
X-by-Construction Design Framework for Engineering Autonomous and
Distributed Real-time Embedded Software Systems

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 957210.

Tutorial: Simulation-based development of networked
avionics systems using the XANDAR toolchain

Tobias Dörr1, Florian Schade1, Alexander Ahlbrecht2

1Karlsruhe Institute of Technology (KIT)
2German Aerospace Center (DLR)

Agenda

▪ Part I: The software development methodology of XANDAR
▪ Motivation + XANDAR project overview

▪ Software development approach

▪ Simulation and target deployment

▪ Safety pattern concept + two sample patterns

▪ Part II: Programming models for concurrent systems
▪ Fundamentals + selected programming models

▪ Applicability to the XANDAR toolchain

▪ Part III: Live demonstration of XbCgen
▪ Overview and introductory examples

▪ Application to an avionics use case

7 June 2023 Simulation-based development of networked avionics systems using the XANDAR toolchain2

Part I
The software development methodology of XANDAR

7 June 2023 Simulation-based development of networked avionics systems using the XANDAR toolchain3

Motivation

▪ Designing embedded systems is an error-prone task

▪ Flight 501 of Ariane 5 (1996):
▪ Programming error in the control software [1]

▪ Failure of the Inertial Reference System during test flight

▪ Self-destruction after 37 seconds

▪ Remote access to 1.4 million road vehicle (2015):
▪ Vulnerability in the vehicle’s head unit [3]

▪ Remote reprogramming of a gateway component

▪ Full access to a CAN bus of the vehicle

7 June 2023 Simulation-based development of networked avionics systems using the XANDAR toolchain4

[1] B. Nuseibeh, “Ariane 5: Who Dunnit?”, IEEE Software, vol. 14, no. 3, May-June 1997.
[2] European Space Agency, Bulletin Nr. 89, online: https://www.esa.int/esapub/bulletin/bullet89/dalma89.htm, accessed 2 May 2023.
[3] C. Miller, “Lessons Learned from Hacking a Car”, IEEE Design & Test, vol. 36, no. 6, December 2019.

Image source: [2]

Image source: [3]

https://www.esa.int/esapub/bulletin/bullet89/dalma89.htm

Motivation

▪ Properties of modern cyber-physical systems aggravate the design challenge:

▪ Conflicting requirements are particularly difficult to address, for example:

7 June 2023 Simulation-based development of networked avionics systems using the XANDAR toolchain5

Consolidation of functions on multicore
platforms, e.g. in the automotive domain

Continuous interaction with remote
entities, e.g. in a cloud-edge setting

Functional safety and cybersecurity
requirements, e.g. fault tolerance

Integration of Artificial Intelligence (AI)
algorithms, e.g. for object detection

[4] O. Burkacky, J. Deichmann, J. P. Stein, “Automotive software and electronics 2030: Mapping the sector’s future landscape”, McKinsey & Company, 2019.

Image source: [4]

Centralization of automotive on-board architectures [4]
⇒ Lack of physical separation between components
⇒ Potential for timing interferences, fault propagation, …
⇒ Functional safety issues

Motivation

▪ Methodological gap between requirements and implementations, e.g.:
▪ ISO 26262 [5] specifies Freedom from Interference (FFI) requirements

▪ A hypervisor such as XtratuM [6] is a building block that contributes to this goal

▪ The correct application of such building blocks can be difficult (timing interferences, …)

7 June 2023 Simulation-based development of networked avionics systems using the XANDAR toolchain6

ISO 26262 – Functional safety standard for road vehicles (initially
published in 2011). Covers the following scope [5]: “This document
addresses possible hazards caused by malfunctioning behaviour of
safety-related E/E systems, including interaction of these systems.”

Hypervisor – Software layer providing independent execution
environments on a single processor. Hypervisors running directly on
the target hardware (without a host OS) are called type-1 hypervisors.

