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Abstract

Neural Network Analysis of High-Energy Cosmic Ray Air Showers
measured with IceCube

The IceCube Neutrino Observatory at the South Pole consists of two main de-
tectors, a grid of ice-Cherenkov tanks at the surface called IceTop and a deep-ice
Cherenkov detector called in-ice array. These two detectors are used to measure
extensive air showers initiated by cosmic rays in the energy range of PeV to
EeV. By measuring various features of these air showers, the characteristics of
the primary particle, such as its mass and energy, can be reconstructed. Hereby,
the accuracy of the reconstruction can be improved by considering the correla-
tion between the features, e.g. by using neural networks.
Recently, a new method to estimate the density of GeV muons, which is sen-
sitive to the mass of the primary particle, was developed. In order to test the
feasibility of the application of this muon density parameter, this study uses this
parameter as an additional feature for neural networks. This work is based on
the neural network architecture of the previous publication ”Cosmic Ray Spec-
trum and Composition from PeV to EeV Using 3 Years of Data From IceTop
and IceCube” [Aar+19].
For this analysis, a Monte-Carlo simulation dataset is used which is equally dis-
tributed among four primaries, namely: proton, helium, oxygen, and iron. This
work looks at different neural network architectures, with and without the muon
density parameter as an additional feature, and shows that the muon density
parameter slightly improves the mass but not the energy predictions.



Zusammenfassung

Neuronale Netzwerkanalyse von mit IceCube gemessenen hochener-
getischen kosmischen Teilchenschauern

Das Neutrino-Observatorium IceCube am Südpol besteht aus zwei Hauptde-
tektoren, einem Array von eisgefüllten Cherenkov-Tanks, das IceTop genannt
wird und einem Cherenkov-Detektor im tiefen Eis, welcher als In-Ice-Array
bezeichnet wird. Mit diesen beiden Detektoren werden die durch hochener-
getische kosmische Strahlung verursachte Luftschauer detektiert. Durch die
Messung verschiedener Parameter dieser Luftschauer können die Eigenschaften
der Primärteilchen, wie Masse und Energie, rekonstruiert werden. Dabei kann
die Genauigkeit der Rekonstruktion verbessert werden, indem die Korrelation
zwischen den verschiedenen Parametern berücksichtigt wird, z. B. durch den
Einsatz neuronaler Netze.
Vor kurzem wurde eine neue Methode zur Bestimmung der Dichte von GeV My-
onen entwickelt, die empfindlich auf die Masse des Primärteilchens reagiert. In
dieser Studie wird dieser Parameter als zusätzliches Feature für neuronale Netze
verwendet, welche auf der Netzwerkarchitektur aus der früheren Veröffentlichung
”Cosmic Ray Spectrum and Composition from PeV to EeV Using 3 Years of
Data From IceTop and IceCube” basieren, [Aar+19].
Die Analyse verwendet einen simulierten Monte-Carlo-Datensatz, der gleichmäßig
auf die vier Primärteilchen Proton, Helium, Sauerstoff und Eisen verteilt ist. In
dieser Studie werden verschiedene neuronale Netzwerkarchitekturen mit und
ohne den Myonendichteparameter als zusätzlicher Parameter untersucht, und
es wird gezeigt, dass der Myonendichteparameter die Massenvorhersagen leicht
verbessert, nicht aber die Energievorhersagen.
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1 Introduction

The Earth’s atmosphere is constantly bombarded by extraterrestrial particles,
which can come from the Sun, the solar system, the Milky Way, or from distant
galaxies. These particles are called cosmic rays. Since their discovery about 100
years ago by Victor Hess [Wal12], there have been two main questions in the
field of cosmic ray research: what are cosmic rays made of, and where do they
come from?
This study attempts to determine the mass and energy of cosmic rays reaching
Earth using Neural Networks.
Because high-energy cosmic rays are so rare that they cannot be detected di-
rectly, they are observed indirectly through the study of extensive air showers,
which are created when a cosmic ray interacts with a nucleus in the atmosphere,
leading to a cascading effect that produces a large amount of secondary parti-
cles. These particles can then be detected by ground-based observations, one of
these being the IceCube Neutrino Observatory at the South Pole.
The IceCube observatory consists of two main parts: IceTop, which is an array
of 162 ice-filled Cherenkov detectors on top of a glacier, and IceCube, which
is a deep-ice Cherenkov detector, which uses the glacier ice below IceTop as a
detector.
This analysis is based on the neural network architecture of the previous publica-
tion ”Cosmic Ray Spectrum and Composition from PeV to EeV Using 3 Years of
Data From IceTop and IceCube” [Aar+19], which takes in five IceCube-specific
high-level features of an extensive air shower measured by IceTop and IceCube,
and predicts the mass and energy of the cosmic ray initiating that shower.
The goal of this analysis is to include a new feature, the density of GeV muons
measured by IceTop, to study the effect of the muon parameter on the qual-
ity of the determination of the primary’s energy and mass composition. The
physics idea behind this is that heavier particles produce more muons for the
same energy than lighter particles, and therefore this feature could help predict
the mass of the primary particle with better accuracy than without it.

This thesis is structured as follows: Chapter 2 gives a brief overview of cos-
mic rays, including a section on the history, composition, energy spectrum, and
extensive air showers. In Chapter 3 the IceCube Neutrino Observatory is de-
scribed. Chapter 4 gives a summary of the Monte Carlo simulation used in
this thesis. In Chapter 5 an introduction to machine learning is given and in
Chapter 6, the data analysis is discussed.

The analysis is structured as follows:
The calculation of the muon density parameter, the training of a benchmark
model without the new feature, the comparison of the benchmark model with
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a model whose only difference is the addition of the muon density as a new
feature, and the search and comparison of a completely new model, which also
uses the muon density as a feature, with the benchmark model.

In the last Chapter, a conclusion of the work is given, and an outlook is dis-
cussed.
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2 Cosmic Rays

2.1 History

After the discovery of spontaneous ionization of gases, the general belief was
that this phenomenon is caused by radioactive material in the Earth’s crust.
However, Charles Wilson was the first to suggest an extraterrestrial origin for
this phenomenon [Gin96]. To validate this hypothesis, Victor Hess conducted
several balloon flights, during which he measured the atmospheric ionization at
different altitudes. His idea being that if the Earth’s surface is the source of ion-
ization, then atmospheric ionization would decrease with altitude. On the other
hand, if the source is extraterrestrial, ionization would increase. Hess’s observa-
tions confirmed the latter, as the ionization increases with altitude, effectively
ruling out the Earth as the source. Based on this discovery, Hess undertook
several additional balloon flights during the night to eliminate the sun as the
source of ionization. Finding a consistency of ionization levels independently
of the time of day, he concluded that the sun isn’t the source of ionization
[Wal12][Gin96].
In 1945, Pierre Auger was one of the first to identify the source of this ioniza-
tion as cosmic ray induced air showers. He reached this conclusion based on his
experiments, in which he observed coincident events in Geiger counters placed
several meters apart [Aug+39][Com36].

