turtle
t al., 2021). Aspects of these modeling frameworks can
lso be combined, for instance using time series methods
o build models that have a compartmental structure or
ncorporate key epidemiological parameters such as the
ffective reproduction number Rt , or models that use a
ime series process to capture systematic deviations from
compartmental core (Agosto et al., 2021; Bartolucci

t al., 2021; Osthus et al., 2019).
There is extensive literature on ensemble forecasting,

ut of particular relevance to the present work is the
esearch on combining, calibrating, and evaluating distri-
utional forecasts (Claeskens et al., 2016; Gneiting et al.,
007; Gneiting & Raftery, 2007; Ranjan & Gneiting, 2010).
1367
We note that prior work on forecast combination has
mostly focused on combining forecasts represented as
probability densities or probability mass functions rather
than forecasts parameterized by a set of discrete quantile
levels, which is the format of the forecasts in the present
study. However, in psychological studies there is a long
history of combining quantiles from multiple distribu-
tions as a mechanism for summarizing distributions of
response times, error rates, and similar quantities across
many subjects (Ratcliff, 1979; Vincent, 1912). More re-
cently, this approach has also been used to combine prob-
abilistic assessments frommultiple subject matter experts
or statistical models in fields such as security threat de-
tection and economic forecasting (Busetti, 2017; Gaba
et al., 2017; Hora et al., 2013; Lichtendahl Jr et al., 2013).
In the context of infectious disease forecasting, Bracher
et al. (2021) conducted a similar but less extensive analy-
sis to the one presented here using data from a related
forecast hub focusing on Germany and Poland. Taylor
and Taylor (2021) recently explored several approaches to
constructing quantile-based ensemble forecasts of cumu-
lative deaths due to COVID-19 using the data from the U.S.
Hub, although they did not generate ensemble forecasts
in real time or appear to have used the specific versions
of ground-truth data that were available for constructing
ensembles in real time.

As mentioned above, ensemble forecasts have also
been used in a variety of other applications in real-time
forecasting of infectious diseases, often with seasonal
transmission dynamics where many years of training data
are available (Colón-González et al., 2021; Reich et al.,
2019; Reis et al., 2019; Yamana et al., 2016). In such ap-
plications, simple combination approaches have generally
been favored over complex ones, with equal-weighted ap-
proaches often performing similarly to trained approaches
that assign weights to different models based on past per-
formance (Bracher et al., 2021; Ray & Reich, 2018). These
results align with theory suggesting that the uncertainty
in weight estimation can pose a challenge in applications
with a low signal-to-noise ratio (Claeskens et al., 2016).

1.2. Contributions of this article

This paper is focused on explaining the careful
considerations that have gone into building a relatively
simple ‘‘production’’ ensemble model for a difficult, high-
stakes, real-time prediction problem: forecasting COVID-
19 cases and deaths in the United States, to support public
health decision-making. We do not empirically investi-
gate the performance of complex forecast combination
strategies from the online prediction literature, which
generally require richer and larger training datasets.

The goal of the U.S. Hub in developing an operational
ensemble was to produce forecasts of the short-term
trajectory of COVID-19 that had good performance on
average and stable performance across time and different
locations. Real-time forecasting for an emerging pathogen
in an open, collaborative setting introduces important
challenges that an ensemble combination method must
be able to handle. First, teams occasionally submitted
outlying component forecasts due to software errors, in-
correct model assumptions, or a lack of robustness to

https://covid19forecasthub.org/
https://covid19forecasthub.org/
https://covid19forecasthub.org/
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Fig. 1. (a) Predictive medians and 95% prediction intervals for incident deaths in Ohio generated on February 15, 2021 by two example component
forecasters. The vertical axis scale is different in each facet, reflecting differences across several orders of magnitude in forecasts from different
forecasters; the reference data are the same in each plot. The data that were available as of Monday, February 15, 2021 included a large spike in
reported deaths that had been redistributed into the history of the time series in the version of the data available as of Monday, February 22, 2021.
In this panel, forecaster names are anonymized to avoid calling undue attention to individual teams; similar behavior has been exhibited by many
forecasters. (b) Illustration of the relative weighted interval score (WIS, defined in Section 2.5) of component forecasters over time; lower scores
indicate better performance. Each point summarizes the skill of forecasts made on a given date for the one- to four-week-ahead forecasts of incident
cases across all state-level locations.
input data anomalies (Fig. 1(a), Supplemental Figures
1 and 2). Second, some component models were gen-
erally better than others, but the relative performance
of different models was somewhat unstable across time
(Fig. 1(b), Supplemental Figures 3 and 4). In particular,
some forecasters alternated between being among the
best-performing models and among the worst-performing
models within a span of a few weeks, which introduced a
challenge for ensemble methods that attempted to weight
component forecasters based on their past performance.
In this manuscript, we explore and compare variations on
ensemble methods designed to address these challenges
and produce real-time forecasts that are as accurate as
possible to support public health decision-makers.

We give detailed results from experiments that were
un concurrently with the weekly releases of ensemble
orecasts from the start of the U.S. Hub in 2020 through
he spring of 2022, as documented in preliminary re-
orts (Brooks et al., 2020; Ray et al., 2021). These exper-
ments provided the evidence for decisions (a) to move
1368
to a median-based ensemble from one based on means in
July 2020; (b) to switch to a trained ensemble for forecasts
of deaths in November 2021; and (c) to implement a
weight regularization strategy for that trained ensemble
starting in January 2022. In a secondary analysis, we also
consider the prospective performance of these methods in
the closely related setting of forecasting cases and deaths
in Europe, to examine the generalizability of the results
from our experiments using data from the U.S.

The following sections document the format and gen-
eral characteristics of COVID-19 forecasts under consider-
ation, the ensemble approaches studied, and the results of
comparing different approaches both during model devel-
opment and during a prospective evaluation of selected
methods.

