

Economic and environmental assessment of chemical recycling via pyrolysis: A case study for engineering plastics

Malte Hennig, Christoph Stallkamp, Rebekka Volk, Dieter Stapf

www.kit.edu

Engineering plastics in automotive applications

Automotive plastic waste from car workshops (APW)

Chemical recycling might have the potential to produce new polymers with virgin polymer quality from plastic waste that cannot be recycled mechanically

Assessment of Automotive Plastic Waste recycling via pyrolysis

Technology

- Pyrolysis of complex mixture of engineering plastics
- Characterization of pyrolysis products
- Total and elemental mass balances of pyrolysis process

Techno-economic (TEA) and Life Cycle Assessment (LCA)

- Definition of process chain for chemical recycling of automotive plastic waste
- Balancing of entire process chain
- Calculation of costs and LCA indicators

Feedstock flexible pyrolysis pilot plant

Pyrolysis mass and elemental balances

Balance loss
Pyrolysis residue
Aqueous condensate
Pyrolysis gas
Light pyrolysis oil
Heavy pyrolysis oil

Pyrolysis mass and elemental balances

Pyrolysis of engineering plastics is feasible but upgrading of pyrolysis oil is required for use as steam cracker feedstock

Process chain and system boundaries

Reference system

Assessment criteria for TEA and LCA

Assessment criteria	Unit	Description
Climate Change	kg CO ₂ e / kg waste	Assessed based on GWP100 as defined by Kyoto-Protocol (IPCC 2013).
Carbon efficiency	% carbon recovered	Carbon recovery in the product compared to carbon contained in feedstock.
Costs	€ / kg waste	Depreciation of investment and OPEX

Stallkamp, C., Hennig, M. et al. (2023): Economic and environmental assessment of automotive plastic waste end-of-life options: Energy recovery versus chemical recycling. Journal of Industrial Ecology, jiec.13416. https://doi.org/10.1111/jiec.13416.

Mass balance of APW recycling via pyrolysis

31% of input material is recovered as High Value Chemical (HVC), 9% as scrap metals

Carbon efficiency of APW recycling

Percentages refer to input carbon mass flow of APW

Steam cracking of upgraded pyrolysis oil results in carbon recovery > 50 %

Climate change impact comparison

- Reward energy
 Reward metal recycling
 Reward HVCs
 Transportation
 Energy recovery
 Landfilling
 Metal recycling
 Steam cracking
 Hydroprocessing
 Pyrolysis
 RDF production
 APW collection
- Sum

Economic comparison

- Reward energy
 Reward metal recycling
 Reward HVCs
 Transportation
 Energy recovery
 Landfilling
 Metal recycling
 Steam cracking
 Hydroprocessing
 Pyrolysis
 RDF production
 APW collection
- Sum

Processing costs Climate change impact 15% 15% deviation from baseline [%] deviation from baseline [%] 9% 10% 10% 5% 5% 3% 0% 0% 0% 0% -1% -2% -5% -5% -6% 10% -10% 15% -15% -15% -20% -20% Decrease Increase Increase Increase Decrease Increase Increase Increase HVC price HVC price CO2-factor CO2-factor electricity electricity energy energy price +10% price +10% +10% +10%electricity electricity demand demand mix -10% mix -10% pyrolysis pyrolysis CR CR ER ER +10%+10% CR CR ER ER **CR:** Chemical recycling ER: Energy recovery

15 25.09.2023 Malte Hennig – Assessment of Pyrolysis of Engineering Plastics

Sensitivity analysis

Case study conclusions

Technology

- Pyrolysis of APW is feasible
- APW pyrolysis oil requires upgrading for use as steam cracker feedstock

Environment

Chemical recycling of engineering plastics is beneficial in terms of climate change impact

Economy

High energy prices favor energy recovery due to higher revenues

Thank you for your attention!

...and the financial support of THINKTANK Industrielle Ressourcenstrategien and AUDI AG and the provision of waste samples by Volkswagen Original Teile Logistik GmbH

