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Part I
The software development methodology of XANDAR
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Motivation

▪ Designing embedded systems is an error-prone task

▪ Flight 501 of Ariane 5 (1996):
▪ Programming error in the control software [1]

▪ Failure of the Inertial Reference System during test flight

▪ Self-destruction after 37 seconds

▪ Remote access to 1.4 million road vehicle (2015):
▪ Vulnerability in the vehicle’s head unit [3]

▪ Remote reprogramming of a gateway component

▪ Full access to a CAN bus of the vehicle
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[1] B. Nuseibeh, “Ariane 5: Who Dunnit?”, IEEE Software, vol. 14, no. 3, May-June 1997.
[2] European Space Agency, Bulletin Nr. 89, online: https://www.esa.int/esapub/bulletin/bullet89/dalma89.htm, accessed 2 May 2023.
[3] C. Miller, “Lessons Learned from Hacking a Car”, IEEE Design & Test, vol. 36, no. 6, December 2019.

Image source: [2]

Image source: [3]

https://www.esa.int/esapub/bulletin/bullet89/dalma89.htm


Motivation

▪ Properties of modern cyber-physical systems aggravate the design challenge:

▪ Conflicting requirements are particularly difficult to address, for example:
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Consolidation of functions on multicore 
platforms, e.g. in the automotive domain

Continuous interaction with remote 
entities, e.g. in a cloud-edge setting

Functional safety and cybersecurity 
requirements, e.g. fault tolerance

Integration of Artificial Intelligence (AI) 
algorithms, e.g. for object detection

[4] O. Burkacky, J. Deichmann, J. P. Stein, “Automotive software and electronics 2030: Mapping the sector’s future landscape”, McKinsey & Company, 2019.

Image source: [4]

Centralization of automotive on-board architectures [4]
⇒ Lack of physical separation between components
⇒ Potential for timing interferences, fault propagation, …
⇒ Functional safety issues



Motivation

▪ Methodological gap between requirements and implementations, e.g.:
▪ ISO 26262 [5] specifies Freedom from Interference (FFI) requirements

▪ A hypervisor such as XtratuM [6] is a building block that contributes to this goal

▪ The correct application of such building blocks can be difficult (timing interferences, …)
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ISO 26262 – Functional safety standard for road vehicles (initially 
published in 2011). Covers the following scope [5]: “This document 
addresses possible hazards caused by malfunctioning behaviour of 
safety-related E/E systems, including interaction of these systems.”

Hypervisor – Software layer providing independent execution 
environments on a single processor. Hypervisors running directly on 
the target hardware (without a host OS) are called type-1 hypervisors.

Multicore processor
(e.g. Cortex-A53)

Type-1 hypervisor
(e.g. XtratuM)

Partition 1
(e.g. bare-metal code)

Partition 2
(e.g. Linux distribution)

Example of a hypervisor-based system

[5] ISO 26262-1:2018, “Road vehicles — Functional safety — Part 1: Vocabulary”, Geneva, 2018.
[6] M. Masmano, I. Ripoll, et al., “XtratuM: a Hypervisor for Safety Critical Embedded Systems”, 11th Real-Time Linux Workshop, 2009.



Motivation

▪ Motivation: How to apply such building blocks in a provably correct manner?

▪ Key idea: Apply the X-by-Construction (XbC) paradigm to the design process
▪ Auto-generate implementation artefacts that leverage suitable low-level techniques

▪ Simplify the post-hoc verification process in a manner comparable to [8]
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[7] M. H. ter Beek et al., “X-by-Construction”, Leveraging Applications of Formal Methods, Verification and Validation: Modeling, ISoLA '18, Springer, Cham, October 2018.
[8] B. W. Watson, D. G. Kourie, et al., “Correctness-by-Construction and Post-hoc Verification: A Marriage of Convenience?”, Leveraging Applications of Formal Methods, Verification and 

Validation: Foundational Techniques, ISoLA '16, October 2016.