2. Methods

We give an overview of the U.S. and European Forecast
Hubs and the high-level structure of our experiments in
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Sections 2.1–2.5, and then describe the ensemble methods
that we consider in Section 2.6.

2.1. Problem context: Forecasting short-term COVID-19 bur-
den

Starting in April 2020, the U.S. Hub collected proba-
ilistic forecasts of the short-term burden of COVID-19
n the U.S. at the national, state/territory, and county
evels (Cramer et al., 2022); a similar effort began in
ebruary 2021 for forecasts of disease burden in 32 Euro-
ean countries (European COVID-19 Forecast Hub, 2021).
n this manuscript, we focus on constructing probabilistic
nsemble forecasts of weekly counts of reported cases and
eaths due to COVID-19 at forecast horizons of one to
our weeks for states and territories in the U.S. and for
ountries in Europe. A maximum horizon of four weeks
as set by collaborators at the CDC as a horizon at which

orecasts would be useful to public health practitioners
hile maintaining reasonable expectations of a minimum
tandard of forecast accuracy and reliability. Probabilistic
orecasts were contributed to the Hubs in a quantile-
ased format by teams in academia, government, and
ndustry. The Hubs produced ensemble forecasts each
eek on Monday using forecasts from teams contributing
hat week. In the U.S. Hub, seven quantile levels were
sed for forecasts of cases, and 23 quantile levels were
sed for forecasts of deaths; in the European Hub, 23
uantile levels were used for both target variables.
Weekly reported cases and deaths were calculated as

he difference in cumulative counts on consecutive Sat-
rdays, using data assembled by the Johns Hopkins Uni-
ersity Center for Systems Science and Engineering as
he ground truth (Dong et al., 2020). Due to changes in
he definitions of reportable cases and deaths, as well
s errors in reporting and backlogs in data collection,
here were some instances in which the ground-truth data
ncluded outlying values, or were revised. Most outliers
nd revisions were inconsequential, but some were quite
ubstantial in the U.S. as well as in Europe (Fig. 2). When
itting retrospective ensembles, we fit to the data that
ould have been available in real time. This is critical
ecause the relative performance of different component
orecasters may shift dramatically depending on whether
riginally reported or subsequently revised data were
sed to measure forecast skill. An ensemble trained using
evised data can therefore have a substantial advantage
ver one trained using only data that were available in
eal time, and its performance is not a reliable gauge of
ow that ensemble method might have done in real time.
The U.S. Hub conducted extensive ensemble model

evelopment in real time from late July 2020 through
he end of April 2021, with smaller, focused experiments
ngoing thereafter. We present results for the model-
evelopment phase as well as a prospective evaluation
f a subset of ensemble methods in the U.S. starting
ith forecasts created on May 3, 2021 and continuing
hrough March 14, 2022. We note that we continued
xamining a wider range of methods to inform weekly
perational forecasting tasks, but the methods that we
hose to evaluate prospectively were selected by May 3,
1369
2021, the beginning of the prospective evaluation period,
with no alterations thereafter. Real-time submissions of
the relative WIS weighted median ensemble described
below are on record in the U.S. Hub for the duration of
the prospective evaluation period. In one section of the
results below, we present a small post hoc exploration
of the effects of regularizing the component forecaster
weights; these results should be interpreted with caution,
as they do not constitute a prospective evaluation. To
examine how well our findings generalize, we also evalu-
ated the performance of a subset of ensemble methods for
prospective forecasts of cases and deaths at the national
level for countries in Europe from May 3, 2021 to March
14, 2022.

2.2. Eligibility criteria

In the Forecast Hubs, not all forecasts from contribut-
ing models are available for all weeks. For example, fore-
casters may have started submitting forecasts in different
weeks, and some forecasters submitted forecasts for only
a subset of locations in one or more weeks.

The ensemble forecast for a particular location and
forecast date included all component forecasts with a
complete set of predictive quantiles (i.e., seven predictive
quantiles for incident cases, 23 for deaths) for all four
forecast horizons. Teams were not required to submit
forecasts for all locations to be included in the ensemble.
Some ensemble methods that we considered require his-
torical forecasts to inform component model selection or
weighting; for these methods, at least one prior submis-
sion was required. The Forecast Hubs enforced other vali-
dation criteria, including that predictions of incident cases
and deaths were non-negative and predictive quantiles
were properly ordered across quantile levels.

2.3. Notation

We denote the reported number of cases or deaths for
location l and week t by yl,t . A single predictive quantile
from component forecaster m is denoted by qml,s,t,k, where
s indexes the week the forecast was created, t indexes the
target week of the forecast, and k indexes the quantile
level. The forecast horizon is the difference between the
target date t and the forecast date s. There are a total
of K = 7 quantile levels for forecasts of cases in the
U.S., and K = 23 quantile levels otherwise. The quantile
levels are denoted by τk (e.g., if τk = 0.5 then qml,s,t,k is
a predictive median). We collect the full set of predictive
quantiles for a single model, location, forecast date, and
target date in the vector qml,s,t,1:K . We denote the total
number of available forecasters by M; this changes for
different locations and weeks, but we suppress that in the
notation.