Multicore processor
(e.g. Cortex-A53)

Type-1 hypervisor
(e.g. XtratuM)

Partition 1
(e.g. bare-metal code)

Partition 2
(e.g. Linux distribution)

Example of a hypervisor-based system

[5] ISO 26262-1:2018, “Road vehicles — Functional safety — Part 1: Vocabulary”, Geneva, 2018.
[6] M. Masmano, I. Ripoll, et al., “XtratuM: a Hypervisor for Safety Critical Embedded Systems”, 11th Real-Time Linux Workshop, 2009.

Motivation

▪ Motivation: How to apply such building blocks in a provably correct manner?

▪ Key idea: Apply the X-by-Construction (XbC) paradigm to the design process
▪ Auto-generate implementation artefacts that leverage suitable low-level techniques

▪ Simplify the post-hoc verification process in a manner comparable to [8]

7 June 2023 Simulation-based development of networked avionics systems using the XANDAR toolchain7

[7] M. H. ter Beek et al., “X-by-Construction”, Leveraging Applications of Formal Methods, Verification and Validation: Modeling, ISoLA '18, Springer, Cham, October 2018.
[8] B. W. Watson, D. G. Kourie, et al., “Correctness-by-Construction and Post-hoc Verification: A Marriage of Convenience?”, Leveraging Applications of Formal Methods, Verification and

Validation: Foundational Techniques, ISoLA '16, October 2016.

Excerpt of ISO 26262-11:2018
“Techniques such as hypervisors can help to
achieve software partitioning […]”

X-by-Construction (XbC) – The “step-wise refinement process from specification to code that automatically
generates software (system) implementations that by construction satisfy specific non-functional properties
concerning security, dependability, reliability, or resource/energy consumption, to name but a few” [7].

Overview of the XANDAR project

7 June 2023 Simulation-based development of networked avionics systems using the XANDAR toolchain8

Duration:
01/2021 – 12/2023

Budget:
€ 4.96 million

Project coordinator:
Prof. Jürgen Becker (KIT)

Scientific coordinator:
Prof. Nikolaos Voros (UoP)

https://xandar-project.eu

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 957210.

Goal: Deliver a mature software toolchain that uses
the X-by-Construction paradigm to generate system

implementations with guaranteed properties

http://www.xandar-project.eu/

Overview of the XANDAR project

▪ The toolchain allows users to apply the XANDAR development process [9]

▪ This process defines a sequence of iteratively traversed steps:

7 June 2023 Simulation-based development of networked avionics systems using the XANDAR toolchain9

Acronyms: XbC = X-by-Construction, SWC = Software Component, HW = Hardware

[9] L. Masing, T. Dörr, et al. “XANDAR: Exploiting the X-by-Construction Paradigm in Model-based Development of Safety-critical Systems”, DATE '22, March 2022.

Overview of the XANDAR project

▪ With every iteration, the architecture model is refined or extended

▪ Relevant abstraction levels inspired by the PREEvision [10] layer model

▪ Evolution of an architecture model along the development process:

7 June 2023 Simulation-based development of networked avionics systems using the XANDAR toolchain10

[10] J. Schäuffele, “E/E architectural design and optimization using PREEvision”, SAE 2016 World Congress and Exhibition, 2016.

Focus of this tutorial

Overview of the XANDAR project

▪ Toolchain evaluated in a laboratory setup with two use cases:
▪ DLR ⇒ Resilient Avionic Architecture for Urban Air Mobility (UAM)

▪ BMW ⇒ Autonomous Systems with Integrated Machine Learning Applications

▪ Logical architecture excerpt of DLR’s pilot assistance system for UAM [11]:

7 June 2023 Simulation-based development of networked avionics systems using the XANDAR toolchain11

[11] J. Athavale, A. Baldovin, et al., “Chip-Level Considerations to Enable Dependability for eVTOL and Urban Air Mobility Systems”, DASC '20, October 2020.
[12] T. Dörr, F. Schade, et al., “A Behavior Specification and Simulation Methodology for Embedded Real-Time Software”, DS-RT '22, September 2022.