Excerpt of ISO 26262-11:2018
“Techniques such as hypervisors can help to 
achieve software partitioning […]”

X-by-Construction (XbC) – The “step-wise refinement process from specification to code that automatically 
generates software (system) implementations that by construction satisfy specific non-functional properties 
concerning security, dependability, reliability, or resource/energy consumption, to name but a few” [7].



Overview of the XANDAR project
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Duration:
01/2021 – 12/2023

Budget:
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https://xandar-project.eu

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 957210.

Goal: Deliver a mature software toolchain that uses
the X-by-Construction paradigm to generate system 

implementations with guaranteed properties

http://www.xandar-project.eu/


Overview of the XANDAR project

▪ The toolchain allows users to apply the XANDAR development process [9]

▪ This process defines a sequence of iteratively traversed steps:
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Acronyms: XbC = X-by-Construction, SWC = Software Component, HW = Hardware

[9] L. Masing, T. Dörr, et al. “XANDAR: Exploiting the X-by-Construction Paradigm in Model-based Development of Safety-critical Systems”, DATE '22, March 2022.



Overview of the XANDAR project

▪ With every iteration, the architecture model is refined or extended

▪ Relevant abstraction levels inspired by the PREEvision [10] layer model

▪ Evolution of an architecture model along the development process:
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[10] J. Schäuffele, “E/E architectural design and optimization using PREEvision”, SAE 2016 World Congress and Exhibition, 2016.

Focus of this tutorial



Overview of the XANDAR project

▪ Toolchain evaluated in a laboratory setup with two use cases:
▪ DLR ⇒ Resilient Avionic Architecture for Urban Air Mobility (UAM)

▪ BMW ⇒ Autonomous Systems with Integrated Machine Learning Applications

▪ Logical architecture excerpt of DLR’s pilot assistance system for UAM [11]:
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[11] J. Athavale, A. Baldovin, et al., “Chip-Level Considerations to Enable Dependability for eVTOL and Urban Air Mobility Systems”, DASC '20, October 2020.
[12] T. Dörr, F. Schade, et al., “A Behavior Specification and Simulation Methodology for Embedded Real-Time Software”, DS-RT '22, September 2022.

Image source: [12]



Software development approach

▪ Description of the software architecture by the toolchain user:
▪ Software Component (SWC) entities communicating via message passing

▪ Logical Execution Time (LET) parameters [13] capture the desired timing behaviour

▪ Software architecture metamodel as class diagram:
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[13] T. A. Henzinger, B. Horowitz, C. M. Kirsch, “Embedded Control Systems Development with Giotto”, SIGPLAN Not., vol. 36, no. 8, August 2001.



▪ Sample network of SWCs and textual description in JSON5 [14] syntax:

▪ LET frame sequence:

Software development approach
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[14] A. Kishore, J. Tucker, “The JSON5 Data Interchange Format”, v1.0.0, March 2018.

acquisition: {
period: 10,
activations: {

check: {
offset: 0,
runtime: 3,
write_to: [ 'alive' ],

},

gen: {
offset: 3,
runtime: 7,
write_to: [ 'data' ],

},
},

system_ports: {
data: { /* … */ },
alive: { /* … */ },

},

env_ports: {
val: { /* … */ },

}
}

JSON5 representation



Software development approach

▪ Generation of SWC code skeletons:

▪ Access to input/output ports via the framework-provided port map
▪ Support for structured data structures (based on the Protocol Buffers [16] format)

▪ Built-in support for access to input/output controllers of the hardware

▪ On the target hardware: invocation of the trigger hook for each SWC activation
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Logical Execution Time (LET) – “LET determines the time it takes from reading program input to writing 
program output regardless of the time it takes to execute the program” [15].

