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Abstract
There have been a number of approaches to employ neural networks in self-adaptive systems; in many cases, generic neural 
networks and deep learning are utilized for this purpose. When this approach is to be applied to improve an adaptation 
process initially driven by logical adaptation rules, the problem is that (1) these rules represent a significant and tested body 
of domain knowledge, which may be lost if they are replaced by a neural network, and (2) the learning process is inherently 
demanding given the black-box nature and the number of weights in generic neural networks to be trained. In this paper, we 
introduce the rule-specific neural network method that makes it possible to transform the guard of an adaptation rule into a 
rule-specific neural network, the composition of which is driven by the structure of the logical predicates in the guard. Our 
experiments confirmed that the black box effect is eliminated, the number of weights is significantly reduced, and much 
faster learning is achieved whilst the accuracy is preserved. This text is an extended version of the paper presented at the 
ISOLA 2022 conference (Bureš et al. in Proceedings of ISOLA 2022, Rhodes, Greece, pp. 215–230, 2022).
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1 Introduction

The recent advances in neural networks and machine learn-
ing [2] led to their proliferation in various disciplines, and

the field of self-adaptive systems is no exception [3]. In par-
ticular, they have found usage in approaches to control how
systems of cooperating agents are formed and reconfigured
at runtime [4, 5].

These approaches employ neural networks to implement
the self-adaptation loop, also known as the MAPE-K loop,
which controls the runtime decisions in the system (e.g.,
to which service to route a particular request) and the run-
time architectural changes (e.g., which services to deploy/un-
deploy or reconfigure).

In typical cases, a neural network is used for the analysis
and planning stages of the MAPE-K loop, replacing the tra-
ditional means of analyzing the system state and deciding on
adaptation actions. These traditional adaptation mechanisms
are often specified in some form of logical rules (e.g., if–then
rules or a state machine with guards and actions) [4, 6, 7].

Using a neural network to make decisions on adaptation
actions naturally means training the network for the situa-
tions the self-adaptive system is supposed to handle. Such
training typically requires a large number of system behavior
examples—training data in the form of observed inputs and
expected adaptation actions. This approach is significantly
different from the logical rules that have been traditionally
used to describe adaptation actions. Due to this substantial
conceptual gap between the two approaches, it is difficult to
evolve an existing self-adaptive system based on some form
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logical predicates in the adaption rule in question. Moreover,
prior to the composition process, the predicates can be refined
by predefined atomic “attunable” predicates, each having a
direct equivalent in a primitive element of rsNN (“seed” of
rsNN).

This paper is an updated and substantially extended ver-
sion of [1]. In particular, another example has been added,
the evaluation has been extended as well as the discussed
related work.

The rest of the paper is organized as follows. Section 2
presents two examples that are used to motivate and illus-
trate rsNN. Section 3 is devoted to the key contribution of
the paper—it describes the concepts and ideas of rsNN, fur-
thermore Sect. 4 discusses the methodology, results, and
limitations of experimental evaluation. Section 5 discusses
other approaches focused on employing neural networks in
self-adaptation, and the concluding Sect. 6 summarizes the
contribution.

2 Motivating examples

As particular motivating examples, we utilize two realistic
yet straightforward use cases. The first one is taken from
our former project focused on security in Industry 4.0 set-
tings [8]. The second one focuses on a scheduling problem
in the ReCodEx system,1 a real application for the evaluation
of coding assignments used at our institution.

2.1 Industry 4.0 example

The example employs the MAPE-K loop principle to dynam-
ically reconfigure the software architecture of agents operat-
ing jointly on a common task. The agents in our example are
workers in a factory. The architecture defines groups of work-
ers that collaborate and operate on a given task. Each group
provides access policies that allow the workers to perform
their tasks. Since these tasks are subject to change, the access
control is intertwined with dynamic, runtime modification of
the software architecture.

Implementation-wise, the MAPE-K controller dynami-
cally re-establishes the groups of workers to deal with sit-
uations in the environment—e.g., when a machine breaks
down, the MAPE-K controller establishes a group of work-
ers that communicate and collaborate to fix the machine (so
that the software architecture of components is dynamically
reconfigured). It also gives these workers the necessary ac-
cess rights, e.g., to access the machine’s logs and physically
enter the room (workplace) where the machine is located.

In the example, we pick up a particular adaptation rule
from the larger use-case in the project mentioned above,

1 https://github.com/ReCodEx.

of logical rules into a new system that uses a neural network 
to make adaptation decisions. Seemingly, the typical design 
choice is to recreate the analysis and planning stages of the 
MAPE-K loop from scratch.

The existing logical rules represent a significant body of 
domain knowledge, especially if the system has been well-
functioning and tuned to its task. Thus, when replacing the 
logical rules with a neural network, this body of domain 
knowledge is often lost, which leads to severe regress. On 
the other hand, applying the neural network may be advan-
tageous since it can dynamically learn completely unantic-
ipated relationships of stochastic character. Thus, it makes 
the self-adaption refined to take advantage of the specific 
features otherwise hidden in the system and not captured by 
the inherently static logical rules.

Nevertheless, if logical rules are used to determine the 
expected actions in training data, it is not easy to train the 
neural network to reliably yield actions corresponding to 
the existing rule-based self-adaptive system in question. The 
main culprit is that the neural network is often built as a 
black box composed of generic layers (such as a combina-
tion of recurrent and dense layers). Thus, the structure of 
such a generic neural network does not reflect the relation-
ships characteristic of the domain in which the self-adaptive 
system resides. In other words, the neural network is built as 
a generic one, not exploiting the existing domain knowledge 
about the self-adaptive system whose adaptation actions it 
controls.

While this genericity is inherently advantageous in em-
powering the neural network to “discover” ultimately unan-
ticipated relationships, it may also hinder the ability to ade-
quately learn because it makes the neural network relatively 
complex, which potentially increases adaptation uncertainty.

Therefore, replacing a rule-based adaptation entirely with 
a generic neural network-based one might be an overly drastic 
change that may potentially degrade the reliability of the 
system. Moreover, it may raise legitimate concerns since 
generic neural networks are much less comprehensible and 
predictable given their black-box nature and the typically 
large number of weights to be trained—there is always a 
danger of overfitting.