2.4. Baseline forecaster

In the results below, many comparisons are made
with reference to an epidemiologically naive baseline
forecaster that projects forward the most recent observed
value with growing uncertainty at larger horizons. This
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Fig. 2. Weekly reported cases and deaths and example equally weighted median ensemble forecasts (predictive median and 95% interval) for selected
U.S. states. Forecasts were produced each week, but for legibility, only forecasts originating from every sixth week are displayed. Data providers
occasionally change initial reports (green lines) leading to revised values (black lines). Vertical dashed lines indicate the start of the prospective
ensemble evaluation phase. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
baseline forecaster was a random walk model on weekly
counts of cases or deaths, with Yl,t | Yl,t−1 = Yl,t−1 +

εl,t . The model used a non-parametric estimate of the
distribution of the innovations εl,t based on the observed
differences in weekly counts dl,s = yl,s−yl,s−1 over all past
weeks s for the specified location l. Predictive quantiles
were based on the quantiles of the collection of these
differences and their negations, using the default method
for calculating quantiles in R. The inclusion of negative
differences ensured that the predictive distributions were
symmetric and the predictive median was equal to the
most recent observed value. Forecasts at horizons greater
1370
than one were obtained by iterating one-step-ahead fore-
casts. Any resulting predictive quantiles that were less
than zero were truncated to equal zero.

2.5. Evaluation metrics

To evaluate forecasts, we adopted the weighted in-
terval score (WIS) (Bracher et al., 2021a). Let q1:K be
predictive quantiles for the observed quantity y. The WIS
is calculated as

WIS(q1:K , y) =
1
K

K∑
2
{
1(−∞,qk](y) − τk

}
(qk − y),
k=1
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rWISmI =
θm

θbaseline , where

θm
=

⎛⎝ M∏
m′=1

(4 · |Im,m′ |)−1 ∑
(l,s)∈Im,m′

∑s+4
t=s+1 WIS(qml,s,t,1:K , yl,t )

(4 · |Im,m′ |)−1
∑

(l,s)∈Im,m′

∑s+4
t=s+1 WIS(qm′

l,s,t,1:K , yl,t )

⎞⎠ 1
M

Box I.
where 1(−∞,qk](y) is the indicator function that takes the
value 1 when y ∈ (−∞, qk] and 0 otherwise. This is a
negatively oriented proper score, meaning that negative
scores are better and its expected value according to a
given data generating process is minimized by reporting
the predictive quantiles from that process. The WIS was
designed as a discrete approximation to the continuous
ranked probability score, and is equivalent to pinball loss,
which is commonly used in quantile regression (Bracher
et al., 2021a). We note that some other commonly used
scores such as the logarithmic score and the continuous
ranked probability score are not suitable for use with
predictive distributions that are specified in terms of a
set of predictive quantiles, since a full predictive den-
sity or distribution function is not directly available (see
Supplemental Section 3 for further discussion).

To compare the skill of forecasters that submitted dif-
ferent subsets of forecasts, we used the relative WIS, as
done in Cramer et al. (2022). The ensemble forecasters
developed and evaluated in this manuscript provided all
relevant forecasts; missingness pertains only to the com-
ponent forecasters, and in the present work the relative
WIS is primarily used to summarize component forecaster
skill as an input to some of the trained ensemble methods
described below. Let I denote a set of combinations of
location l and forecast creation date s over which we de-
sire to summarize model performance, and let Im,m′ ⊆ I
be the subset of those locations and dates for which both
models m and m′ provided forecasts through a forecast
horizon of at least four weeks. The relative WIS of model
m over the set I is calculated as in Box I

In words, we computed the ratio of the mean WISs
for model m and each other model m′, averaging across
the subset of forecasts shared by both models. θm was
calculated as the geometric mean of these pairwise ratios
of matched mean scores, and summarized how model
m did relative to all other models on the forecasts they
had in common. These geometric means were then scaled
such that the baseline forecaster had a relative WIS of
1; a relative WIS less than 1 indicated forecast skill that
was better than the baseline model. We note that if no
forecasts were missing, Im,m′ would be the same for all
model pairs, so that the denominators of each θm and
of θbaseline would cancel when normalizing relative to the
baseline, and the relative WIS for model m would reduce
to the mean WIS for model m divided by the mean WIS
for the baseline model. We used the geometric mean to
aggregate across model pairs to match the convention
set in Cramer et al. (2022), but this detail is not critical:
1371
Supplemental Figure 5 illustrates that the relative WIS
changes very little if an arithmetic mean is used instead.

We also assessed the probabilistic calibration of the
models with the one-sided coverage rates of predictive
quantiles, calculated as the proportion of observed values
that were less than or equal to the predicted quantile
value. For a well-calibrated model, the empirical one-
sided coverage rate is equal to the nominal quantile level.
A method that generates conservative two-sided intervals
would have an empirical coverage rate that is less than
the nominal rate for quantile levels less than 0.5 and em-
pirical coverage greater than the nominal rate for quantile
levels greater than 0.5.

2.6. Ensemble model formulations

All of the ensemble formulations that we considered
obtain a predictive quantile at level k by combining the
component forecaster predictions at that quantile level:

qensl,s,t,k = f (q1l,s,t,k, . . . , q
M
l,s,t,k).

We conceptually organize the ensemble methods
considered according to two factors. First, trained ensem-
ble methods use the past performance of the component
forecasters to select a subset of components for inclusion
in the ensemble and/or assign the components different
weights, whereas untrained methods assign all compo-
nent forecasters equal weight. Second, we varied the
robustness of the combination function f to outlying
component forecasts. Specifically, we considered methods
based on either a (weighted) mean, which can be sensitive
to outlying forecasts, or a (weighted) median, which may
be more robust to these outliers. The weighted mean
calculates the ensemble quantiles as

qensl,s,t,k =

M∑
m=1

wm
s q

m
l,s,t,k.

The weighted median is defined to be the smallest value
q for which the combined weight of all component fore-
casters with predictions less than or equal to q is at least
0.5; the ensemble forecast quantiles are calculated as

qensl,s,t,k = inf

{
q ∈ R :

M∑
m=1

wm
s 1(−∞,q](qml,s,t,k) ≥ 0.5

}
.

In practice, we used the implementation of the weighted
median in the matrixStats package for R, which linearly
interpolates between the central weighted sample quan-
tiles (Bengtsson, 2020). Graphically, these ensembles can
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be interpreted as computing a horizontal mean or median
of the cumulative distribution functions of component
forecasters (Supplemental Figure 7).