[15] C. M. Kirsch, A. Sokolova, “The Logical Execution Time Paradigm”, Advances in Real-Time Systems, Springer, Berlin, Heidelberg, 2012. 
[16] Google LLC, “Google Developers: Protocol Buffers”, online: https://developers.google.com/protocol-buffers, accessed 2 May 2023.

// Initialization hook:
void swc_init(void);

// Trigger hook:
void swc_trigger(enum activation_id activation, struct swc_port_map *port);

https://developers.google.com/protocol-buffers


Simulation and target deployment

▪ Starting point: Fully deterministic specification of the software behaviour

▪ Tool support provided by the XbCgen framework of XANDAR:
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XbCgen/sync

XbCgen/sim

XbCgen/deploy



Simulation and target deployment

▪ XbCgen/sim: Generation of execution traces for verification and validation
▪ Discrete-event simulation with a user-provided plant/environment model (in Ptolemy II)

▪ Automatic synthesis of an executable model (calling SWC simulation binaries)

▪ Refer to previous work in [12] for a detailed description

▪ Sample excerpt of an execution trace:
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[12] T. Dörr, F. Schade, et al., “A Behavior Specification and Simulation Methodology for Embedded Real-Time Software”, DS-RT '22, September 2022.

acquisition.gen(3..10ms)
- data = [1566, 1564, 1563]

acquisition.check(10..13ms)
- alive = true

monitor.main(13..15ms)
processing.main(10..20ms)
- res = 1564.3333333333333

acquisition.gen(13..20ms)
- data = [1558, 1557, 1555]

acquisition.check(20..23ms)
- alive = true

monitor.main(23..25ms)

⇒



Simulation and target deployment

▪ XbCgen/deploy: Automatic generation of implementation artefacts for MPSoCs

▪ The target runtime environment consists of:
▪ A hypervisor layer currently implemented using the XtratuM hypervisor

▪ An optional operating system layer (RTEMS, FreeRTOS, Linux, …)

▪ SWCs are deployed to XtratuM partitions or OS tasks/processes, for example:
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XtratuM hypervisor

Core cluster Core cluster

XtratuM hypervisor XtratuM hypervisor

SWC3RTEMS

SWC2SWC1

SWC5SWC4

MPSoC MPSoC

Core cluster

SWC7SWC6



Safety pattern concept

▪ XbC pattern library: Collection of verified design-time procedures for safety and 
security that can be annotated to system entities [17]

▪ Automatic implementation of the corresponding mechanisms:
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[17] T. Dörr, F. Schade, et al., “Safety by Construction: Pattern-Based Application of Safety Mechanisms in XANDAR”, ISVLSI '22, July 2022.



Safety pattern concept

▪ Pattern usage: Explicit specification in the textual model instance (JSON5)

▪ Example: Triple Modular Redundancy (TMR) for fault tolerance

▪ Next up: Information Flow Control (IFC) + runtime logging for AI components
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annotations: {
proc_redundancy: {

id: 'software_tmr_pattern',
target: 'processing',

},
}

[18] E. Missimer, R. West, Y. Li, “Distributed Real-Time Fault Tolerance on a Virtualized Multi-Core System”, OSPERT '14, July 2014.

Generation of redundant partitions and an ‘arbitrator sandbox’ in the sense of [18]



▪ Motivation: Unintended information flow via shared on-chip resources can lead 
to the violation of safety/security requirements, for example…

▪ Concept: Auto-generate APU configurations that are as prohibitive as possible 
and compare potentially feasible information flows to an accept list

Image source: [19]

Information Flow Control (IFC) safety pattern
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Processor I
(reliability)

Processor II
(connectivity)

Interconnect

I/O controller Memory

Safety-critical 

actuators

XPPU

[19] AMD/Xilinx, “Zynq UltraScale+ Device: Technical Reference Manual”, UG1085 (v2.3), September 2022.

Access protection units (APUs) control transactions on shared interconnects. They are 
state-of-the art components of modern multiprocessor system-on-chip (MPSoC) devices.