2.2 Composition

There are several types of cosmic rays, but this thesis focuses mainly on charged
cosmic rays, which consist mostly of nuclei with charge numbers from Z = 1 to
around 92 [Mew94]. The distribution of these different nuclei is not uniform, re-
sulting in a higher flux for e.g. proton, helium and iron primaries. Cosmic rays
are roughly composed of 89% hydrogen, followed by 9% helium, 2% heavier
nuclei, and less than 1% electrons [Feu13]. The odd-even effect, where nuclei
with an even number of nucleons are more stable and therefore more abundant,
also influences the composition [Gai16].
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Figure 2.1: The cosmic ray elemental abundances in cosmic radiation measured
on Earth compared to the solar system abundances, relative to carbon = 100,
for cosmic rays in GeV range [Gai16].

As shown in figure 2.1, the elemental composition of cosmic rays reaching Earth
does not match the abundances of the corresponding elements in the Solar Sys-
tem. The fact that elements with Z > 1 are much more abundant than protons
relative to the Solar System material is not fully understood. Possible reasons
for this discrepancy include the relative difficulty of ionizing hydrogen and in-
jecting it into an accelerator process. It is also plausible that the composition
at the source differs from that observed on Earth.
The light nuclei Li, Be and B, as well as the heavier nuclei Sc, Ti, V, Cr and
Mn, are much more abundant in cosmic rays than in the Solar System. This
is a well understood phenomenon. While relatively absent as final products of
stellar nucleosynthesis, they are produced as spallation products when higher-
mass elements like carbon, oxygen or iron collide with the interstellar medium.
For this reason, the ratio of primary particles to spallation products serves as
an indicator of the amount of matter that cosmic rays have passed through the
interstellar medium [Gai16][Gab+19].
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2.3 Energy Spectrum

The energy spectrum of cosmic rays closely resembles the power law:

dN

dE
∝ E−γ (2.1)

where dN
dE represents the flux of cosmic rays given in m−2s−1sr−1, E is the

primary energy, and γ is the spectral index, which is about 2.7 for E < 1015eV.
To make the important characteristics of the spectrum more visible, it is often
multiplied by a power of energy, typically E2.6. A plot of the all-particle energy
spectrum measured by different experiments can be seen in figure 2.2. The plot
shows distinct features, including the knee at around (3−5) ·1015eV, the second
knee at around 1017 eV, and the ankle at around 1018.5eV.
The origin of these features is not fully understood. The leading theory is that
the knee and second knee are caused by cosmic rays from a galactic source
reaching their maximum energy. There are two proposed explanations for this.
The first suggests that the maximum energy depends on the charge of the cosmic
ray. The maximum energy is then given by

Emax ∝ Z ·B ·R, (2.2)

where Z is the charge of the cosmic ray particle, and B and R are the magnetic
strength and the radius of the accelerating region, respectively. The second
explanation is based on particle physics models and states that the maximum
energy depends on the atomic mass A rather than the charge Z.
Thus, it follows that the first and second knees have the same underlying causes,
and their position in relation to each other depends on the type of primary, with
lighter particles dropping out of the spectrum earlier, than heavier particles.
Furthermore, the transition from a galactic to an extra-galactic source is thought
to be the reason for the ankle. The suppression at high energies, around 1019 eV,
is consistent with the GZK effect. The GZK effect describes how cosmic rays
of extra-galactic origin interact with the cosmic microwave background, leading
to scattering or decay processes [Alv+19][Uni].
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Figure 2.2: All-particle energy spectrum of cosmic rays, multiplied by a factor
of E2.6, as measured by various observatories [Gro+20].

2.4 Extensive air showers

An extensive air shower is formed when a single high-energy primary cosmic
ray enters the Earth’s atmosphere and interacts with its air nuclei. This inter-
action produces secondary particles, which may decay or interact further with
the atmosphere or with each other, leading to the production of more particles,
resulting in a cascading effect. An air shower can be divided into three compo-
nents: the hadronic, the electromagnetic, and the mounic components.
The hadronic component consists of nucleons, pions, and kaons, and is pro-
duced when the primary particle interacts with an air nucleus, leading to the
creation of a region of high-energy hadrons near the shower core. Furthermore,
the interaction and decays of the hadronic component lead to the creation of
the electromagnetic and muonic components [Mat05].
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Figure 2.3: Longitudinal shower profile for different particle types for a proton-
induced shower with an energy of 1019 eV simulated by CORSIKA for the ob-
servation level of the Pierre Auger Observatory. The plot shows that the shower
size increases until it reaches Xmax, in this case about 800 g/cm2, after which
it begins to decrease [EHP11].

The electromagnetic component consists of electrons, positrons and photons.
The creation of the electromagnetic component begins with the decay of a neu-
tral pion into two photons. These photons can create positron-electron pairs
by pair production. At the same time, electrons and positrons produce photons
by bremsstrahlung. This interaction causes a positive feedback loop, initiating
a particle cascade that continues until the critical energy is reached, at which
point the collisional energy losses begin to exceed the radiative losses. Once this
energy is reached, the shower reaches its maximum size, after which it begins
to shrink. The atmospheric depth at which this maximum number of particles
is reached is called Xmax. An example of this growing and shrinking of the EM
component for a proton-initiated shower of energy 1019 eV can be seen in figure
2.3.
The majority of muons in an extensive air shower are produced by the decay
of charged kaons and pions. Due to the long lifetime of relativistic muons and
their small cross section, most of these muons reach the ground without decay-
ing. This also explains the continuous growth of the muonic component shown
in the figure 2.3.
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3 The IceCube Neutrino Observatory

3.1 Design

3.1.1 Overview

The IceCube Neutrino Observatory is located at the South Pole, near the
Amundsen-Scott South Pole Station. The Observatory is involved in the study
of neutrinos, dark matter, multi-messenger observations and cosmic ray re-
search. It has four main detector components: IceTop, the IceCube In-Ice
Array, the IceCube Laboratory and the DeepCore.
The observatory operates as an ice Cherenkov detector, using the Cherenkov
effect to detect the Cherenkov photons emitted by particles traversing the ice
at speeds faster than the in-ice speed of light. The main device used to detect
these Cherenkov photons is the Digital Optical Module (DOM). Each DOM is
encased in a pressure-resistant glass sphere to withstand the pressure of the
ice. The DOMs consist of four main parts: a 10-inch PMT (photomultiplier
tube) to detect the Cherenkov photons, a high-voltage power supply, an LED
flasher board and a main board that processes and digitizes the PMT signals
[Aar+17][De 19].

3.1.2 IceCube In-Ice Array

The In-Ice Array consists of 5160 DOMs deployed at depths of approximately
1450m to 2450m below the ice. The DOMs are attached to 86 vertical strings,
with each string containing 60 DOMs. The primary array consists of 78 of
these strings, with a vertical DOM spacing of 17m on each string. In figure 3.1
it can be seen that the strings are arranged in a triangular grid, with a grid
length of about 125m, while the general outline of the grid forms a hexagonal
shape[Aar+17].

3.1.3 DeepCore

The DeepCore Array is a subarray of the In-Ice Array located at its center. It is
deployed deeper in the ice, than the In-Ice Array, at approximately 1750m. The
array consists of seven IceCube strings and eight specialised DeepCore strings.
The DeepCore strings differ from the IceCube strings in their DOM spacing.
Specifically, the DOM spacing on DeepCore strings is smaller. Six of the Deep-
Core strings use a different PMT than the standard IceCube strings, resulting
in a 35% increase in quantum efficiency. This denser arrangement and increased
efficiency allows for a lower energy threshold of about 10GeV compared to the
typical IceCube threshold of about 100GeV, making the DeepCore array better
suited for low energy observations and neutrino oscillation studies [Aar+17].
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3.1.4 IceTop

IceTop is located on the surface of the ice, directly above IceCube, at an altitude
of 2835m above sea level. It uses roughly the same grid layout as the in-ice
array. IceTop consists of 81 stations, each of which contains two ice Cherenkov
tanks spaced 10m apart, for a total of 162 tanks. At the center of IceTop there
are eight densely arranged stations corresponding to the DeepCore strings, as
mentioned above. The tanks are filled with ice to a height of approximately
90 cm and each tank contains two standard IceCube DOMs, one operating in
high gain mode and the other in low gain mode [Aar+17].