In this paper, we aim to answer the following research 
questions: (1) how to endow an existing rule-based self-
adaptation system with the ability to learn via neural net-
works while benefiting from the domain knowledge encoded 
in the logical rules; and (2) how to scale the learning ability 
in a way that would allow the transition from logical rules to 
a neural network to be done on a step-by-step basis.

We address these research questions by introducing a rule-
specific Neural Network (rsNN) method, which allows the 
transformation of an adaption rule to the corresponding rsNN 
to be done systematically. The key feature is that an rsNN is 
composable—its architecture is driven by the structure of the



Fig. 1 Components of the
example

Listing 1 Access to workplace rule

and later in Sect. 3, we will employ it to demonstrate a
step-by-step transition from this static adaptation rule to the
corresponding rsNN neural network.

Let us consider a factory with several workplaces, where
production is organized in shifts, each determined by its start-
ing and ending time, during which worker groups perform
their tasks. Each group is assigned exactly one workplace,
and access to this workplace needs to be managed. The work-
ers are allowed to enter the factory only at a time close to
a particular shift’s start and must leave soon after the shift
ends. After entering, they have to pick up headgear (protec-
tive equipment) from a dispenser as a necessary condition
for being permitted to enter the assigned workplace. Simi-
larly, they are allowed to enter solely the assigned workplace
and only at the time close to the shift start (and have to
leave shortly after the shift end). Figure 1 summarizes all the
components of the example and their relations.

As expected in the Industry 4.0 domain, the assignment
of workers to particular shifts is not static, but can frequently
change, and the roles of individual workers within the shift
can also alternate rapidly. This leads to changes to the soft-
ware architecture at the runtime. Consequently, the access
control system of the factory cannot assign access rights stat-
ically only, thus supporting dynamic, situation-based access
control.

To perform access right adaptation, the MAPE-k con-
troller uses adaptation rules in the form of guard-actions,
where the action is adding/revoking or allowing access.

Listing 1 shows an example of an adaptation rule, which
dynamically determines a group of workers, formed for the
duration of a shift, having access rights to the assigned work-
place. In particular, the adaptation rule specifies whether a

Listing 2 Predicates from Listing 1

specific worker belongs to the group, and if so, it gives the
worker access to the workplace assigned for the shift.

The structure of the adaptation rule has three parts. First,
there are declared data fields (in this particular case, only
a single field initialized to the shift of the given worker—
line 2). Second, there is a guard, which defines the condition
when the rule is applied. This particular guard reads: To
allow a worker to enter the assigned workplace, the worker
needs to be already at the appropriate workplace gate (line 5),
needs to have a headgear ready (line 6), and needs to be there
at the right time (i.e., during the shift or close to its start
or end—line 4). Finally, there is an action determining what
has to be executed—in this case, the assignment of the allow
access rights to the assigned workplace to the worker (line 9).

The guard predicates duringShift, atWorkplaceGate, and
hasHeadgear are declared in Listing 2.

The predicate duringShift tests whether the current time is
between 20 minutes (i.e., 1200 seconds) before the start of
the shift and 20 minutes after the end of the shift. The global
variable NOW contains the current time.

The atWorkplaceGate predicate mandates that the position
of the worker has to be close (in terms of Euclidean distance)
to the gate of the workplace assigned to the worker.

The predicate hasHeadgear checks whether the worker
retrieved a headgear from the dispenser. To check this, we
assume that each worker is associated with a list of related
events (the events data field of the worker—line 11 in List-
ing 2). For instance, retrieving and returning the headgear



Listing 3 Predicate whether a job is deemed short

Listing 4 Predicates related to worker load

2.2.1 Length estimation

Getting an accurate estimation regarding the length of the
evaluation is quite difficult, since it depends on many factors.
Even the times of solutions of the same assignment may
vary significantly, since each student may have chosen an
algorithm with different time complexity, not to mention that
some solutions may hold serious bugs like infinite loops.

To get an estimate of how long it could take to test the
solution of a particular assignment, we use two important
values:

1. the time limits set for the tests of the particular assign-
ment

2. and evaluation time of the reference solution provided
by the teacher.

This gives us the following predicate for deciding the type
of job.

Besides that, we do not know the actual length of the
evaluation, there is another variable in the equation. The
objective is to prevent student complaints, but each student
has a subjective time threshold regarding the expectation of
how long his/her evaluation could actually take. Thus the
explicit thresholds (60 and 300 seconds) in Listing 3 are
simply an educated guess.

2.2.2 Job scheduling

The assignment of a job to workers is also affected by the
current workload of the workers. The predicates in Listing 4
help us distinguish idle workers which have nothing to do and
busy workers which are somewhat overloaded—in our case,
we defined busy as having either more than two jobs or at least
one job that was assumed to have been in the queue for a long
time. Workers that are not idle or busy are assumed to have a
regular workload. The scheduler should prefer idle workers
and avoid busy workers when possible. Also, note that the
definition of a busy worker depends on internal parameters
that can be derived from the total number of workers as well

are the events registered in the list of events performing the 
respective actions. Thus, the check of whether a worker has 
a headgear available is performed by verifying that after fil-
tering the two specific event types from the list (line 12), the 
latest event is TAKE_HGEAR (the filtered events are sorted in 
descending order—line 13 and line 14).

2.2 Coding assignments example

The second example was adopted from the ReCodEx, a sys-
tem for the evaluation of coding assignments being used at 
our university, which works as follows. The teachers prepare 
coding assignments that can be evaluated automatically via 
automated tests. These assignments are given to students, 
who solve them and submit their solutions as source code. 
ReCodEx compiles the solutions and executes them in test 
suites prepared by the teachers.