Information Flow Control (IFC) safety pattern
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⇒

Reachability analysis yields 𝑰𝑭

⇓

[20] T. Dörr, T. Sandmann, J. Becker, “Model-based configuration of access protection units in networks of heterogeneous multicore processors”, Microprocessors and Microsystems (MICPRO), 
vol. 87, November 2021.

▪ Underlying methodology from the state of the art [20]:
▪ Inputs are the system architecture and the desired information flow policy (𝐼A)

▪ Graph-based algorithm to determine all potentially feasible information flows (𝐼𝐹)

▪ XbC guarantee: IF ⊆ 𝐼𝐴 holds for interactions between SWCs, ports, …



Runtime logging for AI components

▪ Upcoming normative and legislative constraints on AI components:
▪ Ethics of Connected and Automated Vehicles [21] by the European Commission

▪ EASA Concept Paper: First usable guidance for Level 1 machine learning applications [22]

▪ Selected excerpts focused on the transparency of algorithmic decisions:
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“User-centred methods and interfaces for the explainability of AI-based 
forms of CAV decision-making should be developed.”

Source: [21]

“Did you put adequate logging practices in place to record the 
decision(s) or recommendation(s) of the AI-based system?”

Source: [22]

[21] European Commission, “Ethics of Connected and Automated Vehicles: recommendations on road safety, privacy, fairness, explainability and responsibility”, 2020.
[22] European Union Aviation Safety Agency, “EASA Concept Paper: First usable guidance for Level 1 machine learning applications”, issue 01, 2021.



Runtime logging for AI components

▪ Library-provided logging support at the level of SWC ports:

▪ XbC guarantee: Correct synthesis and deployment of logging modules
▪ Allocation of a dedicated memory region (incl. IFC pattern compatibility)

▪ Non-interference with the LET-based communication model
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annotations: {
proc_logging: {

id: 'port_logging_pattern',
swc: 'processing',
target_ports: [

{ port: 'data', capacity: 32 },
],

},
}



Part II
Programming models for concurrent systems
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Fundamentals

▪ Cyber-physical systems (CPS) are inherently concurrent [25]
⇒ Approaches to achieve deterministic concurrency are essential

▪ Incorrect data sharing is a common source of concurrency issues [26]
⇒ Techniques based on message passing particularly interesting for CPS applications
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Concurrency – Two or more actions are in progress at the same time [23].
Parallelism – Two or more actions execute simultaneously [23].

Shared memory communication – Concurrent modules communicate via objects in memory [24].
Message passing – Concurrent modules communicate by transmitting messages over a channel [24].

[23] C. Breshears, “The Art of Concurrency: A Thread Monkey's Guide to Writing Parallel Applications”, O'Reilly Media, Inc., 2009.
[24] R. Miller, M. Goldman, 6.031 — Software Construction, Reading 21: Concurrency, online: https://web.mit.edu/6.031/www/sp22/classes/21-concurrency, 2022.
[25] P. Derler, E. A. Lee, A. Sangiovanni Vincentelli, “Modeling Cyber-Physical Systems”, Proceedings of the IEEE, vol. 100, no. 1, January 2012.
[26] P. Koopman, “A Case Study of Toyota Unintended Acceleration and Software Safety”, online: https://betterembsw.blogspot.com/2014/09/a-case-study-of-toyota-unintended.html, 2014.

https://web.mit.edu/6.031/www/sp22/classes/21-concurrency
https://betterembsw.blogspot.com/2014/09/a-case-study-of-toyota-unintended.html


Kahn Process Networks (KPN)

▪ Idea: simple language for parallel programming [27]
▪ Processes (computing stations) = sequential programs with Algol-like syntax

▪ Channels (communication lines) = unbounded first-in-first-out queues

▪ Asynchronous message passing (nonblocking writes and blocking reads)

▪ KPN programs are deterministic [28]:

“Kahn showed that concurrent execution was
possible without nondeterminism”

▪ Expressivity deliberately limited
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[27] G. Kahn, “The semantics of a simple language for parallel programming”, IFIP Congress, 1974.
[28] C. Ptolemaeus (editor), “System Design, Modeling, and Simulation using Ptolemy II”, Ptolemy.org, 2014.