3.1.5 Lab

The IceCube Lab is a two-story building located at the center of the array. It
serves as the central operational facility for the observatory, where all data is
collected and pre-processed [Aar+17].

Figure 3.1: Schematic of the IceCube Observatory. The different colors of the
stations are for the different years the stations and their accompanying strings
were deployed[Aar+17].
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3.2 Data Acquisition Systems and Reconstruc-
tion

3.2.1 IceTop

Calibration

Single atmospheric muons are used to calibrate the IceTop DOMs. The mean
energy of these muons is about 2 GeV[De 19]. Since in this energy range they
are MIPs (Minimum Ionizing Particles), their energy loss, in accordance with
the Bethe-Bloch formula, is nearly independent of their energy. The unit of cal-
ibration is called VEM (Vertical Equivalent Muon), where one VEM represents
the photocharge induced by one muon hitting the tank vertically[Aar+17][De
19].

Measurement

Depending on the coincidence level, IceTop has two mutually exclusive types of
photocharge measurements: Hard Local Coincidence HLC for high coincidence
events and Soft Local Coincidence (SLC) for low coincidence events.
The coincidence level is defined within a station. If both tanks of a station
measure an event of which at least one triggers a high gain DOM within a time
window of 1µs, it is considered a high coincidence event and the HLC signal is
recorded. Conversely, if only one tank of a station detects an event, it is a low
coincidence event and the SLC signal is recorded.
For an HLC measurement, the full digitized waveform is stored. For a SLC
measurement, only the integrated photocharge and a timestamp is stored [De
19][Aar+19].

Reconstruction

After a shower is measured, it is processed by the so-called Laputop software,
which is a maximum-likelihood reconstruction algorithm for IceTop. For each
shower, the core position (xc,yc,zc), the direction (θ, ϕ), and the LDF (Lateral
Distribution Function) of the photocharge are reconstructed using Laputop.
The LDF is described by the parameters κ and β, and is of the form:

S(r) = S125 ·
( r

125m

)−β−κ log10 ( r
125m )

. (3.1)

In equation 3.1, S125 is the charge signal in VEM at the reference distance of
125m from the shower axis and r is the radial distance from the shower axis.
The parameter β describes the steepness and κ characterizes the curvature of
the LDF. For hadronic showers, κ remains nearly constant, so by default it is
set to a value of 0.303 [Aar+19].
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3.2.2 In-Ice

Measurement

Within the in-ice array, signals are also differentiated into HLC and SLC based
on the coincidence level. For the in-ice detector, the coincidence level is deter-
mined on a string-by-string basis. If an event is registered by a neighboring
DOM or a second neighboring DOM in addition to the DOM itself within a
time window of 1 µs, then it is classified as an HLC event, else it is an SLC
event [De 19].

Reconstruction

The Millipede software is used to reconstruct the in-ice pulses. Millipede re-
constructs the in-ice energy loss dE

dX , in steps of 20m. From the reconstructed

energy loss, three metrics used in this work can be derived, namely dE1500

dX , as
well as a standard and a strong selection of the stochastic energy loss.
The metric dE1500

dX is the energy loss at a slant depth of 1500m, which is approx-
imately the top of the in-ice detector array. The standard and strong selections
denote the number of bins in a X− dE

dX plot, where the bin width is given by the
reconstruction length of 20m, that exceeds a certain threshold. The following
formula defines this threshold

dEµ

dX
> a ·

(
dEµ

dX

)b

reco

, (3.2)

where a = 5 and b = 0.8 for the standard selection, and a = 7 and b = 0.9 for
the strong selection [Aar+19]. An example of determining these metrics for one
event is shown in figure 3.2.
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Figure 3.2: An example of reconstructed energy loss profile from a large event
[Aar+19]. The solid red line indicates the average energy loss fit, the dashed red
line presents the standard stochastics selection, and the dotted red line is the
strong stochastics selection. The gray band presents the approximate location
of the dust layer.
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4 Simulation

4.1 Air Shower Simulation

The Monte Carlo simulation of the extensive air shower is performed using the
CORSIKA [Hec+98] (Cosmic Ray Simulation for KASCADE) software. COR-
SIKA models the development of an air shower following the introduction of a
primary particle. To simulate an air shower, the following parameters have to
be provided to CORSIKA: the direction and the primary energy of the particle
(both can be discrete values or distributions), the particle type, a model of the
atmosphere, a hadronic interaction model and an electromagnetic interaction
model.
In this thesis, CORSIKA simulations utilizing, the EGS4 [NHR85] model for
electromagnetic interactions and the Sibyll 2.1 [Ahn+09] model for high-energy
hadronic interactions, are used.
After being given the initial parameters, CORSIKA simulates the shower step
by step for each atmospheric altitude slice until the observation level is reached,
which for IceCube is about 2837m [De 19]. During the simulation, the space-
time coordinates of each particle are tracked until they fall below a certain
energy threshold. When this happens, they are discarded and their energy de-
posit is recorded at the altitude at which it occurred. For IceCube, only the
particles that reach the observation level are of interest, because only these can
be detected by the observatory.

4.2 Detector Simulation

The GEANT4 [Ago+03] software is used to simulate the detector response. To
ensure comparability with real data, the PMT response, DAQ signal processing,
and trigger are simulated. This ensures that the same Laputop / Millipede re-
construction can be applied to both real and simulated data. To achieve higher
statistics, the same CORSIKA showers are used multiple times at different lo-
cations of the detector array.
At the beginning of the simulation, the shower is placed at a random position
in the detector array. Then the particles are read out at the observation level
and propagated through the last parts of the atmosphere, the snow and finally
the detector, where their response is simulated. In the simulation, only muons
with energy greater than 273GeV [De 19] are propagated into the in-ice array
[De 19][Aar+19].
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5 Neural Networks

Neural Networks (NNs) are useful when dealing with large amounts of data,
especially when the goal is to identify underlying patterns or structures that
are not readily apparent using conventional methods. Essentially, a NN is a
sophisticated non-linear function f that maps an input vector, X, to an output
vector, y, commonly referred to as features and targets, respectively,

f(X) = y. (5.1)

While there are many types of NNs, this thesis focuses on multi-layer percep-
trons (MLPs).

5.1 MLPs

5.1.1 The perceptron

The basic unit of a MLP is called a perceptron. As shown in figure 5.1, a per-
ceptron takes an input vector x, computes the scalar product with its intrinsic
vector w, in Machine Learning (ML) the vector w is called a weight vector. In
order to account for data that does not intersect the origin, a bias term b is
added to the scalar product. It is common to introduce an extra dimension to
the input vector, where xi = 1 and wi = b, effectively embedding the bias into
the scalar product.
After the scalar product is calculated, a non-linear function σ, called an acti-
vation function, is applied to the result. The reason for using the activation
function is that since the scalar product is a linear operation, the MLP would
not be able to fit non-linear data without using a non-linearity. The equation
for a perceptron is then as follows,

a = σ

(∑
i

wixi + b

)
, (5.2)

with a being the output of the perceptron.
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Figure 5.1: Schematic of a perceptron [Duk18].