For this paper, we have selected a particular problem re-
lated to workload distribution over available resources. Since 
executing the tests is often computationally demanding, the 
ReCodEx system runs multiple evaluation services (workers) 
in a private cluster. When a solution is submitted by a stu-
dent, a new evaluation job is created and has to be assigned 
to one of the workers. The strategy used to distribute jobs 
affects how long the student has to wait for the test results. 
Not surprisingly, there are always spikes in utilization just 
before the assignments’ deadlines. At these points, the cluster 
is overutilized, and the prioritization of jobs becomes impor-
tant. The goal becomes to prioritize the jobs adequately and 
route them to the respective workers in the cluster so that 
the students do not complain too much about the ReCodEx 
system being slow.

The main issue here is to determine the length of the 
evaluation job from the subjective perspective, i.e., whether 
it will be short or long. If the job is expected to be short, the 
student is likely to remain in the user session waiting eagerly 
for the results. If it is expected to take a long time, the user 
is likely to attend to other duties and return to the system 
after some time. In other words, the short jobs need to be 
prioritized to minimize their evaluation latency, while the 
long jobs may be delayed slightly without the user objecting. 
Unfortunately, the jobs must be assigned to workers in a 
non-preemptive manner (i.e., once an evaluation starts, it 
must be completed), so assigning long-running evaluations 
to all workers could easily delay many short jobs, which 
would most likely lead to student complaints.

To reduce the possibility that long-running jobs would 
clog the system, the workers were divided into two cate-
gories. Regular workers, who process all kinds of jobs, and 
priority workers, who are dedicated to short jobs only. The 
most important remaining issue is how to determine whether 
an evaluation job will be short or long.



as the average workload the system handles. The constants
embedded in the predicate below were selected empirically
based on the experience with the actual system.

The job scheduling algorithm can be summarized in the
following simple rules:

1. Make an evaluation length estimation based on the pa-
rameters of the submission and associated assignment.

2. If there is an idle worker who would accept the job (i.e.,
a regular worker in case of a long job or any worker in
case of a short job), assign the job to him.

3. If the job is short and there is a priority worker who is
not busy, assign the job to him.

4. If there is a regular worker who is not busy, assign the
job to him.

5. If the job is short, assign it to a random priority worker.
Otherwise, assign it to a random regular worker.

The complete algorithm would be slightly more complex
as it needs to handle job or worker failures as well; however,
these issues are beyond the context of this paper.

3 Refining adaptation rules

The problem with the adaptation rules we presented in Sect. 1
is that their guards are too static, and thus they do not capture
the domain-specific stochastic character of the data they act
upon. As already mentioned in Sect. 1, we aim to employ
a dedicated rule-specific Neural Network to benefit from its
ability to learn from the domain characteristic data being
handled. To this end, in this section, we outline the method
that allows us to refine an original adaption rule to make
its guard predicates “attunable” and convert the guard into
an rsNN. In a sense, our method of employing a dedicated
rsNN for this purpose can be viewed as paving a middle
ground between the adaptation rules with static guards and
the adaptation rules driven by (typically complex) generic
neural networks such as in [4, 9].

The main idea of our method unfolds in three stages:
1. An adaptation rule is refined by manually rewriting

(transforming) its selected guard predicates into their at-
tunable form—they become attunable predicates. This
is done by applying predefined atomic attunable pred-
icates (aa-predicates) listed in Sect. 3.1. These aa-
predicates serve as rsNN seeds in the second stage.
Nevertheless, not all the guard predicates have to be
transformed this way—those remain static predicates
(their selection is application-specific).

2. We apply an automated step that generates an rsNN
that reflects the guard of the refined adaptation rule,
containing, in particular, the trainable parameters of aa-
predicates as trainable weights.

3. We employ traditional neural network training using
stochastic gradient descent to pre-train the trainable
weights.

The result is an rsNN being a custom neural network,
the composition of which is driven by the structure of the
guard formula with aa-predicates. This neural network is pre-
trained to match the outputs of the original guard formula of
the adaptation rule. Nevertheless, being a neural network, it
can be further trained by running additional examples.

As to pre-training data, we assume there are sample traces
of input data to the system, obtained either from historical
data, simulation, or random sampling. We use the logical
formulas of the original guard predicates over the input data
to provide the ground truth (i.e., expected inputs) employed
in the supervised learning of the rsNN.

Further, the developer has the ability to specify the learn-
ing capacity in many aa-predicates, which in turn determines
how many neurons are used for their implementation in the
rsNN.

3.1 Atomic attunable predicates as rsNN seeds

This section provides an overview of the aa-predicates de-
fined in the rsNN method. The key idea is that these aa-
predicates serve as elementary building blocks for attunable
predicates forming an adaptation rule, and at the same time,
each of them is easily transformable into a building block of
the corresponding rsNN—serving as an rsNN seed as defined
in Sect. 3.3.

Each aa-predicate operates on a single n-dimensional in-
put value (i.e., a fixed-size vector). Since each aa-predicate
yields a true/false value, its corresponding rsNN seed solves
a classification task, yielding likewise true/false.

Following the type of input value domain, we distinguish
between aa-predicates that operate on domains with a met-
ric (i.e., with the ability to measure the distance between
quantities) and categorical quantities, where no such metric
exists:

1. Metric Quantity: There are two types of aa-predicates
defined over a given metric:
(a) Quantity lies in a one-sided interval

isAboveThreshold_nD(x,min,max)

isBelowThreshold_nD(x,min,max)

Here x is a value in an n-dimensional space that is com-
pared to a learned threshold (above or below) by the
corresponding rsNN seed. In order to control the uncer-
tainty that is potentially induced by learning, the min
and max parameters impose the limits for the learned
threshold.
(b) Quantity lies in a two-sided interval

hasRightValue_nD(x,min,max,c)

Here it is verified whether the parameter x lies inside
the learned interval of an n-dimensional space. The



parameters min and max have the same meaning as in
the case of the aa-predicates for a one-sided interval,
while the parameter c states the learning capacity of the
corresponding rsNN seed; technically, this is, e.g., the
highest number of the neurons in a hidden layer of the
rsNN seed.

2. Categorical quantity: For this type of input domain, we
define an aa-predicate that decides whether a categorical
quantity has the right value:

hasRightCategories_nD(x,m,c)

Here x is an n-dimensional vector of categorical val-
ues from the same domain of the size m (the number
of categories). The corresponding rsNN learns which
combinations of categorical values in the input vector
satisfy this aa-predicate. The learning capacity is deter-
mined by c.