In trained ensemble methods that weight the compo-
ent forecasters, the weights were calculated as a sig-
oidal transformation of the forecasters’ relative WIS (see
ection 2.5) over a rolling window of weeks leading up to
he ensemble forecast date s, denoted by rWISms :

wm
s =

exp(−θs · rWISms )∑M
m′=1 exp(−θs · rWISm

′

s )
.

This formulation requires estimating the non-negative pa-
rameter θs, which was updated each week. If θs = 0, the
rocedure reduces to an equal weighting scheme. How-
ver, if θs is large, better-performing component forecast-
rs (with low relative WISs) are assigned higher weight.
e selected θs by using a grid search to optimize the
eighted interval score of the ensemble forecast over
he training window, summing across all locations and
elevant target weeks on or before time s:

s = argmin
θ

∑
l

s−a∑
r=s−1

min(r+4,s)∑
t=r+1

WIS(qens,θl,r,t,1:K , yl,t ).

he size of the training window, a, is a tuning parameter
hat must be selected; we considered several possible val-
es during model development, as discussed below. In a
ost hoc analysis, we considered regularizing the weights
y setting a limit on the weight that could be assigned
o any one model. We implemented this regularization
trategy by restricting the grid of values for θs to those
alues for which the largest component forecaster weight
as less than the maximum weight limit.
In this parameterization, the component forecaster

eights are, by construction, non-negative and sum to 1.
hen forecasts were missing for one or more component

orecasters in a particular location and forecast date, we
et the weights for those forecasters to 0 and renormal-
zed the weights for the remaining forecasters so that they
ummed to 1.
Some trained ensembles that we considered used a

reliminary component selection step, where the top
ew individual forecasters were selected for inclusion in
he ensemble based on their relative WIS during the
raining window. The number of component forecasters
elected is a tuning parameter that we explored dur-
ng model development. This component-selection step
ay be used either in combination with the continuous
eighting scheme described above, or with an equally
eighted combination of selected forecasters. Throughout
he text below, we use the term ‘‘trained" ensemble to
efer generically to a method that uses component se-
ection and/or weighting based on historical component
orecaster performance.

Many other weighted ensembling schemes could be
ormulated. For example, separate weights could be esti-
ated for different forecast horizons, for different quan-

ile levels, or for subsets of locations. As another example,
he weights could be estimated by directly minimizing the
IS associated with look-ahead ensemble forecasts (Tay-

or & Taylor, 2021). We explored these and other ideas
1372
during model development, but our analyses did not show
them to lead to substantial gains, and thus we settled
on the simpler weighting schemes presented above. Fur-
ther discussion of alternative schemes is deferred to the
supplement.

2.7. Data and code accessibility

All component model forecasts and code used for fit-
ting ensemble models and conducting the analyses pre-
sented in this manuscript are available in public GitHub
repositories (Cramer et al., 2021; Ray, 2020, 2021).

3. Results

We discuss the decisions that we made during model
development in Section 3.1 before turning to a more
focused discussion of the impact on ensemble forecast
skill of using robust or non-robust combination mecha-
nisms in Section 3.2, and trained or untrained methods
in Section 3.3. Section 3.4 presents a post hoc evaluation
of a variation on ensemble methods that regularizes the
component forecaster weights. Results for the evaluation
using forecasts in Europe are presented in Section 3.5.

Throughout this section, scores were calculated using
the ground-truth data that were available as of May 16,
2022 unless otherwise noted. This allowed five weeks
of revisions to accrue between the last target end date
that was evaluated and the date of the data used for
evaluation. When reporting measures of forecast skill, we
dropped forecasts for which the corresponding reported
value of weekly cases or deaths was negative. This could
occur when an error in data collection was identified and
corrected, or when the definition of a reportable case or
death was changed. We included scores for all other out-
lying and revised data in the primary analysis because it
was difficult to define objective standards for what should
be omitted. However, a supplemental analysis indicated
that the results about the relative performance of differ-
ent ensemble methods were not sensitive to these report-
ing anomalies (Supplemental Section 5.4, Supplemental
Figures 14 through 16).

3.1. Model development

During model development, we evaluated many vari-
ations on trained ensemble methods. In these compar-
isons we take the equally weighted median ensemble as
a reference approach because this is the method used
for the production ensemble produced by the U.S. Hub
during most of the time that we were running these
experiments. As measured by the mean WIS over the
model-development phase, the equally weighted median
ensemble was better than the equally weighted mean
ensemble, but both were outperformed by the trained
ensemble variations using component forecaster selec-
tion and/or weighting (Fig. 3). The weighted approaches
had stable performance no matter how many component
forecasters were included. Approaches using an equally

weighted combination of selected component forecasters
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Fig. 3. Performance measures for ensemble forecasts of weekly cases and deaths at the state level in the U.S. In panel (a) the vertical axis is the
difference in mean WIS for the given ensemble method and the equally weighted median ensemble. Boxes show the 25th percentile, 50th percentile,
and 75th percentile of these differences, averaging across all locations for each combination of forecast date and horizon. For legibility, outliers are
suppressed here; Supplemental Figure 8 shows the full distribution. A cross is displayed at the difference in overall mean scores for the specified
combination method and the equally weighted median averaging across all locations, forecast dates, and horizons. Large mean score differences of
approximately 2005 and 2387 are suppressed for the Rel. WIS Weighted Mean and the Rel. WIS Weighted Median ensembles, respectively, in the
prospective phase forecasts of cases. A negative value indicates that the given method outperformed the equally weighted median. The vertical axis
of panel (b) shows the probabilistic calibration of the ensemble forecasts through the one-sided empirical coverage rates of the predictive quantiles.
A well-calibrated forecaster has a difference of 0 between the empirical and nominal coverage rates, while a forecaster with conservative (wide)
two-sided intervals has negative differences for nominal quantile levels less than 0.5 and positive differences for quantile levels greater than 0.5.
were generally better only when top-performing compo-
nent forecasters were included.