5.1.2 MLP

A MLP arranges perceptrons into layers, and combines several of them to form
a computational graph. In this structure, the perceptrons serve as the nodes of
the graph and are therefore commonly referred to simply as nodes. The layers
within the MLP are fully connected, which means that each node in a layer is
connected to all the nodes in the following layer. Consequently, the input vector
x for a node is composed of the outputs of each node in the previous layer. A
schematic overview of such a graph/network can be seen in figure 5.2.
There are three types of layers within a MLP: the input layer, the output layer
and the hidden layers. As the name suggests, the input layer serves as the
entry point of the network and has no preceding layer. It takes the feature
vector X as its input. Therefore, its number of nodes is equal to the number of
features. The output layer, on the other hand, is the final layer of the network.
Its outputs form the target vector y. Thus, the number of nodes in the output
layer have to match the dimension of the target vector. The layers between the
input and output layers are called hidden layers. Their number and size are
not predetermined. Instead, determining their optimal number and size often
requires iterative testing. All parameters, except the weights and biases, which
are not intrinsically given by the problem have to be optimized by the user, they
are called hyperparameters. Algorithms called optimizers are used to optimize
the weights and biases.

5.2 Training

As mentioned above, a neural network essentially is a function that maps a
feature vector to an output vector. In the context of MLPs, the process of finding
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Figure 5.2: Layers of a Neural Network [Inc].

the best parameters for this function to best fit a given dataset, consisting of
feature vectors and their corresponding target vectors, is called training. The
metric used to quantify how well the MLP fits the data is called the loss function,
or simply the loss. There are many loss functions available, one of the most
commonly used is the Mean Squared Error (MSE) loss,

loss =
1

N

N∑
i

(ypred,i − yi)
2 =

1

N

N∑
i

(f(X)− yi)
2, (5.3)

which is also the one used in this thesis. In this equation, ypred,i is the prediction
of the model for the ith data point, as determined by f(Xi) = ypred,i, while yi
is the actual target value for the same data point, and N is the number of data
points in the dataset.
This allows us to redefine the task of finding the best parameters for the model
as finding the parameters that minimize the loss function.

5.2.1 Optimizer

Finding the minimum of the loss function analytically is difficult. Therefore,
iterative algorithms are used to incrementally approach the minimum. These
algorithms are called optimizers. There are several optimizers available, in this
work the Adam [KB17] and the SGD [Rud16] (Stochastic Gradient Descent)
optimizers were tried out.
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5.2.2 Training Loop

Since the optimizer converges only step by step, a training loop is used to find
the optimal model. In machine learning the number of optimizer steps over
the whole dataset is called epochs and the number of epochs is an important
hyperparameter because it specifies how long the model is trained for. If it is
trained for too short it could be possible not to reach the minimum of the loss
function, this is called underfitting, on the other hand if the model is trained for
too long, one gets overfitting. At this point, the model is too well optimized for
the training data to make good predictions for unseen data (one says the model
remembers the data). To prevent the model from overtraining, the so-called
validation loss is used. The validation loss is the loss of a subset of the data,
called the validation dataset, which is not used for training and therefore can
be used to judge the performance of the model on unseen data.
After training, the model’s performance is evaluated by calculating the loss on a
dataset called the test dataset, which is not used for training or decision-making
during the training process.

5.2.3 Frameworks

For the implementation and training of the neural networks in this study, Py-
Torch [Pas+19] is used as a machine learning framework. Additionally, scikit-
learn [Ped+11] is used for data preprocessing.
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6 Analysis

6.1 Dataset

For this analysis a dataset of 240,000 showers simulated with CORSIKA for
the year 2012, following an E−1 distribution, is used. The dataset contains
an equal mixture of four primary particles, namely: protons, helium, oxygen,
and iron. In CORSIKA, the Sibyll 2.1 model was used as the high-energy
hadronic interaction model, and the atmosphere was based on the average at-
mospheric conditions of April. The simulated showers have an energy ranging
from log10(E/GeV) = 5 to 8 and zenith angles from 0◦ to 65◦.

On this dataset, the following standard quality cuts for IceTop and In-Ice were
applied to each event, analog to those in the paper [Aar+19].

• The number of stations after cleaning is required to be ≥ 5.

• The largest snow-corrected charge measured in any tank is required to be
at least 6VEM.

• The station with the highest deposited charge is not at the edge of the
detector.

• The neighboring tank in the same station as the tank with the largest
signal must have at least 4VEM.

• The fraction of hit stations within a circle centered on the center of gravity
of the shower with outer radius at the furthest hit station must be greater
than 0.2.

• The Laputop reconstruction must be successful.

• The LDF slope parameter β is required to be between 1.4 and 9.5.

• A minimum of 8 In-Ice DOMs are required to be hit.

• The Millipede energy loss reconstruction must succeed, with log10(rlogl) <
2.0.

• The total predicted Millipede charge must be at least 90% of the measured
charge.

• At least 3 reconstructed cascades remain after all previous selections and
after removal of cascades in the dust layer and at the edge of the detector.

Since this work focuses only on vertical showers, an additional cut is applied:
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• The cosine of the zenith angle is between 1 and 0.95, which is approxi-
mately 0◦ to 18◦.

After the quality cuts, the simulation dataset contains about 56000 events, which
will be used for the following analysis. The dataset is nearly equally distributed
in the four primary particles and follows the energy distribution shown in figure
6.1.

Figure 6.1: True energy distribution of the dataset used in this analysis.

The sudden decrease in the number of events, seen in Fig. 6.1, at log10(E/GeV) =
7 is due to the change of the resampling radius for the detector simulations at
this energy, from 1100m to 1700m [De 19]. The steady growth from 5 to 7, on
the other hand, is due to the higher detector efficiency at higher energies.

6.2 Muon Density Parameter

6.2.1 Charge Spectrum

The muon density, as a new feature compared to the analysis described in
[Aar+19], is calculated from the combined HLC and SLC charges of the Ice-
Top array. To calculate the muon density, the charge spectrum is examined in
radial ranges away from the shower core. This is because near the shower core,
the muon peak is overshadowed by the electromagnetic (EM) induced charges.
The charge distribution induced by EM components decreases exponentially
with distance from the shower core.
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(a) Charge spectrum for a radius
range of 100m ≤ r < 200m, be-
cause this is close to the shower
core only the EM induced charges
are visible.

(b) Charge spectrum for a radius
range of 300m ≤ r < 400m, at
this point the EM peak has de-
creased enough to make the muon
peak become visible.

(c) Charge spectrum for a ra-
dius range of 800m ≤ r <
900m, at this radius range the
EM and muon peaks are well sepa-
rated, but only a few events induce
charges at such great distances,
because of this the statistic is not
high enough to make good predic-
tions.

Figure 6.2: Charge signal distribution of combined SLC and HLC charges for
different radii for all events with 0 ≤ log(S125) < 0.5.