Listing 5 Guard predicates with refined duringShift by aa-
predicates—one-sided intervals

in line 3), the relative time 0 corresponds to that point in time
(as computed by NOW - 3600 - shift.end ). The minimum and
maximum values of the threshold correspond to the interval
of 10 hours (i.e., 36,000 seconds).

The other predicates atWorkplaceGate and hasHead-
gear) stay the same, as does their conjunction in the
AccessToWorkplace rule.

Note that we combine static predicates with an attun-
able predicate. This shows that only a part of a rule can be
endowed with the ability to learn, while the rest can stay
unchanged. At the same time, we put strict limits on how
far the learning can go. In the example, these limits are ex-
pressed by the interval of 10 hours, which spans from one
hour before the shift to one hour after the shift (assuming the
shift takes 8 hours). In other words, the value in the attunable
predicate gained in the process of learning cannot exceed
these bounds. This is useful if learning is to be combined
with strict assurances with respect to uncertainty control.

As another alternative of the rule refinement, we assume
the time of entry, place of entry, and the relation to the last
event concerning the headgear is to be learned. Also, contrary
to the variant of duringShiftin Listing 5, we assume the time of
entry is not just a single interval, but it can include multiple
intervals (e.g., to reflect the fact that workers usually access
the gate only at some time before and after the shift due to
the public transportation schedule).

To capture this, we rewrite the predicates duringShift, at-
WorkplaceGate, and hasHeadGear as shown in Listing 6.

The guard predicate duringShift is realized using the aa-
predicate hasRightValue_1D, which represents a learnable set
of intervals. It has four parameters. In addition to the first
three, which have the same meaning as before (i.e., value
to be tested on whether it belongs to any of the learned
intervals, the minimum and the maximum values for the
intervals), there is the fourth parameter capacity, which ex-
presses learning capacity. The higher it is, the finer intervals
the predicate is able to learn. Since it works relative to the

3.2 Making guard predicates attunable

In this section, we demonstrate the first stage of the rsNN 
method (i.e., the manual rewriting of guard predicates) on 
the Industry 4.0 example presented in Sect. 2. We show  
two alternatives for such rewriting to demonstrate that the 
designer may choose several ways to make a predicate attun-
able, depending on what quantities are to be the subject of 
future learning.

We start with the guard predicates shown in Listing 2. 
At first, we assume that the designer would like to rewrite 
duringShift to make it attunable, with the goal to learn the 
permitted time interval in which the access is allowed. For 
example, security reasons may require learning the typical 
behavior patterns of workers induced by the public trans-
portation schedule. (On the contrary, in Listing 2, the inter-
val is firmly set from 20 minutes before the shift starts to 20 
minutes after the shift is over.)

We rewrite the duringShift guard predicate as shown in 
Listing 5: The comparison of NOW with a particular thresh-
old is replaced by the aa-predicates isAboveThreshold and 
isBelowThreshold, respectively. Each of them represents a 
comparison with a learned threshold.

The aa-predicates isAboveThreshold and isBelowThreshold 
have three parameters: (1) the value to test against the learned 
threshold, (2) the minimum value of the threshold, (3) the 
maximum value of the threshold.

Since this threshold should not depend on the actual time 
of the shift, the times are given relative to its start and end. By 
assuming a worker cannot arrive earlier than one hour before 
the shift starts (+3600 seconds in line 2), the relative time 
0 corresponds to that point in time (as computed by NOW
+ 3600 - shift.end). Similarly, by assuming a worker cannot 
leave later than one hour after the shift ends (-3600 seconds



Listing 6 Guard predicates expressed by a two-sided interval and
categorical quantity aa-predicates

min/max parameters, it is unitless. Technically, the learning
capacity determines the number of neurons used for training.
The exact meaning of the capacity parameter is given further
in Sect. 3.3.

The guard predicate atWorkplaceGate is rewritten simi-
larly. However, as the position is a two-dimensional vector,
a 2D version of the hasRightValue aa-predicate is used. The
meaning of its argument is the same as in the 1D version
applied for duringShift. A special feature of atWorkplaceGate
is that it is specific to the workplace assigned to the worker.
(There are several workplaces where the work is conducted
during a shift. Each worker is assigned to a particular work-
place, and their access permission is thus limited only to that
workplace.) Thus, the hasRightValue_2D aa-predicate has to
be trained separately for each workplace. The square brackets
express this after the hasRightValue_2D aa-predicate, which
signifies that its training is qualified by workplace ID. Since
the example assumes that there are three workplaces in a
shift, there are three aa-predicates to be trained.

The hasHeadGear guard predicate is rewritten using
the hasRightCategories_1D aa-predicate, which assumes 1-
dimensional vector of categorical values (i.e., a single value
in this case) from the domain of size 2. In this simple case,
the learning capacity is set to 1.

In a similar vein, looking at the coding assignments exam-
ple (Sect. 2.2), we can refine the predicates isShort (Listing 3)
and isBusy (Listing 4) using aa-predicates as in Listing 7.

3.3 Construction of rsNN

In this section, we formalize the second stage of the rsNN
method, i.e., the automated construction of an rsNN that re-
flects the guard of a refined adaptation rule. First, we show
how to transform a logical formula into an elementary rsNN
(rsNN seed) in general, and how to combine rsNN seeds into
larger units (and how to combine these larger units as well)
via transformed logical connectives. Then, we describe how

Listing 7 Predicates isShort and isBusy in atunable form

the elementary logical formulas in the guard (i.e., static pred-
icates and aa-predicates) are transformed into rsNN seeds.

Transforming a logical formula and connectives.
A logical formula L(x1, . . . , xm) is transformed to a con-

tinuous function
N(x1, . . . , xm,w1, . . . ,wn) → [0,1] (i.e., a neural network),

where x1, . . . , xm are the inputs to the logical formula (e.g.,
the current time, position of the worker in an aa-predicate)
and w1, . . . ,wn are trainable weights. The goal is to construct
the function N and train its weights such that L(x1, . . . , xm) ⇔
N(x1, . . . , xm,w1, . . . ,wn) > 0.5 for as many inputs x1, . . . , xm
as possible. By convention, we interpret N(. . . ) > 0.5 as true,
while if this relation does not hold, it is interpreted as f alse.
Also, we use the symbol T to denote the transformation from
the logical formula L to the continuous function N—i.e.,
N(. . . ) = T(L(. . . )).