We also considered varying other tuning parameters,
such as the length of the training window and whether
component forecaster weights were shared across
1373
different quantile levels or across forecast horizons. How-
ever, we did not find strong and consistent gains in
performance when varying these other factors (Supple-
mental Figures 17–22). Finally, we evaluated other pos-
sible formulations of weighted ensembles, with weights
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that were not directly dependent on the relative WIS of
the component forecasters but were instead estimated
by optimizing the look-ahead ensemble WIS over the
training set. As measured by the mean WIS, the best
versions of these other variations on weighted ensem-
bles had similar performance to the best versions of the
relative WIS weighted median considered in the primary
analysis. However, they were more sensitive to settings
like the number of component forecasters included and
the training set window size (Supplemental Figures 17
and 18).

Based on these results, on May 3, 2021 we selected
he relative WIS weighted ensemble variations for use in
he prospective evaluation, as these methods had similar
ean WISs to the best of the other variations consid-
red, but were more consistent across different training
et window sizes and numbers of component forecasters
ncluded. We used intermediate values for these tuning
arameter settings, including 10 component forecasters
ith a training set window size of 12 weeks. We also

ncluded the equally weighted mean and median of all
odels in the prospective evaluation as reference meth-
ds. The following sections give a more detailed evalua-
ion of these selected methods, describing how they per-
ormed during both the model-development phase and
he prospective evaluation phase.

.2. Comparing robust and non-robust ensemble methods

We found that for equally weighted ensemble ap-
roaches, robust combination methods were helpful for
imiting the effects of outlying component forecasts. For
ost combinations of the evaluation phase (model de-
elopment or prospective evaluation) and target variable
cases or deaths), the equally weighted median had better
ean and worst-case WISs than the equally weighted
ean, often by a large margin (Fig. 3, Supplemental Figure
). Results broken down by forecast date show that the
ethods achieved similar scores most of the time, but the
qually weighted mean ensemble occasionally had serious
ailures (Supplemental Figure 10). These failures were
enerally associated with instances where a component
orecaster issued extreme, outlying forecasts, e.g., fore-
asts of deaths issued the week of February 15th in Ohio
Fig. 1).

There were fewer consistent differences between the
rained mean and trained median ensemble approaches.
his suggests that both trained approaches that we con-
idered had similar robustness to outlying forecasts (if
he outliers were produced by component forecasters that
ere downweighted or not selected for inclusion due
o poor historical performance) or sensitivity to outlying
orecasts (if they were produced by component forecast-
rs that were selected and given high weight).
Panel (b) of Fig. 3 summarizes probabilistic calibra-

ion of the ensemble forecasts with one-sided quantile
overage rates. The median-based ensemble approaches
enerally had lower one-sided quantile coverage rates
han the mean-based approaches, indicating a downward
hift of the forecast distributions. This was associated
ith poorer probabilistic calibration for forecasts of cases,
1374
where the ensemble forecast distributions tended to be
too low. For forecasts of deaths, which were better cen-
tered but tended to be too narrow, the calibration of
the median-based methods was not consistently better
or worse than the calibration of the corresponding mean-
based methods.

3.3. Comparing trained and untrained ensemble methods

Averaging across all forecasts for incident cases and
deaths in the model-development phase, the weighted
median was better than the equally weighted median, and
the weighted mean was better than the equally weighted
mean (Fig. 3). However, in the prospective evaluation,
the trained methods showed improved mean WIS rela-
tive to untrained methods when forecasting deaths, but
were worse when forecasting cases. In general, the trained
ensembles also came closer to matching the performance
of a post hoc weighted mean ensemble for deaths than
for cases (Figs. 4 and 5). This post hoc weighted mean
ensemble estimated the optimal weights for each week
after the forecasted data were observed; it would not be
possible to use this method in real time, but it gives a
bound on the ensemble forecast skill that can be achieved
using quantile averaging.

We believe that this difference in the relative perfor-
mance of trained and untrained ensemble methods for
cases and deaths is primarily due to differences in com-
ponent model behavior for forecasting cases and deaths.
A fundamental difference between these outcomes is that
cases are a leading indicator relative to deaths, so that
trends in cases in the recent past may be a helpful input
for forecasting deaths—but there are not clear candidates
for a similar leading indicator for cases (e.g., see McDonald
et al. (2021) for an investigation of some possibilities
that were found to yield only modest and inconsistent
improvements in forecast skill). Indeed, the best mod-
els for forecasting mortality generally do use previously
reported cases as an input to forecasting (Cramer et al.,
2022), and it has previously been noted that deaths are an
easier target to forecast than cases (Bracher et al., 2021;
Reich et al., 2021). This is reflected in the performance
of trained ensembles, which were often able to identify a
future change in the direction of trends when forecasting
deaths, but generally tended to predict a continuation of
recent trends when forecasting cases (Supplemental Sec-
tion 7, Supplemental Figures 25 and 26). An interpretation
of this is that the component forecasters with the best
record of performance for forecasting deaths during the
training window were able to capture changes in trend,
but the best component forecasters for forecasting cases
were often simply extrapolating recent trends. While all
ensemble methods tended to ‘‘overshoot" at local peaks
in weekly incidence, this tendency was more pronounced
for forecasts of cases than for forecasts of deaths—and
training tended to exacerbate the tendency to overshoot
when forecasting cases, but to mitigate this tendency
when forecasting deaths (Supplemental Figure 25).