Image source: [12]

Software development approach

▪ Description of the software architecture by the toolchain user:
▪ Software Component (SWC) entities communicating via message passing

▪ Logical Execution Time (LET) parameters [13] capture the desired timing behaviour

▪ Software architecture metamodel as class diagram:

7 June 2023 Simulation-based development of networked avionics systems using the XANDAR toolchain12

[13] T. A. Henzinger, B. Horowitz, C. M. Kirsch, “Embedded Control Systems Development with Giotto”, SIGPLAN Not., vol. 36, no. 8, August 2001.

▪ Sample network of SWCs and textual description in JSON5 [14] syntax:

▪ LET frame sequence:

Software development approach

7 June 2023 Simulation-based development of networked avionics systems using the XANDAR toolchain13

[14] A. Kishore, J. Tucker, “The JSON5 Data Interchange Format”, v1.0.0, March 2018.

acquisition: {
period: 10,
activations: {

check: {
offset: 0,
runtime: 3,
write_to: ['alive'],

},

gen: {
offset: 3,
runtime: 7,
write_to: ['data'],

},
},

system_ports: {
data: { /* … */ },
alive: { /* … */ },

},

env_ports: {
val: { /* … */ },

}
}

JSON5 representation

Software development approach

▪ Generation of SWC code skeletons:

▪ Access to input/output ports via the framework-provided port map
▪ Support for structured data structures (based on the Protocol Buffers [16] format)

▪ Built-in support for access to input/output controllers of the hardware

▪ On the target hardware: invocation of the trigger hook for each SWC activation

7 June 2023 Simulation-based development of networked avionics systems using the XANDAR toolchain14

Logical Execution Time (LET) – “LET determines the time it takes from reading program input to writing
program output regardless of the time it takes to execute the program” [15].

[15] C. M. Kirsch, A. Sokolova, “The Logical Execution Time Paradigm”, Advances in Real-Time Systems, Springer, Berlin, Heidelberg, 2012.
[16] Google LLC, “Google Developers: Protocol Buffers”, online: https://developers.google.com/protocol-buffers, accessed 2 May 2023.

// Initialization hook:
void swc_init(void);

// Trigger hook:
void swc_trigger(enum activation_id activation, struct swc_port_map *port);

https://developers.google.com/protocol-buffers

Simulation and target deployment

▪ Starting point: Fully deterministic specification of the software behaviour

▪ Tool support provided by the XbCgen framework of XANDAR:

7 June 2023 Simulation-based development of networked avionics systems using the XANDAR toolchain15

XbCgen/sync

XbCgen/sim

XbCgen/deploy

Simulation and target deployment

▪ XbCgen/sim: Generation of execution traces for verification and validation
▪ Discrete-event simulation with a user-provided plant/environment model (in Ptolemy II)

▪ Automatic synthesis of an executable model (calling SWC simulation binaries)

▪ Refer to previous work in [12] for a detailed description

▪ Sample excerpt of an execution trace:

7 June 2023 Simulation-based development of networked avionics systems using the XANDAR toolchain16

[12] T. Dörr, F. Schade, et al., “A Behavior Specification and Simulation Methodology for Embedded Real-Time Software”, DS-RT '22, September 2022.

acquisition.gen(3..10ms)
- data = [1566, 1564, 1563]

acquisition.check(10..13ms)
- alive = true

monitor.main(13..15ms)
processing.main(10..20ms)
- res = 1564.3333333333333

acquisition.gen(13..20ms)
- data = [1558, 1557, 1555]

acquisition.check(20..23ms)
- alive = true

monitor.main(23..25ms)