As to logical connectives, we deviate from the traditional
notion in which conjunction is defined as a product and
disjunction is derived using De Morgan’s laws. This is be-
cause our experiments showed that the conjunctions of mul-
tiple operands almost exclude training (very likely due to
the vanishing gradient problem [10]). Therefore, we trans-
form conjunction and disjunction as follows (similarly to
in [11]):

T(L1& . . .&Lk) = S ((T (L1) + · · · + T(Lk) − k + 0.5) ∗ p)

T (L1 ∨ · · · ∨ Lk) = S ((T (L1) + · · · + T(Lk) − 0.5) ∗ p)

T (¬L) = 1 − T(L),

where S(x) is the sigmoid activation function defined as
S(x) = 1

1+e−x , and p > 1 is an adjustable strength of the con-
junction/disjunction operator. The bigger it is, the stricter
the results are. However, too high values have the poten-
tial to harm training due to the vanishing gradient prob-
lem.

Transformation of a static predicate. A static predicate
is transformed simply into a function that returns 0 or 1
depending on the result of the static predicate. Formally, we



transform a static predicate LS(x1, . . . , xm) to the function
NS(x1, . . . , xm) as follows:

T(LS) =

{
0 if not LS(x1, . . . , xm)

1 if LS(x1, . . . , xm)

Transformation of one-sided interval aa-predicates.
We transform an aa-predicate isAboveThreshold(x,min,
max) to the function N>(x,wt ) and an aa-predicate
isBelowThreshold(x,min,max) to the function N<(x,wt ) as
follows.

T(isAboveThreshold) = S
( (

x −min
max −min

− wt

)
∗ p

)
,

T(isBelowThreshold) = S
( (
wt −

x −min
max −min

)
∗ p

)
,

where wt is a trainable weight.
Transformation of two-sided interval aa-predicates.

We base these aa-predicates on radial basis function (RBF)
networks [12]. We apply one hidden layer of Gaussian
functions and then construct a linear combination of their
outputs. The weights in the linear combination are train-
able. The training capacity c in the aa-predicate de-
termines the number of neurons (i.e., points for which
the Gaussian function is to be evaluated) in the hidden
layer.

We set the means μi of the Gaussian function to a set of
points over the area delimited by min and max parameters
of the aa-predicate (e.g., forming a grid or being randomly
sampled from a uniform distribution). We choose the σ pa-
rameter of the Gaussian function to be of the scale of the
mean distance between neighboring points. The exact choice
of σ seems not to be very important. Our experiments have
shown that it has no significant effect and what matters is only
its scale, not the exact value. The trainable linear combina-
tion after the RBF layer automatically adjusts to the chosen
values of μi and σ.

For the sake of clarity, we show the transformation of

hasRightValue_nD(x,min,max,c)

for n = 1 and for arbitrary n. In the 1-D case, we transform an
aa-predicate hasRightValue_1D(x,min,max,c) to the func-
tion N1

�(x,wa1, . . . ,wac ,wb) as follows:

T(hasRightValue_1D) = S

(
wb +

c∑
i=1

wai e
−
(μi−x)

2

2σ2

)
,

This is generalized to the n-D case as follows:

T(hasRightValue_nD) =

S

(
wb +

c∑
i1=1
· · ·

c∑
in=1

wai1 , ... ,in
e−
|μi1 , ... ,in −x |

2

2σ2

)
,

where μi, j ∈ [min1,max1] × · · · × [minn,maxn] and σ are set
as explained above, x is an n-D vector, |·| stands for vector
norm, and wa1, ... ,1, . . . ,wac , ... ,c ,wb are trainable weights.

Transformation of a categorical quantity aa-predicate.
We base this aa-predicate on a multi-layer perceptron with
one hidden layer, which has the number of units equal to the
capacity parameter c of the aa-predicate and is activated by
the ReLU activation function.

The transformation of an aa-predicate

hasRightCategories_nD(x,m,c)

to the function

N�(x,wh
a1,1

, ..,wh
ac ,m

,wh
b1
, ..,wh

bc
,wo

a1
, ..,wo

ac
,wo

b )

is defined as follows:

T(hasRightCategories_nD) =

S �	
w
o
b +

c∑
i=1

wo
ai

ReLU �	
w
h
bi

+

n∑
j=1

m∑
k=1

wh
ai , j ,k

δx j ,k
��
�� ,

where x ∈ {1, . . . ,m}n is the n-dimensional input vector of
categorical values from the same domain of size m, c is the
capacity, wh

i, j,k
, wh

b
are trainable weights of the hidden layer,

wo
ai

, wo
b

are trainable weights of the output layer, δi, j is the
Kronecker delta, i.e., δi, j = 1 if i = j and δi, j = 0 otherwise.
The ReLU function is defined as ReLU(x) = max(0, x). Note
that the Kronecker delta in the formula stands for one-hot
encoding of the categorical input values.

3.4 Training an rsNN

The N-function defined as the result of the transforma-
tions (Sect. 3.3) contains trainable weights. We train these
weights using supervised learning and employing the tradi-
tional stochastic gradient descent optimization.

The samples for training are taken from existing logs ob-
tained from the system runtime or a simulation. In the case
of the Industry 4.0 example, each sample contains the cur-
rent time, the worker’s id, his position, and the history of
events associated with the worker. To obtain accurate out-
puts for supervised learning, we exploit the fact that we have
the original logical formula of the guard with static predi-
cates available. Thus, we use it as an oracle for generating the

where c is the capacity parameter of the predicate, 
μi ∈ [min,max] and σ are set as explained above, and 
wa1, .  .  . ,  wac ,wb are trainable weights.



ground truth for training inputs. The exact training procedure
is described in [13].