Furthermore, as a result of the calibration of the IceTop tanks as described in
section 3.2.1, the position of the muon peak by definition is fixed at a charge
of 1VEM. Because of these two effects, there exists a radius range away from
the shower core, where the EM peak has decreased enough to make the muon
peak become visible, this can be seen in figure 6.2b. Here the first peak at
about 0.4VEM is the EM peak, while the peak at 1VEM is the muon peak. As
can be seen in figure 6.2c, at even greater distances the EM peak decreases even
further, so that the EM and muon peaks barely overlap. Although this is ideal to
calculate the muon density, this radius range should not be used for estimating
the muon density, because the sensitive area and density of the detector is too
small to get high enough statistics for such large distances. Therefore, a balance
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must be struck between the muon peak’s prominence and detector’s efficiency.
Since the height and decay rate of the EM peak depend on the primary energy,
the radius range used to calculate the muon density has to be chosen depending
on the log(S125) signal of the shower, which is a proxy for the energy. To find
the best range, several radii ranges were considered for each energy range. The
best fitting ranges were then selected based on plots of the charge spectrum for
different energy and radius ranges, these plots can be found in Appendix A.1.
An overview of the chosen ranges for this analysis can be seen in table 6.1.

Table 6.1: log10(S125) range and the corresponding radius bins.

log10(S125) Bin Radius Bin

0 ≤ log10(S125) < 0.5 300m- 400m
0.5 ≤ log10(S125) < 1 350m- 450m
1 ≤ log10(S125) < 1.5 400m- 500m
1.5 ≤ log10(S125) 500m- 600m

6.2.2 Calculation of the muon density parameter

The estimated muon density is defined as the sum of the muon enhanced charges
divided by the effective detector area within a specific radius range. Therefore,
the muon density parameter is calculated in the following way,

ρµ =
1

Ntanks ·Aeff
·

∑
qi≥0.7VEM

qi. (6.1)

Here Ntanks is the number of tanks in the considered radius range, Aeff is the
effective area of one tank, given by Aeff = Atop cos θ+Aside sin θ, and qi is the
combined SLC and HLC charges [KBH21]. The cut at 0.7VEM is made to select
the approximated muon charge. The position of the cut is taken from the valley
position of the charge spectrum, between the muon peak and the EM peak.
Because the muon peak and the EM peak overlap, this is only an estimate of
the muon induced charge. A histogram of the muon density calculated with this
method for iron with the radius ranging from 350m to 450m and a log10(S125)
range of 0.5 to 1 can be seen in figure 6.3.
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Figure 6.3: An example, histogram of the muon density parameter for proton
and iron, with the radius ranging from 350m to 450m and a log10(S125) range
of 0.5 to 1. The large number of events with an apparent muon density of zero
stems from showers, which hit the edge of the detector and so have a lower
probability to induce a charge grater than 0.7VEM in a tank.

6.3 Targets

The two targets for this analysis, namely log(E/GeV) and ln(A), are quite
different in nature. While log(E/GeV) is continuously distributed, ln(A) has
a discrete distribution. Although ln(A) is discrete, classification was not used
to predict ln(A), this allows for the detection of primary types which are not
present in the dataset. Further ln(A) was chosen over A, because the four
primaries: proton, helium, oxygen and iron are nearly equidistant in ln(A), but
not in A.

6.4 Features

6.4.1 Muon Density Parameter

The muon density parameter mainly serves as an indicator for the primary
particle of the shower. This is because, for the same energy, the muon density
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of an iron induced showers is higher than that of a proton induced showers,
which can be explained by the superposition model [KU12].

6.4.2 dE/dX

Since dE/dX is a metric from the in-ice array, it is primarily sensitive to high
energy muons. As iron induced showers contain a larger number of muons than
proton induced showers at similar energy levels, iron showers result in a larger
Cherenkov deposit for the same energy. Therefore, when looking at dE/dX at
similar energies, it is primarily an indicator for the primary mass [Aar+19].

Figure 6.4: An example, histogram for log10(
dE1500

dX ) for iron and proton for an
energy range of 6.5 ≤ log10(E/GeV) < 7.

6.4.3 Standard + Strong selection

Since the standard and strong selections stochastics are also metrics of the in-ice
array, they are also mainly sensitive to high energy muons. As the selections
evaluate how many times the energy loss at each slant depth exceeds a certain
threshold, which is defined in section 3.2, they serve as a metric for discrete
energy losses due to bremsstrahlung. Since, iron produces more but lower energy
muons compared to protons, which produce fewer but higher energy muons
at the same primary energy. It is expected that at the same primary energy
(i.e. log10(S125)) iron showers will have a higher standard selection but a lower
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strong selection than proton induced showers [Aar+19]. Thus, the standard and
strong selections, when viewed at the same energy, are also mainly indicators of
the primary type.

6.4.4 log10(S125)

The reference distance of 125m for log10(S125) is chosen in such a way, that the
parameter is nearly independent of the primary type and mainly depends on the
primary energy. Therefore, log10(S125) is the main indicator for the primary
energy. The figure 6.5 shows the linear relationship between log10(S125) and
log(E/GeV).

Figure 6.5: Correlation between log(E/GeV) and log10(S125) over the dataset
used in this study, with a linear fit.

6.4.5 cos(θ)

Although the zenith angle is not a direct indicator of primary energy or type,
it is an important feature, because the other reconstructed features depend on
the direction of the shower.
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6.5 Training Methodology

To train the Neural Network (NN) for this analysis, a common procedure is
used. The procedure is as follows:
Before training begins, the dataset is split into three subsets: the training, the
validation, and the test dataset. For this, a split of 60-20-20 is used.
Since the majority of activation functions is most sensitive to changes around
zero, the data is downscaled to a range of 0 to 1 using the Scikit-learn Min-Max
scaler [Ped+]. For this, downscaling and upscaling layers are added before the
input and after the output layer, respectively. This makes it possible to input
unscaled data directly into the network, which simplifies operation immensely.
Using the same 5-7-4-2 network structure as in the previous publication [Aar+19],
the Adam and SGD optimizers were evaluated on a subset of 10,000 samples,
for different learning rates. It can be seen in table 6.2, that their performance
is quite close, but SGD performs slightly better, than Adam. Therefore, it is
used as the optimizer for the rest of the analysis.
To adjust the learning rate during training, the ReduceLROnPlateau function
[Fou] from PyTorch is used. This function reduces the learning rate each time
a metric, in this case the validation loss, stops improving.
This is done because using learning rate decay, allows training to start with a
higher learning rate, without overshooting the minimum of the validation loss,
at the end of training. This speeds up the training of a model, therefore, by us-
ing a learning rate decay function, more models can be tried without sacrificing
performance, increasing the probability of finding a better performing model.
By testing different parameters for the ReduceLROnPlateau function, the fol-
lowing parameters were found to work best: initial learning rate = 0.01, cooldown
= 500, decay factor = 0.5, and patience = 10.
Since it is necessary to train beyond the actual optimum to detect that the val-
idation loss has stopped improving. The model is not in the state with the best
validation loss when the decay happens, so to avoid having to continue training
with a suboptimal model, each time a decay occurs, the parameters with the
lowest validation loss are loaded in.
For this to work, each time the model reaches a new minimum for the validation
loss, the model’s parameters are saved.
There comes a point where the learning rate has decayed so often that it be-
comes too small for any significant optimization to take place. Once this point
is reached, training can be stopped. For this analysis, the threshold is set to
lr < 0.5.
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Table 6.2: Test and validation loss for the 5-7-4-2 model for different optimizes
and learning rates.