⇒

Simulation and target deployment

▪ XbCgen/deploy: Automatic generation of implementation artefacts for MPSoCs

▪ The target runtime environment consists of:
▪ A hypervisor layer currently implemented using the XtratuM hypervisor

▪ An optional operating system layer (RTEMS, FreeRTOS, Linux, …)

▪ SWCs are deployed to XtratuM partitions or OS tasks/processes, for example:

7 June 2023 Simulation-based development of networked avionics systems using the XANDAR toolchain17

XtratuM hypervisor

Core cluster Core cluster

XtratuM hypervisor XtratuM hypervisor

SWC3RTEMS

SWC2SWC1

SWC5SWC4

MPSoC MPSoC

Core cluster

SWC7SWC6

Safety pattern concept

▪ XbC pattern library: Collection of verified design-time procedures for safety and
security that can be annotated to system entities [17]

▪ Automatic implementation of the corresponding mechanisms:

7 June 2023 Simulation-based development of networked avionics systems using the XANDAR toolchain18

[17] T. Dörr, F. Schade, et al., “Safety by Construction: Pattern-Based Application of Safety Mechanisms in XANDAR”, ISVLSI '22, July 2022.

Safety pattern concept

▪ Pattern usage: Explicit specification in the textual model instance (JSON5)

▪ Example: Triple Modular Redundancy (TMR) for fault tolerance

▪ Next up: Information Flow Control (IFC) + runtime logging for AI components

7 June 2023 Simulation-based development of networked avionics systems using the XANDAR toolchain19

annotations: {
proc_redundancy: {

id: 'software_tmr_pattern',
target: 'processing',

},
}

[18] E. Missimer, R. West, Y. Li, “Distributed Real-Time Fault Tolerance on a Virtualized Multi-Core System”, OSPERT '14, July 2014.

Generation of redundant partitions and an ‘arbitrator sandbox’ in the sense of [18]

▪ Motivation: Unintended information flow via shared on-chip resources can lead
to the violation of safety/security requirements, for example…

▪ Concept: Auto-generate APU configurations that are as prohibitive as possible
and compare potentially feasible information flows to an accept list

Image source: [19]

Information Flow Control (IFC) safety pattern

7 June 2023 Simulation-based development of networked avionics systems using the XANDAR toolchain20

Processor I
(reliability)

Processor II
(connectivity)

Interconnect

I/O controller Memory

Safety-critical

actuators

XPPU

[19] AMD/Xilinx, “Zynq UltraScale+ Device: Technical Reference Manual”, UG1085 (v2.3), September 2022.

Access protection units (APUs) control transactions on shared interconnects. They are
state-of-the art components of modern multiprocessor system-on-chip (MPSoC) devices.

Information Flow Control (IFC) safety pattern

7 June 2023 Simulation-based development of networked avionics systems using the XANDAR toolchain21

⇒

Reachability analysis yields 𝑰𝑭

⇓

[20] T. Dörr, T. Sandmann, J. Becker, “Model-based configuration of access protection units in networks of heterogeneous multicore processors”, Microprocessors and Microsystems (MICPRO),
vol. 87, November 2021.

▪ Underlying methodology from the state of the art [20]:
▪ Inputs are the system architecture and the desired information flow policy (𝐼A)

▪ Graph-based algorithm to determine all potentially feasible information flows (𝐼𝐹)

▪ XbC guarantee: IF ⊆ 𝐼𝐴 holds for interactions between SWCs, ports, …

Runtime logging for AI components

▪ Upcoming normative and legislative constraints on AI components:
▪ Ethics of Connected and Automated Vehicles [21] by the European Commission

▪ EASA Concept Paper: First usable guidance for Level 1 machine learning applications [22]

▪ Selected excerpts focused on the transparency of algorithmic decisions:

7 June 2023 Simulation-based development of networked avionics systems using the XANDAR toolchain22

“User-centred methods and interfaces for the explainability of AI-based
forms of CAV decision-making should be developed.”