Another difference in component behavior when fore-
casting cases and deaths is illustrated in Figs. 4 and
5, which explore the relationships between component
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Fig. 4. Performance of weekly case forecasts from component forecasters and selected ensembles, along with component forecaster weights.
omponent forecasters that were given high weight at key times are highlighted. The top row shows the relative WIS of forecasts made each
eek. The second row shows the relative WIS over the 12 weeks before the forecast date, for forecasts of quantities that were observed by the

orecast date. These scores, which are used to compute the component weights in the relative WIS weighted median ensemble, are calculated using
ata available as of the forecast date. The third row shows component forecaster weights for the post hoc weighted mean ensemble, and the bottom
ow shows the component model weights for the relative WIS weighted median ensemble; each component forecaster is represented with a different
olor. Over the time frame considered, 31 distinct component forecasters were included in this top-10 ensemble.
orecaster performance and the relative performance of
rained and untrained ensemble methods in more de-
ail. For deaths, the trained ensemble was able to iden-
ify and upweight a few component forecasters that had
onsistently good performance (e.g., Karlen-pypm and
1375
UMass-MechBayes). This led to the consistently strong
performance of the trained ensemble; it was always among
the best models contributing to the U.S. Hub and was
better than the equally weighted median ensemble in
nearly every week.
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Fig. 5. Performance of weekly death forecasts from component forecasters and selected ensembles, along with component forecaster weights.
Component forecasters that were given high weight at key times are highlighted. The top row shows the relative WIS of forecasts made each week.
The second row shows the relative WIS over the 12 weeks before the forecast date, for forecasts of quantities that were observed by the forecast
date. These scores, which are used to compute the component weights in the relative WIS weighted median ensemble, are calculated using data
available as of the forecast date. The third row shows component forecaster weights for the post hoc weighted mean ensemble, and the bottom row
shows the component model weights for the relative WIS weighted median ensemble; each component forecaster is represented with a different

color. Over the time frame considered, 34 distinct component forecasters were included in this top-10 ensemble.
For cases, the trained ensemble also had strong
erformance for many months when the LNQ-ens1 fore-
aster was contributing to the U.S. Hub. However, when
NQ-ens1 stopped contributing forecasts in June 2021,
he trained ensemble shifted to weighting Karlen-pypm,
1376
which had less stable performance for forecasting cases.
During July 2021, Karlen-pypm was the only forecaster in
the U.S. Hub that predicted rapid growth at the start of
the Delta wave, and it achieved the best relative WIS by a
substantial margin at that time. However, that forecaster
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predicted continued growth as the Delta wave started to
wane, and it had the worst relative WIS a few weeks later.
A similar situation occurred during the Omicron wave in
January 2022, when the JHUAPL-Bucky model was one of
a small number of forecasters that captured the rise at the
beginning of the wave, but it then overshot near the peak.
In both of these instances, the post hoc weighting would
have assigned a large amount of weight to the forecaster
in question at the start of the wave, when it was uniquely
successful at identifying rising trends in cases—but then
shifted away from that forecaster as the peak neared.
Trained ensembles that estimated weights based on past
performance suffered, as they started to upweight those
component forecasters just as their performance dropped.
This recurring pattern highlights the challenge that non-
stationary component forecaster performance presents
for trained ensembles. Reinforcing this point, we note that
in the post hoc weighted mean ensemble, the compo-
nent forecaster weights are only weakly autocorrelated
(Figs. 4 and 5, Supplemental Figure 27), again suggest-
ing that an optimal weighting may require frequently
changing component weights to adapt to nonstationary
performance.

During the model-development phase, the trained en-
embles had better probabilistic calibration than their
qually weighted counterparts (Fig. 3, panel (b)). During
he prospective evaluation, the trained median ensem-
le had generally higher one-sided coverage rates, corre-
ponding to better calibration in the upper tail but slightly
orse calibration in the lower tail. The trained mean
nsemble had slightly better calibration than the equally
eighted mean when forecasting deaths in the prospec-
ive evaluation phase, but inconsistent gains across differ-
nt quantile levels when forecasting cases. Supplemental
igures 12 and 13 show that the widths of 95% prediction
ntervals from both the equally weighted median en-
emble and the relative WIS weighted median ensemble
ended to rank near the middle of the widths of 95%
rediction intervals from the component forecasters. This
an be interpreted as an advantage if we are concerned
bout the possible influence of component forecasters
ith very narrow or very wide prediction intervals. How-
ver, it can also be viewed as a disadvantage, particularly
f improved calibration could have been realized if the
rediction intervals were wider. We return to this point
n the discussion.

.4. Post hoc evaluation of weight regularization

Motivated by the assignment of large weights to some
omponent forecasters in the trained ensembles for cases
Fig. 4), in January 2022 we conducted a post hoc eval-
ation of trained ensembles that were regularized by
mposing a limit on the weight that could be assigned
o any one component forecaster (see Section 2.6). In
his evaluation, we constructed relative WIS weighted
edian ensemble forecasts for all historical forecast dates
p through the week of January 3, 2022. These ensemble
its included the top 10 component forecasters and were
rained on a rolling window of the 12 most recent forecast
ates, matching the settings that were selected for the
1377
prospective analysis. We considered six values for the
maximum weight limit: 0.1, 0.2, 0.3, 0.4, 0.5, and 1.0.
A weight limit of 1.0 corresponds to the unregularized
method considered in the prospective evaluation, and a
weight limit of 0.1 corresponds to an equally weighted
median of the top 10 forecasters, which was previously
considered during the model-development phase.

For both cases and deaths, the results of this analysis
indicate that a weight limit as low as 0.1 was
unhelpful (Fig. 6). When forecasting deaths, this reg-
ularization strategy had limited impact on the trained
ensemble performance as long as the maximum weight
limit was about 0.3 or higher, which is consistent with the
fact that the trained ensembles for deaths rarely assigned
a large weight to one model (Fig. 5). However, when
forecasting cases, the regularization resulted in large im-
provements in mean WIS, with the best WIS at limits
near 0.2 or 0.3. These improvements were concentrated
in short periods near local peaks in the epidemic waves
(Supplemental Figure 28). For both cases and deaths,
smaller limits on the maximum weight were associated
with a slight reduction in the empirical coverage rates
of 95% prediction intervals. Based on these results, the
U.S. Hub used a weight limit of 0.3 in trained ensemble
forecasts starting in January 2022.