learning rate Optimizer Trainings Loss Validation Loss

0.001
Adam 0.7015 0.7409
SGD 0.7027 0.739

0.005
Adam 0.6981 0.7437
SGD 0.7021 0.737

0.01
Adam 0.7113 0.7428
SGD 0.7019 0.7536

0.025
Adam 0.7303 0.7426
SGD 0.7105 0.7801

0.05
Adam 0.7423 0.7573
SGD 0.7266 0.7622

0.1
Adam 0.7837 0.8867
SGD 27.628 28.03

6.6 Metrics

Because it is difficult to evaluate a model’s performance on its validation loss
alone, four additional metrics are used during training. These are: the R2 value
and the MSE of the energy, for energy predictions, and the separation and MSE
of ln(A), for ln(A) predictions. Hereby, the separation is defined as follows,

separation =
∑
(i,j)

|KDEi −KDEj |, (6.2)

where i, j are the primary particles and the sum is over all combinations (not
permutations).
The separate calculation of the MSE for energy and ln(A) allows to distinguish
between the loss due to the energy prediction and the loss due to the mass pre-
diction. This is done because looking at the combined average of both can be
misleading. For example, two models could have the same total loss, but one
may have a better energy prediction while the other performs better at mass
predictions, or vice versa.
Since in an Etrue, Epredicted plot the relationship between the two should be
linear, the R2 value is used in addition to the MSE as a metric for the energy
prediction of a model.
The MSE of ln(A) serves as a metric for the distance of the predicted mass from
the actual target mass, for example, when the MSE of ln(A) is calculated for
a single event with protons as the primary, it shows how much the predicted
value for ln(A) deviates from zero. Therefore, the MSE of ln(A) is a metric for
how well a model performs in predicting the actual mass of a primary.
The separation, on the other hand, is completely independent of the actual mass
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of the particles and thus cannot serve as a metric for it. Rather, the separation
is a metric of how well the network can distinguish between different primary
types.

To evaluate the performance of the model after training, the MSE for energy
and ln(A), and the R2 value for the energy, are calculated on the test dataset.
This is done, because so the model’s performance on unseen data can be evalu-
ated, making it a valid indicator of its real world performance.
Instead of using the separation to evaluate a model’s performance to differenti-
ate between the different primary types, the normalized overlap areas (NOAs)
of the Kernel Density Estimations (KDEs) are used after training. This is done
because the NOAs are more physically relevant than the separation. Also, due
to its computational cost, the NOAs are not calculated during training.
Furthermore, in order to obtain a single number that reflects the model’s per-
formance to differentiate between different primary types over the whole energy
range, the mean NOA over the whole energy range and all combination of pri-
mary particles types is calculated.

30



7 Results

7.1 Baseline Model

Since the previous publication [Aar+19] uses a different dataset, with more
events and a different energy range, than the one used for this work, and to
account for different training methodologies and random fluctuations, a new
baseline model analogous to the 5-7-4-2 network from the paper [Aar+19], with
the same features, specifically log(S125), the standard selection, the strong se-
lection, dE/dX, and cos(θ), and the same activation function, namely tanh, is
trained again for this work.
This model serves as a benchmark against which all other models used in this
thesis are compared to. To train the baseline model, the procedure described in
the previous section, along with MSELoss as the loss function, was used. The
performance of this model will be discussed in the next section.

7.1.1 Performance

Energy Performance

To evaluate the model’s performance for energy predictions, both the R2 and
the MSE of the energy are used. For the baseline model, these are: 98.7% and
0.0044, respectively. In addition, to evaluate the performance of the energy pre-
diction in different energy bins, energy resolution and bias are checked. Here,
the bias and the resolution of the energy reconstruction are defined as the mean
and the standard deviation, of the ratio between the true energy and the re-
constructed energy, respectively. A plot of the bias and resolution for different
reconstituted energy ranges can be seen in figure 7.1. Since the dataset does
not contain enough events with energies lower than log10(E/GeV) < 6 to make
an informed statement about the model’s performance for this energy range, it
is excluded from the plot.
Furthermore, the sudden drop at the last bin is most likely due to boundary
effects, which are caused by incomplete data in the boundary regions when the
analysis window gets closer to the edge of the data range [SLL13].

The figure 7.1 shows, that the energy resolution improves with increasing energy.
This is expected since higher energy showers contain more particles, and thus
the Laputop / Millipede reconstruction for the features gets better at higher
energies, leading to better energy predictions.
The plot also demonstrates that for the same energy, particles with heavier
masses have better resolution than those with lighter masses, this can be ex-
plained by the superposition model, which states that at the same energy, a
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Figure 7.1: Energy reconstruction bias (upper) and resolution (lower) as a func-
tion of the reconstructed energy for the different primary types and for an equal
mixture of each type.

shower with a heavier mass primary contains more particles than a shower with
a lighter mass primary. Therefore, for the same reason that the reconstruction
is better at higher energies, the reconstruction for heavier particles is better,
than that for lighter ones, at the same energy.
The resolution plot is similar to the one from the [Aar+19] paper, with the two
main differences being a consistent offset of about 0.01 over the energy spectrum,
which is most likely due to different training methodology, and the absence of
the sudden drop of the resolution at log(E/GeV) = 8. The absence of this drop
for the [Aar+19] paper is most likely due to the fact, that the [Aar+19] paper’s
dataset includes higher-energy events, and therefore no boundary effects occur
at log(E/GeV) > 8.
The bias plot shows that the bias is close to zero in a range of approximately
±0.02. From the plot, it can be seen that the bias from log(E/GeV) = 6 to 7
gets better with increasing energy, which is due to the lower shower fluctuations
at higher energies [Aar+19]. Around log(E/GeV) = 7 there is a change in the
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trend of the bias, which coincides with the energy at which the resampling rate
for the shower simulations changes, and above which the dataset contains only
about half the number of events for each bin, compared to before the change,
this can also be seen in figure 6.1. Therefore, the change in trend is most likely,
due to the different number of training data in the two ranges.
The sudden drop for the last few bins is again most likely due to boundary
effects.

Mass Performance

For the baseline model, the MSE of the mass is about 1.388 and the average
NOA is about 0.561.
In figure 7.2 the NOAs for all combinations of primary types and different energy
ranges can be seen. To calculate the NOAs the KDEs shown in figure 7.4 are
used. The plot 7.2 shows that, for all primary combinations, the NOAs improve
with increasing energy. This is due to lower intrinsic shower fluctuations at
higher energies. It is also clear that it is easier to distinguish between primaries
with large differences in mass than those with closer masses. This explains the
relatively high NOAs for elements whose masses are close together.
To evaluate the performance of the baseline model in predicting the actual mass
of a primary particle, the MSE of ln(A) for different energy ranges is plotted,
see figure 7.3.

Figure 7.2: Normalized overlap area (NOA) for all combinations for different
energy bins. A NOA close to zero means that the two elements are well sepa-
rated, while a value close to one indicates that they are almost identical.