After this training step, the function N can be used as a
drop-in replacement for the corresponding adaptation rule.
Moreover, being a neural network, it is able to digest ad-
ditional samples generated at runtime, e.g., to learn from
situations when the outputs of the system have been manu-
ally corrected/overridden.

3.5 Advanced use: employing atunable
predicates as safeguards

In this section, we show that an rsNN can serve as a safeguard
in the decision process of an externally provided generic
(black-box) artificial neural network (ANN) when the safety
of a decision process is an issue. Integration with logical
decisions would be straightforward, so we have chosen a
more complex classification problem.

The presented case is based on the Coding Assignments
Example (Sect. 2.2), where the job scheduling algorithm can
be replaced by a classification ANN that decides to which
worker (class) a job should be assigned. Such a network
can take all the information from the submission, related as-
signment, or even current states of the workers as the input,
so it could make more astute decisions than a static algo-
rithm, even if we make the predicates like isShort or isBusy
attunable. However, using a black-box ANN may lead to un-
expected behavior, thus creating instability in the system. In
the following, we will show how to combine the ANN with
logical formulas converted in rsNN that will act as a safe-
guard. The ANN will be still in charge of selecting a worker
for a given job, but the safeguard will prevent assigning a
long-running job to a priority worker.

A typical classification neural network has an output layer
that contains one neuron for each class and uses softmax
activation function. To integrate the isShort predicate with
the ANN, we use the following formula:

T(ANN,isShort) = σ(

T/σ(ANN)[r1] + 1 − T(isShort), . . . ,

T/σ(ANN)[p1] · T (isShort), . . .)

The σ is the softmax function, T/σ is the output of
ANN without the last softmax layer, ri denotes output nodes
that correspond to regular workers, and pi refers to priority
worker outputs. Let us clarify that the same modification is
performed for all regular and priority outputs, respectively.

The formula performs basically the following. The proba-
bilities of classes that correspond to the priority workers are
zeroed if the job is assessed as long. Similarly, the probabili-
ties of the regular workers are boosted by 1 if the job is long
to avoid pathological situations such as when the network
assigns 0 to all regular workers.

Naturally, the attunable version of a complex predicate can
be used with an rsNN employed in parallel with a black-box
ANN and then applied to adjust the outputs.

4 Evaluation

We evaluated our approach by comparing the training re-
sults of rsNNs created by the method proposed in Sect. 3
with generic NNs comprising one and two dense layers. The
complete set of necessary code and data for replicating the
evaluation, as well as the experiments, detailed evaluation of
results, graphs, and discussion that did not fit this paper, are
available in the replication package [13].

Please note that we intentionally do not compare rsNNs
(that use supervised learning) with methods like deep rein-
forcement learning (DRL) or DQN, as they target a different
problem and thus cannot be straightforwardly compared.

4.1 Industry 4.0 example

4.1.1 Methodology and datasets

For the Industry 4.0 example, we created two datasets:
(a) random sampled dataset, which was obtained by ran-
domly generating inputs and using the original logical for-
mula of the guard as an oracle; (b) combined dataset, which
combines data from a simulation and the random dataset.
Both datasets have about 500,000 of data points.

The datasets were balanced in such a manner that half of
the samples correspond to true and half to the false evaluation
of the guard of AccessToWorkplace. Additionally, to obtain
more representative results for evaluation, the false cases
were balanced so that each combination of the top-level con-
junctions outcomes (i.e., duringShift & atWorkplaceGate &
hasHeadGear) has the same probability.

The combined dataset combines false cases from random
sampling and true cases from a simulation. The simulation
was performed by a simulator2 we developed in the frame
of an applied research project (Trust 4.0). The reason for
combining these two sources is to get better coverage of all
possible cases when the guard of the adaptation rule evaluates
to false.

For the code assignments example, we used anonymized
job logs from the ReCodEx system. These logs were com-
bined in a Cartesian product with all possible states of worker
job queues (to express how much each worker is busy), and
the training outputs were computed using a rule-based al-
gorithm that also takes into account the supposed feedback
from the users.

2 https://github.com/smartarch/trust4.0-demo.



As the baseline generic NNs, we selected dense neural
networks. Given our experiments and consultation with an
expert outside our team (a researcher from another depart-
ment who specializes in practical applications of neural net-
works), this architecture suits the problem at hand the best.
Our setup comprises networks with one and two dense layers
of 128 to 1024 nodes (in the case of two layers, both of them
have the same amount of nodes). The dense layers use ReLU
activation and the final layer uses sigmoid. The greatest ac-
curacy was observed when two 256-node dense layers were
used; thus, this configuration was selected as the baseline.

Three versions of rsNNs representing our approach were
built corresponding to different levels of refinement. The
first two models refined only the time condition: one used
the isAboveThreshold and isBelowThreshold variant (as in List-
ing 5)—denoted as time (A&B), the other used hasRightValue
aa-predicate (similar to Listing 5, but with hasRightValue
instead of the combination of isAboveThreshold and isBe-
lowThreshold)—denoted as time (right). The last model re-
fined all involved inputs (time, place, and headgear events)
as outlined in Listing 6 — denoted as all. To verify the
properness of logical connectives redefinition (Sect. 3.3), we
built a TensorFlow3 model with no trainable weights (i.e.,
just rewriting the static predicates using their transforma-
tion described in Sect. 3.3). By setting p = 10, we achieved
100% accuracy (this value of p was then used in all other
experiments).

All NN models were implemented in the TensorFlow ma-
chine learning framework and trained on our local GPU clus-
ter. Each dataset was divided into the training part (90%)
and the validation part (10%).4 We measured accuracy on
the validation part only. All experiments were repeated 5×;
in this evaluation, we present the mean values. For the sake
of brevity, we do not report on standard deviations in detail
since they were very low (less than 0.1% of accuracy in the
worst case).

All training sessions used the batch size of 100 and 100
epochs. We have used the Adam optimizer with cosine decay
of the learning rate. In the case of the generic NNs, we have
used label smoothing to prevent overfitting.5 The rsNNs did
not suffer from overfitting even without label smoothing;
thus, we did not apply the label smoothing in this case.