Source: [21]

“Did you put adequate logging practices in place to record the
decision(s) or recommendation(s) of the AI-based system?”

Source: [22]

[21] European Commission, “Ethics of Connected and Automated Vehicles: recommendations on road safety, privacy, fairness, explainability and responsibility”, 2020.
[22] European Union Aviation Safety Agency, “EASA Concept Paper: First usable guidance for Level 1 machine learning applications”, issue 01, 2021.

Runtime logging for AI components

▪ Library-provided logging support at the level of SWC ports:

▪ XbC guarantee: Correct synthesis and deployment of logging modules
▪ Allocation of a dedicated memory region (incl. IFC pattern compatibility)

▪ Non-interference with the LET-based communication model

7 June 2023 Simulation-based development of networked avionics systems using the XANDAR toolchain23

annotations: {
proc_logging: {

id: 'port_logging_pattern',
swc: 'processing',
target_ports: [

{ port: 'data', capacity: 32 },
],

},
}

Part II
Programming models for concurrent systems

7 June 2023 Simulation-based development of networked avionics systems using the XANDAR toolchain24

Fundamentals

▪ Cyber-physical systems (CPS) are inherently concurrent [25]
⇒ Approaches to achieve deterministic concurrency are essential

▪ Incorrect data sharing is a common source of concurrency issues [26]
⇒ Techniques based on message passing particularly interesting for CPS applications

7 June 2023 Simulation-based development of networked avionics systems using the XANDAR toolchain25

Concurrency – Two or more actions are in progress at the same time [23].
Parallelism – Two or more actions execute simultaneously [23].

Shared memory communication – Concurrent modules communicate via objects in memory [24].
Message passing – Concurrent modules communicate by transmitting messages over a channel [24].

[23] C. Breshears, “The Art of Concurrency: A Thread Monkey's Guide to Writing Parallel Applications”, O'Reilly Media, Inc., 2009.
[24] R. Miller, M. Goldman, 6.031 — Software Construction, Reading 21: Concurrency, online: https://web.mit.edu/6.031/www/sp22/classes/21-concurrency, 2022.
[25] P. Derler, E. A. Lee, A. Sangiovanni Vincentelli, “Modeling Cyber-Physical Systems”, Proceedings of the IEEE, vol. 100, no. 1, January 2012.
[26] P. Koopman, “A Case Study of Toyota Unintended Acceleration and Software Safety”, online: https://betterembsw.blogspot.com/2014/09/a-case-study-of-toyota-unintended.html, 2014.

https://web.mit.edu/6.031/www/sp22/classes/21-concurrency
https://betterembsw.blogspot.com/2014/09/a-case-study-of-toyota-unintended.html

Kahn Process Networks (KPN)

▪ Idea: simple language for parallel programming [27]
▪ Processes (computing stations) = sequential programs with Algol-like syntax

▪ Channels (communication lines) = unbounded first-in-first-out queues

▪ Asynchronous message passing (nonblocking writes and blocking reads)

▪ KPN programs are deterministic [28]:

“Kahn showed that concurrent execution was
possible without nondeterminism”

▪ Expressivity deliberately limited

7 June 2023 Simulation-based development of networked avionics systems using the XANDAR toolchain26

[27] G. Kahn, “The semantics of a simple language for parallel programming”, IFIP Congress, 1974.
[28] C. Ptolemaeus (editor), “System Design, Modeling, and Simulation using Ptolemy II”, Ptolemy.org, 2014.