33



From the plot 7.3 it can be seen that the mass prediction for oxygen and helium
is almost independent of the energy, while the mass prediction for proton and
iron, on the other hand, becomes much better at higher energies. This can also
be seen in the KDEs in figure 7.4, while the shape of the KDEs for oxygen and
helium is similar for all energy ranges, the KDEs of iron and proton are a lot
peakier at higher energies.
Comparing the KDEs for the baseline model with the KDEs from the paper
[Aar+19], it can be seen that the KDEs for different energy ranges for proton,
oxygen, and iron look very similar for both models, while the KDE for helium
in the baseline model is peakier, than in the paper [Aar+19]. This is probably
due to the fact that [Aar+19] uses A instead of ln(A) as the target for the mass,
which makes it difficult to distinguish between proton and helium, since in A
both are much closer to each other compared to the other primaries.

Figure 7.3: MSE of ln(A) as a function of the true energy for the different
primary types and for an equal mixture of each type.
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(a) log(E/GeV) range of 6 to 6.5. (b) log(E/GeV) range of 6.5 to 7.

(c) log(E/GeV) range of 7 to 7.5. (d) log(E/GeV) range of 7.5 to 8.

Figure 7.4: KDEs of the baseline model for different energy ranges used to
calculate the NOAs.

Conclusion

In conclusion, the baseline model, within the considered energy range, is overall
comparable to the model from the paper [Aar+19]. Therefore, it can be used
as a benchmark for the models with the added muon density parameter. The
effect of the addition of the new parameter can then be determined by comparing
the models with the new parameter with this benchmark model. This will be
discussed in the next section.

7.2 Model with added muon parameter

The main goal for this study is to determine if the muon parameter has an
impact on the performance of the model, and thus a physical merit. A model
with the same architecture as the baseline model is trained again, using the
same common training method as described above, with the only difference
being the addition of the muon density parameter as an extra feature. This
requires adding an extra node to the input layer, which makes the model with
the added muon parameter a 6-7-4-2 model.
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7.2.1 Performance

Energy

This model has an MSE of the energy of about 0.0046 and a R2 value of about
98.7%. When compared with the model without the muon density parameter,
it can be seen that the muon density parameter, as calculated in this thesis, has
no significant impact on the energy performance, when looked at over the whole
energy range.
To check if the addition of the muon density parameter has an effect in certain
energy ranges, bias and resolution distribution are generated, as can be seen if
figure 7.5.
Figure 7.6 displays the comparison of bias and resolution between baseline and
model with muon parameter for an equal mixture of primaries. In the plot it
can be seen, that for the bias, the general tendency is similar, but there is a
slight difference at around log10(E/GeV) = 7.25. The reason might be different
amount of simulation dataset, rather than the muon parameter. In case of
resolution, both distributions show almost identical.
The fact that the resolution and bias of the baseline model and the model with
additional muon density are nearly identical for all energy ranges might suggest
that the dependence of the muon density parameter on energy is too small
compared to that of the other features to have a significant effect on the energy
reconstruction.

Figure 7.5: Bias (top) and resolution (bottom) of the 6-7-4-2 model’s energy
reconstruction for different energy bins.
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Figure 7.6: Bias (top) and resolution (bottom) for all primaries combined as a
function of true energy for a comparison between baseline (red) and model with
muon parameter (blue).

Mass

For the model with adding muon density parameter, the MSE of the mass is
about 1.36 and the average NOA is about 0.549.
This means that the model with added muon density is better at predicting the
true mass of the primary particles and also better at separating the primary
particles than the baseline model, when compared over the full energy range.
This is the expected behavior since, as described in section 6.4, the muon density
is mostly an indicator of mass when looked at the same energy range.
To evaluate the ability of the model to separate between different primary types
over different energy ranges, the same NOA plot as for the baseline model, is
performed for the model with the added muon density, this plot is shown in
figure 7.7. Comparing the two plots, they look almost the same, so to make
the differences better visible, a comparison plot is performed, as shown in figure
7.8. From this plot it can be seen that the muon density has only a small
overall effect on the NOA, it can also be seen that it has the largest effect at
higher energies, with the only outliers being the first two combinations. The
improvement at higher energies is probably due to higher muon production at
higher energies, which leads to a better reconstruction of the muon density at
higher energies.
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The KDEs of the 6-7-4-2 model used to calculate the NOAs can be seen in figure
7.9. The figure also shows that the KDEs of the 6-7-4-2 and the baseline model
have a similar distribution for all primaries and all energies. This means that
the muon density parameter only has a minor effect on the shape of the KDEs.

Figure 7.7: NOA for the model 6-7-4-2 model.

Figure 7.8: Difference between NOA of the baseline model and NOA of the
6-7-4-2 model (higher means 6-7-4-2 has improved).
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(a) log(E/GeV) range of 6 to 6.5 (b) log(E/GeV) range of 6.5 to 7

(c) log(E/GeV) range of 7 to 7.5 (d) log(E/GeV) range of 7.5 to 8

Figure 7.9: KDEs of the 6-7-4-2 (solid) and the baseline (dashed) model for
different energy ranges.

To evaluate the performance of the model in predicting the actual mass of the
primaries, the same plot as for the baseline model is performed, see figure 7.10.
In addition, to better evaluate the differences between the baseline model and
the model with added muon density, comparison plots are made, of which the
one for the combined masses can be found in figure 7.11, and the ones for the
different primaries can be found in the Appendix A.2. From the comparison plot,
it can be seen that the MSE over all primaries of the model with added muon
density closely resembles that of the baseline model, with the only difference
being a slight systematic improvement.
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Figure 7.10: Mass prediction of the 6-7-4-2 model for different energy ranges.

Figure 7.11: Comparison of the mass prediction between the baseline model and
the 6-7-4-2 model for different energy ranges.
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7.3 Different architectures

Since the 6-7-4-2 architecture was never optimized to use the muon density pa-
rameter as a sixth parameter, and to eliminate architectural constraints, several
new/different architectures were tried. For this, the following procedure was
used:

First, different activation functions were tried out, using the 6-7-4-2 model,
hereby it was found that the Exponential Linear Unit (ELU) activation func-
tion performs best. Therefore, ELU was used as the activation function for the
rest of the trails.
Next, around 400 different combinations of numbers of layers and nodes in those
layers were tried on a subset of the dataset with 10,000 events. This was done
using the common training method, with the only difference being that the
models were trained for a maximum of 5000 epochs. Of the tried models, the
6-18-16-16-2 and the 6-22-14-2 model performed best.
After this, both models were trained on the full dataset. This showed that the
6-18-18-2 model has the best trade-off between energy and mass prediction and
separation.
Since all the tried models were much better at predicting the energy than at pre-
dicting the mass and separation, different loss functions that favor the mass/sep-
aration predictions were tried out next, using the 6-18-16-16-2 model. For this,
a weighted MSE between mass and energy, the separation, and the sum of the
MSE of the energy and the separation, were tried.
This showed that the loss has a negligible influence on the performance of the
model, therefore the final network was trained using the MSE loss.

In conclusion, the best performing model with the added muon density pa-
rameter is a 6-18-16-16-2 together with ELU as the activation function and
MSE as the loss function, so this model is used for the rest of this analysis, its
performance is discussed in the next section.

7.3.1 Performance

Energy

The MSE of the energy of this model is about 0.0042 and the R2 value is about
98.8%. This means that compared to the other two models in this analysis, the
change in architecture provides only a slight improvement in performance over
the whole energy range.
In order to see the performance of the model in different energy ranges, bias
and resolution distributions are plotted. This can be seen in figure 7.12. This
plot shows that the improved model is not effected by the boundary effect in
contrast to the other two models in this analysis, suggesting that the improved
model is more stable around the boundaries. This can even better be seen in the
comparison plot in figure 7.13. From the comparison plot, it can be seen that
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the energy performance of the improved model compared to the baseline model
is essentially the same up to the boundary, suggesting that the improvement is
only due to the improved stability at the edge near log(E/GeV) = 8.