3.5. Results in the european application

Fig. 7 summarizes weighted interval scores and cal-
ibration for the four selected ensemble methods when
applied prospectively to forecast data collected in the Eu-
ropean Forecast Hub. Consistent with what we observed
for the U.S. above, the equally weighted median ensemble
was generally better than the equally weighted mean.
However, in the European evaluation, the trained meth-
ods had worse performance than the equally weighted
median for forecasting both cases and deaths.

In a post hoc exploratory analysis, we noted that pat-
terns of missingness in forecast submissions are quite
different in the U.S. and in Europe (Fig. 8, Supplemental
Figures 29 through 36). In the U.S. Hub, nearly all models
submit forecasts for all of the 50 states, and many addi-
tionally submit forecasts for at least one of the District
of Columbia and territories. However, in the European
Hub, roughly half of contributing models submit forecasts
for only a small number of locations. Because the trained
ensembles selected for prospective evaluation select the
top 10 individual forecasters by relative WIS, this means
that in practice the trained ensembles only included a few
component forecasters for many locations in Europe.

4. Discussion

In this work, we documented the analyses that have
informed the selection of methods employed by the of-
ficial U.S. Hub ensemble that is used by the CDC for
communication with public health decision-makers and
the public more generally. In this context, our preference
is for methods that have stable performance across dif-
ferent locations and different points in time, and good
performance on average.
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Fig. 6. Mean WIS and 95% prediction interval coverage rates for relative WIS weighted median trained ensemble variations with varying sizes of a
limit on the weight that could be assigned to any one model. In panel (a), the baseline forecaster is included as a reference. Results are for a post
hoc analysis including forecast dates up to January 3, 2022.
Our most consistent finding is that robust ensemble
ethods (i.e., based on a median) are helpful because

hey are more stable in the presence of outlying forecasts
han methods using a mean. Ensemble methods based
n means have repeatedly produced extreme forecasts
hat are dramatically misaligned with the observed data,
ut median-based approaches have not suffered from this
1378
problem as much. This stability is of particular importance
in the context of forecasts that will be used by public
health decision-makers. These observations informed our
decision to use an equally weighted median ensemble for
the official U.S. Hub ensemble early on.

We have seen more mixed success for trained ensem-
ble methods. Overall, trained ensemble methods did well
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Fig. 7. Performance measures for ensemble forecasts of weekly cases and deaths in Europe. In panel (a) the vertical axis is the difference in
mean WIS for the given ensemble method and the equally weighted median ensemble. Boxes show the 25th percentile, 50th percentile, and 75th
percentile of these differences, averaging across all locations for each combination of forecast date and horizon. For legibility, outliers are suppressed
here; Supplemental Figure 9 shows the full distribution. A cross is displayed at the difference in overall mean scores for the specified combination
method and the equally weighted median of all models, averaging across all locations, forecast dates, and horizons. A large mean score difference of
approximately 666 is suppressed for the Equal Weighted Mean ensemble forecasts of deaths. A negative value indicates that the given method had
better forecast skill than the equally weighted median. Panel (b) shows the probabilistic calibration of the forecasts through the one-sided empirical
coverage rates of the predictive quantiles. A well-calibrated forecaster has a difference of 0 between the empirical and nominal coverage rates, while
a forecaster with conservative (wide) two-sided intervals has negative differences for nominal quantile levels less than 0.5 and positive differences
for quantile levels greater than 0.5.
when they were able to identify and upweight compo-
nent forecasters with good and stable performance, but
struggled when component forecaster skill varied over
time. In the U.S., trained ensembles have a long record
of good performance when forecasting deaths, and the
U.S. Hub adopted the relative WIS weighted median en-
semble as its official method for forecasting deaths in
November 2021. However, trained methods have been
less successful at forecasting cases in the U.S., both near
peaks in weekly incidence (when they tend to overshoot)
and at points where the performance of the component
forecasters is inconsistent. Additionally, the trained meth-
ods we adopted did not translate well to a setting with
a large number of missing component forecasts, as in
the European Hub. To preserve the prospective nature of
our analyses, we did not examine additional ensemble
variations in the European application, but we hypothe-
size that these problems might be mitigated by includ-
ing all component forecasters rather than the top 10, or
1379
by performing weight estimation separately in clusters
of locations where the same component forecasters are
contributing. Allowing for different weights in different
locations may also be an effective strategy for addressing
the impacts of differences in data availability and quality
across different locations.

In this manuscript, we focused on relatively simple
approaches to building ensemble forecasts. There are sev-
eral opportunities for other directions that were not con-
sidered here, and the gap in performance between the
ensemble methods we considered and an ensemble using
post hoc optimal weights indicates that there may still
be room for improvement in ensemble methods. In our
view, the most central challenge for trained ensembles
is the inconsistency of the relative performance of many
component forecasters, which may in turn be responsible
for the lack of strong short-term temporal correlation in
the component forecaster weights that were estimated by
the post hoc weighted mean ensemble. For models with
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Fig. 8. A comparison of the impacts of forecast missingness in the applications to the U.S. (panel (a)) and Europe (panel (b)). Within each panel,
he histogram on the left shows the number of locations forecasted by each contributing forecaster in the week of October 11, 2021, colored by
hether or not the forecaster was among the top 10 forecasters eligible for inclusion in the relative WIS weighted ensemble selected for prospective
valuation. The plot on the right shows the estimated weights that would be used if all of the top 10 models (each represented by a different color)
ere available for a given location (on the left side), and the effective weights used in each location after setting the weights for models that did
ot provide location-specific forecasts to 0 and rescaling the other weights proportionally to sum to 1. (For interpretation of the references to colour
n this figure legend, the reader is referred to the web version of this article.)
relatively long history of performance over multiple
pidemic waves, we believe that the most promising ap-
roach to addressing this is by using weights that depend
n covariates like recent trends in incidence. This might
llow the ensemble to learn the conditions in which com-
onent forecasters have been more or less reliable, and
pweight models locally during phases similar to those in
hich they have done well in the past. Similar approaches
ave been used for other infectious disease systems in the
ast, such as influenza (e.g., Ray & Reich, 2018), but they
1380
used a substantial amount of training data over multiple
years.