4.1.2 Results

Figure 2 compares the accuracy of tested generic NN con-
figurations after 100 epochs. The greatest accuracy was ob-

3 https://www.tensorflow.org/ (version 2.4).

Fig. 2 Accuracy of the baseline solution (dense networks with one or
two layers). The column labels denote the width of dense layers

served when two 256-node layers were used. Thus, we have
selected this configuration as the baseline representative for
further comparisons (we further refer to this configuration
simply as the “baseline”). Smaller configurations suffer from
lower capacity, while larger ones have a stronger inclination
to overfitting (especially in the case of the combined dataset).
It is also worth mentioning that we as well experimented with
other sizes/configurations without any improvement.

Table 1 presents the measured accuracies on the testing
set6 of both datasets (random and combined) after 100 train-
ing epochs, comparing rsNNs resulting from different re-
finements with the baseline. The last two models outperform
the baseline in terms of accuracy. The number of Weights
line refers to the number of trainable weights in each model.
While the baseline has many weights (as it features two
dense layers), our rsNNs have significantly fewer weights,
since their composition benefits from the domain knowledge
ingrained in the adaptation rules.

The lower number of trainable parameters positively im-
pacts the performance, as it makes the models train and
evaluates significantly faster whilst achieving comparable
accuracy levels. We did not perform a thorough performance
analysis since it heavily depends on many configuration pa-
rameters (e.g., batch size) and the actual hardware (especially
whether CPU or GPU is used for the training). However, in
our configurations, the proposed model was trained roughly
several times (up to an order of magnitude) faster than the
baseline, as shown in Fig. 3. The generic NNs are much
slower in the learning process since they comprise many
more trainable weights. Our rsNNs reach their peak accu-
racy within 10 epochs. In all cases, we observed that 100
epochs was sufficient for all models, so we have used this as
the limit.

6 We divide the data only to the training and testing set (testing set
holds 10% of data). We do not need a validation set since we do not
perform any hyper-parameter training.

4 The ratio was selected with respect to the size of the data (we needed 
a sufficient training set) and given the fact the validation is performed 
merely to verify the feasibility of the approach.

5 We have been experimenting with Dropout layers as well, but they 
were causing significant underfitting.



Table 1 Comparison of accuracies of individual methods

baseline time (A&B) time (right) all

Accuracy (random) 99.159% 98.878% 99.999% 99.978%
Accuracy (combined) 99.393% 92.867% 99.993% 99.575%

number of weights 68,353 2 21 1227

Fig. 3 Training speed demonstrated as validation set accuracy mea-
sured after every epoch

4.2 Coding assignments results

The results obtained from the coding assignment exam-
ple (Sect. 2.2) were similar to the Industry 4.0 example
(Sect. 4.1.2). The ANN enhanced with rsNN as a safeguard
exhibited very similar accuracy to the original (generic)
ANN. Therefore, we claim that the safeguard did not hinder
the classification process, but provided guarantees for be-
havior that could not be extracted from a black-box generic
ANN. A detailed description of the experiments targeting
the coding assignments example is provided in the replica-
tion package [13].

The overall accuracy is lower than in the case of the In-
dustry 4.0 example (about 85%), which is caused by the fact
this example uses real data from an existing system. Real
data contain much more noise than the data from a simulated
example.

4.3 Limitations and discussions

Here we discuss the potential limitations of rsNNs.
An obvious question is the scalability of rsNNs. Since

we train the neural networks for each predicate separately,
rsNNs do not suffer from an exponential blow-up of complex-
ity when the system goes large (in the number of involved
components), and the complexity linearly scales with the
number of used predicates. Also, since the predicates are
trained independently, the training can be done in parallel
and thus scaled horizontally, e.g., in a cloud.

Another natural question is how the method deals with
possible dynamic changes in a (real-world) environment
(which is a common problem). Here, the strong advantage of

our method is that it combines logical rules with the ability
to adjust the results based on training on samples collected
from the running system. This allows regular retraining of
rsNNs that can integrate new samples collected from the
real-world system and thus adjust themselves to potential
dynamic changes in the system.

Similarly to the real-world environment dynamicity, there
is the danger that real-world data used for training might
be noisy and limited. However, compared with other meth-
ods based on machine learning, our approach generates small
NNs that have far fewer parameters compared to regular NNs
(e.g., dense networks) that are normally used to achieve the
same accuracy in decisions. This makes rsNNs generalize
much better than regular NNs. The ability to better general-
ize also leads to greater robustness towards noise and other
disruptions in the input data.

4.4 Threats to validity

Though we did our best, given the limited scope of the paper,
we are aware of several threats to the validity of our evalu-
ation. Nevertheless, we believe the evaluation still provides
valuable insight into the potential of the rsNN method.

The threats to validity are presented below based on the
schema in [14], where the validity classes are defined as fol-
lows: (i) construct validity, (ii) internal validity, (iii) external
validity, and (iv) reliability.

4.4.1 Construct validity

There is a danger that we devised our evaluation wrongly.
As a metric, we consider the accuracy achieved by rsNN and
compare it with a generic neural network, which we chose
as the baseline. This way, we show that rsNN does not un-
derperform, even though it uses substantially fewer training
weights (being thus more robust) and trains faster. We be-
lieve this metric is adequate for supporting the argument on
the benefit of rsNN we articulate in the conclusion of the
paper.

4.4.2 Internal validity

There is a possible danger that the employed generic neural
network was trained as a black box. Therefore, the reported
improvements exhibited by rsNNs might not result from the



the employment of neural networks for anomaly detection—
primarily to identify attacks on a system. The paper [18]
provides an overview of anomaly detection techniques and
machine learning, and neural networks cover most of them. A
detailed survey of learning approaches for anomaly detection
is in [19]; particular approaches are, e.g., in [20–22].

There are also a number of closely related approaches that
employ neural networks in adaptive systems in their analysis
phase of the adaptation cycle. Typically, these approaches
utilize neural networks to predict the best adaptation strate-
gies. Namely, the approaches are as follows. In [7], neural
networks are applied during the analysis and planning phase
to reduce large adaptation space when the system has mul-
tiple adaptation goals and possible optimization strategies.
In our method, we apply neural networks during the same
phases, but our goal is to refine static conditions and thus
allow more flexible adaptation.