Figure 7.12: Bias (top) and resolution (lower) of the energy reconstruction for
the 18-16-16-2 model.
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Figure 7.13: Comparison between baseline model and improved model of bias
(top) and resolution (bottom) of energy reconstruction for all primaries com-
bined.

Mass

For the improved model, the MSE of ln(A) is about 1.358 and the average NOA
is about 0.55.
As this is very close to the 6-7-4-2 model, this means that the 6-7-4-2 model has
no architectural constraints on mass predictions when compared over the whole
energy range. To see if there are any differences for different energy ranges, a
plot of ln(A) for different energy ranges, analogous to those for the other two
models, is also made for the improved model, this plot can be seen in figure
7.14.
From this it can be seen that the mass prediction of the improved model fol-
lows the form of the mass prediction for the 6-7-4-2 model, which means that
the architecture change does not affect different energy ranges differently. Fur-
thermore, compared to the energy prediction, the architecture change does not
elevate the boundary effect for the mass prediction.
In order to better compare the mass prediction of the improved model with that
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of the baseline model, a comparison plot is made, see figure 7.15, from which it
can be seen that the muon density, as already seen in the plot 7.11 for the 6-
7-4-2 model, does not affect different energy ranges differently, but rather there
is a slight systematic improvement over the entire energy range.
To evaluate the ability of the improved model to separate between different pri-
mary types over different energy ranges, the same NOA plot as for the other two
models, is performed, this can be seen in figure 7.16. From this, it can be seen
that the NOA plot of the improved model closely resembles that of the other
two models, which means that the architectural changes don’t affect the NOA
prediction differently for different energy ranges or combinations. To better
compare the changes to the NOA of the improved model to the baseline mode,
a comparison plot is made, see figure 7.17, which looks very similar to that of
the 6-7-4-2, meaning that the improved model also does not change the NOA
prediction for different energy ranges or combinations differently compared to
the 6-7-4-2 model.
The KDEs used to calculate the NOAs can be seen in figure 7.18. The figure
shows that the KDEs of the 6-18-16-16-2 and the baseline model have a similar
distribution for all primaries and all energies. This means that the muon density
parameter only has a minor effect on the shape of the KDEs.

Figure 7.14: Mass prediction of the 6-18-16-16-2 model for different energy
ranges.
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Figure 7.15: Comparison of the mass prediction between the baseline model and
the 6-18-16-16-2 model for different energy ranges.

Figure 7.16: NOA for different energy ranges and all combinations of primaries
for the improved model.
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Figure 7.17: Difference between NOA of the baseline model and NOA of the
6-18-16-16-2 model (higher means 6-18-16-16-2 has improved).

(a) log(E/GeV) range of 6 to 6.5 (b) log(E/GeV) range of 6.5 to 7

(c) log(E/GeV) range of 7 to 7.5 (d) log(E/GeV) range of 7.5 to 8

Figure 7.18: KDEs of the 6-18-16-16-2 (solid) and the baseline (dashed) model
for different energy ranges.
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8 Conclusion

In this thesis, the muon density parameter was added as a new feature to a neu-
ral network based on a neural network from the previous publication ”Cosmic
Ray Spectrum and Composition from PeV to EeV Using 3 Years of Data From
IceTop and IceCube” [Aar+19], which predicts the mass and energy of cosmic
ray particles.

The analysis showed that the muon density as a feature leads to a slight im-
provement in the mass prediction and in the separation, which is expected since
the muon density is mainly a mass sensitive parameter.
It is also shown, that the muon density parameter does not affect the energy
prediction significantly. This suggests that the GeV muon density parameter
is nearly independent of energy, or its dependence is small compared to that
of the other features like log(S125) to have a significant effect on the energy
reconstruction.
The small effect on the mass predictions due to the addition of the muon density
parameters indicates that the parameter does not provide much more informa-
tion about the primary mass than the main mass indicator dE1500

dX , thus the two
are probably highly correlated.

In order to better evaluate the effects of individual features, in the future, a
sensitivity analysis could be performed, which describes how the mass and en-
ergy predictions respond to changes in the input parameters. This would also
show which parameters have the most influence on the prediction of energy and
mass, and thus the most physical relevance.

It was also shown that the neural networks used in this thesis perform better
at predicting the energy than the mass of the primary. Further, it was shown
that the NNs perform better at predicting the correct mass of oxygen and he-
lium than for iron and proton, this could be because iron and proton are at the
edge of the dataset, and so boundary effects can influence their predictions, this
could be eliminated by using classification. This would have the advantage that
it is not effected by the order in the inherent masses and therefore no boundary
effects would take place. The disadvantage is that there would be no continuous
mass prediction, so such a network could not be used for composition study with
template fitting.

Further, it was observed that the models using tanh as the activation func-
tion have boundary effects for energy predictions, while the model using the
ELU activation function does not have a boundary effect. This indicates that
the boundary effect for the first two models is most likely caused by the satu-
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ration of the tanh function at the end of the energy range.

It should be noted that the entire analysis in this thesis has been performed
with simulations using only one specific hadronic interaction model (Sibyll 2.1).
It is known that these models have some deficiencies in describing the entire
development of the extensive air shower, in particular the correlations between
the different shower components. Here, the additional muon density parameter
might be helpful in validating the simulations against data. Both, the use of
other hadronic interaction models in the simulations and the application of the
NN to a first data set were not possible within the scope of this work.

In conclusion, due to the improvement in mass prediction, the neural network
with the density parameter of GeV muons as an additional feature looks quite
promising to be used in future analyses, in particular in cross-checking the vali-
dation of the hadronic interaction models used for the Monte Carlo simulations.
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A Appendix

A.1 Combined SLC and HLC charge spectrum
for different log10(S125) and radius ranges

In this section the combined SLC and HLC charge spectrum is shown for dif-
ferent radius bins and log10(S125) ranges, the orange line at 0.7VEM is the
selection for the muon charge calculation. These plots are used to find the opti-
mal distance for calculating the muon density parameter for different energies.

A.1.1 0 ≤ log10(S125) < 0.5
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A.1.2 0.5 ≤ log10(S125) < 1
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A.1.3 1 ≤ log10(S125) < 1.5
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A.1.4 1.5 ≤ log10(S125) < 2
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A.2 Comparison to Benchmark Model

A.2.1 6-7-4-2 Model

Energy Resolution / Bias comparison between the 6-7-4-2 and the
baseline model for different energy bins for all four primaries

(a) Proton (b) Helium

(c) Oxygen (d) Iron
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Mean Square Error for of ln(A) for different energy ranges for all four
primaries

(a) Proton (b) Helium

(c) Oxygen (d) Iron
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A.2.2 6-18-16-16-2 Model

Energy Resolution / Bias comparison between the 6-18-16-16-2 and
the baseline model for different energy bins for all four primaries

(a) Proton (b) Helium

(c) Oxygen (d) Iron
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Mean Square Error for of ln(A) for different energy ranges for all four
primaries

(a) Proton (b) Helium

(c) Oxygen (d) Iron
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