Image source: [27]



▪ Key principle: parallel composition of sequential processes [29]
▪ Introduced to coordinate/synchronise multiprocessor machine communication

▪ Synchronous message passing (blocking writes and blocking reads)

▪ Part of programming languages such as occam-π [30] and Go [31]:

Communicating Sequential Processes (CSP)
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[29] C. A. R. Hoare, “Communicating Sequential Processes”, Communications of the ACM, vol. 21, no. 8, 1978.
[30] P. H. Welch, F. R. M. Barnes, “Communicating Mobile Processes: Introducing occam-pi”, Communicating Sequential Processes: The First 25 Years, Springer, Berlin, Heidelberg, 2005.
[31] J. Whitney, C. Gifford, M. Pantoja, “Distributed execution of communicating sequential process-style concurrency: Golang case study”, Journal of Supercomputing, vol. 75, 2019.

func main() {
exit := make(chan bool)
channel := make(chan uint8)

go consumer(channel, exit)
go producer(channel)
<-exit

}

func consumer(in <-chan uint8, exit chan<- bool) {
fmt.Println(<-in)
exit <- true

}

func producer(out chan<- uint8) {
time.Sleep(time.Second)
out <- 42

}



▪ Key principle: combination of synchrony and concurrency [32]
▪ Examples are Lustre [33] or more recent approaches such as Blech [34]

▪ Immediate reactions (simultaneous reads and writes)

▪ Temporal semantics based on a global clock

▪ Strong foundation for formal verification

▪ Widespread use for safety-critical system design:
▪ Lustre is a fundamental part of the SCADE toolset by Esterel Technologies

▪ Applications include nuclear power plants and flight control software [32]

Ticks

Synchronous languages
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[32] A. Benveniste, P. Caspi, et al., “The synchronous languages 12 years later”, Proceedings of the IEEE, vol. 91, no. 1, January 2003.
[33] N. Halbwachs, P. Caspi, et al., “The synchronous data flow programming language LUSTRE”, Proceedings of the IEEE, vol. 79, no. 9, September 1991.
[34] F. Gretz, F.-J. Grosch, “Blech, Imperative Synchronous Programming!”, FDL '18, September 2018.



▪ Origin: Giotto methodology for embedded control system design [13]
▪ Periodic invocation of sequential tasks ⇒ time-triggered framework

▪ Reading of input ports at the invocation time

▪ Writing of output ports at the end of the period

▪ Other manifestations of the LET abstraction:
▪ xGiotto for event-driven programming [35]

▪ Timing Definition Language (TDL), cf. [36]

▪ System-level LET for distributed systems [37]

▪ The synchronous LET paradigm [38]

Logical Execution Time (LET)

7 June 2023 Simulation-based development of networked avionics systems using the XANDAR toolchain29

[13] T. A. Henzinger, B. Horowitz, C. M. Kirsch, “Embedded Control Systems Development with Giotto”, SIGPLAN Not., vol. 36, no. 8, August 2001.
[35] A. Ghosal, T. A. Henzinger, et al., “Event-Driven Programming with Logical Execution Times”, Hybrid Systems: Computation and Control, HSCC '04, Springer, Berlin, Heidelberg, 2004.
[36] W. Pree, J. Templ, “Modeling with the Timing Definition Language (TDL)”, ASWSD '06, Springer, Berlin, Heidelberg, 2006.
[37] R. Ernst, L. Ahrendts, K.-B. Gemlau, “System Level LET: Mastering Cause-Effect Chains in Distributed Systems”, IECON '18, October 2018.
[38] F. Siron, D. Potop-Butucaru, et al., “The synchronous Logical Execution Time paradigm”, ERTS '22, June 2022, hal-03694950.