In [6], a whole software engineering framework for adap-
tive systems is proposed. Neural networks are applied during
the restriction of the adaptation space to achieve a meaning-
ful system after adaptation. The approach in [4] is slightly
different, as neural networks are employed on the boundary
of monitoring and analysis phases of the adaptation loop.
They are used to forecast future values of QoS parameters
of a monitored system and thus allow for the progressive
selection of the best adaptation strategy. A similar predic-
tion is used in [23] to predict values in sensor networks and
proactively perform adaptation. Multiple machine learning
algorithms, including also neural networks, are employed
in [24] to create a dynamic, self-adaptive, and online QoS
modeling approach for cloud-based services. The approach
is again used to predict QoS values and thus allows the opti-
mization of cloud resource utilization.

The approaches above target either reducing the adap-
tation space or adapting a system proactively. They differ
from our method since we use neural networks to refine
static conditions in an adaptive system and thus to learn
new unforeseen conditions. A conceptually similar approach
is [25], where machine learning approaches are utilized for
training a model for rule-based adaptation. Instead of NNs,
approaches like random forest, gradient boosting regression
models, and extreme boosting trees are used. Similarly, pa-
per [26] proposes a proactive learner; however, the infras-
tructure is mainly discussed, and details about the used ma-
chine learning techniques are omitted. In [27], the authors
propose an approach to dynamic learning of knowledge in
self-adaptive and self-improving systems using supervised
and reinforcement learning techniques.

In [28], machine learning is used to deal with uncertainty
in an adaptive system (namely, in a cloud controller). Here,
the proposed approach allows the users to specify potentially
imprecise control rules expressed with the help of fuzzy
logic, and machine learning techniques are used to learn

proposed rsNN method, but rather from a hidden factor that 
we are not aware of. Nevertheless, we aim to mitigate it by 
using exactly the same inputs and training procedure when 
training and evaluating the baseline generic NNs and rsNNs.

4.4.3 External validity

Given the limited scope of the paper, we demonstrated rsNN 
on two adaptation rules only (i.e., AccessToWorkplace and 
isShort). We chose these rules because they showcase the 
combination of multiple concerns (time, position, event his-
tory, and user preference). However, we are aware of the fact 
that a larger case study would be needed to identify a richer 
set of the types of aa-predicates. Also, the limited complexity 
of the predicate does not allow to fully test the limits of what 
can be learned by an rsNN. We tried to mitigate this prob-
lem to a certain extent by creating additional experiments 
with synthetically built guards (featuring, e.g., a conjunction 
of more than three aa-predicates). To illustrate the potential 
fields of application of the rsNN method, we also evaluated 
it on two use cases from significantly different domains. It 
is worth noting that the coding assignment example stems 
from an existing system used in our Computer Science de-
partments on a daily basis. Thus, the data for evaluation were 
taken from a “production environment”.

4.4.4 Reliability

Another threat to validity is that we constructed the baseline 
generic NNs on our own. To help reduce the potential bias 
here, we consulted an expert outside our team to select the 
best possible generic NN architecture fitting the nature of the 
data. Moreover, we performed an automated hyperparameter 
tuning to help us identify the best generic NN architecture, 
which was eventually used as the baseline.

5 Related work

Using neural networks for the representation of logical for-
mulas and evaluation of fuzzy logical systems is not a new 
idea. A kind of calculus for the evaluation of propositional 
logic formulas can be found in [15] together with a proposal 
for the evaluation of fuzzy logical systems. However, the 
activation function of neurons in the proposed approach is 
a simple threshold function. More recent approaches (e.g.,
[16, 17]) use the sigmoid function or linear interpolation. 
We take a similar approach and push this further to practi-
cal application aligned with refining self-adaptive systems. 
Also, our approach features a practical approach to logical 
connectives that are easier to train.

In the domain of adaptive and cyber-physical systems, 
neural networks and machine learning are used in a num-
ber of areas. Not closely related, but rather a large area is



precise rules. The approach is the complete opposite of ours,
where we start with precise rules and use machine learning
to reach attunable ones. A similar approach is in [29], where
reinforcement learning is also employed for generating and
evolving the adaptation rules.

6 Conclusion

In this paper, we introduced the rule-specific Neural Network
method that allows for transforming the guard of an adapta-
tion rule into a custom neural network, the composition of
which is driven by the structure of the logical predicates in
the guard. An essential aspect of rsNN is that by having the
ability to combine the original static predicates with attun-
able ones (and, in addition, to set the training capacity of the
corresponding part of rsNN network), one can step-by-step
proceed from a static, non-trainable adaptation rule to fully
trainable one. This aspect allows for a gradual transition from
the original self-adaptive system to its trainable counterpart,
while still controlling the inherent uncertainty of introducing
machine learning into the system.

The aspect of being able to control the uncertainty inher-
ent in machine learning is a distinguishing factor of the rsNN
method. This stems primarily from two facts: (1) The struc-
ture of the rsNN generated from an adaption rule directly re-
lates to the composition of its predicates, and the static pred-
icates can be combined with attunable ones. (2) An rsNNs
is a neural network with almost two orders of magnitude
fewer neurons than a generic neural network (e.g., a multi-
layer perceptron network with several hidden dense layers)
solving the same task. This makes the rsNN less prone to
overfitting, which, in general, may lead to unexpected results
in real environments. Moreover, given the significant differ-
ence in the number of neurons and thus trainable weights,
rsNN networks train much faster, as showcased in the results
of the experiments.

The process described in this paper relies on the manual
transformation of the predicates to rsNN, as our focus here
is on introducing the rsNNs and defining their semantics.
An important help in working with rsNNs would be some
support for the semi-automated transformation of the static
predicates into attunable ones. This is however a research
problem on its own and thus its out of the scope of this
paper. We leave this as future work.

Further, in our future work, we aim to extend the set of
the predefined aa-predicates to provide a tool for applications
also featuring other than metric and categorical quantities.
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