Image source: [27]

▪ Key principle: parallel composition of sequential processes [29]
▪ Introduced to coordinate/synchronise multiprocessor machine communication

▪ Synchronous message passing (blocking writes and blocking reads)

▪ Part of programming languages such as occam-π [30] and Go [31]:

Communicating Sequential Processes (CSP)

7 June 2023 Simulation-based development of networked avionics systems using the XANDAR toolchain27

[29] C. A. R. Hoare, “Communicating Sequential Processes”, Communications of the ACM, vol. 21, no. 8, 1978.
[30] P. H. Welch, F. R. M. Barnes, “Communicating Mobile Processes: Introducing occam-pi”, Communicating Sequential Processes: The First 25 Years, Springer, Berlin, Heidelberg, 2005.
[31] J. Whitney, C. Gifford, M. Pantoja, “Distributed execution of communicating sequential process-style concurrency: Golang case study”, Journal of Supercomputing, vol. 75, 2019.

func main() {
exit := make(chan bool)
channel := make(chan uint8)

go consumer(channel, exit)
go producer(channel)
<-exit

}

func consumer(in <-chan uint8, exit chan<- bool) {
fmt.Println(<-in)
exit <- true

}

func producer(out chan<- uint8) {
time.Sleep(time.Second)
out <- 42

}

▪ Key principle: combination of synchrony and concurrency [32]
▪ Examples are Lustre [33] or more recent approaches such as Blech [34]

▪ Immediate reactions (simultaneous reads and writes)

▪ Temporal semantics based on a global clock

▪ Strong foundation for formal verification

▪ Widespread use for safety-critical system design:
▪ Lustre is a fundamental part of the SCADE toolset by Esterel Technologies

▪ Applications include nuclear power plants and flight control software [32]

Ticks

Synchronous languages

7 June 2023 Simulation-based development of networked avionics systems using the XANDAR toolchain28

[32] A. Benveniste, P. Caspi, et al., “The synchronous languages 12 years later”, Proceedings of the IEEE, vol. 91, no. 1, January 2003.
[33] N. Halbwachs, P. Caspi, et al., “The synchronous data flow programming language LUSTRE”, Proceedings of the IEEE, vol. 79, no. 9, September 1991.
[34] F. Gretz, F.-J. Grosch, “Blech, Imperative Synchronous Programming!”, FDL '18, September 2018.

▪ Origin: Giotto methodology for embedded control system design [13]
▪ Periodic invocation of sequential tasks ⇒ time-triggered framework

▪ Reading of input ports at the invocation time

▪ Writing of output ports at the end of the period

▪ Other manifestations of the LET abstraction:
▪ xGiotto for event-driven programming [35]

▪ Timing Definition Language (TDL), cf. [36]

▪ System-level LET for distributed systems [37]

▪ The synchronous LET paradigm [38]

Logical Execution Time (LET)

7 June 2023 Simulation-based development of networked avionics systems using the XANDAR toolchain29

[13] T. A. Henzinger, B. Horowitz, C. M. Kirsch, “Embedded Control Systems Development with Giotto”, SIGPLAN Not., vol. 36, no. 8, August 2001.
[35] A. Ghosal, T. A. Henzinger, et al., “Event-Driven Programming with Logical Execution Times”, Hybrid Systems: Computation and Control, HSCC '04, Springer, Berlin, Heidelberg, 2004.
[36] W. Pree, J. Templ, “Modeling with the Timing Definition Language (TDL)”, ASWSD '06, Springer, Berlin, Heidelberg, 2006.
[37] R. Ernst, L. Ahrendts, K.-B. Gemlau, “System Level LET: Mastering Cause-Effect Chains in Distributed Systems”, IECON '18, October 2018.
[38] F. Siron, D. Potop-Butucaru, et al., “The synchronous Logical Execution Time paradigm”, ERTS '22, June 2022, hal-03694950.

Time

CPU time

Reactors and Lingua Franca (LF)

▪ Concept: reactors as coordination model for concurrent systems [39]
▪ A reactor is composed of reactions in a target language (C, Python, Rust, …)

▪ Reactions are executed in response to trigger events (carrying a value and a tag)

▪ Lingua Franca (LF) for the development of reactor-based systems:

7 June 2023 Simulation-based development of networked avionics systems using the XANDAR toolchain30

[39] M. Lohstroh, C. Menard, et al. “Toward a Lingua Franca for Deterministic Concurrent Systems”, ACM Transactions on Embedded Computing Systems, vol. 20, no. 4, May 2021.

target C;
main reactor Timer {

timer t(0, 1 sec);
reaction(t) {=

printf("Timer expired!\n");
=}

}

www.lf-lang.org

“Lingua Franca is a polyglot coordination language for
reactive, concurrent, and time-sensitive applications.”