Time

CPU time



Reactors and Lingua Franca (LF)

▪ Concept: reactors as coordination model for concurrent systems [39]
▪ A reactor is composed of reactions in a target language (C, Python, Rust, …)

▪ Reactions are executed in response to trigger events (carrying a value and a tag)

▪ Lingua Franca (LF) for the development of reactor-based systems:
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[39] M. Lohstroh, C. Menard, et al. “Toward a Lingua Franca for Deterministic Concurrent Systems”, ACM Transactions on Embedded Computing Systems, vol. 20, no. 4, May 2021.

target C;
main reactor Timer {

timer t(0, 1 sec);
reaction(t) {=

printf("Timer expired!\n");
=}

}

www.lf-lang.org

“Lingua Franca is a polyglot coordination language for 
reactive, concurrent, and time-sensitive applications.”



Applicability to the XANDAR toolchain

▪ Compatibility with the full feature set of XANDAR is essential

▪ LET has been shown to offer a promising trade-off
▪ Straightforward integration into the overall framework

▪ Compatible with the requirements of XANDAR’s use cases

▪ Relaxation of current constraints is future work

▪ Ideas for steps beyond the current model:
▪ Integration of LF, which is a generalisation of LET [40]

▪ Add support for the synchronous LET paradigm [38]
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[38] F. Siron, D. Potop-Butucaru, et al., “The synchronous Logical Execution Time paradigm”, ERTS '22, June 2022, hal-03694950.
[40] E. A. Lee, M. Lohstroh, “Generalizing Logical Execution Time”, Principles of Systems Design - Essays Dedicated to Thomas A. Henzinger on the Occasion of His 60th Birthday, July 2023.



Part III
Live demonstration of XbCgen
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Overview and introductory examples
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1 Software architecture modelling

2 SWC skeleton generation (XbCgen/sync)

3 SWC code development (in C)

4 Simulation design

5 Execution trace generation (XbCgen/sim)



Application to an avionics use case

▪ SWC chain from the Tactical Air Risk Mitigation System (TARMS) by DLR:
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preprocessing

intruders

aircraft_state

cas

advisory

intruders

aircraft_state

postprocessing

cas_advisory advisory

… taws_advisory

[41] K. D. Julian, M. J. Kochenderfer, “Guaranteeing Safety for Neural Network-Based Aircraft Collision Avoidance Systems”, DASC '19, September 2019.

Neural network implementation of horizontal and 
vertical CAS based on the approach from [41]

enum VerticalAdvisory {
COC = 1; // Clear of conflict
DNC = 2; // Do not climb
DND = 3; // Do not descend
DES1500 = 4; // …
CL1500 = 5;
SDES1500 = 6;
SCL1500 = 7;
SDES2500 = 8;
SCL2500 = 9;

}



▪ Sample activation pattern specification:

▪ FlightGear [42] scenarios serve as simulation stimuli:
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[42] FlightGear Flight Simulator website, online: www.flightgear.org, accessed 2 May 2023.

Application to an avionics use case

⇒

http://www.flightgear.org/


Closing
Summary
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Summary
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▪ Software development methodology of the XANDAR toolchain:
▪ Software modelled as a network of SWCs with LET parameters

▪ Pre-verified safety/security patterns are annotated by the toolchain user

▪ Behaviour simulation + automatic deployment to a type-1 hypervisor on MPSoCs

▪ Programming models for concurrent systems:
▪ LET has been shown to be a suitable model for the XANDAR framework

▪ Relaxation of current constraints (e.g. by moving to LF) is future work

▪ Live demonstration of XbCgen:
▪ Flow from modelling to execution trace generation

▪ Application to the DLR use case