There are several other possible directions for further
exploration. We addressed the challenge posed by out-
lying component forecasts by using median-based com-
bination mechanisms, but another approach would be to
pre-screen the component forecasts and remove outlying
forecasts. This is a difficult task because there are times
when weekly cases and deaths grow exponentially, and
occasionally only one or two models have captured this



E.L. Ray, L.C. Brooks, J. Bien et al. International Journal of Forecasting 39 (2023) 1366–1383

n
i
o
w
c
o
t
a
t
c
a
e
n
a
f
s
a

f
c
m
t
i
t
e
c
T
o
p
s
i

s
t
f
i
t
f
s
e
a
h
a
p
a
s
w
a
t
t
i
m
d

growth accurately (Supplemental Figures 1 and 2). A com-
ponent screening method would have to be careful to
avoid screening out methods that looked extreme relative
to the data or other component forecasts but in fact ac-
curately captured exponential growth (see Supplemental
Section 1 for more discussion).

Another challenge is that the ensemble forecasts have
ot always been well calibrated. We are actively develop-
ng approaches to address this by post hoc recalibration
f the ensemble forecasts. Another possible route for-
ard would be to use a different method for ensemble
onstruction. As we discussed above, the ensemble meth-
ds that we considered work by combining the predic-
ions from component forecasters at each quantile level,
nd therefore tend to have a dispersion that ranks in
he middle of the dispersions of the component fore-
asters. In contrast, an ensemble forecast obtained as
distributional mixture of component forecasts would

xhibit greater uncertainty at times when the compo-
ent forecasts disagreed with each other. However, such
n approach would be impacted by extreme component
orecasts and would likely require the development of
trategies for screening outlying forecasts, as discussed
bove.
Additionally, our methods for constructing ensemble

orecasts do not directly account for the fact that some
omponent forecasters are quite similar to each other and
ay provide redundant information about the future of

he pandemic. Ensembles generally benefit from combin-
ng diverse component forecasters, and it could be helpful
o encourage this—for example, by clustering the forecast-
rs and including a representative summary of the fore-
asts within each cluster as the ensemble components.
here are also related questions about the importance
f different component forecasters to ensemble skill; we
lan to explore this direction in future work by using tools
uch as the Shapley value to describe the contribution of
ndividual components to the full ensemble.

We used the WIS and probabilistic calibration to mea-
ure the extent to which forecasts are consistent with
he data eventually observed. These summaries of per-
ormance are commonly used and provide useful insights
nto forecast performance, but it is worth noting that
hey do not necessarily reflect the utility of the forecasts
or every particular decision-making context. Aggregated
ummaries of performance, such as overall quantile cov-
rage rates, could obscure finer-scale details. For instance,
method with good coverage rates on average could have
igh coverage at times that are relatively unimportant
nd low coverage when it matters. Additionally, for some
ublic health decision-making purposes, one or another
spect of a forecast may be more important. For example,
ome users may prioritize accurate assessments about
hen a new wave may begin, but other users may find
ccurate forecasts of peak intensity to be more impor-
ant. Our evaluation metrics do not necessarily reflect
he particular needs of those specific end users, and it
s possible that different ensemble methods would be
ore or less appropriate to generate forecasts that serve
ifferent purposes.
1381
Careful consideration and rigorous evaluation are re-
quired to support decisions about which ensemble meth-
ods should be used for infectious disease forecasting. As
we discussed above, to obtain an accurate measure of a
forecaster’s performance, it is critical that the versions
of ground-truth data that would have been available in
real time are used for parameter estimation. This applies
as much to ensemble forecasters as it does to individual
models. Additionally, it is important to be clear about
what method development and evaluation were done ret-
rospectively and what forecasts were generated prospec-
tively in real time. We believe that to avoid disruptions
to public health end users, a solid evidence base of stable
performance in prospective forecasts should be assembled
to support a change in ensemble methods. We followed
these principles in this work, and we followed the EPI-
FORGE guidelines in describing our analysis ((Pollett et al.,
2021); Supplemental Section 11).

The COVID-19 pandemic has presented a unique chal-
lenge for infectious disease forecasting. The U.S. and Eu-
ropean Forecast Hubs have collected a wealth of forecasts
from many contributing teams—far more than have been
collected in previous collaborative forecasting efforts for
infectious diseases such as influenza, dengue, and Ebola.
These forecasts have been produced in real time to re-
spond to an emerging pathogen that has been one of the
most serious public health crises in the last century. This
setting has introduced a myriad of modeling difficulties,
from data anomalies due to new reporting systems being
brought online and changing case definitions, to uncer-
tainty about the fundamental epidemiological parame-
ters of disease transmission, to rapidly changing social
factors such as the implementation and uptake of non-
pharmaceutical interventions. The behavior of individual
models in the face of these difficulties has in turn affected
the methods that were suitable for producing ensemble
forecasts. We are hopeful that the lessons learned about
infectious disease forecasting will help to inform effec-
tive responses from the forecasting community in future
infectious disease crises.
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Supplementary material related to this article can be
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