Applicability to the XANDAR toolchain

▪ Compatibility with the full feature set of XANDAR is essential

▪ LET has been shown to offer a promising trade-off
▪ Straightforward integration into the overall framework

▪ Compatible with the requirements of XANDAR’s use cases

▪ Relaxation of current constraints is future work

▪ Ideas for steps beyond the current model:
▪ Integration of LF, which is a generalisation of LET [40]

▪ Add support for the synchronous LET paradigm [38]

7 June 2023 Simulation-based development of networked avionics systems using the XANDAR toolchain31

[38] F. Siron, D. Potop-Butucaru, et al., “The synchronous Logical Execution Time paradigm”, ERTS '22, June 2022, hal-03694950.
[40] E. A. Lee, M. Lohstroh, “Generalizing Logical Execution Time”, Principles of Systems Design - Essays Dedicated to Thomas A. Henzinger on the Occasion of His 60th Birthday, July 2023.

Part III
Live demonstration of XbCgen

7 June 2023 Simulation-based development of networked avionics systems using the XANDAR toolchain32

Overview and introductory examples

7 June 2023 Simulation-based development of networked avionics systems using the XANDAR toolchain33

1 Software architecture modelling

2 SWC skeleton generation (XbCgen/sync)

3 SWC code development (in C)

4 Simulation design

5 Execution trace generation (XbCgen/sim)

Application to an avionics use case

▪ SWC chain from the Tactical Air Risk Mitigation System (TARMS) by DLR:

7 June 2023 Simulation-based development of networked avionics systems using the XANDAR toolchain34

preprocessing

intruders

aircraft_state

cas

advisory

intruders

aircraft_state

postprocessing

cas_advisory advisory

… taws_advisory

[41] K. D. Julian, M. J. Kochenderfer, “Guaranteeing Safety for Neural Network-Based Aircraft Collision Avoidance Systems”, DASC '19, September 2019.

Neural network implementation of horizontal and
vertical CAS based on the approach from [41]

enum VerticalAdvisory {
COC = 1; // Clear of conflict
DNC = 2; // Do not climb
DND = 3; // Do not descend
DES1500 = 4; // …
CL1500 = 5;
SDES1500 = 6;
SCL1500 = 7;
SDES2500 = 8;
SCL2500 = 9;

}

▪ Sample activation pattern specification:

▪ FlightGear [42] scenarios serve as simulation stimuli:

7 June 2023 Simulation-based development of networked avionics systems using the XANDAR toolchain35

[42] FlightGear Flight Simulator website, online: www.flightgear.org, accessed 2 May 2023.

Application to an avionics use case

⇒

http://www.flightgear.org/

Closing
Summary

7 June 2023 Simulation-based development of networked avionics systems using the XANDAR toolchain36

Summary

7 June 2023 Simulation-based development of networked avionics systems using the XANDAR toolchain37

▪ Software development methodology of the XANDAR toolchain:
▪ Software modelled as a network of SWCs with LET parameters

▪ Pre-verified safety/security patterns are annotated by the toolchain user

▪ Behaviour simulation + automatic deployment to a type-1 hypervisor on MPSoCs

▪ Programming models for concurrent systems:
▪ LET has been shown to be a suitable model for the XANDAR framework

▪ Relaxation of current constraints (e.g. by moving to LF) is future work

▪ Live demonstration of XbCgen:
▪ Flow from modelling to execution trace generation

▪ Application to the DLR use case

