KIT | KIT-Bibliothek | Impressum | Datenschutz

Time-dependent electromagnetic scattering from dispersive materials

Nick, Jörg; Burkhard, Selina 1; Lubich, Christian
1 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)

Abstract:

This paper studies time-dependent electromagnetic scattering from metamaterials that are described by dispersive material laws. We consider the numerical treatment of a scattering problem in which a dispersive material law, for a causal and passive homogeneous material, determines the wave-material interaction in the scatterer. The resulting problem is nonlocal in time inside the scatterer and is posed on an unbounded domain. Well-posedness of the scattering problem is shown using a formulation that is fully given on the surface of the scatterer via a time-dependent boundary integral equation. Discretizing this equation by convolution quadrature in time and boundary elements in space yields a provably stable and convergent method that is fully parallel in time and space. Under regularity assumptions on the exact solution we derive error bounds with explicit convergence rates in time and space. Numerical experiments illustrate the theoretical results and show the effectiveness of the method.


Volltext §
DOI: 10.5445/IR/1000164012
Veröffentlicht am 09.11.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 11.2023
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000164012
Verlag KIT, Karlsruhe
Umfang 33 S.
Serie CRC 1173 Preprint ; 2023/22
Projektinformation SFB 1173/3 (DFG, DFG KOORD, SFB 1173/3)
Externe Relationen Siehe auch
Schlagwörter electromagnetic scattering, dispersive material laws, time-dependent partial differential equations, convolution quadrature, boundary element method
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page